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A fundamental problem for wireless ad hoc networks is the assignment of suitable
transmission powers to the wireless devices such that the resulting communication
graph is connected. The goal is to minimize the total transmit power in order to
maximize the life-time of the network. Our aim is a probabilistic analysis of this
power assignment problem. We prove complete convergence for arbitrary combi-
nations of the dimension d and the distance-power gradient p. Furthermore, we
prove that the expected approximation ratio of the simple spanning tree heuristic
is strictly less than its worst-case ratio of 2.

Our main technical novelties are two-fold: First, we find a way to deal with the
unbounded degree that the communication network induced by the optimal power
assignment can have. Minimum spanning trees and traveling salesman tours, for
which strong concentration results are known in Euclidean space, have bounded
degree, which is heavily exploited in their analysis. Second, we apply a recent
generalization of Azuma-Hoeffding’s inequality to prove complete convergence for
the case p ≥ d for both power assignments and minimum spanning trees (MSTs).
As far as we are aware, complete convergence for p > d has not been proved yet
for any Euclidean functional.

1 Introduction

Wireless ad hoc networks have received significant attention due to their many applications in,
for instance, environmental monitoring or emergency disaster relief, where wiring is difficult.
Unlike most wired networks, wireless ad hoc networks lack a backbone infrastructure. Commu-
nication takes place either through single-hop transmission or by relaying through intermediate
nodes. We consider the case of ad hoc wireless networks where each node can adjust its trans-
mit power for the purpose of power conservation. In the assignment of transmit powers, two
conflicting effects have to be taken into account: if the transmit powers are too low, the re-
sulting network may be disconnected. If the transmit powers are too high, the nodes run out
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of energy quickly. The goal of the power assignment problem is to assign transmit powers to
the transceivers such that the resulting network is connected and the sum of transmit powers
is minimized [15].

1.1 Problem Statement and Previous Results

We consider a set of vertices X ⊆ [0, 1]d, which represent the sensors, |X| = n, and assume
that ‖u − v‖p, for some p ∈ R (called the distance-power gradient or path loss exponent), is
the power required to successfully transmit a signal from u to v. This is called the power-
attenuation model, where the strength of the signal decreases with 1/rp for distance r, and is
a simple yet very common model for power assignments in wireless networks [21]. In practice,
we typically have 1 ≤ p ≤ 6 [18].

A power assignment pa : X → [0,∞) is an assignment of transmit powers to the nodes in
X. Given pa, we have an edge between two nodes u and v if both pa(x), pa(y) ≥ ‖x− y‖p. If
the resulting graph is connected, we call it a PA graph. Our goal is to find a PA graph and
a corresponding power assignment pa that minimizes

∑
v∈X pa(v). Note that any PA graph

G = (X,E) induces a power assignment by pa(v) = maxu∈X:{u,v}∈E ‖u− v‖p.
PA graphs can in many aspects be regarded as a tree as we are only interested in connect-

edness, but it can contain more edges in general. However, we can simply ignore redundant
edges and restrict ourselves to a spanning tree of the PA graph.

The minimal connected power assignment problem is NP-hard for d ≥ 2 and APX-hard
for d ≥ 3 [4]. For d = 1, i.e., when the sensors are located on a line, the problem can be
solved by dynamic programming [13]. A simple approximation algorithm for minimum power
assignments is the minimum spanning tree heuristic (MST heuristic), which achieves a tight
worst-case approximation ratio of 2 [13]. This has been improved by Althaus et al. [1], who
devised an approximation algorithm that achieves an approximation ratio of 5/3. Despite the
higher worst-case approximation ratio of the MST heuristic in relation to the algorithm of
Althaus et al., analysis remains of interest due to the inherent simplicity of the algorithm. A
first average-case analysis of the MST heuristic was presented by de Graaf et al. [5]: First,
they analyzed the expected approximation ratio of the MST heuristic for the (non-geometric,
non-metric) case of independent edge lengths. Second, they proved convergence of the total
power consumption of the assignment computed by the MST heuristic for the special case of
p = d. They did not analyze the optimal power assignment. They left as open problems, first,
an average-case analysis of the MST heuristic for random geometric instances and, second, the
convergence of the value of the optimal power assignment.

1.2 Our Contribution

In this paper, we conduct an average-case analysis of the optimal power assignment prob-
lem for Euclidean instances. The points are drawn independently and uniformly from the
d-dimensional unit hypercube [0, 1]d. We believe that probabilistic analysis is better-suited for
performance evaluation in wireless ad hoc networks than worst-case analysis, as the positions
of the sensors – in particular if deployed in areas that are difficult to access – are subjected to
randomness.

Roughly speaking, our contributions are as follows:

1. We show that the power assignment functional has sufficiently nice properties in order to
apply Yukich’s general framework for Euclidean functionals [27] to obtain concentration
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results (Section 3).

2. Combining these insights with a recent generalization of the Azuma-Hoeffding bound
by Warnke [26], we obtain concentration of measure and complete convergence of the
power assignment functional for all combinations of d and p ≥ 1, even for the case p ≥ d
(Section 4). In addition, we obtain complete convergence for p ≥ d for minimum-weight
spanning tree functional. As far as we are aware, complete convergence for p ≥ d has not
been proved yet for such functionals. The only exception we are aware of are minimum
spanning trees for the special case p = d [27, Sect. 6.4].

3. We provide a probabilistic analysis of the MST heuristic for the geometric case. We show
that its expected approximation ratio is strictly smaller than its worst-case approximation
ratio of 2 [13] for any d and p (Section 5).

Our main technical contributions are two-fold: First, we introduce a transmit power redis-
tribution argument to deal with the unbounded degree that graphs induced by the optimal
transmit power assignment can have. The unboundedness of the degree makes the analysis
of the power assignment functional PA challenging. The reason is that removing a vertex can
cause the graph to fall into a large number of components and it might be costly to connect
these components without the removed vertex. In contrast, the degree of any minimum span-
ning tree, for which strong concentration results are known in Euclidean space for p ≤ d, is
bounded for every fixed d, and this is heavily exploited in the analysis. (The concentration
result by de Graaf et al. [5] for the power assignment obtained from the MST heuristic also
exploits that MSTs have bounded degree.)

Second, we apply a recent generalization of Azuma-Hoeffding’s inequality [26] to prove com-
plete convergence for the case p ≥ d for both power assignments and minimum spanning
trees. We introduce the notion of typically smooth Euclidean functionals, prove convergence of
such functionals, and show that minimum spanning trees and power assignments are typically
smooth. In this sense, our proof of complete convergence provides an alternative and generic
way to prove complete convergence, whereas Yukich’s proof for minimum spanning trees is
tailored to the case p = d. In order to prove complete convergence with our approach, one only
needs to prove convergence in mean, which is often much simpler than complete convergence,
and typically smoothness. Thus, we provide a simple method to prove complete convergence of
Euclidean functionals along the lines of Yukich’s result that, in the presence of concentration
of measure, convergence in mean implies complete convergence [27, Corollary 6.4].

