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Abstract

We consider a weighted generalization of multiple sequence alignment with sum-
of-pair score. Multiple sequence alignment without weights is known to be NP-
complete and can be approximated within a constant factor, but it is unknown
whether it has a polynomial time approximation scheme. Weighted multiple se-
quence alignment can be approximated within a factor of O(log2 n) where n is the
number of sequences.

We prove that weighted multiple sequence alignment is MAX SNP-hard and
give a numerical lower bound on its approximability, namely 324

323 − ǫ. This lower
bound is obtained already for the simple binary weighted case where the weights
are restricted to 0 and 1. Furthermore, we show that weighted multiple sequence
alignment and its restriction to binary weights can be approximated to the same
degree.
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1 Introduction

Multiple sequence alignment (MSA) is an important problem in computational
biology (see e.g. Karp [13]). The alignment of a group of protein or nucleotide
sequences yields information about the relationships between these sequences
and it is also used to detect similarities (so called “homologous regions”)
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between them. This information is applied in constructing evolutionary trees
and finding coherences between the function and structure of proteins and
their sequences. For a general survey of this topic, see for instance Gusfield [9].

Many objective functions have been suggested to measure the quality of a
multiple sequence alignment. One of the most widely used is the so called
sum-of-pair score (SP-score, see Carrillo et al. [7]).

The problem of finding a multiple sequence alignment with minimum SP-score
is NP-hard (see Wang and Jiang [16] and Bonizzoni and Della Vedova [6]).
For the case that the scoring function does not have to be a metric, Just has
shown that MSA with SP-score is MAX SNP-hard [12]. Akutsu et al. have
investigated the multiple sequence alignment problem under several scoring
functions, namely #LOG#-score and IC-score [1]. They have shown that
a variant of the multiple sequence alignment problem called local multiple
alignment is MAX SNP-hard under these scoring schemes.

However, if the scoring function fulfils the triangle inequality, no lower bound
for the approximability of this problem is known so far. The complexity of
MSA over an alphabet of fixed size with metric SP-scoring functions is of
main interest. According to Jiang et al. the approximability of MSA with
metric SP-score is an important open problem in computational biology [11].

To represent existing knowledge about the relationships of the sequences con-
sidered, a weighted variant of MSA was introduced by Wu et al. [17]. Each
pair of sequences is assigned a nonnegative value reflecting their degree of re-
lationship. This means that a pair that is assumed to be closely related will
be assigned a high weight while a less related pair will be assigned a smaller
weight. This generalization of MSA is called weighted multiple sequence align-
ment, or WMSA for short.

In this paper we also examine a restricted version of WMSA called binary
weighted multiple sequence alignment (BMSA), where the weights are re-
stricted to 0 and 1. The binary weights can be used to represent an arbitrary
graph over which multiple sequence alignments can be determined. We prove
that BMSA is equivalent to WMSA with respect to their approximability.
Thus, an approximation algorithm for BMSA directly yields an approxima-
tion algorithm for the general case with the same performance ratio. Moreover,
we prove the MAX SNP-hardness and a numerical lower bound for the ap-
proximability of BMSA. These results are obtained even if the sequences are
of fixed length and the alphabet is of fixed size. Thus, the difficulty of com-
puting an optimal alignment is caused by the number of sequences, not by
their length.

In the next section we give a formal definition of the problems considered.
The reduction from WMSA to BMSA is presented in Section 3. In Section 4
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we prove a lower bound for the approximability of a problem called Max-E2-
neg-Lin2. This result will be used in Section 5 to prove a lower bound for the
approximability of BMSA.

2 Definitions and Notations

Let Σ be an alphabet and Σ′ := Σ∪{−}, where “−” denotes a gap symbol. S[k]
denotes the k-th symbol of a sequence S. Let S = {S1, . . . , Sn} be a family (a
multiset) of sequences over Σ. An alignment of S is a family A = {S̃1, . . . , S̃n}
of sequences over Σ′ such that all S̃i have equal length and S̃i is obtained from
Si by inserting gaps. The following is an example of an alignment of the three
sequences ALIGNMENT, ALGORITHM, and APPROXIMATION.

