
The Intractability of Computing the

Hamming Distance ?

Bodo Manthey 1,∗, Rüdiger Reischuk

Universität zu Lübeck
Institut für Theoretische Informatik

Ratzeburger Allee 160, 23538 Lübeck, Germany

Abstract

Given a string x and a language L, the Hamming distance of x to L is the minimum
Hamming distance of x to any string in L. The edit distance of a string to a language
is analogously defined.

First, we prove that there is a language in AC0 such that both Hamming and edit
distance to this language are hard to approximate; they cannot be approximated
with factor O(n

1
3
−ε), for any ε > 0, unless P = NP (n denotes the length of the

input string).

Second, we show the parameterized intractability of computing the Hamming
distance. We prove that for every t ∈ N there exists a language in AC0 for which
computing the Hamming distance is W[t]-hard. Moreover, there is a language in P
for which computing the Hamming distance is W[P]-hard.

Then we show that the problems of computing the Hamming distance and of com-
puting the edit distance are in some sense equivalent by presenting approximation
ratio preserving reductions from the former to the latter and vice versa.

Finally, we define HamP to be the class of languages to which the Hamming dis-
tance can efficiently, i.e. in polynomial time, be computed. We show some properties
of the class HamP. On the other hand, we give evidence that a characterization in
terms of automata or formal languages might be difficult.

Key words: Hamming distance, edit distance, computational complexity,
parameterized complexity, inapproximability

Preprint submitted to Theoretical Computer Science

1 Introduction

Given a language L and a string x, one can ask whether there is a string in
L in the “neighborhood” of x and how to find such a string. On the other
hand, one can ask for the minimum distance of x to any string in L. Hamming
and edit distance are widely used for measuring the distance. One topic in
which these problems arise is for example the field of error-correcting codes
(see e.g. Spielman [32] and Vardy [34]). Another field is parsing theory. A
main problem when designing a parser is recovery from syntax errors. This
problem has been solved for context-free languages [2,22,25,30]. Furthermore,
the problem of computing distances between strings has gained popularity in
computational biology [9,16,29]. From the computational complexity point of
view, it is interesting whether there are properties other than membership that
can efficiently be computed for appropriate classes of languages. Hemachan-
dra [19] examined what kind of operations, such as approximate membership
queries, can efficiently be performed, even if the set considered does not al-
low efficient membership testing. Allender et al. [3] considered the so called
maximal word function. This is the question of finding the lexicographically
maximal word smaller than the input string. They present an algorithm for
solving this problem for languages in 1NAuxPDAp.

1.1 Previous results

Computing the Hamming distance of two strings is easy. The edit distance
of two strings of length n and m, respectively, can be computed via dynamic
programming in time O(n · m) [16] using linear space [20]. The time bound
has been improved by Masek and Paterson [27] to O(n · max{1, m/ log n})
for n ≥ m. Batu et al. and Bar-Yossef et al. gave sublinear time algorithms
for approximating the edit distance [5,6]. Pighizzini [31] presented a language
in co-NTime(log), which is a subclass of AC0, for which computing the edit
distance is NP-hard. On the other hand, he showed that computing the edit
distance to languages in 1NAuxPDAp can be done in polynomial time and even
in AC1. 1NAuxPDAp denotes the class of all languages that can be recognized
by logarithmic space and polynomial time bounded nondeterministic Turing
machines equipped with a one-way input tape and an auxiliary pushdown

? A preliminary version of this work was presented at the 14th International
Symposium on Algorithms and Computation (ISAAC), Dec. 15–17, 2003, Kyoto,
Japan [26].
∗ Corresponding author.

Email addresses: manthey@tcs.uni-luebeck.de (Bodo Manthey),
reischuk@tcs.uni-luebeck.de (Rüdiger Reischuk).
1 Supported by DFG research grant RE 672/3.

2

1NL CFLL

AC
0

1L

co-NTime(log)

6=

6=6=

6=
NL 1NAuxPDAp

LOGCFL = NAuxPDAp

6=

Fig. 1. The relationship between several complexity classes.

store [7]. Without restricting the input tape to be one-way, such machines
characterize LOGCFL, the closure of context-free languages under log-space
reductions [33]. If we further omit the bound on the running time, such ma-
chines characterize the class P, independent of whether they are deterministic
or nondeterministic [10]. Figure 1 gives an overview over the relationships
between the complexity classes examined in this paper.

1.2 Our results

We consider computing the Hamming distance and computing the edit dis-
tance from a complexity theory point of view. Intuitively, computing the edit
distance seems to be harder than computing the Hamming distance. Thus,
one might hope that Pighizzini’s hardness result for computing the edit dis-
tance does not hold for computing the Hamming distance. However, we show
that this is not the case and even improve the intractability bound. This will
be done by showing that the problem is hard to approximate and intractable
in the sense of parameterized complexity, even for languages in very small
complexity classes.

To be more precise, we present a language in AC0 with the property that the
Hamming distance of strings of length n to this language cannot be approxi-
mated in polynomial time with factor O(n

1
3
−ε), unless P = NP (Section 3).

Furthermore, for a language L, we consider the parameterized language where
on input x we ask whether there is a string y ∈ L within distance k. We
present a language in P for which this is W[P]-hard for both Hamming and
edit distance (Section 4.1). Moreover, we prove that for every t ∈ N there
is a language in AC0 for which this is W[t]-hard for the Hamming distance
(Section 4.2).

