
Smoothed Analysis of Belief Propagation for
Minimum-Cost Flow and Matching∗

Tobias Brunsch1, Kamiel Cornelissen2, Bodo Manthey2, Heiko Röglin1

1University of Bonn, Department of Computer Science
brunsch@cs.uni-bonn.de, heiko@roeglin.org

2University of Twente, Department of Applied Mathematics
b.manthey@utwente.nl, k.cornelissen@utwente.nl

Belief propagation (BP) is a message-passing heuristic for statistical inference
in graphical models such as Bayesian networks and Markov random fields. BP is
used to compute marginal distributions or maximum likelihood assignments and
has applications in many areas, including machine learning, image processing, and
computer vision. However, the theoretical understanding of the performance of BP
remains limited.

Recently, BP has been applied to combinatorial optimization problems. It has
been proved that BP can be used to compute maximum-weight matchings and
minimum-cost flows for instances with a unique optimum. The number of iterations
needed for this is pseudo-polynomial and hence BP is not efficient in general.

We study BP in the framework of smoothed analysis and prove that with high
probability the number of iterations needed to compute maximum-weight match-
ings and minimum-cost flows is bounded by a polynomial if the weights/costs of
the edges are randomly perturbed. To prove our upper bounds, we use an isolation
lemma by Beier and Vöcking (SIAM Journal on Computing, 2006) for the match-
ing problem and we generalize an isolation lemma by Gamarnik, Shah, and Wei
(Operations Research, 2012) for the min-cost flow problem. We also prove lower
tail bounds for the number of iterations that BP needs to converge that almost
match our upper bounds.

1 Belief Propagation

The belief propagation (BP) algorithm is a message-passing algorithm that is used for solving
probabilistic inference problems on graphical models. It was proposed by Pearl in 1988 [9].
Typical graphical models to which BP is applied are Bayesian networks and Markov random
fields. There are two variants of BP. The sum-product variant is used to compute marginal
probabilities. The max-product variant (or the functionally equivalent min-sum variant) is
used to compute maximum a posteriori (MAP) probability estimates.

∗This research was supported by ERC Starting Grant 306465 (BeyondWorstCase) and NWO grant 613.001.023
(Smoothed Analysis of Belief Propagation).

1

Recently, BP has experienced great popularity. It has been applied in many fields, such
as machine learning, image processing, computer vision, and statistics. For an introduction
to BP and several applications, we refer to Yedidia et al. [18]. There are two main reasons
for the popularity of BP. First, it is widely applicable and easy to implement because of its
simple and iterative message-passing nature. Second, it performs well in practice in numerous
applications [16,17].

If the graphical model is tree-structured, BP computes exact marginals or MAP estimates.
However, if the graphical model contains cycles, the convergence and correctness of BP have
been shown only for specific classes of graphical models. To improve the general understanding
of BP and to gain new insights about the algorithm, it has recently been tried to rigorously
analyze the performance of BP as either a heuristic or an exact algorithm for several combi-
natorial optimization problems. Amongst others, it has been applied to the maximum-weight
matching (MWM) problem [2, 4, 11, 12], the minimum spanning tree (MST) problem [3], the
minimum-cost flow (MCF) problem [7], the maximum-weight independent set problem [13],
and the 3-coloring problem [6]. The reason to consider BP applied to these combinatorial op-
timization problems is that these optimization problems are well understood. This facilitates
a rigorous analysis of BP, which is often difficult for other applications.

Bayati et al. [4] have shown that max-product BP correctly computes the MWM in bipartite
graphs in pseudo-polynomial time if the MWM is unique. For MST, it is known that BP
converges to the correct optimal solution, if it converges at all (which is not guaranteed) [3].
Gamarnik et al. [7] have shown that the max-product BP algorithm computes the MCF in
pseudo-polynomial time if the MCF is unique.

1.1 Belief Propagation for Matching and Flow Problems

In this section, we discuss the previous results about the BP algorithm for computing maxi-
mum-weight matchings and minimum-cost flows in more detail. Bayati et al. [4] have shown
that the max-product BP algorithm correctly computes the maximum-weight matching in
bipartite graphs if the MWM is unique. Convergence of BP takes pseudo-polynomial time and
depends linearly on both the weight of the heaviest edge and 1/δ, where δ is the difference
in weight between the best and second-best matching. In Section 2.3, we describe the BP
algorithm for MWM in detail.

Belief propagation has also been applied to finding maximum-weight perfect matchings in
arbitrary graphs and to finding maximum-weight perfect b-matchings [2, 12], where a perfect
b-matching is a set of edges such that every vertex i is incident to exactly bi edges in the set.
For arbitrary graphs, the BP algorithm for MWM does not necessarily converge [12]. However,
Bayati et al. [2] and Sanghavi et al. [12] have shown that the BP algorithm converges to the
optimal matching if the relaxation of the corresponding linear program has an optimal solution
that is unique and integral. The number of iterations needed until convergence depends again
linearly on the reciprocal of the parameter δ. Bayati et al. [2] have also shown that the same
result holds for the problem of finding maximum-weight b-matchings that do not need to be
perfect.

Gamarnik et al. [7] have shown that BP can be used to find a minimum-cost flow, provided
that the instance has a unique optimal solution. The number of iterations until convergence
is pseudo-polynomial and depends again linearly on the reciprocal of the difference in cost
between the best and second-best integer flow. In addition, they have proved a discrete isolation
lemma [7, Theorem 8.1] that shows that the edge costs can be slightly randomly perturbed

2

to ensure that, with a probability of at least 1/2, the perturbed MCF instance has a unique
optimal solution. Using this result, they constructed an FPRAS for MCF using BP.

1.2 Smoothed Analysis

Smoothed analysis was introduced by Spielman and Teng [14] in order to explain the per-
formance of the simplex method for linear programming. It is a hybrid of worst-case and
average-case analysis and an alternative to both. An adversary specifies an instance, and this
instance is then slightly randomly perturbed. The perturbation can, for instance, model noise
from measurement. For many algorithms worst-case instances are contrived and are unlikely
to occur in practice. Also, adding a little noise to a worst-case instance often dramatically im-
proves the performance of an algorithm on this instance. A problem with average-case analysis
is that it is sometimes not clear what probability distributions for the input instances should
be used in order to obtain typical instances. Good performance bounds of an algorithm in
the smoothed setting usually indicate good performance on instances encountered in practice
since instances from practice are usually subject to a certain amount of noise because of, for
example, measurement errors. For these reasons, smoothed analysis has been applied in a va-
riety of contexts since its invention in 2001. We refer to two recent surveys [8,15] for a broader
picture.

We apply smoothed analysis to belief propagation for min-cost flow and maximum-weight
matching. The graph and (for MCF) the capacities of the edges and the budgets of the nodes
are adversarial. The costs or weights of the edges are random according to the one-step model
introduced by Beier and Vöcking [5]. The one-step model generalizes the model for smoothed
analysis originally introduced by Spielman and Teng [14] by allowing the adversary to not just
choose the mean of each input parameter, but even its distribution. We consider the general
probabilistic model described below.

• The adversary specifies the graph G = (V,E) and, in the case of min-cost flow, the integer
capacities of the edges and the integer budgets (both are not required to be polynomially
bounded). Additionally the adversary specifies a probability density function fe : [0, 1]→
[0, φ] for every edge e.