2 Definitions and Notation

Throughout the paper, d (the dimension) and p (the distance-power gradient) are fixed con-
stants. For three points x, y, v, we by xv the line through x and v, and we denote by ∠(x, v, y)
the angle between xv and yv.

A Euclidean functional is a function Fp for p > 0 that maps finite sets of points from
the unit hypercube [0, 1]d to some non-negative real number and is translation invariant and
homogeneous of order p [27, page 18]. From now on, we omit the superscript p of Euclidean
functionals, as p is always fixed and clear from the context.

PAB is the canonical boundary functional of PA (we refer to Yukich [27] for boundary func-
tionals of other optimization problems): given a hyperrectangle R ⊆ Rd with X ⊆ R, this
means that a solution is an assignment pa(x) of power to the nodes x ∈ X such that
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• x and y are connected if pa(x), pa(y) ≥ ‖x− y‖p,

• x is connected to the boundary of R if the distance of x to the boundary of R is at most
pa(x)1/p, and

• the resulting graph, called a boundary PA graph, is either connected or consists of con-
nected components that are all connected to the boundary.

Then PAB(X,R) is the minimum value for
∑

x∈X pa(x) that can be achieved by a boundary
PA graph. Note that in the boundary functional, no power is assigned to the boundary. It is
straight-forward to see that PA and PAB are Euclidean functionals for all p > 0 according to
Yukich [27, page 18].

For a hyperrectangle R ⊆ Rd, let diamR = maxx,y∈R ‖x− y‖ denote the diameter of R. For
a Euclidean functional F, let F(n) = F({U1, . . . , Un}), where U1, . . . , Un are drawn uniformly
and independently from [0, 1]d. Let

γd,pF = lim
n→∞

E
(
F(n)

)
n

d−p
d

.

(In principle, γd,pF need not exist, but it does exist for all functionals considered in this paper.)
A sequence (Rn)n∈N of random variables converges in mean to a constant γ if

lim
n→∞

E(|Rn − γ|) = 0.

The sequence (Rn)n∈N converges completely to a constant γ if we have

∞∑
n=1

P
(
|Rn − γ| > ε

)
<∞

for all ε > 0 [27, page 33].
Besides PA, we consider two other Euclidean functions: MST(X) denotes the length of the

minimum spanning tree with lengths raised to the power p. PT(X) denotes the total power
consumption of the assignment obtained from the MST heuristic, again with lengths raised to
the power p. The MST heuristic proceeds as follows: First, we compute a minimum spanning
tree of X. Then let

pa(x) = max{‖x− y‖p | {x, y} is an edge of the MST}.

By construction and a simple analysis, we have MST(X) ≤ PA(X) ≤ PT(X) ≤ 2·MST(X) [13].
For n ∈ N, let [n] = {1, . . . , n}.

3 Properties of the Power Assignment Functional

After showing that optimal PA graphs can have unbounded degree and providing a lemma that
helps solving this problem, we show that the power assignment functional fits into Yukich’s
framework for Euclidean functionals [27].
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3.1 Degrees and Cones

As opposed to minimum spanning trees, whose maximum degree is bounded from above by
a constant that depends only on the dimension d, a technical challenge is that the maximum
degree in an optimal PA graph cannot be bounded by a constant in the dimension. This holds
even for the simplest case of d = 1 and p > 1. We conjecture that the same holds also for
p = 1, but proving this seems to be more difficult and not to add much.

Lemma 3.1. For all p > 1, all integers d ≥ 1, and for infinitely many n, there exist instances
of n points in [0, 1]d such that the unique optimal PA graph is a tree with a maximum degree
of n− 1.

Proof. Let n be odd, and let 2m+ 1 = n. Consider the instance

Xm = {a−m, a−m+1, . . . , a0, . . . , am−1, am}

that consists of m positive integers a1, . . . , am, m negative integers a−i = −ai for 1 ≤ i ≤ m,
and a0 = 0. We assume that ai+1 � ai for all i. By scaling and shifting, we can achieve that
X fits into the unit interval.

A possible solution pa : Xm → R+ is assigning power api to ai and a−i for 1 ≤ i ≤ m and
power apm to 0. In this way, all points are connected to 0. We claim that this power assignment
is the unique optimum. As am = −a−m � |ai| for |i| < m, the dominant term in the power
consumption Ψm is 3apm (the power of am, a−m, and a0 = 0). Note that no other term in the
total power consumption involves am.

We show that am and a−m must be connected to 0 in an optimal PA graph. First, assume
that am and a−m are connected to different vertices. Then the total power consumption
increases to about 4apm because a±m is very large compared to ai for all |i| < m (we say that
am is dominant). Second, assume that am and a−m are connected to ai with i 6= 0. Without
loss of generality, we assume that i > 0 and, thus, ai > 0. Then the total power consumption
is at least 2 · (am + ai)

p + (am− ai)p ≥ 3apm + 2ap−1
m ai. Because am is dominant, this is strictly

more than Ψm because it contains the term 2ap−1
m ai, which contains the very large am because

p > 1.
From now on, we can assume that 0 = a0 is connected to a±m. Assume that there is some

point ai that is connected to some aj with i, j 6= 0. Assume without loss of generality that i > 0
and |i| ≥ |j|. Assume further that i is maximal in the sense that there is no |k| > i such that
ak is connected to some vertex other than 0. We set ai’s power to api and aj ’s power to |aj |p.
Then both are connected to 0 as 0 has already sufficient power to reach both. Furthermore,
the PA graph is still connected: All vertices ak with |k| > i are connected to 0 by the choice
of i. If some ak with |k| ≤ i and k 6= i, j was connected to ai before, then it has also sufficient
power to reach 0.

The power balance remains to be considered: If j = −i, then the energy of both ai and aj
has been strictly decreased. Otherwise, |j| < i. The power of ai was at least (ai − aj)p before
and is now api . The power of aj was at least (ai−aj)p before and is now apj . Since ai dominates
all aj for |j| < i, this decreases the power.

The unboundedness of the degree of PA graphs make the analysis of the functional PA
challenging. The technical reason is that removing a vertex can cause the PA graph to fall
into a non-constant number of components. The following lemma is the crucial ingredient to
get over this “degree hurdle”.
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Figure 1: Point x can reach all points in the gray area because it can reach v. In particular,
x can reach all points that are no further away from v than z. This includes all
points to the left of the dash-dotted line. The dash-dotted line consists of points at
a distance of 2 cos(α) · ‖x− v‖ of v. A sufficient condition that the point x can reach
another point y is that y is contained in the dark-gray cone and is no further away
from v than indicated by the dash-dotted line.

Lemma 3.2. Let x, y ∈ X, let v ∈ [0, 1]d, and assume that x and y have power pa(x) ≥ ‖x−v‖p
and pa(y) ≥ ‖y−v‖p, respectively. Assume further that ‖x−v‖ ≤ ‖y−v‖ and that ∠(x, v, y) ≤ α
with α ≤ π/3. Then the following holds:

(a) pa(y) ≥ ‖x− y‖p, i.e., y has sufficient power to reach x.