Then we reduce the problem of computing the Hamming distance to the prob-
lem of computing the edit distance and vice versa (Section 5). Hence, both
problems are in some sense equivalent with respect to their approximability.

3

Finally, we consider the problem of computing the Hamming distance from a
more abstract point of view (Section 6). We introduce HamP as the class of
languages to which Hamming distances can efficiently be computed and reveal
some properties of this class. Furthermore, we give evidence that a complete
characterization of HamP in terms of automata or formal languages might be
difficult.

2 Preliminaries

Let Σ be a finite alphabet. The length of a string x over Σ will be denoted
by |x|. For two strings x and y of equal length, let h(x, y) be the Hamming
distance of x and y, i.e. the number of positions where x and y differ [18]. The
Hamming distance of a language L over Σ to a string x ∈ Σ? is the minimum
Hamming distance of x to an element of L, i.e.

h(x, L) = min{h(x, y) | y ∈ L and |y| = |x|} .

If Σ|x|∩L = ∅, i.e. if there is no string of length |x| in L, we define h(x, L) = ∞.

Let ∆ /∈ Σ denote the gap symbol. An alignment of two strings x and y over
Σ is a pair of strings x̃ and ỹ over Σ ∪ {∆} such that |x̃| = |ỹ| and x̃ and ỹ
are obtained from x and y, respectively, by inserting gap symbols. We assume
that at neither position both x̃ and ỹ have a gap. We define the edit distance
d(x, y) of two strings x and y as

d(x, y) = min{h(x̃, ỹ) | (x̃, ỹ) is an alignment of (x, y)} .

The edit distance of two strings x and y is the minimum number of insertions,
deletions, and substitutions of characters in x necessary to obtain y. The
notion of edit distance is due to Levenshtein [24]. In contrast to the Hamming
distance, x and y do not have to be of the same length. In general, we can allow
an arbitrary function that yields some penalty for each operation depending
on the participating characters. See for example Gusfield [16] or Navarro [28]
for a survey on computing edit distances between two or more sequences. To
obtain the hardness results, it suffices to restrict ourselves to the simplest case
where all insertions, deletions and substitutions are at unit costs.

According to Pighizzini [31], the edit distance of a string x to a language L is
defined as

d(x, L) = min{d(x, y) | y ∈ L} .

We consider the problem of computing the Hamming distance or the edit
distance of a language and a string in two different ways, namely as an opti-
mization problem and as a parameterized language.

4

Definition 1 (Optimization Problems) Let L ⊆ {0, 1}? be a language.
We define OPTH(L) to be the following optimization problem:

(1) An instance of OPTH(L) is a string x ∈ {0, 1}?.
(2) A solution to an instance x is a string y ∈ L with |y| = |x|.
(3) The goal is to find a string in L with minimum Hamming distance to x.

OPTE(L) is similarly defined: We omit the length constraint, i.e. all y ∈ L are
feasible solutions, and we use the edit distance as measure.

Both OPTH(L) and OPTE(L) are NP-optimization problems (see e.g. Ausiello
et al. [4]), if L ∈ P.

Definition 2 (Hamming/Edit Closures) Let L ⊆ {0, 1}? be a language.
Then

LH = {(x, k) | ∃y ∈ L : |x| = |y| ∧ h(x, y) ≤ k} .

LE is similarly defined: We replace h by d and omit the constraint |x| = |y|.
LH and LE are called the Hamming and edit closure of L, respectively.

If L ∈ NP, then both LH and LE are in NP as well. Throughout this work,
we consider Hamming and edit closures as parameterized languages with k as
parameter. We will also consider Hamming and edit closures corresponding to
classical complexity classes.

Definition 3 (Classes of Hamming/Edit Closures) Let C be a class of
languages. Then the class CH of Hamming closures of languages in C is defined
as CH = {LH | L ∈ C}. Analogously, the class CE of edit closures of languages
in C is defined as CE = {LE | L ∈ C}.

3 The hamming distance is hard to approximate

In this section, we prove that there is a language L ∈ AC0 such that the
Hamming distance to L cannot be approximated with factor O(n

1
3
−ε), for any

ε > 0, for strings of length n, unless P = NP.

We reduce from the optimization problem Minimum Independent Dominating
Set (MIDS). An instance of MIDS is an undirected graph G = (V, E). A
solution is a subset Ṽ ⊆ V of vertices that is both an independent set and a
dominating set. Ṽ is an independent set of G, if for every edge {u, v} ∈ E at
most one of the vertices u and v is in Ṽ . Ṽ is a dominating set of G, if for every
vertex u ∈ V \ Ṽ there exists a node v ∈ Ṽ with {u, v} ∈ E. The goal is to
minimize the size of Ṽ . Every graph possesses an independent dominating set,
since every maximal independent set is also dominating: If there were a node

5

not contained in a maximal independent set and not adjacent to any other node
in the set, then we can add this node to the set, contradicting its maximality.
The problem MIDS is therefore also known as Minimum Maximal Independent
Set, since an independent dominating set is an independent set that cannot be
extended. Halldórsson [17] showed that MIDS cannot be approximated with
factor O(|V |1−ε), for any ε > 0, unless P = NP.