ALIGN--MENT---

AL-GORI---THM-

APPROXIMA-TION

A function d : Σ′2 → N will be called scoring function if it is a metric, i.e. for
any x, y, z ∈ Σ′ we have d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), and
d(x, z) ≤ d(x, y) + d(y, z). We define the distance of two sequences S̃i and S̃j

of length ℓ as

D
(

S̃i, S̃j

)

:=
ℓ∑

k=1

d
(

S̃i[k], S̃j[k]
)

.

Carrillo and Lipman [7] introduced a scoring scheme for alignments called
sum-of-pair score (SP-score). The SP-score of an alignment A = {S̃1, . . . , S̃n}
is defined by

D(A) :=
∑

1≤i<j≤n

D
(

S̃i, S̃j

)

.

Multiple sequence alignment (MSA) is the problem of finding an alignment
with minimum SP-score.

Wu et al. [17] generalized MSA to weighted sum-of-pair score. The weights
are given by W := (wSi,Sj

)Si,Sj∈S , a symmetric matrix of nonnegative integers.
The weighted SP-score of an alignment A is

DW (A) :=
∑

1≤i<j≤n

wSi,Sj
· D

(

S̃i, S̃j

)

.

This generalization is called weighted multiple sequence alignment (WMSA).
The aim is to find an alignment with minimum weighted SP-score.
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An instance of WMSA is a 4-tuple (Σ,S, d, W ). We consider the case of a
fixed alphabet Σ and a fixed scoring function d. Thus, a problem instance of
WMSA is given by a pair (S, W ). It is easy to see that any lower bound for
this case also holds if we allow arbitrary scoring functions and alphabets.

In this paper we also consider a special case of WMSA called binary weighted
multiple sequence alignment (BMSA), where the weights are restricted to 0
and 1.

For the case that the scoring function d does not have to fulfil d(x, x) = 0
for any x ∈ Σ′, Wang and Jiang [16] showed that MSA with SP-score is
NP-complete. This result was extended by Bonizzoni and Della Vedova [6].
They showed that MSA with metric SP-score is NP-complete even if |Σ| = 2.
Gusfield [8] presented an algorithm which achieves a performance ratio of 2− 2

n

where n is the number of sequences. This result was improved by Bafna et
al. [4]. For an arbitrary fixed constant r and n ≥ r, their algorithm computes
an alignment whose score is at most a factor 2 − r

n
greater than the score

of an optimal alignment. It is unknown whether MSA admits a polynomial
time approximation scheme (PTAS, see e.g. Ausiello et al. [3]). WMSA with
arbitrary weights can be approximated within a factor of O(log2 n) (see Wu
et al. [17]). Using a technique of Bartal [5] one can obtain a randomized
O(log n · llog n) approximation.

Papadimitriou and Yannakakis [14] introduced a complexity class of optimiza-
tion problems called MAXSNP. They showed that there exist problems that
are MAXSNP-complete with respect to L-reductions. In the following, opt(I)
denotes the optimal score of an instance I of an optimization problem. For
example, opt(S) denotes the score of an optimal (weighted) alignment of S.

Definition 1 Let Π and Π′ be two optimization problems. Then Π L-reduces
to Π′ if there exist polynomial time computable functions f1, f2 and constants
γ1, γ2 > 0 such that for every instance I of Π the following properties hold:

(1) Function f1 produces an instance I ′ = f1(I) of Π′ such that

opt(I ′) ≤ γ1 · opt(I) .

(2) Given a solution S ′ for I ′ with cost c′(S ′), function f2 produces a solution
S = f2(I, S ′) for I with cost c(S) such that

|c(S) − opt(I)| ≤ γ2 · |c
′(S ′) − opt(I ′)| .