• The costs (for min-cost flow) or weights (for matching) of the edges are then drawn
independently according to their respective density functions.

The parameter φ controls the adversary’s power: If φ = 1, then we have the average case. The
larger φ, the more powerful the adversary. Note that one option for the adversary is to specify
a density function fe such that it takes value φ on some interval [te, te + 1

φ] ⊆ [0, 1] and takes
value 0 outside this interval. This choice ensures that the weight of edge e takes its value in
an interval of width 1/φ and most resembles worst-case analysis. The role of φ is the same as
the role of 1/σ in the classical model of smoothed analysis, where instances are perturbed by
independent Gaussian noise with standard deviation σ. In that model the maximum density
φ is proportional to 1/σ.

1.3 Our Results

We prove upper and lower tail bounds for the number of iterations that BP needs to solve
maximum-weight matching problems and min-cost flow problems. Our upper bounds match

3

our lower bounds up to a small polynomial factor. While previous bounds on the worst-case
running time for BP for MWM and MCF are pseudopolynomial [2,4,7,12], we show that in the
framework of smoothed analysis with high probability BP only requires a polynomial number
of iterations to converge to the correct solution. This suggests that for instances encountered
in practice, BP is unlikely to require a superpolynomial number of iterations. In the following,
n and m are the number of nodes and edges of the input graph, respectively. In summary, we
prove the following results:

• For the min-cost flow problem, the probability that BP needs more than t iterations is
upper bounded by O(n2mφ/t) (Sections 3.2 and 4.2). There are smoothed instances for
which the probability that BP needs more than t iterations is lower bounded by Ω(nφ/t)
(Section 5.3).

• For the maximum-weight matching problem, the probability that BP needs more than
t iterations is upper bounded by O(nmφ/t) (Sections 3.1 and 4.1). There are smoothed
instances for which the probability that BP needs more than t iterations is lower bounded
by Ω(nφ/t) (Section 5.3).

The upper bound for matching problems holds for the variants of BP for the maximum-
weight matching problem in bipartite graphs [4] as well as for the maximum-weight (perfect)
b-matching problem in general graphs [2, 12]. For the latter it is required that the polytope
corresponding to the relaxation of the matching LP is integral.

To prove the upper tail bound for BP for MCF, we use a continuous isolation lemma that
is similar to the discrete isolation lemma by Gamarnik et al. [7, Theorem 8.1]. We need the
continuous version since we do not only want to have a unique optimal solution, but we also
need to quantify the gap between the best and the second-best solutions.

Though our upper tail bounds show that with high probability BP needs only a polynomial
number of iterations, our bounds are not strong enough to yield any bound on the expected
number of iterations. Indeed, using the lower bound of Ω(nφ/t) for the probability that t
iterations are insufficient to find a maximum-weight matching in bipartite graphs, we show
that this expectation is not finite. The lower bound even holds in the average case, i.e., if
φ = 1 (Section 5.2), and it carries over to the variants of BP for the min-cost flow problem and
the minimum/maximum-weight (perfect) b-matching problem in general graphs mentioned
above [2, 4, 7, 12]. The lower bound matches the upper bound up to a factor of O(m) for
matching and up to a factor of O(nm) for min-cost flow (Section 5.3). The smoothed lower
bound even holds for complete (i.e., non-adversarial) bipartite graphs.

Finally, let us remark that, for the min-cost flow problem, we bound only the number of
iterations that BP needs until convergence. The messages might be super-polynomially long.
However, for all matching problems, the length of the messages is always bounded by a small
polynomial.

2 Definitions and Problem Statement

In this section, we define the maximum-weight matching problems that we consider and the
min-cost flow problem. We also describe the BP algorithms that we apply.

4

2.1 Maximum-Weight Matching and Minimum-Cost Flow

First, we define the maximum-weight matching problem. For this, consider an undirected
weighted graph G = (V,E) with V = {v1, . . . , vn}, and E ⊆

{
{vi, vj} = e{i,j}, 1 ≤ i < j ≤ n

}
.

Each edge e{i,j} has weight w{i,j} ∈ R+. A collection of edges M ⊆ E is called a matching if
each node of G is incident to at most one edge in M . We define the weight of a matching M
by

w(M) =
∑

e{i,j}∈M
w{i,j}.

The maximum-weight matching M? of G is defined as

M? = argmax{w(M) |M is a matching of G}.

The bipartite maximum-weight matching problem is defined analogously. The only difference
is that for this problem it is required that the graph G is bipartite, i.e., its vertex set V can
be partitioned in two sets V1 and V2 such that all edges in its edge set E have exactly one
endpoint in V1 and exactly one endpoint in V2.

A b-matching M ⊆ E in an arbitrary graph G = (V,E) is a set of edges such that every node
i ∈ V is incident to at most bi edges from M , where bi ≥ 0. A b-matching is called perfect if
every node i ∈ V is incident to exactly bi edges from M . Also for these problems we assume
that each edge e ∈ E has a certain weight we and we define the weight of a b-matching M
accordingly.

2.2 Min-Cost Flow Problem

In the min-cost flow problem (MCF), the goal is to find a cheapest flow that satisfies all
capacity and budget constraints. We are given a graph G = (V,E) with V = {v1, . . . , vn}. In
principle we allow multiple edges between a pair of nodes, but for ease of notation we consider
simple directed graphs. Each node v has a budget bv ∈ Z. Each directed edge e = eij from vi
to vj has capacity ue ∈ N0 and cost ce ∈ R+. For each node v ∈ V , we define Ev as the set of
edges incident to v. For each edge e ∈ Ev we define ∆(v, e) = 1 if e is an out-going edge of v
and ∆(v, e) = −1 if e is an in-going edge of v. In the MCF, one needs to assign a flow fe to
each edge e such that the total cost

∑
e∈E cefe is minimized and the flow constraints

0 ≤ fe ≤ ue for all e ∈ E,

and budget constraints ∑
e∈Ev

∆(v, e)fe = bv for all v ∈ V

are satisfied. We refer to Ahuja et al. [1] for more details about MCF.
Note that we could also have allowed rational values for the budgets and capacities. Since

our results do not depend on the values of the budgets and capacities, our results are not
affected by scaling all capacities and budgets by the smallest common denominator.

Also note that finding a perfect minimum-weight matching in a bipartite graph G = (U ∪
V,E) is a special case of the min-cost flow problem; see Ahuja et al. [1] for details.

5

2.3 Belief Propagation

For the sake of completeness, we describe the BP algorithm for bipartite maximum-weight
matching used by Bayati et al. [4]. We also provide a short description of the BP algorithm
for min-cost flow by Gamarnik et al. [7]. For the details of this version of BP and for the
versions of BP for the (perfect) maximum-weight b-matching problem, we refer to the original
papers [2,7,12]. Note that in order to understand the results and proofs that follow in the rest
of the paper, it is not necessary to know the details of the BP algorithm. When necessary, we
discuss the differences between the various versions of BP in Sections 4 and 5.