Consider the following language over the alphabet {0, 1}:

LMIDS = {G1 . . . Gm+1Ṽ | G` ∈ {0, 1}(
m
2) , Ṽ ∈ {0, 1}m for some m ∈ N,

G1 = . . . = Gm+1, each G` is an encoding of the same m-vertex

graph G, and Ṽ encodes an independent dominating set of G}

An encoding G` (1 ≤ ` ≤ m + 1) consists of
(

m
2

)
bits (e`

i,j)1≤i<j≤m. (For

simplicity, we set e`
i,j = e`

j,i for i > j.) We have e`
i,j = 1 if and only if {vi, vj} ∈

E. The set Ṽ is encoded with m bits zi (1 ≤ i ≤ m) with zi = 1 if and only if
vi ∈ Ṽ .

Let us first show that LMIDS ∈ AC0. We build the following circuit:

DOM =
m∧

i=1

zi ∨
m∨

j=1

(zj ∧ e1
i,j)

 ,

IND =
m∧

i=1

m∧
j=1

(
(zi ∧ zj) → ¬e1

i,j

)
,

EQU =
m∧

i=1

m∧
j=i+1

(
m+1∧
`=1

e`
i,j ∨

m+1∧
`=1

¬e`
i,j

)
, and

OUTPUT = DOM ∧ IND ∧ EQU .

We have DOM = 1 if and only if Ṽ is a dominating set and IND = 1 if and
only if Ṽ is an independent set of G. Furthermore, EQU = 1 if and only if
the matrices (e`

i,j)1≤i<j≤m encode the same graph G for any 1 ≤ ` ≤ m + 1.
Hence, OUTPUT = 1 if and only if the input is in LMIDS. The circuit family
implementing the above formulas has constant depth and is logarithmic space
uniform. Thus, LMIDS ∈ AC0.

Theorem 4 For any ε > 0, OPTH(LMIDS) cannot be approximated in polyno-

mial time with factor O(n
1
3
−ε) for strings of length n, unless P = NP.

PROOF. Let a graph G = (V, E) with |V | = m be given as an instance
for MIDS. We create an input string x as an instance for OPTH(LMIDS) by

6

encoding the graph G by (e`
i,j)1≤i<j≤m for 1 ≤ ` ≤ m + 1 and setting zi = 0

for all 1 ≤ i ≤ m.

Since every graph has an independent dominating set, we have h(x, LMIDS) ≤
m. Thus, there exists a string y ∈ LMIDS with |x| = |y| and h(x, y) ≤ m. Since
the encoding of the graph G consists of m + 1 identical copies, all differences
between x and such a y are within the encoding of Ṽ . Thus, y yields an
independent dominating set of size h(x, y) for G.

A factor O(m1−ε′) approximation algorithm for OPTH(LMIDS) would yield an
O(m1−ε′) approximation for MIDS. The theorem follows by choosing the length
of the instance for LMIDS as n = 1

2
·(m3+m), which corresponds to an encoding

of a graph and an independent dominating set of a graph with m nodes. 2

Theorem 5 For any ε > 0, OPTE(L
MIDS) cannot be approximated in polyno-

mial time with factor O(n
1
3
−ε) for strings of length n, unless P = NP.

PROOF. Let y ∈ LMIDS be a string with minimum edit distance to x (x is
given as in the proof of Theorem 4). If |y| 6= |x|, then d(x, y) > m. Thus,
we can assume that x and y are of equal length. Any difference in the graph
encoding part of x and y yields d(x, y) > m as well. Thus, x and y differ only
in the last m positions. Within that part, x has m zeros. The string y encodes
an independent dominating set Ṽ of G, thus contains |Ṽ | many ones in the
last m positions. Hence, we have d(x, y) = |Ṽ |. 2

Thus, even in the small class AC0 there exists a language such that both Ham-
ming and edit distance to this language are hard to approximate. This may
not be surprising: From Fagin’s characterization of NP in terms of existential
second-order logic [14], we get that all languages in NP have logarithmic space
bounded verifiers [21, Thm. 3.1, Prop. 7.6] and there are languages, like e.g.
3SAT, that have even AC0 algorithms to verify their certificates.

4 Parameterized intractability of hamming closures

4.1 Parameterized intractability of PH

The aim of this section is to analyze the complexity of Hamming closures of
languages in P. On the one hand, we prove that the Hamming closures of
languages in P are in W[P]. On the other hand, there exists a language in P
the Hamming closure of which is W[P]-hard.

7

According to Downey and Fellows [11,13], W[P] is the class of parameterized
languages that can be reduced to EW-Circ-SAT. This problem is defined as
follows:

EW-Circ-SAT = {(C, k) |C is a Boolean circuit and has a satisfying

assignment with weight exactly k} .

(Here, EW stands for Exactly Weighted. Downey and Fellows called the prob-
lem Weighted Circuit Satisfiability.) The weight of an assignment is the number
of variables to which the value 1 has been assigned. We consider the following
variant of weighted circuit satisfiability:

W-Circ-SAT = {(C, k) |C is a Boolean circuit and has a satisfying

assignment with weight at most k} .

It follows easily from work of Abrahamson et al. [1] that W-Circ-SAT is W[P]-
hard as well.

Theorem 6 PH ⊆ W[P].

