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Abstract

We present constant factor approximation algorithms for the following two prob-
lems: First, given a connected graph G = (V,E) with non-negative edge weights,
find a minimum weight spanning tree that respects prescribed upper bounds on
the vertex degrees. Second, given prescribed (exact) vertex degrees d = (di)i∈V ,
find a minimum weight connected d-factor. Constant factor approximation al-
gorithms for these problems were known only for the case that di ≥ 2 for all
i ∈ V .
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1. Introduction

Finding low-cost spanning subgraphs with prescribed degree and connectiv-
ity requirements is a fundamental problem in the area of network design. The
goal is to find a cheap, connected subgraph that meets the degree constraints.
Most variants of such problems are NP-hard. Because of this, finding good ap-
proximation algorithms for such network design problems has been the topic of
a significant amount of research [2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17].

In this paper, we study the problem of finding low-cost spanning connected
subgraphs with degree constraints, where violation of the degree constraint is
not allowed. The degree constraints are either upper bounds or have to be met
exactly.

Minimum weight subgraphs with prescribed vertex degrees can be found ef-
ficiently using Tutte’s reduction to the perfect matching problem [18, 20]. But
asking for connectedness in addition makes the problem NP-hard [3]. For in-
stance, asking for a 2-regular, connected spanning subgraph of minimum weight
is the NP-hard traveling salesman problem (TSP) [11, Problem ND22]. Also
finding spanning trees with given upper bounds for the degrees of the nodes is
NP-hard [10].

∗Corresponding author

Preprint submitted to Operations Research Letters January 12, 2017



Approximation algorithms address three variants of the problem: First, one
may relax the degree constraints and compare the weight of the solution com-
puted (subject to the relaxed requirements) with an optimal solution that has
to satisfy the requirements strictly [6, 19]. Second, one may view the problem
as a bicriteria optimization problem, where one objective is the weight and the
other objective is the violation of the degree constraints [8, 9, 15, 16, 17]. Third,
one may insist on meeting the degree constraints exactly [5, 7]. In this paper,
we consider the third variant.

A main obstacle seem to be vertices that are required to have degree 1. In
fact, existing approximation algorithms [5, 6, 7] only work when the minimum
degree requirement is at least 2, and it has been raised as an open problem [5, 7]
to approximate network design problems in the presence of vertices that must
have degree 1.

1.1. Problem Definition

In this paper, we consider three different optimization problems. In each
case, an instance consists of a simple undirected complete graph G = (V,E)
with edge weights w that satisfy the triangle inequality and given d = (di)i∈V
to be interpreted as either prescribed vertex degrees or upper bounds thereof.
For F ⊆ E, let degF (i) be the degree of node i ∈ V in the graph (V, F ).
Furthermore, w(F ) =

∑
e∈F w(e) is the total weight of the edge set F . In case

of multi-graphs, edges are counted with multiplicities (both for the degree and
the total weight).

In the bounded-degree minimum spanning tree problem (denoted by BMST),
we are to compute a tree T ⊆ E of minimum weight with the additional condi-
tion that degT (i) ≤ di for all i ∈ V . We call such a tree a d-bounded tree. We
denote a minimum weight d-bounded tree by Treed, breaking ties arbitrarily.

In the connected factor problem (denoted by ConnFact), our goal is to com-
pute a connected d-factor F of minimum weight. Multiple edges are not allowed.
This means that (V, F ) must be connected and degF (i) = di for all vertices
i ∈ V . We denote a minimum weight connected d-factor (without multiple
edges) by ConnFactd, again breaking ties arbitrarily.

The connected factor problem with multiple edges (denoted by ConnMFact) is
similar to ConnFact. The only difference is that multiple edges are allowed. So a
solution F is a multi-set of edges such that (V, F ) is connected and degF (i) = di.
We denote a minimum weight connected d-factor with possibly multiple edges
by ConnMFactd, again breaking ties arbitrarily.

Minimum weight d-factors (without connectivity requirement) can be com-
puted in polynomial time with and without multiple edges. We denote a min-
imum weight d-factor without multiple edges by Factd and one with multiple
edges allowed by MFactd.

1.2. Previous Results

Because connected factor problems generalize the TSP, no polynomial-time
constant factor approximation algorithms are possible in general graphs or with-
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out the triangle inequality [21, Theorem 2.9]. Therefore, we assume that input
graphs are complete and that the edge weights satisfy the triangle inequality.