The BP algorithm used by Bayati et al. [4] is an iterative message-passing algorithm for
computing maximum-weight matchings (MWM). Bayati et al. define their algorithm for com-
plete bipartite graphs G = (U ∪ V,E) with |U | = |V | = n. In each iteration t, each node ui
sends a message vector

~M t
ij = [~mt

ij(1), ~mt
ij(2), . . . , ~mt

ij(n)]

to each of its neighbors vj . The messages can be interpreted as how “likely” the sending node
thinks it is that the receiving node should be matched to a particular node in the MWM. The
greater the value of the message ~mt

ij(r), the more likely it is according to node ui in iteration
t that node vj should be matched to node ur. Similarly, each node vj sends a message vector

~M
t

ji to each of its neighbors ui. The messages are initialized as

~m0
ij(r) =

{
wij if r = i,

0 otherwise and

~m0
ji(r) =

{
wij if r = j,

0 otherwise.

The messages in iterations t ≥ 1 are computed from the messages in the previous iteration
as follows:

~mt
ij(r) =


wij +

∑
k 6=j

~mt−1
ki (j) if r = i,

max
q 6=j

wiq +
∑
k 6=j

~mt−1
ki (q)

 otherwise and

~mt
ji(r) =


wij +

∑
k 6=i

~mt−1
kj (i) if r = j,

max
q 6=i

wqj +
∑
k 6=i

~mt−1
kj (q)

 otherwise.

The beliefs of nodes ui and vj in iteration t are defined as

btui(r) = wir +
∑
k

~mt
ki(r),

btvj (r) = wrj +
∑
k

~mt
kj(r).

These beliefs can be interpreted as the “likelihood” that a node should be matched to a
particular neighbor. The greater the value of btui(j), the more likely it is that node ui should

6

be matched to node vj . We denote the estimated MWM in iteration t by M̃ t. The estimated
matching M̃ t matches each node ui to node vj , where j = argmax1≤r≤n{btui(r)}. Note that M̃ t

does not always define a matching, since multiple nodes may be matched to the same node.
However, Bayati et al. [4] have shown that if the MWM is unique, then if t is sufficiently large,
M̃ t is a matching and equal to the MWM.

The BP algorithm for min-cost flow uses the same idea of iterative message-passing as
the BP algorithm for bipartite matching. However, the messages sent between edges and
their endpoints in the min-cost flow version are functions instead of vectors. These functions
represent estimates of the cost of sending a certain amount of flow along the edge, taking into
account the cost of the edge, the capacity of the edge, the fact that flow has to be conserved at
the endpoints of the edge, and the messages received from neighboring edges in the previous
iteration. For a detailed description of the BP algorithm for MCF we refer to the original
work [7].

3 Isolation Lemma for Maximum-Weight Matchings and
Min-Cost Flows

Before we turn to proving the upper tail bounds for the number of iterations of the BP algorithm
in Section 4, we take a closer look at the quantity δ, which we defined above as the difference
in weight or cost between the best and second-best matching or integer flow, respectively. The
previous results discussed in Section 1.1 indicate that in order for the BP algorithm to be
efficient δ must not be too small. While δ can be arbitrarily small for weights or costs that are
chosen by an adversary, it is a well-known phenomenon that δ is with high probability not too
small when the weights or costs are drawn randomly.

3.1 Maximum-Weight Matchings

Beier and Vöcking [5, Section 2.1] have considered a general scenario in which an arbitrary
set S ⊆ {0, 1}m of feasible solutions is given and to every x = (x1, . . . , xm) ∈ S a weight w ·
x = w1x1 + . . . + wmxm is assigned by a linear objective function. As in our model they
assume that every coefficient wi is drawn independently according to an adversarial density
function fi : [0, 1] → [0, φ] and they define δ as the difference in weight between the best and
the second-best feasible solution from S, i.e., δ = w · x? − w · x̂ where x? = argmaxx∈S w · x
and x̂ = argmaxx∈S\{x?}w · x. They prove a strong isolation lemma that, regardless of the
adversarial choices of S and the density functions fi, the probability of the event δ ≤ ε is
bounded from above by 2εφm for any ε ≥ 0.

If we choose S as the set of incidence vectors of all matchings or (perfect) b-matchings in a
given graph, Beier and Vöcking’s results yield for every ε ≥ 0 an upper bound on the probability
that the difference in weight δ between the best and second-best matching or the best and
second-best (perfect) b-matching is at most ε. Combined with the results in Section 1.1, this
can immediately be used to obtain an upper tail bound on the number of iterations of the BP
algorithm for these problems. We prove this upper tail bound in Section 4.1.

3.2 Min-Cost Flows

The situation for the min-cost flow problem is significantly more difficult because the set S of
feasible integer flows cannot naturally be expressed with binary variables. If one introduce a

7

variable for each edge corresponding to the flow on that edge, then S ⊆ {0, 1, 2, . . . , umax}m
where umax = maxe∈E ue. Röglin and Vöcking [10] have extended the isolation lemma to the
setting of integer, instead of binary, vectors. However, their result is not strong enough for
our purposes as it bounds the probability of the event δ ≤ ε by εφm(umax + 1)2 from above
for any ε ≥ 0. As this bound depends on umax it would only lead to a pseudo-polynomial
upper tail bound on the number of iterations of the BP algorithm when combined with the
results of [7]. Our goal is, however, to obtain a polynomial tail bound that does not depend on
the capacities. In the remainder of this section, we prove that the isolation lemma from [10]
can be significantly strengthened when structural properties of the min-cost flow problem are
exploited.

In the following we consider the residual network for a flow f . For each edge eij in the
original network that has less flow than its capacity uij , we include an edge eij with capacity
uij − fij in the residual network. Similarly, for each edge eij that has flow greater than zero,
we include the backwards edge eji with capacity fij in the residual network. We refer to Ahuja
et al. [1] for more details about residual networks.

As all capacities and budgets are integers, there is always a min-cost flow that is integral.
An additional property of our probabilistic model is that with probability one there do not
exist two different integer flows with exactly the same cost. This follows directly from the fact
that all costs are continuous random variables. Hence, without loss of generality we restrict
our presentation in the following to the situation that the min-cost flow is unique.

In fact, Gamarnik et al. [7] have not used δ, the difference in cost between the best and
second-best integer flow, to bound the number of iterations needed for BP to find the unique
optimal solution of MCF, but they have used another quantity ∆. They have defined ∆ as
the length of the cheapest cycle in the residual network of the min-cost flow f?. Note that ∆
is always non-negative. Otherwise, we could send one unit of flow along a cheapest cycle.
This would result in a feasible integral flow with lower cost. With the same argument we can
argue that ∆ must be at least as large as δ because sending one unit of flow along a cheapest
cycle results in a feasible integral flow different from f? whose cost exceeds the cost of f? by
exactly ∆. Hence any lower bound for δ is also a lower bound for ∆ and so it suffices for our
purposes to bound the probability of the event δ ≤ ε from above.

The isolation lemma we prove is based on ideas that Gamarnik et al. [7, Theorem 8.1] have
developed to prove that the optimal solution of a min-cost flow problem is unique with high
probability if the costs are randomly drawn integers from a sufficiently large set. We provide
a continuous counterpart of this lemma, where we bound the probability that the second-best
integer flow is close in cost to the optimal integer flow.

Lemma 3.1. The probability that the cost of the optimal and the second-best integer flow
differs by at most ε ≥ 0 is bounded from above by 2εφm.

Proof. Consider any fixed edge ẽ, and let the costs of all other edges be fixed by an adversary.
The cost cẽ of ẽ is drawn according to its probability distribution, whose density is bounded
by φ.