No MAX SNP-hard problem has a polynomial time approximation scheme,
unless NP = P (see Arora et al. [2]).
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S
a,1
b Sa,2

cSa,1
c

Sc,2
aSb,1

a

T 3

cT 1

c T 2

cT 1

b T 3

bT 2

b

Sc,1
a

T 3

aT 1

a T 2

a

Fig. 1. Connections between the sequences obtained from S = {Sa, Sb, Sc},
wSa,Sb

= 1, wSa,Sc = 2, wSb,Sc = 0, and K = 3.

3 Reduction from WMSA to BMSA

Let S = {S1, . . . , Sn} be a family of sequences over an alphabet Σ and
W = (wSi,Sj

)Si,Sj∈S be a weight matrix. Let ℓmax be the maximal length of
the sequences in S and dmax be the maximum value of the scoring function
d. We assume that the weights and the scoring function are unary coded. In
practice the weights are very small and the scoring function is fixed. Therefore,
we may restrict to the case of unary coded weights.

We construct a family of sequences S ′ as an instance of BMSA as follows.
Let K := 2 · dmax · ℓmax. For a sequence Si ∈ S generate K copies T k

i ∈ S ′

(1 ≤ k ≤ K) of this sequence. Furthermore, for each 1 ≤ j ≤ n construct wSi,Sj

copies S
j,µ
i ∈ S ′ (1 ≤ µ ≤ wSi,Sj

) of Si. The weight matrix W ′ = (w′
I,J)I,J∈S′

is given by

w′
I,J :=







1 if I ≡ S
j,µ
i and J ≡ S

i,µ
j ,

1 if I ≡ S
j,µ
i and J ≡ T k

i or vice versa ,

0 otherwise ,

where A ≡ B means that A and B are not only equal but denote the same
sequence. An example is shown in Figure 1. There is an edge between two
sequences I and J if and only if w′

I,J = 1.

Since the weights and the scoring function are unary coded, the input size N

of the instance of WMSA fulfils the bound

N ∈ Ω
(
n + ℓmax +

∑n

i,j=1 wSi,Sj

)
.

On the other hand, the input size N ′ of the constructed instance of BMSA
satisfies

N ′ ∈ O
(
n · K · ℓmax
︸ ︷︷ ︸

T k
j

+ ℓmax ·
∑n

i,j=1 wSi,Sj
︸ ︷︷ ︸

S
i,µ
j

+
(
n · K +

∑n

i,j=1 wSi,Sj

)2

︸ ︷︷ ︸

W ′

)
.
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Note that N ′ is polynomially bounded by N .

Lemma 2 If S has an alignment A with weighted score DW (A) then S ′ has
an alignment A′ with weighted score DW ′(A′) = DW (A).

PROOF. Let A = {S̃1, . . . , S̃n} be an alignment of S with weighted score
D. We obtain an alignment A′ = {Ã | A ∈ S ′} of S ′ by setting T̃ k

i = S̃i and
S̃

j,µ
i = S̃i for all i, k, j, µ. The score of A′ with respect to the weight matrix

W ′ is

DW ′(A′) =

n∑

i,j=1

wSi,Sj∑

µ=1

K∑

k=1

D
(
S̃

j,µ
i , T̃ k

i

)

︸ ︷︷ ︸

=0

+
∑

1≤i<j≤n

wSi,Sj∑

µ=1

D
(
S̃

j,µ
i , S̃

i,µ
j

)

︸ ︷︷ ︸

=D

(
S̃i,S̃j

)

= DW (A) .

2

Lemma 3 Given an alignment A′ of S ′ with weighted score DW ′(A′) we can
construct an alignment A of S with less or equal score in polynomial time.

PROOF. Let A′ = {Ã | A ∈ S ′} be an arbitrary alignment of S ′ with score
DW ′(A′). We call the copies of a sequence Si ∈ S consistent if there exists a
sequence Bi with T̃ k

i = Bi and S̃
j,µ
i = Bi for all k, j, µ. The sequence Bi is

called block.