(b) If x and y are not connected (i.e., pa(x) < ‖x− y‖p), then ‖y − v‖ > 2 cos(α) · ‖x− v‖.

Proof. Because α ≤ π/3, we have ‖y − v‖ ≥ ‖y − x‖. This implies (a).
The point x has sufficient power to reach any point within a radius of ‖x − v‖ of itself.

By (a), point y has sufficient power to reach x. Thus, if y is within a distance of ‖x − v‖ of
x, then also x can reach y and, thus, x and y are connected. We project x, y, and v into the
two-dimensional subspace spanned by the vectors x − v and y − v. This yields a situation as
depicted in Figure 1. Since pa(x) ≥ ‖x − v‖p, point x can reach all points in the light-gray
region, thus in particular to all dark-gray points in the cone rooted at v. In particular, x can
reach all points that are no further away from v than the point z. The triangle vxz is isosceles.
We split it into two triangles vwx and zxw. This yields ‖z − v‖ = 2 cos(α)‖x − v‖, which
completes the proof of (b).

For instance, α = π/6 results in a factor of
√

3 = 2 cos(π/3). In the following, we invoke
this lemma always with α = π/6, but this choice is arbitrary as long as α < π/3, which causes
2 cos(α) to be strictly larger than 1.

3.2 Deterministic Properties

In this section, we state properties of the power assignment functional. Subadditivity (Lem-
ma 3.3), superadditivity (Lemma 3.4), and growth bound (Lemma 3.5) are straightforward.

Lemma 3.3 (subadditivity). PA is subadditive [27, (2.2)] for all p > 0 and all d ≥ 1, i.e.,
for any point sets X and Y and any hyperrectangle R ⊆ Rd with X,Y ⊆ R, we have

PA(X ∪ Y ) ≤ PA(X) + PA(Y ) +O
(
(diamR)p

)
.
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Proof. Let TX and TY be optimal PA graphs for X and Y , respectively. We connect these
graphs by an edge of length at most diamR. This yields a solution for X ∪Y , i.e., a PA graph,
and the additional costs are bounded from above by the length of this edge to the power p,
which is bounded by O((diamR)p).

Lemma 3.4 (superadditivity). PAB is superadditive for all p ≥ 1 and d ≥ 1 [27, (3.3)],
i.e., for any X, hyperrectangle R ⊆ Rd with X ⊆ R and partition of R into hyperrectangles R1

and R2, we have

PApB(X,R) ≥ PApB(X ∩R1, R1) + PApB(X ∩R2, R2).

Proof. Let T be an optimal boundary PA graph for (X,R). This graph restricted to R1 and
R2 yields boundary graphs T1 and T2 for (X ∩ R1, R1) and (X ∩ R2, R2), respectively. The
sum of the costs of T1 and T2 is upper bounded by the costs of T because p ≥ 1 (splitting an
edge at the border between R1 and R2 results in two edges whose sum of lengths to the power
p is at most the length of the original edge to the power p).

Lemma 3.5 (growth bound). For any X ⊆ [0, 1]d and p > 0 and d ≥ 1, we have

PAB(X) ≤ PA(X) ≤ O
(

max
{
n

d−p
d , 1

})
.

Proof. This follows from the growth bound for the MST [27, (3.7)], because MST(X) ≤
PA(X) ≤ 2MST(X) for all X [13]. The inequality PAB(X) ≤ PA(X) holds obviously.

The following lemma shows that PA is smooth, which roughly means that adding or removing
a few points does not have a huge impact on the function value. Its proof requires Lemma 3.2
to deal with the fact that optimal PA graphs can have unbounded degree.

Lemma 3.6. The power assignment functional PA is smooth for all 0 < p ≤ d [27, (3.8)], i.e.,∣∣PA(X ∪ Y )− PA(X)
∣∣ = O

(
|Y |

d−p
d

)
for all point sets X,Y ⊆ [0, 1]d.

Proof. One direction is straightforward: PA(X ∪ Y ) − PA(X) is bounded by Ψ = O
(
|Y |

d−p
d

)
,

because the optimal PA graph for Y has a value of at most Ψ by Lemma 3.5. Then we can
take the PA graph for Y and connect it to the tree for X with a single edge, which costs at
most O(1) ≤ Ψ because p ≤ d.

For the other direction, consider the optimal PA graph T for X∪Y . The problem is that the
degrees degT (v) of vertices v ∈ Y can be unbounded (Lemma 3.1). (If the maximum degree
were bounded, then we could argue in the same way as for the MST functional.) The idea is
to exploit the fact that removing v ∈ Y also frees some power. Roughly speaking, we proceed
as follows: Let v ∈ Y be a vertex of possibly large degree. We add the power of v to some
vertices close to v. The graph obtained from removing v and distributing its energy has only
a constant number of components.

To prove this, Lemma 3.2 is crucial. We consider cones rooted at v with the following
properties:

• The cones have a small angle α, meaning that for every cone C and every x, y ∈ C, we
have ∠(x, v, y) ≤ α. We choose α = π/6.
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• Every point in [0, 1]d is covered by some cone.

• There is a finite number of cones. (This can be achieved because d is a constant.)

Let C1, . . . , Cm be these cones. By abusing notation, let Ci also denote all points x ∈
Ci ∩ (X ∪ Y \ {v}) that are adjacent to v in T . For Ci, let xi be the point in Ci that is closest
to v and adjacent to v (breaking ties arbitrarily), and let yi be the point in Ci that is farthest
from v and adjacent to v (again breaking ties arbitrarily). (For completeness, we remark that
Ci can be ignored if Ci ∩X = ∅.) Let `i = ‖yi − v‖ be the maximum distance of any point in
Ci to v, and let ` = maxi `i.

We increase the power of xi by `p/m. Since the power of v is at least `p and we have m
cones, we can account for this with v’s power because we remove v. Because α = π/6 and xi is
closest to v, any point in Ci is closer to xi than to v. According to Lemma 3.2(a), every point
in Ci has sufficient power to reach xi. Thus, if xi can reach a point z ∈ Ci, then there is an
established connection between them.

From this and increasing xi’s power to at least `p/m, there is an edge between xi and every
point z ∈ Ci that has a distance of at most `/ p

√
m from v. We recall that m and p are constants.

Now let z1, . . . , zk ∈ Ci be the vertices in Ci that are not connected to xi because xi has too
little power. We assume that they are sorted by increasing distance from v. Thus, zk = yi. We
can assume that no two zj and zj′ are in the same component after removal of v. Otherwise,
we can simply ignore one of the edges {v, zj} and {v, zj′} without changing the components.

Since zj and zj+1 were connected to v and they are not connected to each other, we can apply
Lemma 3.2(b), which implies that ‖zj+1−v‖ ≥

√
3·‖zj−v‖. Furthermore, ‖z1−v‖ ≥ `/ p

√
m by

assumption. Iterating this argument yields ` = ‖zk−v‖ ≥
√

3
k−1‖z1−v‖ ≥

√
3
k−1·`/ p

√
m. This

implies k ≤ log√3( p
√
m)+1. Thus, removing v and redistributing its energy as described causes

the PA graph to fall into at most a constant number of components. Removing |Y | points causes
the PA graph to fall into at most O(|Y |) components. These components can be connected

with costs O(|Y |
d−p
d ) by choosing one point per component and applying Lemma 3.5.