For e ∈ E, let Eeε be the event that there exist two different integer flows f? and f̂ with the
following properties:

(i) f? is optimal.

(ii) c · f? and c · f̂ differ by at most ε, i.e., c · f̂ ≤ c · f? + ε.

8

(iii) f?e = 0 and f̂e > 0.

Let E
e
ε be analogously defined, except for Condition (iii) being replaced by f?e = ue and f̂e < ue.

Claim 3.2. Let e ∈ E be arbitrary. Assume that all costs except for ce are fixed. Let I ⊆ [0, 1]
be the set of real numbers such that I = {ce | Eeε}. Then I is a subset of an interval of length
at most ε.

Proof. If I 6= ∅, let α = min(I) and let f? be an optimal integer flow for ce = α with f?e = 0.
Due to the choice of α it is clear that I ⊆ [α,∞) We claim that I ⊆ [α, α + ε]. If ce = α + η
for some η > 0, then f? stays optimal, and, for any feasible integer solution f with fe > 0, we
have

c · f =
∑
ẽ6=e

cẽfẽ + (α+ η)fe ≥
∑
ẽ6=e

cẽfẽ + αfe + η as fe ≥ 1

≥ c · f? + η as f?e = 0 and f? is optimal.

Thus, for η > ε, the event Eeε does not occur.

The proof of the following claim is omitted as it is completely analogous to the proof of the
previous claim.

Claim 3.3. Let e ∈ E be arbitrary. Assume that all costs except for ce are fixed. Let I ⊆ [0, 1]
be the set of real numbers such that I = {ce | E

e
ε}. Then I is a subset of an interval of length

at most ε.

The following claim shows that, provided no event Eeε or E
e
ε occurs, the second-best integer

flow is more expensive than the best integer flow by at least an amount of ε.

Claim 3.4. Assume that for every edge e ∈ E neither Eeε nor E
e
ε occurs. Let f? be a min-cost

flow and let f̂ 6= f? be a min-cost integer flow that differs from f?, i.e., a second-best integer
flow. Then c · f̂ ≥ c · f? + ε.

Proof. We prove the claim by contradiction. Assume to the contrary that for every edge e ∈ E
neither Eeε nor E

e
ε occurs, but that f? and f̂ differ less than ε in cost. First, we prove that

under our assumption that the min-cost flow is unique some edge e exists such that f?e ∈ {0, ue}
and f̂e 6= f?e . Suppose that no such edge e exists and let d = f? − f̂ . Then de > 0 only if
f?e < ue (otherwise event E

e
ε occurs) and de < 0 only if f?e > 0 (otherwise event Eeε occurs).

From this, we can conclude that there exists a λ > 0 such that f? + λd is a feasible flow. Let
λ0 = max{λ | f? + λd is feasible} and f̌ = f? + λ0d. From the assumption that the min-cost
flow is unique it follows that c · d = c · f? − c · f̂ < 0. Hence, c · f̌ < c · f?, contradicting the
choice of f? as min-cost flow.

This argument shows that there always exists an edge e such that f?e ∈ {0, ue} and f̂e 6= f?e .
As none of the events Eeε and E

e
ε occurs for this edge e, it follows that c · f̂ ≥ c · f? + ε,

contradicting our assumption at the start of the proof that f? and f̂ differ less than ε in
cost.

From Claims 3.2 and 3.3, we obtain P(Eeε) ≤ εφ and P(E
e
ε) ≤ εφ: We fix all edge costs

except for ce and then Eeε can only occur if ce falls into an interval of length at most ε. Since
the density function of ce is bounded from above by φ, this happens with a probability of at
most εφ. The same holds for any E

e
ε. Since for Claim 3.4 we need that none of the events Eeε

and E
e
ε occur, the lemma follows by a union bound over all 2m events Eeε and E

e
ε.

9

The isolation lemma (Lemma 3.1) together with the discussion about the relation between δ,
the difference in cost between the best and second-best integer flow, and ∆, the length of the
cheapest cycle in the residual network of the min-cost flow f?, immediately imply the following
upper bound for the probability that ∆ is small.

Corollary 3.5. For any ε > 0, we have P(∆ ≤ ε) ≤ 2εφm.

4 Upper Tail Bounds

In this section we prove upper tail bounds for the number of iterations that BP needs to
compute maximum-weight matchings and min-cost flows. We show that in the smoothed
analysis framework, with high probability a polynomial number of iterations is sufficient, both
for MWM and MCF. This result can be interpreted as an indication that instances encountered
in practice are unlikely to require a superpolynomial number of iterations.

4.1 Maximum-Weight Matching

We first consider the BP algorithm of Bayati et al. [4], which computes maximum-weight
matchings in complete bipartite graphs G in O(nw?/δ) iterations on all instances with a unique
optimum. Here w? denotes the weight of the heaviest edge and δ denotes the difference in
weight between the best and the second-best matching. Even though it is assumed that G is
a complete bipartite graph, this is not strictly necessary. If a non-complete graph is given,
missing edges can just be interpreted as edges of weight 0.

With Beier and Vöcking’s isolation lemma (see Section 3.1), we obtain the following tail
bound for the number of iterations needed until convergence when computing maximum-weight
perfect matchings in bipartite graphs using BP.

Theorem 4.1. Let τ be the number of iterations until Bayati et al.’s BP [4] for maximum-
weight perfect bipartite matching converges. Then P(τ ≥ t) = O(nmφ/t).

Proof. The number of iterations until BP converges is bounded from above by O(nw?/δ) [4].
The weight of each edge is at most 1, so w? ≤ 1. The upper bound exceeds t only if δ ≤ O(n/t).
By Beier and Vöcking’s isolation lemma, we have P(δ ≤ O(n/t)) ≤ O(nmφ/t), which yields
the bound claimed.

This tail bound is not strong enough to yield any bound on the expected running-time of
BP for bipartite matching. But it is strong enough to show that BP has smoothed polynomial
running-time with respect to the relaxed definition adapted from average-case complexity [5],
where it is required that the expectation of the running-time to some power α > 0 is at most
linear. However, a bound on the expected number of iterations is impossible, and the tail
bound proved above is tight up to a factor of O(m) (Section 5).

As discussed in Section 1.1, BP has also been applied to finding maximum-weight (perfect)
b-matchings in arbitrary graphs [2,12]. The result is basically that BP converges to the optimal
matching if the optimal solution of the relaxation of the corresponding linear program is unique
and integral. The number of iterations needed until convergence depends again on “how
unique” the optimal solution is. For Bayati et al.’s variant [2], the number of iterations until
convergence depends on 1/δ, where δ is again the difference in weight between the best and
the second-best matching. For Sanghavi et al.’s variant [12], the number of iterations until

10

convergence depends on 1/c, where c is the smallest rate by which the objective value will
decrease if we move away from the optimal solution.

However, the technical problem in transferring the upper bound for bipartite graphs to
arbitrary graphs is that the adversary can achieve that, with high probability or even with a
probability of 1 (for larger φ), the optimal solution of the LP relaxation is not integral. In this
case, BP does not converge. Already in the average-case, i.e., for φ = 1, where the adversary
has no power at all, the optimal solution of the LP relaxation has some fractional variables
with high probability.