We consider the case that for some i0 the copies of Si0 are not consistent and
distinguish two cases. On the one hand, if not all T̃ k

i0
are equal, let

Dk :=
n∑

j=1

wSi0
,Sj

∑

µ=1

D
(
T̃ k

i0
, S̃

j,µ
i0

)

be the score of T̃ k
i0

with the sequences S̃
j,µ
i0

(1 ≤ j ≤ n, 1 ≤ µ ≤ wSi0
,Sj

). We

choose k0 such that Dk0
is minimal among all Dk and set T̃ k

i0
= T̃ k0

i0
for all

k 6= k0. This way we obtain a new alignment with less or equal score.

On the other hand, we consider the case that there exists a Bi0 such that
T̃ k

i0
= Bi0 for all k. Then there exists a sequence S̃

j0,µ0

i0
6= Bi0 . This sequence

yields at least score K with the sequences T̃ k
i0

(1 ≤ k ≤ K), because it yields

a score of at least 1 with every T̃ k
i0
. Set S̃

j0,µ0

i0
= Bi0 . Then S̃

j0,µ0

i0
yields score 0
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with every T̃ k
i0

and at most score K with S̃
i0,µ0

j0
. Thus, the new alignment has

less or equal score.

By these modifications we iteratively obtain a new alignment of S ′ such that
for any i ∈ {1, . . . , n} the copies of Si are consistent with block Bi. The blocks
of S ′ induce an alignment A = {B1, . . . , Bn} of S with score

DW (A) =
∑

1≤i<j≤n

wSi,Sj
· D

(
Bi, Bj

)
≤ DW ′

(
A′

)
.

2

With these results we have shown that a λ-approximation for BMSA can be
used as a λ-approximation for WMSA. Thus, the following theorem is proved.

Theorem 4 If BMSA can be approximated within a constant factor λ in
polynomial time, then WMSA can also be approximated within λ in polynomial
time. 2

4 An approximability gap for Max-E2-neg-Lin2

We consider the multiplicative group {1,−1}. Let G = {G1, . . . , Gt} be a
multiset of linear equations over the variables U = {x1, . . . , xr}, where Gi is the
equation xαi,1

· . . . ·xαi,k
= ai, ai ∈ {1,−1} is a constant, and αi,q ∈ {1, . . . , r}.

Max-Ek-Lin2 is the optimization problem of finding the maximum number of
simultaneously satisfiable equations. A restriction of Max-Ek-Lin2 is Max-Ek-
neg-Lin2, where ai = −1 for all 1 ≤ i ≤ t.

Max-E2-neg-Lin2 is exactly the problem Max-Cut (see e.g. Ausiello et al. [3])
where the equations correspond to the edges, the variables correspond to
the vertices, and multiple edges are allowed. Therefore, Max-E2-neg-Lin2 is
MAX SNP-complete [14]. We use Max-E2-neg-Lin2 here due to the simpler
notation.

An instance of Max-Ek-Lin2 or Max-Ek-neg-Lin2 consisting of t equations
will be called η-satisfiable if and only if η · t is the maximum number of
simultaneously satisfiable equations. H̊astad [10] proved that it is NP-hard to
distinguish

(
1−ǫ

)
-satisfiable and

(
1
2
+ ǫ

)
-satisfiable instances of Max-E3-Lin2

for any ǫ > 0.

Instead of using the known lower bound for the approximability of Max-
Cut (see H̊astad [10] and Trevisan et al. [15]) we construct a reduction from
Max-E3-Lin2 to Max-E2-neg-Lin2 to show that it is NP-hard to distinguish
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(
18
22
− ǫ

)
- and

(
17
22

+ ǫ
)
-satisfiable instances of Max-E2-neg-Lin2 for any ǫ > 0;

the gadget used by Trevisan et al. [15] does not yield such a gap directly. This
result will be used in Section 5 to prove the lower bound for the approxima-
bility of BMSA.

We will now reduce Max-E3-Lin2 to Max-E2-neg-Lin2. Therefore, let G =
{G1, . . . , Gt} be a multiset of equations over variables U and Gi be the equa-
tion xαi,1

· xαi,2
· xαi,3

= ai.