Lemma 3.7. PAB is smooth for all 1 ≤ p ≤ d [27, (3.8)].

Proof. The idea is essentially identical to the proof of Lemma 3.6, and we use the same notation.
Again, one direction is easy. For the other direction, note that every vertex of G = (X,E),
with E induced by pa is connected to at most one point at the boundary. We use the same
kind of cones as for Lemma 3.6. Let v ∈ G be a vertex that we want to remove. We ignore
v’s possible connection to the boundary and proceed with the remaining connections. In this
way, we obtain a forest with O(|Y |) components. We compute a boundary PA graph for one
vertex of each component and are done because of Lemma 3.5 and in the same way as in the
proof of Lemma 3.6.

Crucial for convergence of PA is that PA, which is subadditive, and PAB, which is super-
additive, are close to each other. Then PA and PAB are approximately both subadditive and
superadditive. The following lemma states that indeed PA and PAB do not differ too much for
1 ≤ p < d.

Lemma 3.8. PA is point-wise close to PAB for 1 ≤ p < d [27, (3.10)], i.e.,∣∣PAp(X)− PApB(X, [0, 1]d)
∣∣ = o

(
n

d−p
d
)

for every set X ⊆ [0, 1]d of n points.
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Proof. Let T be an optimal boundary PA graph for X. Let Q ⊆ X be the set of points
that have a connection to the boundary in T and let ∂Q be the corresponding points on the
boundary. If we remove the connections to the boundary, we obtain a graph T ′. We can
assume that Q contains exactly one point per connected component of the graph T ′.

We use the same dyadic decomposition as Yukich [27, proof of Lemma 3.8]. This yields that
the sum of transmit powers used to connect to the boundary is bounded by the maximum of

O(n
d−p−1
d−1 ) and O(log n) for p ≤ d− 1 and by a constant for p ∈ (d− 1, d). We omit the proof

as it is basically identical to Yukich’s proof.
We compute a minimum-weight spanning tree Z of ∂Q. (Note that we indeed compute an

MST and not a PA. This is because the MST has bounded degree and PA and MST differ by
at most a factor of 2.) This MST Z has a weight of

O
(

max
{
n

d−1−p
d−1 , 1

})
= o

(
n

d−p
d

)
according to the growth bound for MST [27, (3.7)]. and because d > p. If two points q̃, q̃′ ∈ ∂Q
are connected by an edge in this tree, then we connect the corresponding points q, q′ ∈ Q.

The question that remains is by how much the power of the vertices in Q has to be increased
in order to allow the connections as described above. If q, q′ ∈ Q are connected, then an upper
bound for their power is given by the p-th power of their distances to the boundary points q̃
and q̃′ plus the length of the edge connecting q̃ and q̃′. Applying the triangle inequality for
powers of metrics twice, the energy needed for connecting q and q′ is at most 4p = O(1) times
the sum of these distances. Since the degree of Z is bounded, every vertex in Q contributes
to only a constant number of edges and, thus, only to the power consumption of a constant
number of other vertices. Thus, the total additional power needed is bounded by a constant
times the power of connecting Q to the boundary plus the power to use Z as a PA graph.
Because of the triangle inequality for powers of metrics, the bounded degree of every vertex of
∂Q in Z, and because of the dyadic decomposition mentioned above, the increase of power is
in compliance with the statement of the lemma.

Remark 3.9. Lemma 3.8 is an analogue of its counterpart for MST, TSP, and matching [27,
Lemma 3.7] in terms of the bounds. Namely, we obtain

∣∣PA(X)− PAB(X)
∣∣ ≤


O(|X|

d−p−1
d−1 ) if 1 ≤ p < d− 1,

O(log |X|) if p = d− 1 6= 1,

O(1) if d− 1 < p < d or p = d− 1 = 1.

3.3 Probabilistic Properties

For p > d, smoothness is not guaranteed to hold, and for p ≥ d, point-wise closeness is
not guaranteed to hold. But similar properties typically hold for random point sets, namely
smoothness in mean (Definition 3.14) and closeness in mean (Definition 3.16). In the following,
let X = {U1, . . . , Un}. Recall that U1, . . . , Un are drawn uniformly and independently from
[0, 1]d.

Before proving smoothness in mean, we need a statement about the longest edge in an
optimal PA graph and boundary PA graph. The bound is asymptotically equal to the bound
for the longest edge in an MST [7,14,19].
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To prove our bound for the longest edge in optimal PA graphs (Lemma 3.12), we need the
following two lemmas. Lemma 3.10 is essentially equivalent to a result by Kozma et al. [14],
but they do not state the probability explicitly. Lemma 3.11 is a straight-forward consequence
of Lemma 3.10. Variants of both lemmas are known [7, 19, 20, 25], but, for completeness, we
state and prove both lemmas in the forms that we need.

Lemma 3.10. For every β > 0, there exists a cball = cball(β, d) such that, with a probability of
at least 1 − n−β, every hyperball of radius rball = cball · (log n/n)1/d and with center in [0, 1]d

contains at least one point of X in its interior.

Proof. We sketch the simple proof. Fix β > 0 arbitrarily. We cover [0, 1]d with hypercubes of
side length Ω(rball) such that every hyperball of radius rball – even if its center is in a corner (for
a point on the boundary, still at least a 2−d = Θ(1) fraction is within [0, 1]d) – fully contains
at least one box. The probability that such a box does not contain a point, which is necessary
for a ball to be empty, is at most

(
1−Ω(rball)

d
)n ≤ n−Ω(1) by independence of the points in X

and the definition of rball. The rest of the proof follows by a union bound over all O(n/ log n)
boxes.

We also need the following lemma, which essentially states that if z and z′ are sufficiently
far away, then there is – with high probability according to Lemma 3.10 – always a point y
between z and z′ in the following sense: the distance of y to z is within a predefined upper
bound 2rball, and y is closer to z′ than z.

Lemma 3.11. Assume that every hyperball of radius rball with center in [0, 1]d contains at least
one point of X. Then the following holds: For every choice of z, z′ ∈ [0, 1]d with ‖z − z′‖ ≥
2rball, there exists a point y ∈ X with the properties

• ‖z − y‖ ≤ 2rball and

• ‖z′ − y‖ < ‖z′ − z‖.

Proof. The set of candidates for y contains a ball of radius rball, namely a ball of this radius
whose center is at a distance of rball from z on the line between z and z′.

Lemma 3.12 (longest edge). For every β > 0, there exists a cedge = cedge(β) such that, with
a probability of at least 1− n−β, every edge of an optimal PA graph and an optimal boundary
PA graph PAB is of length at most redge = cedge · (log n/n)1/d.

Proof. We restrict ourselves to considering PA graphs. The proof for boundary PA graphs is
almost identical.