Still, we can transfer the results for bipartite matching to both algorithms for arbitrary
matching if we restrict the input graphs to be bipartite, since in this case the constraint
matrix of the associated LP is totally unimodular.

Theorem 4.2. Let τ be the number of iterations until Bayati et al.’s [2] or Sanghavi et
al.’s [12] BP for general matching, restricted to bipartite graphs as input, converges. Then
P(τ ≥ t) = O(nmφ/t).

Proof. For Bayati et al.’s BP algorithm, this follows in the same way as Theorem 4.1 from
their bound on the number of iterations until convergence, which is O(n/δ) [2, Theorem 1].

Sanghavi et al. prove that their variant of BP for general graphs converges after O(1/c)
iterations, provided that the LP relaxation has no fractional optimal solutions. Here, c is
defined as

c = min
x̂ 6= x? is a vertex of P

w · (x? − x̂)

‖x? − x̂‖1
,

where x? is the (unique) optimal solution to the relaxation and P is the matching polytope [12,
Remark 2].

For any x̂ 6= x?, we have ‖x? − x̂‖1 ≤ n. Furthermore, w · (x? − x̂) is just the difference in
weights between x? and x̂. Since the input graph is bipartite, all vertices of P are integral.
Thus, w · (x? − x̂) ≥ δ, where (again) δ is the difference in weight between the best and the
second-best matching. Thus, c ≥ δ/n, which proves the theorem.

Bayati et al. [2] and Sanghavi et al. [12] have also shown how to compute b-matchings with
BP. If all bi are even, then the unique optimum to the LP relaxation is integral. Thus, we
circumvent the problem that the optimal solution might be fractional. Hence, following the
same reasoning as above, the probability that BP for b-matching, where all bi are even, runs
for more than t iterations until convergence is also bounded by O(mnφ/t).

Theorem 4.3. Let τ be the number of iterations until Bayati et al.’s [2] or Sanghavi et al.’s [12]
BP for (perfect) b-matching, where all bi are even, converges. Then P(τ ≥ t) = O(nmφ/t).

Proof. The theorem follows directly from Beier and Vöcking’s isolation lemma and the bounds
on the number of iterations of BP by Bayati et al. [2, Theorems 2 and 3] and Sanghavi et
al. [12, Theorem 3], as in the proof of Theorem 4.2.

4.2 Min-Cost Flow

The bound for the probability that ∆ is small (Corollary 3.5) and the pseudo-polynomial bound
by Gamarnik et al. [7] directly yield a tail bound for the number of iterations that BP for MCF
needs until convergence.

11

Theorem 4.4. Let τ be the number of iterations until BP for min-cost flow [7] converges.
Then P(τ ≥ t) = O(n2mφ/t).

Proof. The number of iterations until BP for min-cost flow converges is bounded from above
by cLn/∆ for some constant c, where L is the maximum cost of a simple directed path in
the residual network for the optimal flow [7, Theorem 4.1]. The cost of each edge is at most
1, so L ≤ n. The upper bound exceeds t only if ∆ ≤ cn2/t. By Corollary 3.5, we have
P(∆ ≤ cn2/t) ≤ 2cn2mφ/t, which yields the bound claimed.

5 Lower Tail Bounds

We show that the expected number of iterations necessary for the convergence of BP for
maximum-weight matching (MWM) is unbounded. To do this, we prove a lower tail bound
on the number of iterations that matches the upper tail bound as described in Section 4. For
our lower bounds we use bipartite graphs since for non-bipartite graphs the convergence of
BP is not guaranteed. Our lower bound holds even for a two-by-two complete bipartite graph
with edge weights drawn independently and uniformly from the interval [0, 1]. In the following
analysis, we consider the BP variant introduced by Bayati et al [4]. However, our results can be
extended to other versions of BP for matching and min-cost flow [2,7,12] in a straightforward
way. We discuss such extensions in Section 5.4.

We first discuss the average case, i.e., φ = 1. We consider the average case separately since
for our lower bounds in the smoothed setting we need that φ is sufficiently large (φ ≥ 26).
For the average case we obtain a lower tail bound of Ω(n/t) for the probability that more
than t iterations are needed for convergence (Section 5.2). For this lower bound, we use a
simple adversarial graph. We leave it as an open problem whether or not the lower bound
also holds for the (non-adversarial) complete bipartite graph on n vertices. After that, we
consider (non-adversarial) complete bipartite graphs with smoothed weights and prove a lower
bound of Ω(nφ/t) for the probability that more than t iterations are needed for convergence
(Section 5.3). We conclude this section with a discussion of how to extend our results to the
other variants of BP for matching and min-cost flow (Section 5.4).

5.1 Computation Tree

For proving the lower bounds, we need the notion of a computation tree, which we define
analogously to Bayati et al. [2].

Let G = (V,E) be an arbitrary graph with V = {v1, . . . , vn}. We denote the level-k com-
putation tree with the root labeled x ∈ V by T k(x). The tree T k(x) is a weighted rooted tree
of height k + 1. The root node in T 0(x) has label x, its degree is the degree of x in G, and
its children are labeled with the adjacent nodes of x in G. T k+1(x) is obtained recursively
from T k(x) by attaching children to every leaf node in T k(x). Each child of a former leaf node
labeled y is assigned one vertex adjacent to y in G as a label, but the label of the former leaf
node’s parent is not used. (Thus, the number of children is the degree of y minus 1.) Edges
between nodes with label vi and label vj in the computation tree have a weight of wij .

We call a collection Λ of edges in the computation tree T k(x) a T -matching if no two edges
of Λ are adjacent in T k(x) and each non-leaf node of T k(x) is the endpoint of exactly one edge
from Λ. Leaves can be the endpoint of either one or zero edges from Λ. We define tk(vi; r) as
the weight of a maximum weight T -matching in T k(vi) that uses the edge {vi, vr} at the root.

12

5.2 Average-Case Analysis

Consider the undirected weighted complete bipartite graph K2,2 = (U ∪ V,E), where U =
{u1, u2}, V = {v1, v2}, and {ui, vj} ∈ E for 1 ≤ i, j ≤ 2. Each edge {ui, vj} = eij has weight wij
drawn independently and uniformly from [0, 1]. We define the event Eε for 0 < ε ≤ 1

8 as the
event that w11 ∈

[
7
8 , 1
]
, w12 ∈

(
1
2 ,

5
8

]
, w21 ∈

(
5
8 ,

3
4

]
, and w22 ∈ [w12 +w21−w11− ε, w12 +w21−

w11). Consider the two possible matchings M1 = {e11, e22} and M2 = {e12, e21}. If event Eε
occurs, then the weight of M2 is greater than the weight of M1 and the weight difference is
at most ε. In addition, w11 is greater than w12 and the weight difference is at least 1/4. See
Figure 1 for a graphical illustration of the graph K2,2 and the event Eε.

u1

u2

v1

v2

w11 ∈
[
7
8 , 1
]

w12 ∈
(
1
2 ,

5
8

]
w21 ∈

(
5
8 ,

3
4

]

w22 ∈ [w12 + w21 − w11 − ε, w12 + w21 − w11)

Figure 1: If event Eε occurs, then the weight of the dashed matching M2 = {e12, e21} is greater
than the weight of the solid matching M1 = {e11, e22} and the weight difference is at
most ε. In addition w11 is greater than w12 and the weight difference is at least 1

4 .