We construct an instance G′ of Max-E2-neg-Lin2 with 22 · t equations and
4 · t + 2 · r + 2 variables. The reduction is similar to the reduction from Max-
E3-Lin2 to Max-E2-Lin2 presented by H̊astad [10]. The set of variables U ′ is
given by

U ′ =
{
x+

j , x−
j | 1 ≤ j ≤ r

}
∪

{
z+, z−

}
∪

{
pi,1, pi,2, pi,3, pi,z | 1 ≤ i ≤ t

}
.

Note that if an assignment satisfies an equation of an instance of Max-E2-
neg-Lin2, then the negated assignment also satisfies the equation. So without
loss of generality we assume that we always have z+ = 1.

We interpret x+
j = xj . We call an assignment consistent for xj if x+

j 6= x−
j and

therefore x+
j = xj = (−x−

j ). An assignment that is consistent for every xj and
also fulfils z+ 6= z− is called consistent.

For an equation Gi we construct the eighteen equations

x+
αi,q

· pi,q′ = −1 (for q, q′ = 1, 2, 3 and q 6= q′) ,

x+
αi,q

· pi,z = −1 (for q = 1, 2, 3) ,

x−
αi,q

· pi,q = −1 (for q = 1, 2, 3) ,

x+
αi,q

· x−
αi,q

= −1 (q = 1, 2, 3) ,

z+ · z− = −1 (three times) .

We add either the four equations

z+ · pi,q = −1 (q = 1, 2, 3) and z− · pi,z = −1

if ai = 1 or the four equations

z− · pi,q = −1 (q = 1, 2, 3) and z+ · pi,z = −1

if ai = −1. Note that G′ contains 3 · t times the equation z+ · z− = −1. Let
nj be the number of occurrences of the variable xj in G. Then G′ contains nj

times the equation x+
j · x−

j = −1.
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For every equation Gi ∈ G we have constructed 22 equations for G′. These 22
equations are called the representation of Gi.

Lemma 5 Let an arbitrary assignment for U be given. Assign z− = −1 and
x+

j = xj, x−
j = (−xj) for j = 1, . . . , r. Then for any i ∈ {1, . . . , t} there

exists an assignment for pi,1, pi,2, pi,3, and pi,z such that 18 equations of the
representation of Gi are satisfied if Gi is satisfied by the given assignment and
16 equations of the representation are satisfied if Gi is not satisfied.

It is not possible to satisfy more than 18 equations of the representation if Gi

is satisfied by the assignment and to satisfy more than 16 equations if Gi is
not satisfied by the assignment.

PROOF. The lemma can be proved by testing all possible assignments for
the variables occuring in a representation of an equation Gi for the cases ai = 1
and ai = −1. 2

If an assignment for U satisfies g of the t equations of G, then the corresponding
consistent assignment for U ′ satisfies 16·t+2·g equations of G′. This assignment
can be found efficiently by adjusting the assignment for pi,1, pi,2, pi,3, and pi,z.
On the other hand, a consistent assignment for U ′ that satisfies 16 · t + 2 · g
equations of G′ yields an assignment for U that satisfies at least g equations
of G.

Lemma 6 Given an arbitrary assignment for U ′ that satisfies 16 · t + 2 · g

equations of G′, a consistent assignment that satisfies at least this amount of
equations of G′ can be computed in polynomial time.

PROOF. First assume that z+ = z− in the given assignment. Then the 3 · t
equations z+ · z− = −1 are not satisfied by the assignment. Let z− = (−z+).
Then these 3 · t equations will be satisfied. On the other hand, z− occurs
in only 3 · t other equations. Thus, at most 3 · t equations are no longer
satisfied. Altogether the number of satisfied equations is not decreased by this
modification.

If there exists a j with x+
j = x−

j , then there are nj equations x+
j ·x−

j = −1 that
are not satisfied by the assignment. Let x−

j = (−x+
j ). Then the nj equations

x+
j · x−

j = −1 are satisfied by the modified assignment. On the other hand
x−

j occurs in only nj other equations. Thus, at most nj equations are no
longer satisfied. The number of satisfied equations is thus not decreased by
this modification.
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This way we iteratively obtain a consistent assignment. The modifications can
be computed in polynomial time. 2

Now we can prove the following theorem used in Section 5.