PROOF. Consider an arbitrary language L ∈ P. We reduce LH to W-Circ-
SAT to show that LH ∈ W[P]. Assume that L ⊆ Σ? for some finite alphabet
Σ = {α1, α2, . . . , ασ}. Let g : Σ? → {0, 1}? be a homomorphism with g(αi) =
0i−110σ−i. Note that i 6= j implies g(αi) 6= g(αj). We consider the language
g(L) = {g(x) | x ∈ L}. Clearly, g(L) ∈ P. Furthermore, we have (x, k) ∈ LH

if and only if (g(x), 2k) ∈ g(L)H. Since g(L) ∈ P, there is a logarithmic
space uniform circuit family of polynomial size for deciding g(L) (see e.g.
Vollmer [35]). Let Cn be the circuit in this family for strings of length n.
Assume that we have an input string y = y1 . . . yn. We modify Cn as follows
to obtain a circuit Cn,y. If yi = 0, then we leave the ith input bit unchanged.
If yi = 1, then we negate the ith input bit by interposing a NOT gate. Now
Cn accepts y if and only if Cn,y accepts 0n. Furthermore, Cn accepts a string
ŷ if and only if Cn,y accepts z with zi = yi ⊕ ŷi, i.e. Cn,y(z) = Cn(ŷ).

Overall, we have

(x, k) ∈ LH ⇔ (g(x), 2k) ∈ g(L)H ⇔ (C|x|·σ,g(x), 2k) ∈ W-Circ-SAT ,

which proves the theorem. 2

Now we prove that there is a language in P the Hamming closure of which
is W[P]-hard. Therefore, we consider the circuit value problem CVP, which is

8

defined as

CVP = {(C, x) | C is a Boolean circuit that outputs 1 on input x} .

Ladner [23] (see also Vollmer [35]) proved that CVP is P-complete. We consider
the following variant of CVP, which is P-complete as well:

CVP′ = {(C#C# . . . #C︸ ︷︷ ︸
(n+1) times

, x) | (C, x) ∈ CVP and C has n input bits} .

Theorem 7 CVP′
H is W[P]-complete.

PROOF. Let (C, k) be an instance for W-Circ-SAT, such that C has n input
bits. W.l.o.g. we assume k ≤ n. Then X = ((C#C# . . . #C, 0n), k) is an
instance of CVP′

H with (C, k) ∈ W-Circ-SAT if and only if X ∈ CVP′
H. Hence,

we have reduced W-Circ-SAT to CVP′
H.

CVP′
H is in W[P] due to Theorem 6 2

4.2 Parameterized intractability of AC0
H

A Boolean formula is called t-normalized, if it has the form “AND-of-ORs-of-
ANDs-of-. . . -of-Literals” with t alternations [11,13]. For example, CNF for-
mulas are 2-normalized. Consider the parameterized language

W-t-SAT = {(F, k) |F is a t-normalized Boolean formula and has a

satisfying assignment with at most k ones} .

W-t-SAT is W[t]-complete for all t ≥ 2 [8,13], while W-1-SAT is fixed parameter
tractable [13]. Let us now encode a t-normalized formula F over n variables
into a binary string. Therefore, we view F as a rooted tree T with vertices
arranged in levels V1∪V2∪ . . .∪Vt. The vertices in level V` (1 ≤ ` ≤ t− 1) are
labeled with AND, if ` is odd, and with OR, if ` is even. Every vertex v ∈ Vt

is labeled with lit(v) which is either a variable or a negated variable. For every
vertex v ∈ V` we have a set Adj(v) ⊆ V`+1 that contains all those vertices in
V`+1 that serve as input bits for v. Thus, we can write F as (assume that t is
even, if t is odd, then the formula ends with an AND)

F =
∧

v1∈V1

∨
v2∈Adj(v1)

∧
v3∈Adj(v2)

. . .
∨

vt∈Adj(vt−1)

lit(vt) .

We have |V1| ≤ |V2| ≤ . . . ≤ |Vt|, since T is a tree, and we can assume that
|Vt| ≥ n. Otherwise, there would be unused variables. We call m = |Vt| the size

9

of F . We can encode every subgraph connecting vertices in V`+1 to vertices in
V` by an m×m-matrix (e`

i,j)1≤i,j≤m. Hence, we can write F as

F =
m∧

i1=1

m∨
i2=1

m∧
i3=1

. . .
m∨

it=1

((
t−1∧
`=1

e`
i`+1,i`

)
→ lit(vit)

)

=
m∧

i1=1

m∨
i2=1

m∧
i3=1

. . .
m∨

it=1

(
lit(vit) ∨

t−1∨
`=1

¬e`
i`+1,i`

)
.

Similar to the reduction presented in Section 4.1, we can create m + 1 copies
of each of these matrices. Thus, for each t and m there exists a circuit of depth
t and size polynomial in m and t that evaluates each t-normalized formula of
size m. (W.l.o.g. we assume that we have m input variables. Otherwise, we add
m−n variables that are never used.) The circuit family obtained characterizes
the language

t-VAL = {(M, x) |M is an encoding of a t-normalized formula F as

described above and outputs 1 on input x ∈ {0, 1}m} .

and has constant depth for constant t. (We have omitted mentioning the copies
of the formula encoding. But the equality of all copies of the encodings can
be implemented with a circuit of depth 2, thus we obtain circuits of depth t
for all t ≥ 2.) Clearly, it is also logarithmic space uniform, thus, t-VAL ∈ AC0

for any t ∈ N.

Lemma 8 For every t ≥ 2, t-VALH is W[t]-hard.