Lemma 5.1. The probability of event Eε is ε/83.

Proof. The intervals in which w11, w12, and w21 have to assume values in order for event Eε
to occur all have a length of 1/8. The interval in which w22 has to take a value in order for
event Eε to occur, has a length of ε and it is contained completely in the interval

(
0, 12
]
, since

w12 + w21 − w11 − ε >
1

2
+

5

8
− 1− 1

8
= 0

and

w12 + w21 − w11 ≤
5

8
+

3

4
− 7

8
=

1

2
.

Now the probability that w11, w12, w21, and w22 all take values in the interval necessary for
event Eε to occur is ε/83.

Lemma 5.2. If event Eε occurs, then the belief of node u1 of K2,2 at the end of the 4k-th
iteration is incorrect for all integers k ≤ 1

8ε − 1.

Proof. Consider the computation tree T 4k(u1) (see Figure 2). According to Bayati et al. [4,
Lemma 1], the belief of node u1 of K2,2 after 4k iterations is given by the two-dimensional

vector b4ku1 =
[
2t4k(u1; 1) 2t4k(u1; 2)

]t
. This means that, after 4k iterations, the belief of

node u1 that it should be matched to v1 is equal to twice the weight of the maximum-weight
T -matching of T 4k(u1) that selects edge {u1, v1} at the root. Analogously, after 4k iterations,
the belief of node u1 that it should be matched to v2 is equal to twice the weight of the

13

u1

v1

u2

v2

u1

v1

v2

u2

v1

u1

v2

w11

w21

w22

w11

w12

w22

w21

w12

Figure 2: The computation tree T 4k(u1).

maximum-weight T -matching of T 4k(u1) that selects edge (u1, v2) at the root. The maximum-
weight T -matching Λ̂ that matches the root node to its child labeled v2 matches each node
labeled u1 to a node labeled v2 and each node labeled u2 to a node labeled v1, since this is the
only possible T -matching that matches the root node to its child labeled v2. Define Λ? as the
T -matching that matches each node labeled u1 to a node labeled v1 and each node labeled u2
to a node labeled v2. We show that Λ? has larger weight than Λ̂, which implies that the belief
at node u1 after 4k iterations is incorrect. We have

w(Λ?)− w(Λ̂) = (2k + 1)w11 + 2kw22 − (2k + 1)w12 − 2kw21

= 2k(w11 + w22 − w12 − w21) + w11 − w12

≥ −2kε+ 1/4.

Now −2kε+ 1/4 is greater than zero if k ≤ 1
8ε − 1.

Theorem 5.3. The probability that BP for MWM needs at least t iterations to converge for
K2,2 with edge weights drawn independently and uniformly from [0, 1] is at least 1

ct for some
constant c > 0.

Proof. We denote the number of iterations necessary for convergence of BP for MWM by τ .
Using Lemma 5.1 and Lemma 5.2, we have

P(τ ≥ t) ≥ P(τ ≥ 4dt/4e) ≥ P
(
E 1

8(dt/4e+1)

)
=

1

84(dt/4e+ 1)
≥ 1

ct

for some constant c > 0.

Corollary 5.4. There exist bipartite graphs on n ≥ 4 nodes, where n is a multiple of 4, with
edge weights drawn independently and uniformly from [0, 1], for which the probability that BP
for MWM needs at least t iterations to converge is Ω

(
n
t

)
for t ≥ n/c′ for some constant c′ > 0.

14

Proof. The bipartite graph consists of n/4 copies of K2,2 and there are no edges between nodes
in different copies of K2,2. If BP does not converge in fewer than t iterations for at least one of
the n/4 copies of K2,2, then BP does not converge in fewer than t iterations. This holds since
a run of BP on this bipartite graph corresponds to n/4 parallel runs of BP on the n/4 copies
of K2,2. Using Theorem 5.3, we have that a constant c > 0 exists such that

P(τ < t) =
(
1− P

(
BP needs at least t iterations for a particular copy of K2,2

))n/4
≤
(

1− 1

ct

)n/4
≤ exp

(
− n

4ct

)
≤ 1− n

8ct
,

where the second inequality follows from 1−x ≤ exp(−x) and the final inequality follows from
exp(−x) ≤ 1− x

2 for x ∈ [0, 1] and from n
4ct ≤ 1 which holds if t ≥ n

4c .

5.3 Smoothed Analysis

In this section we consider (non-adversarial) complete bipartite graphs Kn,n in the smoothed
setting. We denote by X ∼ U [a, b] that random variable X is uniformly distributed on interval
[a, b]. In the following, we assume both that φ ≥ 26 and n ≥ 2 and even. Similarly to the

average case (Section 5.2), we define the event Eφε for K2,2 and for 0 < ε ≤ 1/φ as the event
that w11 ∈

[
1 − 1

φ , 1
]
, w12 ∈

(
23
26 ,

23
26 + 1

φ

]
, w21 ∈

(
23
26 ,

23
26 + 1

φ

]
, and w22 ∈ [w12 + w21 − w11 −

ε, w12 +w21−w11). Consider the two possible matchings M1 = {e11, e22} and M2 = {e12, e21}.
If event Eφε occurs, then the weight of M2 is greater than the weight of M1 and the weight
difference is at most ε. In addition, w11 is greater than w12 and the weight difference is at
least 3

26 −
2
φ .

Lemma 5.5. There exist probability distributions on [0, 1] for the weights of the edges, whose

densities are bounded by φ ≥ 26, such that the probability of event Eφε is at least εφ/4.

Proof. The intervals in which w11, w12, and w21 have to assume values in order for event Eφε
to occur all have a length of 1

φ . We choose the corresponding probability distributions such
that they have density φ on the corresponding interval and density 0 elsewhere. The interval
in which w22 has to assume a value in order for event Eφε to occur has a length of ε and it is
contained completely in the interval

[
20
26 −

1
φ ,

20
26 + 3

φ

]
, since

w12 + w21 − w11 − ε >
23

26
+

23

26
− 1− 1

φ
=

20

26
− 1

φ

and

w12 + w21 − w11 ≤
(

23

26
+

1

φ

)
+

(
23

26
+

1

φ

)
−
(

1− 1

φ

)
=

20

26
+

3

φ
.

We choose the probability distribution for w22 such that it has density φ
4 on the interval[

20
26−

1
φ ,

20
26 + 3

φ

]
and 0 elsewhere. Now the probability that w11, w12, and w21 take values in the

interval necessary for event Eφε to occur is 1. For w22, this probability is εφ/4. This completes
the proof of Lemma 5.5.

Lemma 5.6. If event Eφε (φ ≥ 26) occurs, then the belief of node u1 at the end of the 4k-th
iteration is incorrect for all integers k ≤ 1

52ε − 1.

15

Proof. As in Lemma 5.2, a maximum-weight T -matching that selects the edge labeled {u1, v1}
at the root has greater weight than a maximum-weight T -matching that selects the edge labeled
{u1, v2} at the root for these values of k.

Analogously to the proof of Theorem 5.3, Lemmas 5.5 and 5.6 above immediately yield a
lower bound of Ω(φ/t) for the probability that BP will run for at least t iterations.