Let T be any PA graph. Let cedge = 4k1/pcball/(1 −
√

3
−p

)1/p, where k is an upper bound
for the number of vertices without a pairwise connection at a distance between r and r/

√
3 for

arbitrary r. It follows from Lemma 3.2 and its proof that k is a constant that depends only
on p and d.

Note that cedge > 2cball. We are going to show that the following holds: Assume that every
hyperball of radius rball with center in [0, 1]d contains at least one point (this is likely according
to Lemma 3.10). Then for every PA graph T that contains an edge that is longer than redge,
we can find a better PA graph, which shows that T is not optimal. Since the probability of
the assumption is at least 1− n−β by Lemma 3.10, the lemma is proved.
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Now assume that every ball of radius rball contains at least one point. This implies that the
conclusion of Lemma 3.11 holds. Let T be any PA graph that contains an edge of length at
least redge. Let v be a vertex incident to the longest edge of T , and let rbig > redge be the
length of a longest edge. (The longest edge is unique with a probability of 1. The node v is
not unique as the longest edge connects two nodes.) We decrease the power of v to rbig/

√
3.

This implies that v loses contact to some points – otherwise, the power assignment was clearly
not optimal.

Let x1, . . . , xk′ with k′ ≤ k be the points that were connected to v but are in different
connected components than v after decreasing v’s power. This is because the only nodes that
might lose their connection to v are within a distance between rbig/

√
3 and rbig, and there are

at most k such nodes without a pairwise connection.
Consider x1. Let z0 = v. According to Lemma 3.11, there is a point z1 that is closer to x1

and at most 2rball away from v. Iteratively for i = 1, 2, . . ., we distinguish three cases until
this process stops:

(i) zi belongs to the same component as v. The process continues, and we can apply
Lemma 3.11 to zi and x1 and find a point zi+1 that is closer to x1 than zi and at
most at a distance of 2rball of zi.

(ii) zi belongs to the same component as xj for some j (zi is closer to x1 than zi−1, but this
does not imply j = 1). We increase zi’s power such that zi is able to reach zi−1. If i > 1,
then we also increase zi−1’s power accordingly. This stops the process.

(iii) zi is within a distance of at most 2rball of some xj . In this case, we increase the energy
of zi such that zi and xj are connected. (The energy of xj is sufficiently large anyhow.)
This stops the process.

Running this process once decreases the number of connected components by one and costs at
most 2(2rball)

p = 2p+1rpball additional power. We run this process k′ ≤ k times, thus spending
at most k2p+1rpball of additional power. In this way, we obtain a valid PA graph.

We have to show that the new PA graph indeed saves power. By decreasing v’s power, we

save an amount of rpbig − (rbig/
√

3)p > (1 −
√

3
−p

) · rpedge. By the choice of cedge, the saved

amount of energy exceeds the additional amount of k2p+1rpball. This contradicts the optimality
of the PA graph T with the edge of length rbig > redge.

Remark 3.13. Since the longest edge has length at most redge with high probability, i.e., with
a probability of 1−n−Ω(1), and any ball of radius redge contains roughly O(log n) points due to
Chernoff’s bound [17, Chapter 4], the maximum degree of an optimum PA graph of a random
point set is O(log n) with high probability – contrasting Lemma 3.1.

Yukich gave two different notions of smoothness in mean [27, (4.13) and (4.20) & (4.21)].
We use the stronger notion, which implies the other.

Definition 3.14 (smooth in mean [27, (4.20), (4.21)]). A Euclidean functional F is called
smooth in mean if, for every constant β > 0, there exists a constant c = c(β) such that the
following holds with a probability of at least 1− n−β:

∣∣F(n)− F(n± k)
∣∣ ≤ ck · ( log n

n

)p/d

11



and ∣∣FB(n)− FB(n± k)
∣∣ ≤ ck · ( log n

n

)p/d
.

for all 0 ≤ k ≤ n/2.

Lemma 3.15. PAB and PA are smooth in mean for all p > 0 and all d.

Proof. The bound PA(n + k) ≤ PA(n) + O
(
k ·
( logn

n

) p
d
)

follows from the fact that for all k

additional vertices, with a probability of at least 1− n−β′ for any β′ > β > 0 (where β is the
constant in Definition 3.14), there is a vertex among the first n within a distance of at most
O
(
(log n/n)1/d

)
according to Lemma 3.10 (β′ influences the constant hidden in the O). Thus,

we can connect any of the k new vertices with costs of O
(
(log n/n)p/d

)
to the optimal PA

graph for the n nodes.

Let us now show the reverse inequality PA(n) ≤ PA(n+ k) +O
(
k ·
( logn

n

) p
d
)
. To do this, we

show that with a probability of at least 1− n−β′ (for some β′ > β), we have

PA(n) ≤ PA(n+ 1) +O

((
log n

n

) p
d

)
. (1)

Then we iterate k times to obtain the bound we aim for.
The proof of (1) is similar to the analogous inequality in Yukich’s proof [27, Lemma 4.8].

The only difference is that we first have to redistribute the power of the point Un+1 to its
closest neighbors as in the proof of Lemma 3.6. In this way, removing Un+1 results in a
constant number of connected components. The longest edge incident to Un+1 has a length of
O
(
(log n/n)1/d

)
with a probability of at least 1 − n−β′ . Thus, we can connect these constant

number of components with extra power of at most O
(
(log n/n)p/d

)
.

The proof of

|PA(n)− PA(n− k)| = O

(
k ·
(

log n

n

) p
d

)
and the statement

|PAB(n)− PAB(n± k)| = O

(
k ·
(

log n

n

) p
d

)
for the boundary functional are almost identical.

Definition 3.16 (close in mean [27, (4.11)]). A Euclidean functional F is close in mean
to its boundary functional FB if

E (|F(n)− FB(n)|) = o
(
n

d−p
d

)
.

Lemma 3.17. PA is close in mean to PAB for all d and p ≥ 1.

Proof. It is clear that PAB(X) ≤ PA(X) for all X. Thus, in what follows, we prove that

PA(X) ≤ PAB(X) + o
(
n

d−p
d

)
holds with a probability of at least 1−n−β for every β > 0. This

implies closeness in mean.
With a probability of at least 1 − n−β

′
for some sufficiently large constant β′ > β > 0,

the longest edge in the graph that realizes PAB(X) has a length of cedge · (log n/n)1/d with

12



cedge = cedge(β
′) (Lemma 3.12). Thus, with a probability of at least 1− n−β′ for any constant

β′ > β > 0, only vertices within a distance of at most cedge · (log n/n)1/d of the boundary are
connected to the boundary. As the d-dimensional unit cube is bounded by 2d hyperplanes,
the expected number of vertices that are so close to the boundary is bounded from above by

cedgen2d ·(log n/n)1/d = O
(
(log n)1/dn

d−1
d

)
. With a probability of at least 1−n−β, this number

is exceeded by no more than a constant factor because of Chernoff’s bound.
By Remark 3.13, the maximum degree of any vertex is O(log n) with a probability of at least

1 − n−Ω(1). Thus, removing the vertices close to the boundary as described above causes the

boundary PA graph to fall apart into at most O
(
(log n)1+ 1

d · n
d−1
d

)
components. We choose

one vertex of every component and start the process described in the proof of Lemma 3.12 to
connect all of them. The costs per connection is bounded from above by O

(
(log n/n)p/d

)
with

a probability of 1−n−β for any constant β > 0. Thus, the total costs are bounded from above
by

O
(
(log n/n)p/d

)
·O
(
(log n)1+ 1

dn
d−1
d
)

= O
(

(log n)
d+p−1

d · n
d−1−p

d

)
= o
(
n

d−p
d
)

with a probability of at least 1− n−β for any constant β > 0.