PROOF. Let (F, k) be an instance for W-t-SAT and m be the size of F . We
construct a circuit as described above. The input X for the circuit is as follows:
The first bits encode the formula F and the last m bits are set to 0. Assume
that (F, k) ∈ W-t-SAT. We derive Y from X by setting a bit representing an
input bit to 1, if the corresponding bit in the satisfying assignment for F is set
to 1. Thus, h(X, Y) ≤ k and the circuit constructed accepts Y . On the other
hand, assume that there is a Y with h(X, Y) ≤ k ≤ m that is accepted by
the circuit. Then X and Y encode the same formula and Y yields a satisfying
assignment for F with weight at most k. Hence, we have reduced W-t-SAT to
t-VALH. 2

Thus, for every t ∈ N there is a language L ∈ AC0 such that LH is W[t]-hard.

On the other hand, for any L ∈ AC0, we have a logarithmic space uniform
circuit family of constant depth and polynomial size. The languages t-VALH

10

have such circuits of depth t. Thus, their circuits have also weft bounded by t
and are thus in W[t] [12]. (The weft of a circuit is defined to be the maximum
number of gates with unbounded fan-in, i.e. fan-in exceeding some preagreed
bound, on any path from the input variables to the output gate [13].) Together
with the above lemma, we get the following result.

Theorem 9 For every t ≥ 2, t-VALH is W[t]-complete.

From the fact that all languages in AC0 have circuits of bounded weft, we get
that all languages in the Hamming closure of AC0 are indeed in W[t] for some
t ∈ N.

Theorem 10 AC0
H ⊆

⋃
t∈N W[t].

Let AC0[t] be the class of languages in AC0 that have circuits of depth bounded
by t. Then we have AC0[t]H ⊆ W[t]. On the other hand, t-VALH ∈ AC0[t] is
W[t]-complete. Thus, together with Theorems 6 and 7, we obtain the following
alternative characterization of the W hierarchy.

Proposition 11 Let AC0[t]?H and P?
H be the closure of AC0[t]H and PH, respec-

tively, under parameterized reductions.

Then P?
H = W[P] and AC0[t]?H = W[t] for all t ≥ 2.

Parameterized reductions are used for proving hardness results in parameter-
ized complexity [13].

This alternative characterization looks natural since the weighted satisfiability
problems, which are the canonical complete problems in parameterized com-
plexity, are closely related to Hamming distance problems: They can be viewed
as the problem of finding a satisfying assignment with Hamming distance at
most (or exactly) k from the zero assignment.

5 Edit distance versus hamming distance

5.1 Reduction from hamming distance to edit distance

Let L be a language to which we want to compute the Hamming distance.
For every x ∈ {0, 1}n, let x′ = 0n1nx10

n1n 0n1nx20
n1n . . . 0n1nxn0n1n. We

construct a language L′ as

L′ = {x′ | x = x1x2 . . . xn ∈ L} .

11

Thus, every string x of length n has a counterpart x′ of length (4 · n + 1) · n.
Consider the substring 0n1nxi0

n1n of x′. We call the prefix and postfix 0n1n

the left and right block, respectively, of xi.

Lemma 12 For every string x fulfilling h(x, L) < ∞, we have h(x, L) =
h(x′, L′) = d(x′, L′).

PROOF. Obviously, we have h(x, L) = h(x′, L′) and h(x′, L′) ≥ d(x′, L′).
Thus, it remains to show that h(x′, L′) ≤ d(x′, L′).

Let |x| = n. If L∩{0, 1}n = ∅, we have h(x, L) = ∞. Thus, we assume that L
contains at least one string of length n. Let y′ ∈ L′ be a string with minimum
edit distance to x′. Then

y′ = 0n′1n′y10
n′1n′ . . . 0n′1n′yn′0

n′1n′

for some n′ ∈ N. If n′ 6= n, then the difference of |x′| and |y′| is more than n
and therefore d(x′, y′) > n. Thus, we can assume that n′ = n. Consider now
an optimal alignment (x̃′, ỹ′) of (x′, y′). We have h(x̃′, ỹ′) ≤ n. Thus, we can
assume that in the alignment considered, xi is at most n positions away from
yi, because otherwise too many 0’s or 1’s will match a gap.

Consider any pair xi and yi that do not match. We know that xi is at most
n positions away from yi. Then either there is a character in the left or right
block of xi or yi matching a gap in the other sequence or at least one 1 of the
left or right block of xi matches a 0 in the left or right block of yi. In either
case, we have costs of at least one, which we charge to xi and yi.

In this way, we have charged at least cost one to every xi and yi that do not
match. Thus, we can realign x̃′ and ỹ′ to obtain an alignment (x̃′′, ỹ′′) without
gaps with less or equal score, i.e. h(x̃′′, ỹ′′) ≤ h(x̃′, ỹ′). Thus, we have

h(x′, y′) = h(x̃′′, ỹ′′) ≤ h(x̃′, ỹ′) = d(x′, y′)

and therefore h(x′, y′) ≤ d(x′, y′), which completes the proof. 2

Theorem 13 Let L be a language such that OPTH(L) cannot be approximated
with a factor f(n) for strings of length n. Then OPTE(L

′) cannot be approxi-
mated with factor f(n) for strings of length 4 · n2 + n.

PROOF. Due to Lemma 12, any algorithm that computes a factor f(n)
approximation for OPTE(L

′) for strings of length 4 · n2 + n can be used for
approximating OPTH(L) for strings of length n. 2

12

An immediate consequence of the reduction presented above is the following
corollary.

Corollary 14 There is a language L ∈ P such that LE is W[P]-hard.