Our goal in the remainder of this section is to prove an Ω(nφ/t) lower bound for the complete
bipartite graph. Thus, let us consider the complete bipartite graph Kn,n = (U ∪ V,E) with

U = {ujp | p ∈ {1, 2}, j ∈ {1, . . . , n/2}} and V = {vjq | q ∈ {1, 2}, j ∈ {1, . . . , n/2}. Let Hj

denote the subgraph induced by {uj1, u
j
2, v

j
1, v

j
2} for j ∈ {1, . . . , n/2}. The role of the subgraphs

Hj is the same as the role of the copies of K2,2 in the proof of Corollary 5.4. Let ejpq be the

edge connecting ujp and vjq (p, q ∈ {1, 2}, j ∈ {1, . . . , n/2}). The weight of this edge is wjpq. We
draw edge weights according to the probability distributions

wj11 ∼ U
[
1− 1

φ
, 1

]
, wj12 ∼ U

(
23

26
,
23

26
+

1

φ

]
,

wj21 ∼ U
(

23

26
,
23

26
+

1

φ

]
, wj22 ∼ U

[
20

26
− 1

φ
,
20

26
+

3

φ

]
,

wab ∼ U
[
0,

1

φ

]
if ua ∈ Hj and vb ∈ Hk with j 6= k.

(1)

We call the edges between nodes in the same induced subgraph Hj heavy edges. Edges between
nodes in different subgraphs Hj and Hk we call light edges. By assumption, we have φ ≥ 26.
Thus, the weight of any light edge is at most 1/26, while every heavy edge weighs at least
19/26.

In contrast to the proof of Corollary 5.4, we now have to make sure that light edges are not
used in any computation tree. This allows us to prove the lower bound in a similar way to
that in Theorem 5.3 and Corollary 5.4.

Lemma 5.7. Let Λ? be the maximum-weight T -matching on the computation tree T k(ui).
Then Λ? does not contain any light edges.

Proof. Assume to the contrary that Λ? contains a light edge {x, y}. In that case, x and y
are in different subgraphs. The idea of the proof is to construct a path P from one leaf of
the computation tree to another leaf that includes edge {x, y}. Path P alternately consists of
edges that are in Λ? and edges that are not. We show that a new T -matching of greater weight
can be constructed by removing from Λ? the edges in P ∩ Λ? and adding the edges in P \ Λ?.

We include the edge labeled {x, y} in P and extend P on both sides. We start with node
z0 = x and node z0 = y, respectively, and construct the corresponding part of P as follows:

1. for i = 1, 3, 5, . . . do

2. if zi−1 is a leaf node then terminate.

3. Let Hk be the subgraph that zi−1 belongs to.

4. Let ei = {zi−1, zi} be the edge incident to zi−1 that belongs to the optimal matching
with respect to Hk.

5. Add ei to P .

16

6. if zi is a leaf node then terminate.

7. Let ei+1 = {zi, zi+1} be the (unique) edge incident to zi that belongs to Λ?.

8. Add ei+1 to P .

It is clear that the procedure can only terminate if it finds a leaf. Moreover, the constructed
sequence is alternating. Now we can show that no node will be visited twice. Otherwise,
there is an index i such that zi−1 = zi+1 since P is a path in a tree. However, this can
not happen since the sequence is alternating. Therefore, the procedure terminates. Using
the previous properties we also obtain that both paths constructed starting with z0 = x and
z0 = y, respectively, are disjoint since z1 /∈ {x, y} in both cases. Consequently, we obtain one
simple path P connecting two distinct leaf nodes and containing edge {x, y}.

We now show that the weight of the edges in P \Λ? is strictly larger than the weight of the
edges in P ∩ Λ?. For this, let P be of the form P = (p0, . . . , p`), where ` is even and where
{p0, p1} ∈ Λ?. Let I ⊆ {1, . . . , `} be the set of indices i for which {pi−1, pi} is a light edge.
Clearly, {pi−1, pi} ∈ Λ? for each i ∈ I by construction (see Line 4). Since the light edge {x, y}
belongs to P we have I 6= ∅. For i ∈ I, let Pi = (pi−1, pi, pi+1) be the subpath of P of length 2
starting at node pi−1. As {pi, pi+1} is a heavy edge, wpipi+1 −wpi−1pi ≥

(
20
26 −

1
φ

)
− 1

φ = 20
26 −

2
φ .

Therefore, the difference in weight between the edge of Pi that belongs to Λ? and the other
edge is significant.

Now remove all paths Pi from P and consider the subpaths of P (connected components)
that remain. There are at most |I|+ 1 such subpaths P ′; each has even length, and they only
consist of heavy edges, i.e., all their edges lie in one subgraph Hk where k depends on P ′.
Consider such a subpath P ′ and partition it into subpaths P̃j of length 4 and, if the length
of P ′ is not a multiple of 4, into one subpath P̂ of length 2. The Λ?-edges of P̃j form the
non-optimal matching on Hk, whereas the other two edges form the optimal matching on Hk.
Hence, the total weight of P̃j ∩ Λ? is at most the total weight of P̃j \ Λ?. Only for P̂ might
we have the case that the weight of P̂ ∩Λ? is larger than the weight of P̂ \Λ?, but since both
edges are heavy, the difference is at most 1−

(
20
26 −

1
φ

)
= 6

26 + 1
φ . Hence, the difference between

the total weight of P \ Λ? and the total weight of P ∩ Λ? is at least

|I| ·
(

20

26
− 2

φ

)
− (|I|+ 1) ·

(
6

26
+

1

φ

)
= |I| ·

(
14

26
− 3

φ

)
−
(

6

26
+

1

φ

)
≥ 4

26
> 0,

since |I| ≥ 1 and φ ≥ 26.
We can now construct a T -matching with higher weight than Λ? by removing the edges in

P ∩ Λ? from Λ? and adding the edges in P \ Λ?. This contradicts the assumption that the
maximum weight T -matching includes a light edge and proves the lemma.

Theorem 5.8. There exist probability distributions on [0, 1] for the weights of the edges, whose
densities are bounded by φ ≥ 26, such that the probability that BP for MWM needs at least t
iterations to converge for Kn,n is Ω(nφ/t) for t ≥ nφ/c for some constant c > 0.

Proof. We choose the probability distributions for the edge weights according to (1). Let

ε = 1
52(k+1) for k = 4dt/4e and assume that event Eφε occurs for subgraph Hj . In this case,

the weight of matching M2 = {ej12, e
j
21} is higher than the weight of matching M1 = {ej11, e

j
22},

but at most by the small amount of ε. Consider the computation tree T 4k(uj1). As in the

proof of Lemma 5.2 we know that if the maximum weight T -matching Λ? on T 4k(uj1) does not

17

include the edge labeled ej12 at the root, then BP has not yet converged within the first 4k ≥ t
iterations (see Bayati et al. [4, Lemma 1]).