Theorem 7 For any ǫ > 0 it is NP-hard to distinguish
(

18
22
−ǫ

)
- and

(
17
22

+ǫ
)
-

satisfiable instances of Max-E2-neg-Lin2.

PROOF. An instance of Max-E3-Lin2 is η-satisfiable if and only if the cor-
responding instance of Max-E2-neg-Lin2 is

(
16+2·η

22

)
-satisfiable. According to

H̊astad [10] it is NP-hard to distinguish
(
1 − ξ

)
- and

(
1
2

+ ξ
)
-satisfiable in-

stances of Max-E3-Lin2 for any ξ > 0. Thus, it is NP-hard to distinguish
(16+2·(1−ξ)

22

)
- and

(16+2·( 1

2
+ξ)

22

)
-satisfiable instances of Max-E2-neg-Lin2. Choos-

ing ξ = 11 · ǫ completes the proof. 2

Since Max-Cut and Max-E2-neg-Lin2 are exactly the same problem, we obtain
the same approximability gap for Max-Cut.

Corollary 8 For any ǫ > 0 it is NP-hard to decide whether the maximum cut
of an undirected graph G = (V, E) (where multiple edges are allowed) consists
of at most

(
17
22

+ ǫ
)
· |E| or at least

(
18
22

− ǫ
)
· |E| edges. 2

5 The non-approximability of BMSA

In this section we reduce Max-E2-neg-Lin2 to BMSA. Let G = {G1, . . . , Gt}
be an instance of Max-E2-neg-Lin2 over a set of variables U = {x1, . . . , xr},
where Gi is xαi,1

· xαi,2
= −1, αi,q ∈ {1, . . . , r}. We construct a family of

sequences

S = {Z} ∪ {Xj | j = 1, . . . , r} ∪ {Yi,1, Yi,2 | i = 1, . . . , t}

over the alphabet Σ = {•, ◦,×}. Let

Z := ◦◦◦◦◦◦◦◦

be a sequence of length 8. Z will be used as a control sequence. For j ∈
{1, . . . , r} let

Xj := •◦◦◦◦◦◦◦•

10



– • ◦ ×

– 0 1 2 5

• 1 0 1 4

◦ 2 1 0 3

× 5 4 3 0

Fig. 2. The scoring function.

be a sequence of length 9 that represents the variable xj ∈ U . For each i ∈
{1, . . . , t} create two sequences

Yi,1 := •◦◦×◦×◦◦• and

Yi,2 := •◦◦◦×◦◦◦• ,

each of length 9. Yi,q represents the variable xαi,q
in Gi.

The scoring function is shown in Figure 2. Note that it is a metric.

The weight matrix W = (wI,J)I,J∈S is given by

wI,J :=







1 if I ≡ Yi,q and J ≡ Yi,q′ ,

1 if I ≡ Z and J ≡ Yi,q or vice versa ,

1 if I ≡ Yi,q and J ≡ Xαi,q
or vice versa ,

0 otherwise .

An example how the sequences are connected is shown in Figure 3(a).

The set Si = {Yi,1, Yi,2, Xαi,1
, Xαi,2

} will be called the representation of Gi.
Note that in general a sequence Xj occurs in more than one representation.

Let A = {S̃ | S ∈ S} be an alignment of S. Then Di(A) denotes the score of
the equation Gi,

Di(A) = D
(
Ỹi,1, Ỹi,2

)
+ D

(
Ỹi,1, X̃αi,1

)
+ D

(
Ỹi,2, X̃αi,2

)

+ D
(
Ỹi,1, Z̃

)
+ D

(
Ỹi,2, Z̃

)
.

By the construction of the weight matrix, we have DW (A) =
∑t

i=1 Di(A).