4 Convergence

4.1 Standard Convergence

Our findings of Sections 3.2 yield complete convergence of PA for p < d (Theorem 4.1). To-
gether with the probabilistic properties of Section 3.3, we obtain convergence in mean in a
straightforward way for all combinations of d and p (Theorem 4.2). In Sections 4.2 and 4.3,
we prove complete convergence for p ≥ d.

Theorem 4.1. For all d and p with 1 ≤ p < d, there exists a constant γd,pPA such that

PAp(n)

n
d−p
d

converges completely to γd,pPA .

Proof. This follows from the results in Section 3.2 together with results by Yukich [27, Theorem
4.1].

Theorem 4.2. For all p ≥ 1 and d ≥ 1, there exists a constant γd,pPA (equal to the constant of
Theorem 4.1 for p < d) such that

lim
n→∞

E
(
PAp(n)

)
n

d−p
d

= lim
n→∞

E
(
PApB(n)

)
n

d−p
d

= γd,pPA .

Proof. This follows from the results in Sections 3.2 and 3.3 together with results by Yukich [27,
Theorem 4.5].
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4.2 Concentration with Warnke’s Inequality

McDiarmid’s or Azuma-Hoeffding’s inequality are powerful tools to prove concentration of
measure for a function that depends on many independent random variables, all of which
have only a bounded influence on the function value. If we consider smoothness in mean (see
Lemma 3.15), then we have the situation that the influence of a single variable is typically
very small (namely O((log n/n)p/d)), but can be quite large in the worst case (namely O(1)).
Unfortunately, this situation is not covered by McDiarmid’s or Azuma-Hoeffding’s inequality.
Fortunately, Warnke [26] proved a generalization specifically for the case that the influence of
single variables is typically bounded and fulfills a weaker bound in the worst case.

The following theorem is a simplified version of a result by Lutz Warnke [26, Theorem 1.2,
Remark 1].

Theorem 4.3 (Warnke [26, Theorem 1.2, Remark 1]). Let F : ([0, 1]d)n → R. Suppose
that there are numbers cgood ≤ cbad and an event Γ such that the function F : ([0, 1]d)n → R
satisfies

max
i∈[n]

max
x1,...,xn,x′i∈[0,1]d

∣∣F(x1, . . . , xn)− F(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∣∣
≤

{
cgood if (x1, . . . , xn) ∈ Γ and

cbad otherwise.
(2)

Then, for any t ≥ 0 and γ ∈ (0, 1] and η = cgood + γcbad, we have

P
(
F(n) ≥ E(F(n)) + t

)
≤ exp

(
− t2

2nη2

)
+
n

γ
· P(¬Γ). (3)

Next, we introduce typical smoothness, which means that, with high probability, a single
point does not have a significant influence on the value of F, and we apply Theorem 4.3 for
typically smooth functionals F. The bound of c · (log n/n)p/d in Definition 4.4 below for the
typical influence of a single point is somewhat arbitrary, but works for PA and MST. This bound
is also essentially the smallest possible, as there can be regions of diameter c′ · (log n/n)1/d for
some small constant c′ > 0 that contain no or only a single point. It might be possible to obtain
convergence results for other functionals by using a larger cgood in the following definition.

Definition 4.4 (typically smooth). A Euclidean functional F is typically smooth if, for
every β > 0, there exists a constant c = c(β) such that

max
x∈[0,1]d,i∈[n]

∣∣F(U1, . . . , Un)− F(U1, . . . , Ui−1, x, Ui+1, . . . , Un)
∣∣ ≤ c · ( log n

n

)p/d
= cgood

with a probability of at least 1− n−β and

max
x1,...,xn∈[0,1]d,i∈[n],x′i∈[0,1]d

∣∣F(x1, . . . , xn)− F(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∣∣ = O(1) = cbad.

Theorem 4.5 (concentration of typically smooth functionals). Let p, d ≥ 1. Assume
that F is typically smooth. Then

P
(∣∣F(n)− E(F(n))

∣∣ ≥ t) ≤ O(n−β)+ exp

(
− t2n

2p
d
−1

C(log n)2p/d

)
for an arbitrarily large constant β > 0 and another constant C > 0 that depends on β.
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Proof. We use Theorem 4.3. The event Γ is that any point can change the value only by at
most O

(
(log n/n)p/d). Thus, cgood = O

(
(log n/n)p/d) and cbad = O(1). The probability that

we do not have the event Γ is bounded by O(n−β) for an arbitrarily large constant β by typical
smoothness. This only influences the constant c in the definition of cgood in Definition 4.4.

We choose γ = Θ
(
(log n/n)p/d). In the notation of Theorem 4.3, we have η = O(γ), which

is possible as cbad − cgood ≈ cbad = Θ(1). Using the conclusion of Theorem 4.3 yields

P
(
|F(n)− E(F(n))| ≥ t

)
≤ 2n

γ
· P(¬Γ) + exp

(
− t2n2p/d

nC(log n)2p/d

)

≤ O(n−β) + exp

(
− t2n2p/d

nC(log n)2p/d

)
for some constant C > 0. Here, β can be chosen arbitrarily large.

The following corollary is an immediate consequence of the theorem above. It suffices to
prove complete convergence of typically smooth Euclidean functionals.

Corollary 4.6. Let p, d ≥ 1. Assume that F is typically smooth. Then

P
(∣∣F(n)− E(F(n))

∣∣ > Cn
1
2
− p

d (log n)
1
2

+ p
d

)
≤ O

(
n−β

)
(4)

for any constant β and C = C(β) depending on β.

Proof. This follows immediately from Theorem 4.5 by choosing t = Cn
1
2
− p

d (log n)
1
2

+ p
d .

4.3 Complete Convergence for p ≥ d

In this section, we prove that typical smoothness (Definition 4.4) suffices for complete conver-
gence. This implies complete convergence of MST and PA by Lemma 4.8 below.

Theorem 4.7. Let p, d ≥ 1. Assume that F is typically smooth and F(n)/n
d−p
d converges in

mean to γd,pF . Then F(n)/n
d−p
d converges completely to γd,pF .

Proof. Fix any ε > 0. Since

lim
n→∞

E
(
F(n)

n
d−p
d

)
= γd,pF ,

there exists an n0 such that

E
(
F(n)

n
d−p
d

)
∈
[
γd,pF −

ε

2
, γd,pF +

ε

2

]
for all n ≥ n0.