We show that Λ? does not include edge ej12. Assume to the contrary that it does. We know
from Lemma 5.7 that Λ? does not contain light edges. Now we use the same procedure to
create a path P from one leaf of T 4k(uj1) to another leaf that contains edge ej12 and alternates

between edges from Λ? and edges from T 4k(uj1)\Λ?. Since T 4k(uj1) has height 4k+ 1 and since

uj1 is the root of T 4k(uj1), path P contains exactly 8k+ 2 edges, 2k+ 1 of which are edges ej12,

2k + 1 of which are edges ej11, 2k of which are edges ej22, and 2k of which are edges ej21. The

edges ej12 and ej21 are exactly the edges of P ∩ Λ?. As in Lemma 5.2, the difference of weight
between edges from P \ Λ? and P ∩ Λ? is at least

wj11 − w
j
12 − 2kε ≥

((
1− 1

φ

)
−
(

23

26
+

1

φ

))
− 2k

52(k + 1)

>
3

26
− 2

φ
− 1

26
≥ 0

since φ ≥ 26. This contradicts the fact that Λ? is optimal since removing from Λ? the edges
in P ∩ Λ? and adding the edges in P \ Λ? yields a T -matching of heavier weight for T 4k(uj1).

We have shown that BP does not converge within the first t iterations if event Eφε occurs
for some subgraph Hj . Since there are n/2 such subgraphs, we find that the probability that
BP for MWM needs at least t iterations to converge for Kn,n is Ω

(nφ
t

)
since

P(τ ≤ t) ≤ P
(
Eφε does not occur for any subgraph Hj

)
≤
(

1− εφ

4

)n/2
≤ exp

(
−εnφ

8

)
= exp

(
− nφ

8 · 52 · (4 · dt/4e+ 1)

)
≤ 1− nφ

2 · 8 · 52 · (4 · dt/4e+ 1)

where the second inequality follows from Lemma 5.5. The third inequality is due to the fact
that 1− x ≤ exp(−x), whereas the last inequality stems from exp(−x) ≤ 1− x

2 for x ∈ [0, 1].

If x = nφ
8·52·(4·dt/4e+1) is at most 1, which holds for t ≥ nφ

8·52 , then the correctness follows.

Note that the lower bound on the probability that BP for MWM converges within t itera-
tions only differs by a factor O(m) from the upper bound as proved in Section 4.1.

5.4 Concluding Remarks

The results presented in Sections 5.2 and 5.3 also hold for other versions of belief propagation
for minimum/maximum-weight (perfect) b-matching and min-cost flow [2,7,12] applied to the
matching problem on bipartite graphs. The number of iterations until convergence differs by
no more than a constant factor between these versions of BP. We omit the technical details
but provide some comments on how the proofs need to be adjusted.

Some of the versions of BP consider minimum-weight perfect matching [2] or min-cost flow [7]
instead of maximum-weight perfect matching. For these versions, we obtain the same results
if we have edge weights w̃e = 1− we for all edges e.

For some versions of BP [7, 12], the root of the computation tree is an edge rather than a
node. If we choose the root of this tree suitably, then we have that the difference in weight

18

between the two matchings M1 and M2 of at most ε not only has to “compensate” the weight
difference ∆w(e1, e2) between an edge e1 in M1 and an edge e2 in M2, but the entire weight
we of an edge e in M1 or M2. However, the probability distributions for the edge weights
described in Sections 5.2 and 5.3 are chosen such that ∆w(e1, e2) and we do not differ more
than a constant factor.

Note that our lower bounds for the number of iterations until convergence of BP for MWM in
the average case (see Section 5.2) do not contradict the results reported by Salez and Shah [11].
They consider complete bipartite graphs instead of the adversarial graphs that we use. Roughly
speaking, Salez and Shah have proved that BP for bipartite matching requires only a constant
number of iterations. However, they allow that in expectation a small constant fraction of
the nodes are matched to incorrect nodes. It might even be the case that multiple nodes
are matched to the same node. In our analysis, we require convergence of the BP algorithm,
i.e., each node should be matched to the unique node to which it is matched in the optimal
matching.

Even though the graphs we consider in Section 5.2 are different from the graphs Salez and
Shah consider, and even though they consider upper bounds on the number of iterations
of BP required and we consider lower bounds, some of our results are similar in flavor to
their results. Theorem 5.3 only provides a constant lower bound on the number of iterations
required to achieve any fixed probability of convergence of BP for a single K2,2. By linearity
of expectation, we only obtain a constant lower bound for the number of iterations required
for convergence of any fixed fraction of the (independent) copies of K2,2’s in expectation, as in
the paper by Salez and Shah. On the other hand, Corollary 5.4 shows that a constant number
of iterations is not sufficient to have convergence for all of the copies of K2,2’s.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, 1993.

[2] Mohsen Bayati, Christian Borgs, Jennifer Chayes, and Riccardo Zecchina. Belief-
propagation for weighted b-matching on arbitrary graphs and its relation to linear pro-
grams with integer solutions. SIAM Journal on Discrete Mathematics, 25(2):989–1011,
2011.

[3] Mohsen Bayati, Alfredo Braunstein, and Riccardo Zecchina. A rigorous analysis of
the cavity equations for the minimum spanning tree. Journal of Mathematical Physics,
49(12):125206, 2008.

[4] Mohsen Bayati, Devavrat Shah, and Mayank Sharma. Max-product for maximum weight
matching: Convergence, correctness, and LP duality. IEEE Transactions on Information
Theory, 54(3):1241–1251, 2008.

[5] René Beier and Berthold Vöcking. Typical properties of winners and losers in discrete
optimization. SIAM Journal in Computing, 35(4):855–881, 2006.

[6] Amin Coja-oghlan, Elchanan Mossel, and Dan Vilenchik. A spectral approach to analysing
belief propagation for 3-colouring. Combinatorics, Probability and Computing, 18(6):881–
912, 2009.

19

[7] David Gamarnik, Devavrat Shah, and Yehua Wei. Belief propagation for min-cost network
flow: Convergence and correctness. Operations Research, 60(2):410–428, 2012.

[8] Bodo Manthey and Heiko Röglin. Smoothed analysis: Analysis of algorithms beyond
worst case. it – Information Technology, 53(6):280–286, 2011.

[9] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, 1988.

[10] Heiko Röglin and Berthold Vöcking. Smoothed analysis of integer programming. Mathe-
matical Programming, 110(1):21–56, 2007.

[11] Justin Salez and Devavrat Shah. Optimality of belief propagation for random assignment
problem. Mathematics of Operations Research, 34(2):468–480, 2009.

[12] Sujay Sanghavi, Dmitry M. Malioutov, and Alan S. Willsky. Belief propagation and LP
relaxation for weighted matching in general graphs. IEEE Transactions on Information
Theory, 57(4):2203–2212, 2011.

[13] Sujay Sanghavi, Devavrat Shah, and Alan S. Willsky. Message passing for maximum
weight independent set. IEEE Transactions on Information Theory, 55(11):4822 –4834,
2009.

[14] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463,
2004.

[15] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: An attempt to explain the
behavior of algorithms in practice. Communications of the ACM, 52(10):76–84, 2009.

[16] Marshall F. Tappen and William T. Freeman. Comparison of graph cuts with belief propa-
gation for stereo, using identical MRF parameters. In Proc. of the 9th IEEE International
Conference on Computer Vision (ICCV 2003), pages 900–907. IEEE Computer Society,
2003.

[17] Chen Yanover and Yair Weiss. Approximate inference and protein-folding. In Suzanna
Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information
Processing Systems (NIPS 2002), pages 84–86. MIT Press, 2002.

[18] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding belief propa-
gation and its generalizations. In Gerhard Lakemeyer and Bernhard Nebel, editors, Ex-
ploring Artificial Intelligence in the New Millennium, chapter 8, pages 239–269. Morgan
Kaufmann, 2003.

20