5.2 Reduction from edit distance to hamming distance

Let L ⊆ {0, 1}? be a language for which we want to compute the edit distance.
We construct another language L′ as follows:

L′ = {y | ∃x ∈ L : y is obtained from x by inserting gaps} .

For a string x of length n we define x′ = ∆nx1∆
n . . . ∆nxn∆n.

Lemma 15 For every x ∈ {0, 1}? we have d(x, L) = h(x′, L′).

PROOF. We start with d(x, L) ≥ h(x′, L′). Let y ∈ L be a string with
d(x, y) = d(x, L). Let (x̃, ỹ) be an optimal alignment of x and y. We can
assume that to the left of x1, between xi and xi+1 (for 1 ≤ i ≤ n − 1), and
to the right of xn there are always at most n gap symbols in x̃. Thus, in x̃
we can insert gaps to obtain x′ as defined above and in the same places in ỹ
to obtain some ŷ. Clearly, d(x, L) = h(x′, ŷ) ≥ h(x′, L′). It remains to show
d(x, L) ≤ h(x′, L′). Assume that we have a y′ ∈ L′ with h(x′, y′) = h(x′, L′).
Then (x′, y′) is an alignment of (x, y), where y is obtained from y′ by deleting
all gaps. Thus, d(x, L) ≤ d(x, y) ≤ h(x′, y′) = h(x′, L′). 2

Theorem 16 Let L be a language such that OPTE(L) cannot be approximated
with a factor f(n) for strings of length n. Then OPTH(L′) cannot be approxi-
mated with factor f(n) for strings of length n2 + 2 · n.

PROOF. Due to Lemma 15, any algorithm that computes a factor f(n)
approximation for OPTH(L′) for strings of length n2 + 2 · n can be used for
approximating OPTE(L) for strings of length n. 2

We can extend the above results to languages over alphabets of size two using
a homomorphism g mapping 0, 1, and ∆ to 001, 010, and 100, respectively.
Then we have 2 · h(x′, L′) = h(g(x′), g(L′)). Thus, if the Hamming distance to
g(L′) cannot be approximated with a factor f(n) for strings of length 3n, then
the Hamming distance to L′ cannot be approximated with a factor f(n) for
strings of length n. Unfortunately, it might happen that g(L′) /∈ AC0 for some
L ∈ AC0. Consider for example L = {x | x ∈ {0, 1}? and |x| is even}. Then

13

L′ and also g(L′) are essentially parity, which is known to be not in AC0 [15].
Thus, there are languages L ∈ AC0 such that g(L′) /∈ AC0.

From the reduction presented we immediately obtain the following corollary
as a counterpart of Corollary 14.

Corollary 17 PE ⊆ W[P].

PROOF. If L ∈ P, then L′ ∈ P and, by Theorem 6, L′
H ∈ W[P]. Since we

have reduced LE to L′
H, we have LE ∈ W[P]. 2

6 Towards a characterization of HamP

We define HamP = {L | d(·, L) ∈ FP} to be the class of languages to
which the Hamming distance can efficiently be computed. Clearly, we have
1NAuxPDAp ⊆ HamP due to Pighizzini’s results [31] and HamP ⊆ P, since
computing the Hamming distance is at least as hard as deciding membership.

Analogously to P, the class of languages for which membership is efficiently
decidable, HamP is the class of languages to which the Hamming distance can
efficiently be computed. We are not yet able to satisfactorily characterize the
class HamP. But we are able to prove some basic properties of the class.

Theorem 18 HamP is closed under union, Kleene closure, and concatena-
tion. HamP is not closed under complementation and intersection, unless P =
NP.

PROOF. Let L, L′ ∈ HamP. We have h(x, L ∪ L′) = min{h(x, L), h(x, L′)},
thus L ∪ L′ ∈ HamP. Furthermore, L̃ = {yz | y ∈ L ∧ z ∈ L′} ∈ HamP, since
h(x, L̃) = minyz=x h(y, L) + h(z, L′). Let L? = {ε} ∪ {xy | x ∈ L ∧ y ∈ L?} be
the Kleene closure of L. Then d(x, L?) = minyz=x,y 6=ε d(x, L) + d(y, L?), which
can efficiently be computed using dynamic-programming given that d(·, L) can
efficiently be computed.

Due to Lemma 19, HamP is not closed under intersection, unless P = NP.
Since HamP is closed under union, it cannot be closed under complementation,
unless P = NP. 2

Lemma 19 HamP is not closed under intersection, unless P = NP.

14

PROOF. The proof is very similar to Pighizzini’s proof that there is a lan-
guage in co-NTime(log) to which Hamming distance computation is NP-hard.
Let LNP be any NP-complete language over some alphabet Σ and M be a poly-
nomial time-bounded nondeterministic Turing machine with L(M) = LNP. Let
p be the time-bound (and space-bound) of M .

We construct a language L that happens to be the intersection of two languages
L1 and L2 in 1NAuxPDAp. Let

L ⊆
⋃

x∈Σ?

{x#w0#w1# . . . #wp(|x|) | ∀i ∈ {1, . . . , p(|x|)} : |wi| = p(|x|)}

be such that a string x#w0#w1# . . . #wp(|x|) is in L if and only if the following
conditions hold:

(1) If i is even, then wi encodes a configuration ci if M . If i is odd, then wR
i

(which denotes wi read backwards) encodes a configuration ci.
(2) c0 is the initial configuration of M on input x.
(3) For all i ∈ {1, 2, . . . , p(|x|) − 1}, ci+1 is one of M ’s possible successor

configuration of ci.
(4) cp(|x|) is the (unique) accepting configuration of M . (We can w.l.o.g. as-

sume that M accepts with its tape empty and its head at the left-most
positions.)