Furthermore, there exists an n1 such that, for all n ≥ n1, the probability that the random

variable F(n)/n
d−p
d deviates by more than ε/2 from its expected value is smaller than n−2 for

all n ≥ n1. To see this, we use Corollary 4.6 and observe that the right-hand side of (4) is
O(n−2) for sufficiently large β and that the event on the left-hand side is equivalent to∣∣∣∣ F(n)

n
d−p
d

− E(F(n))

n
d−p
d

∣∣∣∣ > O

(
(log n)

1
2

+ p
d

√
n

)
,
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where O(1/ log n) < ε/2 for sufficiently large n1 and n ≥ n1. Let n2 = max{n0, n1}. Then

∞∑
n=1

P
(∣∣∣∣PA(X)

n
d−p
d

− γd,pF

∣∣∣∣ > ε

)
≤ n2 +

∞∑
n=n2+1

n−2 = n2 +O(1) <∞.

Although similar in flavor, smoothness in mean does not immediately imply typical smooth-
ness or vice versa: the latter makes only a statement about single points at worst-case positions.
The former only makes a statement about adding and removing several points at random po-
sitions. However, the proofs of smoothness in mean for MST and PA do not exploit this, and
we can adapt them to yield typical smoothness.

Lemma 4.8. PA and MST are typically smooth.

Proof. We first consider PA. Replacing a point Uk by some other (worst-case) point z can
be modeled by removing Uk and adding z. We observe that, in the proof of smoothness in
mean (Lemma 3.15), we did not exploit that the point added is at a random position, but the
proof goes through for any single point at an arbitrary position. Also the other way around,
i.e., removing z and replacing it by a random point Uk, works in the same way. Thus, PA is
typically smooth.

Closely examining Yukich’s proof of smoothness in mean for MST [27, Lemma 4.8] yields
the same result for MST.

Corollary 4.9. For all d and p with p ≥ 1, MST(n)/n
d−p
d and PA(n)/n

d−p
d converge completely

to constants γd,pMST and γd,pPA , respectively.

Proof. Both MST and PA are typically smooth and converge in mean. Thus, the corollary
follows from Theorem 4.7.

5 Average-Case Approximation Ratio of the MST Heuristic

In this section, we show that the average-case approximation ratio of the MST heuristic for
power assignments is strictly better than its worst-case ratio of 2. First, we prove that the
average-case bound is strictly (albeit marginally) better than 2 for any combination of d and
p. Second, we show a simple improved bound for the 1-dimensional case.

5.1 The General Case

The idea behind showing that the MST heuristic performs better on average than in the worst
case is as follows: the weight of the PA graph obtained from the MST heuristic can not only
be upper-bounded by twice the weight of an MST, but it is in fact easy to prove that it can
be upper-bounded by twice the weight of the heavier half of the edges of the MST [5]. Thus,

we only have to show that the lighter half of the edges of the MST contributes Ω(n
d−p
d ) to the

value of the MST in expectation.
For simplicity, we assume that the number n = 2m + 1 of points is odd. The case of

even n is similar but slightly more technical. We draw points X = {U1, . . . , Un} as described
above. Let PT(X) denote the power required in the power assignment obtained from the MST.
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Furthermore, let H denote the m heaviest edges of the MST, and let L denote the m lightest
edges of the MST. We omit the parameter X since it is clear from the context. Then, by the
reasoning above, we have

H+ L = MST ≤ PA ≤ PT ≤ 2H = 2MST−2 L ≤ 2MST . (5)

For distances raised to the power p, the expected value of MST is (γd,pMST ± o(1)) · n
d−p
d . If

we can prove that the lightest m edges of the MST are of weight Ω(n
d−p
d ), then it follows

that the MST power assignment is strictly less than twice the optimal power assignment. L is
lower-bounded by the weight of the lightest m edges of the whole graph without any further
constraints. Let A = A(X) denote the weight of these m lightest edges of the whole graph.
Note that both L and A take edge lengths to the power p, and we have A ≤ L.

Let c be a small constant to be specified later on. Let vd,r = πd/2rd

Γ(n
2

+1) be the volume of a

d-dimensional ball of radius r. For compactness, we abbreviate cd = πd/2

Γ(n
2

+1) , thus vd,r = cdr
d.

Note that all cd’s are constants since d is constant.
The probability Pk that a fixed vertex v has at least k other vertices within a distance of at

most r = ` · d
√

1/n for some constant ` > 0 is bounded from above by

Pk ≤
(
n− 1

k

)
· vkd,r ≤

nk(cdr
d)k

k!
=
nk(cd`

dn−1)k

k!
=
c̃k

k!

for another constant c̃ = `dcd. This follows from independence and a union bound. The
expected number of edges of a specific vertex that have a length of at most r is thus bounded
from above by

n−1∑
k=1

Pk ≤
n−1∑
k=1

c̃k

k!
≤
∞∑
k=1

c̃k

k!
= ec̃ − 1.

By choosing ` appropriately small, we can achieve that c̃ ≤ 1/3. This yields ec̃ − 1 < 1/2. By
linearity of expectation, the total number of edges of length at most r in the whole graph is
bounded from above by m/2. Thus, at least m/2 of the lightest m edges of the whole graph
have a length of at least r. Hence, the expected value of A is bounded from below by

E(A) ≥ m

2
· rp =

m

2
· `pn−

p
d ≤ `p

4
· n

d−p
d = C · n

d−p
d

for some constant C > 0 that depends only on d and p. Then the expected value of PT is
bounded from above by (

2γd,pMST − 2C + o(1)
)
· n

d−p
d

by (5). From this and the convergence of PA, we can conclude the following theorem.

Theorem 5.1. For any d ≥ 1 and any p ≥ 1, we have

γd,pMST ≤ γ
d,p
PA ≤ 2(γd,pMST − C) < 2γd,pMST

for some constant C > 0 that depends only on d and p.

By exploiting that in particular PA converges completely, we can obtain a bound on the
expected approximation ratio from the above result.
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Corollary 5.2. For any d ≥ 1 and p ≥ 1 and sufficiently large n, the expected approximation
ratio of the MST heuristic for power assignments is bounded from above by a constant strictly
smaller than 2.

Proof. The expected approximation ratio is E
(
PT(n)/PA(n)

)
= E

(PT(n)/n
d−p
d

PA(n)/n
d−p
d

)
. We know that

PA(n)/n
d−p
d converges completely to γd,pPA . This implies that the probability that PA(n)/n

d−p
d

deviates by more than ε > 0 from γd,pPA is o(1) for any ε > 0.

If PA(n)/n
d−p
d ∈ [γd,pPA − ε, γ

d,p
PA + ε], then the expected approximation ratio can be bounded

from above by
2γd,pMST−2C

γd,pPA −ε
. This is strictly smaller than 2 for a sufficiently small ε > 0.

Otherwise, we bound the expected approximation ratio by the worst-case ratio of 2, which
contributes only o(1) to its expected value.

