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We show that the 2-opt heuristic for the traveling salesman problem achieves an
expected approximation ratio of roughly O(

√
n) for instances with n nodes, where

the edge weights are drawn uniformly and independently at random.
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1 Introduction

The traveling salesman problem (TSP) is one of the most important problems in combinatorial
optimization: Given a complete graph with edge weights, the goal is to find a Hamiltonian
cycle (also called a tour) of minimum weight. 2-opt is probably the most widely used local
search heuristic for the TSP. It incrementally improves an initial tour by exchanging two edges
of the tour with two other edges, until a local optimum is reached. More formally: Let w be the
edge weights. If {a, b} and {c, d} are two edges of the current cycle such that a, b, c, d appear
in that order in the cycle, then we can improve the tour by replacing {a, b} and {c, d} by {a, c}
and {b, d}, provided that w({a, c})+w({b, d}) < w({a, b})+w({c, d}). On randomly generated
instances, 2-opt comes within a small percentage of the global optimum [3]. Chandra et al. [1]
analyzed 2-opt’s worst-case approximation ratio: On instances that fulfil the triangle inequality
it is O(

√
n), where n is the number of nodes. This means that the worst local optimum is

within a factor of O(
√

n) of the global optimum. For Euclidean instances, 2-opt’s worst-case
approximation ratio is O(log n). Englert et al. [2] showed that the expected approximation
ratio of O( d

√
φ) for d-dimensional Euclidean instances that are drawn according to density

functions bounded by φ.
To explain the good performance of subtour patching for TSP, Karp [4] analyzed its approx-

imation performance in a simple probabilistic setting: all edge weights are drawn uniformly
and independently at random from the interval [0, 1]. In this setting, the triangle inequality
is usually not fulfilled. In the worst-case, TSP cannot be approximated at all without triangle
inequality, and also 2-opt cannot provide any approximation guarantee.

We use Karp’s probabilistic model [4] to analyze the approximation performance of 2-opt.
Let WLOn be the weight of the worst, i.e., heaviest, locally optimal tour of a graph of n
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nodes with random edge weights, and let OPTn be the weight of an optimum tour. We prove
an upper bound for WLOn that holds with high probability (Theorem 2), and we bound the
expected approximation ratio (Theorem 4).

2 Approximation Performance of 2-Opt

First, we bound the probability that a specific tour is locally optimal, provided that it contains
enough “heavy” edges. This lemma is the crucial ingredient for Theorem 2.

Lemma 1. Let H be any fixed Hamiltonian cycle, and let η ∈ (0, 1]. Assume that H contains
at least m ≥ 4 edges of weight at least η. Then

P
(
H is locally optimal

)
≤ exp(−η2m2/16).

Proof. The tour H contains m heavy edges. For simplicity, we assume that m is even. (Odd m
can be handled similarly.) Thus, we can find at least m/2 pairwise non-adjacent edges among
them. Consider any two edges e, e′ of them. Let f, f ′ be the two replacement edges for e and
e′. If both w(f) < η and w(f ′) < η, then surely replacing e, e′ by f, f ′ improves the tour, and
H would not be locally optimal. By independence, P

(
w(f), w(f ′) < η

)
= η2.

There are
(
m/2

2

)
= m2−2m

8 ≥ m2

16 possible choices for e and e′, and all of them result in
different replacement candidates f and f ′. (The inequality holds since m ≥ 4.) This yields

P
(
H is locally optimal

)
≤

(
1− η2

)m2/16 ≤ exp
(
−η2m2/16

)
.

Theorem 2. For any c > 0, we have

P
(
WLOn ≥ (17 + c) ·

√
n · (log n)3/2

)
≤ exp(−cn log n).

Proof. Let η = (17 + c) ·
√

log n/n. Let mi = 2−in, and let ηi = 2iη. If i ≥ log n, then mi < 4
and ηi > 1. Thus, it suffices to consider i ∈ {0, . . . , log n − 1} in the following. If for all i, a
tour H does not contain more than mi edges of weight at least ηi, then

w(H) ≤
log n−1∑

i=0

miηi+1 = (17 + c) · (log n)3/2 ·
√

n.

Fix any tour H. The probability that H is locally optimal, provided that H contains at
least mi edges of weight at least ηi for some fixed i is exp(−η2n2/16) by Lemma 1. By
Boole’s inequality, the probability that H is locally optimal, provided that there exists an
i ∈ {0, . . . , log n − 1} for which H contains at least mi edges of weight at least ηi, is at most
log n · exp(−η2n2/16). Again by Boole’s inequality, the probability that one of the n! possible
tours is locally optimal, provided that it contains at least mi edges of weight ηi for some i, is
at most

n! · log n · exp(−η2n2/16) ≤ exp (−cn log n) ,

which is the desired bound.
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Since OPTn and WLOn are not independent, we do not have E
(

WLOn
OPTn

)
= E(WLOn)

E(OPTn) . In
order to bound the expected approximation ratio, we need the following lower bound for
OPTn. Combining this lower bound with Theorem 2 yields our second result (Theorem 4).

Lemma 3. For any n ≥ 2 and c ∈ [0, 1], we have P
(
OPTn ≤ c

)
≤ cn.

Proof. Fix any tour H. By independence, P
(
w(H) ≤ c

)
= cn

n! . (This can be proved by
induction on n.) Using Boole’s inequality, the probability that there exists a tour H with
w(H) ≤ c is bounded as claimed.

Theorem 4. We have

E
(

WLOn

OPTn

)
∈ O

(√
n · (log n)3/2

)
.

Proof. Assume that WLOn / OPTn exceeds 2c2 ·
√

n · (log n)3/2 for c ≥ 17. Then WLOn ≥
(17 + c) ·

√
n · (log n)3/2 or OPTn ≤ 1

c . The probability that any of these events happens is at
most c−n + exp(−cn log n) = Pc. By substituting x = 2c2, we obtain

E
(

WLOn

OPTn

)
≤
√

n · (log n)3/2 ·
∫ ∞

578
P√

x/2
dx + O

(√
n · (log n)3/2

)
∈ O

(√
n · (log n)3/2

)
since the integral evaluates to O(1) for sufficiently large n.
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