Definition 9 An alignment A = {S̃ | S ∈ S} of S will be called variable-
consistent with respect to an assignment for U if, after eliminating all columns
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(a)

Ya,2 Yb,1
Ya,1

X2

Z

Yb,2

X1 X3

(b) Ỹa,1 = • ◦ ◦ × ◦ × ◦ ◦ • –

Ỹa,2 = – • ◦ ◦ ◦ × ◦ ◦ ◦ •

X̃1 = • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • –

X̃2 = – • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Z̃ = – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ –

Fig. 3. (a) Connection between the sequences representing the equations Ga, which
is x1 ·x2 = −1, and Gb, which is x2 ·x3 = −1. (b) The variable consistent alignment
corresponding to Ga with x1 = −1 and x2 = 1.

consisting solely of gaps (which do not affect the score), the following holds
for all j, i, and q:

(1) Z̃ = −Z−

(2) X̃j =







Xj− if xj = −1

−Xj if xj = 1

(3) Ỹi,q =







Yi,q− if xαi,q
= −1

−Yi,q if xαi,q
= 1

The following lemma follows immediately from this definition.

Lemma 10 An alignment is variable-consistent if and only if for all i ∈
{1, . . . , t} and q ∈ {1, 2} the following properties hold:

A. Either Yi,q[1] or Yi,q[9] matches a gap in Z. No other character of Z or
Yi,q matches a gap in the other sequence.

B. No character in either of the two sequences Yi,q, Xαi,q
matches a gap in

the other sequence.

2

These properties are referred to as Property A and B. An example of a variable-
consistent alignment is shown in Figure 3(b).

Note the functional region of a pair Yi,1, Yi,2 given by the triples×◦× and ◦×◦.
If Yi,1 and Yi,2 represent the same value, the functional region yields a weighted
score of 9. Otherwise, it yields a weighted score of 3. If an alignment A is
variable-consistent, we have Di(A) = 29 if Gi is satisfied by the represented
assignment and Di(A) = 31 otherwise.

The next two lemmas have similar proofs. Thus, we only give a proof of the
first.

12



Lemma 11 Alignments of the pairs {Yi,1, Z} and {Yi,2, Z} yield scores of 8
and 5, respectively, if they fulfil Property A. Violating Property A yields scores
of at least 10 and 7, respectively.

PROOF. An alignment of {Yi,1, Z} that fulfils Property A yields score 8.

Let us consider an alignment of {Yi,1, Z} that does not fulfil Property A. Then
at least one of the characters Yi,1[2], . . . , Yi,1[8], Z[1], . . . , Z[8] matches a gap
in the other sequence.

We distinguish two cases. If there is an “×” in Yi,1 matching a gap in Z, then
the alignment yields a score of 5 for this “×” plus 3 for the other “×” plus 1
for each “•”. So altogether it yields a score of at least 10.

On the other hand consider the case that no “×” in Yi,1 matches a gap in Z.
Then there is a “◦” in Yi,1 or Z matching a gap in the other sequence. So the
alignment yields a score of 3 for each “×” plus 1 for each “•” plus 2 for the
“◦” matching a gap. So the alignment again yields a score of at least 10.

The statement about Yi,2 and Z can be proved in a similar fashion. 2

Lemma 12 Alignments of the pairs {Yi,1, Xαi,1
} and {Yi,2, Xαi,2

} yield scores
of 6 and 3, respectively, if they fulfil Property B. Violating Property B yields
scores of at least 8 and 5, respectively. 2

With the fact that an optimal alignment of a pair {Yi,1, Yi,2} has score 7 we
can prove the following.

Lemma 13 Given an arbitrary alignment with score 31 · t − 2 · g we can
construct a variable-consistent alignment with less or equal score in polynomial
time.

PROOF. Let A be an arbitrary alignment with DW (A) = 31 · t − 2 · g.

Let I be the set of all i such that Yi,1 and Yi,2 fulfil Properties A and B. This
implies an assignment for the variables UI = {xj ∈ U | ∃i ∈ I : Xj ∈ Si}. Let
I = {1, . . . , t} \ I. Because in every set Si for i ∈ I there exists a sequence
Yi,q that violates Property A or B, we have Di(A) ≥ 31 for each i ∈ I due to
Lemmas 11 and 12.