Given a string x for which we want to decide whether x ∈ LNP, we generate a
string

y = x #βp(|x|)#βp(|x|)# . . . #βp(|x|)︸ ︷︷ ︸
p(|x|) times

,

where β denotes some blank symbol that is not part of M ’s alphabet. Then
x ∈ LNP if and only if h(y, L) ≤ p(|x|)2. Thus, L /∈ HamP, unless P = NP.

Let Lodd be defined similarly to L, except that we demand Item (3) only for
odd i. Analogously, Leven is defined like L, except that we demand Item (3)
only for even i. Thus Lodd ∩ Leven = L.

It remains to prove that both Lodd and Leven are in 1NAuxPDAp and thus
in HamP. We restrict ourselves to proving Lodd ∈ 1NAuxPDAp; Leven follows
immediately. Assume that the head of the input tape is currently at the be-
ginning of wi for some odd i. Then we put wi into the pushdown store while
verifying that |wi| = p(|x|). When we are at the beginning of wi+1 we can step-
by-step read wi from the pushdown store and verify, whether ci+1 is a successor
configuration of ci. This can be done, since either wi or wi+1 is reversed in the
input string. 2

An immediate consequence of the lemma above is that if we allow a polyno-

15

mial time and logarithmic space bounded Turing machine with an auxiliary
pushdown store to scan the input twice (in contrast to one-way machines that
can do this only once), then already such a Turing machine is able to accept
a language to which computing the Hamming distance is NP-hard, since the
language constructed in the proof is also contained in that class. We call the
class of languages accepted by such machines 2NAuxPDAp.

Up to now, one might suspect that 1NAuxPDAp = HamP. Unfortunately, this
is not the case: The language

COPY = {ww | w ∈ {0, 1}?}

is not contained in 1NAuxPDAp [7]. Nevertheless, COPY is in HamP, since the
Hamming distance of a string to COPY is simply the edit distance between its
first and second half.

But things are worse. Consider the following variant of the circuit value prob-
lem of some alphabet Σ:

CVP1 = Σ? \ {C#x | C(x) = 1} .

This variant is P-complete as well: It is simply CVP and additionally contains
all syntactically incorrect inputs, i.e. inputs where either the x does not fit the
C or the C does not encode a valid circuit. But the Hamming distance to CVP1

can efficiently be computed: Either they are 0, i.e. the input string is actually
contained in CVP1, or it is 1, since then we can modify the input string to get
a syntactically incorrect circuit, which is contained in CVP1. Thus computing
the Hamming distance to CVP1 is essentially deciding membership.

Using brute-force enumeration, we can immediately generalize the observation
to languages, where the maximum Hamming distance is bounded.

Proposition 20 Let L ∈ P such that for all x ∈ Σ?, we have h(x, L) ∈ O(1).
Then L ∈ HamP.

Let us consider now another machine model. What happens if we replace
the auxiliary stack of our Turing machine with a queue? We call that class
1NAuxQDAp. We have 1NAuxQDAp 6⊆ HamP, unless P = NP: We modify
the language L defined in the proof of Lemma 19, such that all wi encode
configurations read forward. Then we can check whether wi encodes a successor
configuration of ci−1 while simultaneously putting wi into the queue to allow
the comparison with wi+1.

On the one hand, there are (very dense) P-complete languages, to which com-
puting the Hamming distance is easy, i.e. possible in polynomial time. On
the other hand, even in very small complexity classes like co-NTime(log),

16

1NAuxQDAp, or 2NAuxPDAp, there are languages to which computing the
Hamming distance is NP-hard.

7 Open problems

On the one hand, algorithms for approximating the Hamming or the edit dis-
tance are clearly of interest. On the other hand, we conjecture that significantly
stronger lower bounds for the approximability of these problems hold.

The reduction from the problem of computing the Hamming distance to the
one of computing the edit distance preserves the size of the alphabet. Further-
more, if the language to which we want to compute the Hamming distance is
in AC0, then so is the one constructed. In the reduction from the latter to the
former, we used a third symbol (which could be avoided by an appropriate
encoding), and the language constructed is not necessarily in AC0, even if the
original language is. Another question is whether there is a reduction avoiding
this.

The most important open problem indeed is characterizing the class HamP
in terms of automata, formal languages, or complexity theory. Although we
have shown some properties of HamP, a complete characterization seems to
be difficult.

References

[1] K. A. Abrahamson, R. G. Downey, M. R. Fellows, Fixed-parameter tractability
and completeness IV: On completeness for W[P] and PSPACE analogs, Annals
of Pure and Applied Logic 73 (3) (1995) 235–276.

[2] A. V. Aho, T. G. Peterson, A minimum distance error-correcting parser for
context-free languages, SIAM Journal on Computing 1 (4) (1972) 305–312.

[3] E. Allender, D. Bruschi, G. Pighizzini, The complexity of computing maximal
word functions, Computational Complexity 3 (1993) 368–391.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
M. Protasi, Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties, Springer, 1999.

[5] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, R. Kumar, Approximating edit
distance efficiently, in: Proc. of the 45th Ann. IEEE Symp. on Foundations of
Computer Science (FOCS), IEEE Computer Society, 2004, pp. 550–559.