We restrict ourselves in the discussion of previous results to the case of algo-
rithms that meet the degree requirements exactly. Fukunaga and Nagamochi [7]
considered the problem of finding a minimum weight k-edge-connected subgraph
that meets given degree requirements precisely. They allow multiple edges be-
tween vertices (which seems to simplify the problem considerably, because it is
possible to add connections between arbitrary vertices, independent of whether
the corresponding edge is already present). For this relaxed variant of the prob-
lem, they obtain approximation ratios of 2.5 for even k and 2.5 + 1.5

k for odd
k if the minimum degree requirement is at least 2. For the case of simple con-
nectivity, Cornelissen et al. [5] devised an approximation algorithm with ratio
3. Fekete et al. [6] devised an approximation algorithm for the bounded-degree
spanning tree problem that achieves an approximation ratio of roughly 2.

1.3. Our Contribution

All three algorithms mentioned in the previous section require that all pre-
scribed di are at least 2, and Fukunaga and Nagamochi [7] and Cornelissen et
al. [5] raised the question if constant factor approximation algorithms also exist
in case some of the di are equal to 1. We give an affirmative answer to this
question.

First, we present a factor 3-approximation algorithm for BMST (Section 2).
Then we use this algorithm to get factor 7 approximation algorithms for both
ConnFact and ConnMFact (Section 3).

The approximation ratios that we achieve are considerably worse than the
ratios of roughly 2 [6], 3 [5], 4 [7] for BMST, ConnFact, and ConnMFact, re-
spectively, that hold if we forbid degree 1 nodes. (The 4-approximation for
ConnMFact without degree-1-nodes can easily be improved to a factor 3-approx-
imation by adapting the algorithm by Cornelissen et al. [5].) The obvious open
question is whether this gap can be closed.

2. Bounded-Degree Spanning Trees

We start with a simple observation, based on the standard construction of
Hamilton paths by doubling a minimum spanning tree.

Lemma 1. Given an undirected, complete graph G with edge weights w that
satisfy the triangle inequality and an edge e0 = {i0, j0} ∈ E, we can compute
in polynomial time a Hamiltonian path P with endpoints i0 and j0 such that
w(P ) ≤ 2w(T ), where T ⊆ E is a spanning tree that contains e0 and has
minimum weight among all such trees.

Proof. After inserting the edge e0 first, we connect all nodes in a Kruskal-like
manner. This yields a spanning tree T containing e0 that has minimum weight
among all such trees. We duplicate all edges of T to obtain a Eulerian graph T ′.
Then we traverse T ′, starting with the edge e0 and taking shortcuts to obtain
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a Hamiltonian cycle H. By construction, w(H) ≤ 2w(T ). We obtain P by
removing e0 from H.

In what follows, we often distinguish between nodes with prescribed degree
di = 1 and other nodes. For this reason, we define V=1 = {i ∈ V | di = 1} and
V≥2 = {i ∈ V | di ≥ 2}. Any d-bounded tree T consists of an interior tree Tint

that connects only the V≥2 nodes and to which the V=1 nodes are attached. We
may assume that Tint connects at least two nodes. Otherwise, |V≥2| ≤ 1 and
the problem becomes trivial. The most challenging part is to determine how
the vertices in V=1 are attached to the interior tree.

To address this problem, we proceed in two steps. In the first step, we
compute a forest that spans all of V=1 and a subset of V≥2 without violating the
degree constraints. This forest is computed by solving an appropriate minimum-
cost flow problem. In the second step, we connect the components of this forest
along a Hamiltonian path through a subset of the V≥2 nodes. In this way, we
construct a tree whose leaves are a subset of V=1. Note that an optimal tree
can also have leaves from V≥2.

Let us describe the first step. In what follows, we assume that we know an
edge e0 = {i0, j0} ∈ Treed in the interior tree of the unknown optimum solution
Treed. (In our algorithm, we fix i0 ∈ V≥2 arbitrarily, try all possible choices of
j0 ∈ V≥2 \ {i0}, and take the best outcome.) Removing e0 splits the unknown
tree Treed into two subtrees. To outline the intuition behind our approach,
consider i0 and j0 as the roots of these subtrees, and direct all edges in these
two subtrees towards i0 and j0, respectively. We may interpret the subtrees
as “flows” from the V=1 nodes towards the roots i0 and j0, respectively. In
this sense, the two subtrees define a solution to the flow problem (with node
capacities) described below.