For i ∈ I, if xαi,q
∈ UI (q ∈ {1, 2}) we realign Yi,q with respect to xαi,q

.
Then we assign an arbitrary value to the variables in U \ UI and realign the
corresponding Yi,q and Xj.

13



By these modifications we obtain an alignment A′. Then Di(A′) = Di(A) for
i ∈ I and Di(A′) ≤ 31 ≤ Di(A) otherwise. Thus, DW (A′) ≤ DW (A). A′ is
variable-consistent due to its construction and can be computed in polynomial
time. 2

The alignment obtained yields an assignment that satisfies at least g equations
of G.

Theorem 14 BMSA is MAX SNP-hard.

PROOF. We reduce Max-E2-neg-Lin2 to BMSA. The function f1 is given
by the construction of S from a family G of t equations. One can see that
opt(S) ≤ 31 · t.

An equation of G will be satisfied by 2 of the 4 possible assignments of its
variables. Therefore, for every multiset G of t equations an assignment exists
that satisfies at least 1

2
· t equations. This yields the inequality opt(G) ≥ 1

2
· t.

Then for γ1 = 62 we have opt(S) ≤ γ1 · opt(G).

Given an alignment of S with score 31 · t − 2 · g′ for some g′ we can find an
assignment satisfying g ≥ g′ equations of G due to Lemma 13. Let γ2 = 1

2
,

then we have

| g − opt(G) | ≤ γ2· | (31 · t − 2 · g′) − opt(S) | .

2

Theorem 15 BMSA has no polynomial time approximation algorithm with
approximation ratio 324

323
− ǫ for any ǫ > 0, unless NP = P.

PROOF. An instance of Max-E2-neg-Lin2 consisting of t equations is η-
satisfiable if and only if the corresponding instance of BMSA has an alignment
with score (31 − 2 · η) · t.

The optimal alignment of a BMSA instance corresponding to a
(

18
22

− ξ
)
-

satisfiable instance of Max-E2-neg-Lin2 has score
(

31 − 2 ·

(
18

22
− ξ

))

· t =
323 + 22 · ξ

11
· t .

Using the
(

324
323

− ǫ
)
-approximation algorithm for BMSA we are able to find an

alignment with score at most
(

324

323
− ǫ

)

·
323 + 22 · ξ

11
· t =: K1 .
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The optimal alignment of a BMSA instance corresponding to a
(

17
22

+ ξ
)
-

satisfiable instance of Max-E2-neg-Lin2 has score

(

31 − 2 ·

(
17

22
+ ξ

))

· t =: K2 .

We have K1 < K2 if and only if ξ < 1
22

· 3232·ǫ
647−323·ǫ

. Choose ξ with 0 < ξ <
1
22

· 3232·ǫ
647−323·ǫ

. Then the
(

324
323

− ǫ
)
-approximation for BMSA can be used to

distinguish
(

18
22

− ξ
)
- and

(
17
22

+ ξ
)
-satisfiable instances of Max-E2-neg-Lin2.

This would imply NP = P due to Theorem 7. 2

Since WMSA is a generalization of BMSA we obtain the following corollaries.

Corollary 16 WMSA is MAX SNP-hard. 2

Corollary 17 WMSA has no polynomial time approximation algorithm with
approximation ratio 324

323
− ǫ for any ǫ > 0, unless NPx = P. 2

6 Conclusions

We have shown MAX SNP-hardness and proved a numerical lower bound
for the approximability of weighted multiple sequence alignment (WMSA).
These results hold even if we restrict the problem to binary weights (BMSA).
Furthermore, BMSA and WMSA are equivalent with respect to their approx-
imability. But the distance to the best known upper bound is huge. An obvious
goal is to reduce this gap.

Finally, we would like to know how well the unweighted version of the multiple
sequence alignment problem with metric SP-score can be approximated.
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