Remark 5.3. Complete convergence of the functional PT as well as smoothness and closeness
in mean has been shown for the specific case p = d [5]. We believe that PT converges completely

for all p and d. Since then γd,pPT ≤ 2γd,pMST − 2C < 2γd,pMST, we would obtain a simpler proof of
Corollary 5.2.

5.2 Improved Bound for the One-Dimensional Case

The case d = 1 is much simpler than the general case, because the MST is just a Hamiltonian
path starting at the left-most and ending at the right-most point. Furthermore, we also know
precisely what the MST heuristic does: assume that a point xi lies between xi−1 and xi+1.
The MST heuristic assigns power PA(xi) = max{|xi − xi−1|, |xi − xi+1|}p to xi. The example
that proves that the MST heuristic is no better than a worst-case 2-approximation shows that
it is bad if xi is very close to either side and good if xi is approximately in the middle between
xi−1 and xi+1. Too keep the analysis simple, we restrict ourselves to p ∈ N.

In order to analyze the average-case approximation ratio, we exploit the following trick [12,
Chapter 9]: Let y1, . . . , yn+1 be drawn independently according to an exponential distribution
with parameter 1. Let si =

∑i
j=1 yi, and let zi = si

sn+1
. Then {z1, . . . , zn} is a set of points

drawn independently from [0, 1] according to the uniform distribution.
Now we observe that the

MST =
n−1∑
i=1

(zi+1 − zi)p =

∑n
i=2 y

p
i

spn+1

.

The total power for the power assignment obtained from this tree is

PT = (z2 − z1)p +
n−2∑
i=2

max{zi+1 − zi, zi − zi−1}p + (zn − zn−1)p

=
yp2 +

∑n−1
i=2 max{yi+1, yi}p + ypn

spn+1
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Thus,

PT

MST
=

=N︷ ︸︸ ︷
yp2 +

n−1∑
i=2

max{yi+1, yi}p + ypn

n∑
i=2

ypi︸ ︷︷ ︸
=D

. (6)

The expected value of the denominator is E(D) = (n − 1) · p!. The expected value of the
numerator is E(N) = (2 + (n − 2) · (2 − 2−p)) · p!, which can be computed by exploiting that
the maximum of two exponentially random variables A and B with the same parameter is
distributed as A+ 1

2B. This implies that the expected value of max{A,B}p is given by

E
(
max

{
A,B

}p)
= E

((
A+

1

2
·B
)p)

= E

(
p∑
i=0

(
p

i

)
·Ap−i

(
1

2
·B
)i)

= E

(
p∑
i=0

(
p

i

)
· (p− i)! · 2−i · i!

)
= p! ·

p∑
i=0

2−i = 2− 2−p.

The second equality is the binomial theorem, the third equality holds since A and B are
independent and the k-th moment of an exponentially distributed random variable is k!.

Note that the ratio of the expected values approaches 2− 2−p for large n.
What remains to be proved is that the probability that the numerator or denominator deviate

significantly from the expected values is o(1). This yields then an expected approximation ratio
of at most 2− 2−p + o(1).

The denominator D consists of n − 1 independent terms of variance (2p)! − (p!)2 = Θ(1).
Thus, the variance of the denominator is Θ(n). By Chebychev’s inequality, we have

P
(∣∣D − E(D)

∣∣ ≥ t) ≤ Θ(n)

t2
.

Plugging in t = n3/4 yields that D is within a factor of 1 ± o(1) of its expected value is o(1).
The numerator can be analyzed similarly. To get rid of the dependencies, we split the sum as
follows. Let n be even. Then

N1 = yp2 +
∑

i=2,4,...,n−2

max{yi+1, yi}p + ypn and

N2 =
∑

i=3,5,...,n−1

max{yi+1, yi}p.

(For odd n, we add the term ypn to N2. We skip this case because it is almost identical to the
case of even n.) Both N1 and N2 consist of Θ(n) independent random variables of constant
variance and we have N = N1 +N2. Concentration for both and, thus, for N can be shown in
the same way as for D. Therefore, we obtain the following results.

Theorem 5.4. For all p ≥ 1, we have γ1,p
MST ≤ γ

1,p
PA ≤ (2− 2−p) · γ1,p

MST.

Proof. The first inequality is immediate. The second inequality follows from PA(X) ≤ PT(X)
for all X and the reasoning above.
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Corollary 5.5. The expected approximation ratio of the MST heuristic is at most 2−2−p+o(1).

Proof. The expected values of PT and MST differ by a factor of 2−2−p+o(1). The approxima-
tion ratio is given by (6). The probability that numerator or denominator differ by more than
a factor of 1± o(1) from their expected value is o(1). And if indeed numerator or denominator
differ significantly from their expected value, we apply the worst-case approximation ratio of
2, which adds only o(1) to the expected approximation ratio.

While this does not follow from our results, we conjecture that the MST heuristic does not
yield asymptotically optimal power assignments. In fact, we conjecture that PT(n)/PA(n)
converges to a constant strictly greater than 1.

6 Conclusions and Open Problems

We have proved complete convergence of Euclidean functionals that are typically smooth (Def-
inition 4.4) for the case that the distance-power gradient p is larger than the dimension d. The
case p > d appears naturally in the case of transmission questions for wireless networks.

As examples, we have obtained complete convergence for the MST (minimum-spanning tree)
and the PA (power assignment) functional. To prove this, we have used a recent concentration
of measure result by Warnke [26]. His concentration inequality might be of independent interest
to the algorithms community. As a technical challenge, we have had to deal with the fact that
the degree of an optimal power assignment graph can be unbounded.

To conclude this paper, let us mention some problems for further research:

1. Is it possible to prove complete convergence of other functionals for p ≥ d? The most
prominent one would be the traveling salesman problem (TSP). However, we are not
aware that the TSP is smooth in mean for p ≥ d, which would be a necessary property
to apply our method.

2. Concerning the average-case approximation ratio of the MST heuristic, we only proved
that the approximation ratio is smaller than 2. Only for the case d = 1, we provided an
explicit upper bound for the approximation ratio. Is it possible to provide an improved
approximation ratio as a function of d and p for general d?

3. Can Rhee’s isoperimetric inequality [22] be adapted to work for p ≥ d? Rhee’s inequal-
ity can be used to obtain convergence for the case that the points are not identically
distributed, and has for instance been used for a smoothed analysis of Euclidean func-
tionals [2]. (Smoothed analysis has been introduced by Spielman and Teng to explain the
performance of the simplex method [23]. We refer to two surveys for an overview [16,24].)

4. Can our findings about power assignments be generalized to other problems in wireless
communication, such as the k-station network coverage problem of Funke et al. [6], where
transmit powers are assigned to at most k stations such that X can be reached from at
least one sender, or power assignments in the SINR model [8, 10]? Interestingly, in the
SINR model the MST turns out to be a good solution to schedule all links within a short
time [9, 11].

More general, can this framework also be exploited to analyze other approximation algo-
rithms for geometric optimization problems? As far as we are aware, besides partitioning
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heuristics [2,27], the only other algorithm analyzed within this framework is Christofides’
algorithm for the TSP [3].
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