Consider the following flow problem MCFe0 : The underlying graph has ver-
tex set V ∪ {r}, where r /∈ V is a new node, and edge set (E \ {e0}) ∪ {{i, r} |
i ∈ V≥2}. All edges e ∈ E \ {e0} have a capacity of 1 in both directions and
costs of w(e) per unit of flow. Each node i ∈ V≥2 has a node capacity of di − 1
(this means that at most di − 1 units of flow may pass through i). The edges
{i, r} for i ∈ V≥2 are overflow edges. They have cost 0. For i ∈ V≥2 \ {i0, j0},
edge {i, r} has a capacity of di − 2. For i ∈ {i0, j0}, edge {i, r} has a capacity
of di − 1. The task is to find a minimum-cost flow from the V=1 nodes, each
having a supply of 1, to the new root node r, which has a demand of |V=1|.
Such a minimum-cost flow can be computed in polynomial time [1].

The set Treed \ {e0} defines a solution fTree of this flow problem as follows:
Recall that we direct all edges in the two subtrees of Treed \ {e0} towards
their roots i0 or j0, respectively. On every arc e = {i, j} in the directed tree
Treed \ {e0}, we have a flow of 1 (towards i0 or j0). Thus, in particular, each
i ∈ V=1 has an outflow of 1. If a node i ∈ V≥2 \{i0, j0} has degree ` (2 ≤ ` ≤ di)
in Treed, then in the directed tree, it has `− 1 incoming arcs and one outgoing
arc (in direction to the root i0 or j0). Thus its total inflow equals ` − 1 and
we send ` − 2 units of outflow directly to r on the overflow arc from i to r.
Note that the node capacity constraint (throughput at most di − 1) is met. If
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i ∈ {i0, j0} has degree ` (2 ≤ ` ≤ di− 1) in Treed, then its inflow equals ` units,
which we route to r on the overflow arc {i, r}. This, again, also respects the
node capacity constraints.

The cost of fTree is equal to w(Treed \ {e0}) = w(Treed)− w(e0).
Now let f? be any integral optimal solution of MCFe0 . We define the support

of f? as the set S? ⊆ E \ e0 of edges that carry positive flow in either direction.
An integral optimal solution of minimum support can be computed efficiently
by adding ε < wmin

|E| to the costs of all edges in E \ {e0} in the flow problem,

where wmin is the smallest positive edge weight. If S is the support of an integral
solution f , then the cost of f is equal to w(S).

Lemma 2. Let f? be an integral optimum solution of MCFe0 with minimum
support S?. Then we have the following properties:

1. w(S?) ≤ w(Treed).
2. S? is a forest.
3. degS?(i0) ≤ di0 − 1 and degS?(j0) ≤ dj0 − 1.
4. Each connected component of S? contains i0 or j0 or a node i ∈ V≥2 with

degS?(i) ≤ di − 2. (We call such a node i a root.)

Proof. (1): The set Treed \ {e0} of edges defines a solution of MCFe0 as
described above.

(2): If any i ∈ V≥2 has at least two outgoing arcs (corresponding to out-flow
in f?), say, {i, j} and {i, k} for j, k ∈ V≥2, then we could reroute one unit of
flow, say from i to r via k to the overflow edge {i, r}. This does not increase the
cost of the flow. (Note that as long as the out-flow of i to other nodes in V≥2
is at least 2, the overflow edge is not saturated because of the node capacity
of i.) This rerouting would decrease the support size, which contradicts the
assumption that f? has minimum support. We conclude that in f?, any V≥2
nodes (and also any V=1 node) has at most one outgoing arc towards V≥2 nodes
carrying flow. Hence, if S? contains cycles, then these correspond to directed
cycles of flow 1 arcs. Removing such a cycle would decrease the support size,
again yielding a contradiction.

(3): Node i0 has an in-flow of at most di0 − 1 and out-flow only towards r.
The same holds for j0.

(4): Any component that contains neither i0 nor j0 must contain a root
i ∈ V≥2 that has no out-flow towards another V≥2 node. Thus, i gets rid of all
its inflow via the corresponding overflow edge {i, r}. This has capacity di−2, so
the number of in-flow arcs, which is equal to degS?(i), can be at most di−2.