17

[6] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld,
R. Sami, A sublinear algorithm for weakly approximating edit distance, in:
Proc. of the 35th Ann. ACM Symp. on Theory of Computing (STOC), ACM
Press, 2003, pp. 316–324.

[7] F.-J. Brandenburg, On one-way auxiliary pushdown automata, in: H. Tzschach,
H. Waldschmidt, H. K.-G. Walter (Eds.), Proc. of the 3rd GI-Conference on
Theoretical Computer Science, Vol. 48 of Lecture Notes in Computer Science,
Springer, 1977, pp. 132–144.

[8] L. Cai, J. Chen, On the amount of nondeterminism and the power of verifying,
SIAM Journal on Computing 26 (3) (1997) 733–750.

[9] S. C. Chan, A. K. C. Wong, D. K. Y. Chiu, A survey of multiple sequence
comparison methods, Bulletin of Mathematical Biology 54 (4) (1992) 563–598.

[10] S. A. Cook, Characterizations of pushdown machines in terms of time-bounded
computers, Journal of the ACM 18 (1) (1971) 4–18.

[11] R. G. Downey, M. R. Fellows, Fixed-parameter tractability and completeness
I: Basic results, SIAM Journal on Computing 24 (4) (1995) 873–921.

[12] R. G. Downey, M. R. Fellows, Fixed-parameter tractability and completeness
II: On completeness for W[1], Theoretical Computer Science 141 (1–2) (1995)
109–131.

[13] R. G. Downey, M. R. Fellows, Parameterized Complexity, Monographs in
Computer Science, Springer, 1999.

[14] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets,
in: R. M. Karp (Ed.), Complexity of Computation, Vol. 7 of SIAM-AMS
Proceedings, 1974, pp. 43–73.

[15] M. Furst, J. B. Saxe, M. Sipser, Parity, circuits, and the polynomial-time
hierarchy, Mathematical Systems Theory 17 (1) (1984) 13–27.

[16] D. M. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology, Cambridge University Press, 1997.

[17] M. M. Halldórsson, Approximating the minimum maximal independence
number, Information Processing Letters 46 (4) (1993) 169–172.

[18] R. W. Hamming, Error detecting and error correcting codes, Bell System
Technical Journal 29 (2) (1950) 147–160.

[19] L. A. Hemachandra, Algorithms from complexity theory: Polynomial-time
operations for complex sets, in: T. Asano, T. Ibaraki, H. Imai, T. Nishizeki
(Eds.), Proc. of the SIGAL Int. Symp. on Algorithms, Vol. 450 of Lecture
Notes in Computer Science, Springer, 1990, pp. 221–231.

[20] D. S. Hirschberg, A linear space algorithm for computing maximal common
subsequences, Communications of the ACM 18 (6) (1975) 341–343.

18

[21] N. Immerman, Descriptive Complexity, Graduate Texts in Computer Science,
Springer, 1998.

[22] E. T. Irons, An error-correcting parse algorithm, Communications of the ACM
6 (11) (1963) 669–673.

[23] R. E. Ladner, The circuit value problem is log space complete for P, SIGACT
News 7 (1) (1975) 18–20.

[24] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions and
reversals., Soviet Physics Doklady 10 (8) (1966) 707–710.

[25] G. Lyon, Syntax-directed least-errors analysis for context-free languages: A
practical approach, Communications of the ACM 17 (1) (1974) 3–14.

[26] B. Manthey, R. Reischuk, The intractability of computing the hamming
distance, in: T. Ibaraki, N. Katoh, H. Ono (Eds.), Proc. of the 14th Ann. Int.
Symp. on Algorithms and Computation (ISAAC), Vol. 2906 of Lecture Notes
in Computer Science, Springer, 2003, pp. 88–97.

[27] W. J. Masek, M. S. Paterson, A faster algorithm computing string edit
distances, Journal of Computer and System Sciences 20 (1) (1980) 18–31.

[28] G. Navarro, A guided tour to approximate string matching, ACM Computing
Surveys 33 (1) (2001) 31–88.

[29] P. A. Pevzner, Computational Molecular Biology: An Algorithmic Approach,
MIT Press, 2000.

[30] G. Pighizzini, A parallel minimum distance error-correcting context-free parser,
in: A. Marchetti-Spaccamela, P. Mentrasti, M. V. Zilli (Eds.), Proc. of the 4th
Italian Conference on Theoretical Computer Science, World Scientific, 1992, pp.
305–316.

[31] G. Pighizzini, How hard is computing the edit distance?, Information and
Computation 165 (1) (2001) 1–13.

[32] D. A. Spielman, The complexity of error-correcting codes, in: B. S. Chlebus,
L. Czaja (Eds.), Proc. of the 11th Int. Symp. on Fundamentals of Computation
Theory (FCT), Vol. 1279 of Lecture Notes in Computer Science, Springer, 1997,
pp. 67–84.

[33] I. H. Sudborough, On the tape complexity of deterministic context-free
languages, Journal of the ACM 25 (3) (1978) 405–414.

[34] A. Vardy, Algorithmic complexity in coding theory and the minimum distance
problem, in: Proc. of the 29th Ann. ACM Symp. on Theory of Computing
(STOC), ACM Press, 1997, pp. 92–109.

[35] H. Vollmer, Introduction to Circuit Complexity — A Uniform Approach, Texts
in Theoretical Computer Science. An EATCS Series., Springer, 1999.

19