Now we are almost done. Given S?, the support of a flow as in Lemma 2, we
connect the connected components via a Hamilton path P with endpoints i0 and
j0 as in Lemma 1: In each component of S? that contains neither i0 nor j0, we
pick a root i of degree at most di−2 in S?. Such a root exists by Lemma 2. Then
we connect the components of S? by following P , starting in i0, ending in j0 and
skipping all other vertices except the root nodes chosen. This yields a d-bounded
tree T of weight w(T ) ≤ w(S?) + w(P ) ≤ w(Treed) + 2w(Treed) ≤ 3w(Treed).
Algorithm 1 summarizes this procedure, and we obtain the following theorem.
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Algorithm 1: A 3-approximation for BMST.

input : undirected, complete graph G = (V,E), edge weights w
satisfying the triangle inequality, degrees (di)i∈V

output: d-bounded tree T
1 select an arbitrary i0 ∈ V≥2
2 for j0 ∈ V≥2 \ {i0} do
3 let e0 = {i0, j0}
4 compute an optimal solution f? of minimum support of MCFe0

5 extract S? from f? as described
6 compute a Hamiltonian path P with endpoints i0 and j0
7 restrict P to the “roots” of the connected components of S? by taking

shortcuts
8 Te0 ← P ∪ S?

9 end
10 let T be the lightest tree among all Te0

Theorem 3. Algorithm 1 is a polynomial-time 3-approximation for BMST.

3. Connected Factors

The idea to approximate connected factors is as follows: we compute a
minimum-weight d-factor F , which is not necessarily connected, and a d-bound-
ed tree T . As long as the d-factor F is not connected, there exists an edge
e ∈ T \ F that we can add. In order to maintain the degrees, we remove one
edge of each endpoint of e and add another edge. The following lemma states
that this always works. In particular, it is crucial that we never remove edges
of the d-bounded tree.

Lemma 4. Let T be a d-bounded tree, and let F be a d-factor. If F is not
connected, then we can find an edge e = {i, j} ∈ T \ F and vertices i′ and j′

with the following properties:

1. e connects two components of F .

2. {i, i′}, {j, j′} ∈ F \ T .

3. {i′, j′} ∈ E \ F .

Proof. Since T is connected and F is not connected, there exist an edge e =
{i, j} ∈ T \ F . We have degT (i) ≤ di = degF (i) and degT (j) ≤ dj = degF (j).
Since e ∈ T \F , there must be edges {i, i′}, {j, j′} ∈ F \ T . Since i and j are in
different components, we have {i′, j′} /∈ F .

Theorem 5. Algorithm 2 is a polynomial-time 7-approximation for ConnFact.

Proof. Let i, j, i′, j′ be four nodes chosen by Algorithm 2 in some iteration.
By the triangle inequality, we have w(i′, j′) ≤ w(i′, i)+w(i, j)+w(j, j′). Hence,
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Algorithm 2: A 7-approximation for ConnFact.

input : undirected complete graph G = (V,E), edge weights w
satisfying the triangle inequality, degrees (dv)v∈V

output: connected d-factor F̃ (without multiple edges)
1 compute a 3-approximation T of a d-bounded spanning tree using

Algorithm 1
2 F ← Factd
3 while F is not connected do
4 choose an edge e = {i, j} ∈ T \ F that connects two different

components of F
5 choose i′, j′ as in Lemma 4

6 F ←
(
F ∪

{
{i, j}, {i′, j′}

})
\
{
{i, i′}, {j, j′}

}
7 end

8 F̃ ← F

the weight of F increases by at most 2w(i, j) in this iteration. Since no edge
{i, j} of T is considered more than once, we have w(F̃ ) ≤ w(Factd) + 2w(T ) ≤
w(Factd) + 6w(Treed) ≤ 7w(ConnFactd), where F̃ is the connected d-factor
output by the algorithm.

By construction, F is a d-factor initially, and it remains a d-factor throughout
the execution of the algorithm. Furthermore, F is connected since, by Lemma 4
and the construction of the algorithm, any edge of T that is added by the
algorithm is never removed later on. Therefore, after less than n iterations of
the while loop, F must be connected.

The algorithm above also works for the case of ConnMFact, where multiple
edges are allowed. We just have to replace the initialization of F by MFactd. The
analysis of the approximation ratio follows from w(MFactd) ≤ w(ConnMFactd)
and w(Treed) ≤ w(ConnMFactd). Hence, we get the following result.

Corollary 6. There exists a polynomial-time 7-approximation for ConnMFact.
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