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Abstract

We consider the asymmetric traveling salesperson problem with γ-parameterized tri-
angle inequality for γ ∈ [1/2, 1). That means, the edge weights fulfill w(u, v) ≤
γ · (w(u, x) + w(x, v)) for all nodes u, v, x. Chandran and Ram (Proc. 19th STACS,
LNCS 2285, pp. 227–237, 2002) gave the first constant factor approximation algorithm
with polynomial running time for this problem. They achieve performance ratio γ/(1−γ).
We devise an approximation algorithm with performance ratio (1+γ)/(2−γ−γ3), which
is better for γ ∈ [0.5437, 1), that is, for the particularly interesting large values of γ.

1 Introduction

The traveling salesperson problem is a well-known NP optimization problem. Given a com-
plete loopless graph G and a weight function w that assigns to each edge a nonnegative
weight, our goal is to find a tour of minimum weight that visits each node exactly once (i.e., a
Hamiltonian tour of minimum weight). In general, the graph G may be directed. In this case,
one also speaks of the asymmetric traveling salesperson problem (ATSP). An important and
well-studied special case is the case where w is symmetric (TSP), that is, w(u, v) = w(v, u)
for all u, v ∈ V . In other words, the underlying graph can be considered undirected.

TSP and henceforth ATSP are both NPO-complete. Thus there is no good approximation
algorithm for these two problems, unless NP = P. A natural restriction is that the weight
function w should fulfill the triangle inequality

w(u, v) ≤ w(u, x) + w(x, v) for all u, x, v ∈ V . (1)

We call the corresponding problems ∆-ATSP and ∆-TSP in the asymmetric and symmetric
case, respectively. For ∆-TSP, Christofides [10] devised a 3/2 approximation algorithm with
polynomial running time, whereas the best approximation algorithm for ∆-ATSP has only
performance ratio log n as was shown by Frieze, Galbiati, and Maffioli [11]. This was improved
by Bläser [5] and Kaplan et al. [12] to 0.999 · log n and 0.841 · log n, respectively. Many
researchers conjecture that there is a constant factor approximation algorithm also for ∆-
ATSP, but this question is still open after more than two decades.
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Here we consider a strengthening of the triangle inequality (1), which allows a constant
factor approximation: Let γ be some constant with 1/2 ≤ γ < 1. An instance of the problem
∆(γ)-ATSP is a complete loopless directed graph G with node set V and a weight function
w assigning to each edge of G a nonnegative weight. The weight function fulfills the γ-
parameterized triangle inequality, i.e.,

w(u, v) ≤ γ · (w(u, x) + w(x, v)) for all u, x, v ∈ V . (2)

The goal is to compute a TSP tour of minimum weight.
One can also view the γ-parameterized triangle inequality as a data dependent bound.

Given an instance of ∆-(A)TSP, we can compute γ̃ = max{w(u, v)/(w(u, x) + w(x, v))} and
use an algorithm for ∆(γ̃)-(A)TSP to obtain better performance guarantees on instances
where γ̃ is small enough.

1.1 Previous and new results

As mentioned above, for ∆-ATSP and ∆-TSP, there are approximation algorithms with poly-
nomial running time achieving performance ratios log n and 3/2, respectively.

Böckenhauer et al. [7] studied the symmetric traveling salesperson problem with γ-
parameterized triangle inequality for γ ∈ [1/2, 1). They achieve approximation performance
min{1+(2γ−1)/(3γ2−2γ+1), 2/3+γ/(3−3γ)}. Then Böckenhauer et al. [8] (improving a re-
sult by Andreae and Bandelt [3]) as well as Bender and Chekuri [4] and Andreae [2] considered
the symmetric case with γ-parameterized triangle inequality for γ ≥ 1. Combining their re-
sults, we get an approximation algorithm with performance guarantee min{3γ2/2, γ2 +γ, 4γ}.

Chandran and Ram [9] studied the asymmetric traveling salesperson problem with γ-
parameterized triangle inequality for γ ∈ [1/2, 1). They designed a constant factor approxi-
mation algorithm with performance ratio (asymptotically) γ/(1− γ), in contrast to the log n
upper bound for ∆-ATSP. Since in the asymmetric case we even do not know whether for
γ = 1 an approximation algorithm with constant performance ratio exists, studying the case
γ ≥ 1 does not look very promising at the moment.

As our main result, we present an approximation algorithm SHORTCUT with performance
ratio (1+γ)/(2−γ −γ3). This improves the result by Chandran and Ram for γ ∈ [0.5437, 1),
that is, for the particularly interesting large values of γ. The running time of our algorithm
is O(n3), which matches the running time of the algorithm by Chandran and Ram. Our new
algorithm also improves upon the conference version of this paper [6] where an approximation
ratio of 2/(2 − γ − γ3) is obtained.

The approximation performance of SHORTCUT is better than the one obtained by Chan-
dran and Ram [9], if

γ

1 − γ
≥ 1 + γ

2 − γ − γ3
=

1 + γ

(1 − γ)(2 + γ + γ2)

For γ < 1 this is equivalent to γ +γ2 +γ3 ≥ 1. The only real valued root of the corresponding
polynomial can be computed exactly, it is X/3 − 2/(3X) − 1/3, where X = (17 + 3

√
33)1/3;

the numerical value of the root is approximately 0.5437. In particular, SHORTCUT is better
for γ ∈ [0.5437, 1). For γ close to 1, the improvement is by a factor close to 2. Figure 1
compares the performances in dependence on γ.
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Figure 1: The approximation performance of the algorithm SHORTCUT (drawn thick) com-
pared to the one by Chandran and Ram [9] (drawn dashed) and Bläser [6] (drawn thin).

1.2 Notations and conventions

For a set of nodes V , let K(V ) denote the set of edges (V ×V )\{(v, v) | v ∈ V }. Throughout
this work, we are considering directed graphs G = (V,K(V )) together with a weight function
w : K(V ) → Q≥0 and a parameter γ ∈ [1/2, 1). We always require that w fulfills the γ-
parameterized triangle inequality (2). (Note that if w fulfills the γ-parameterized triangle
inequality for some γ, then necessarily γ ≥ 1/2. Thus the lower bound is no restriction.)

A cycle cover of a directed graph G is a spanning subgraph that consists solely of node
disjoint directed cycles. For any subgraph S = (V,E) of G, the weight w(S) of S is defined
as the sum of the weights of the edges in E, that is, w(S) =

∑
e∈E w(e). In particular, this

defines the weight of cycle covers and TSP tours.
For a given directed graph G with weight function w, let AB(G) denote the weight of

a minimum weight cycle cover. (This is also called the assignment bound.) Furthermore,
let TSP(G) denote the weight of a minimum weight TSP tour of G. Obviously, we have
AB(G) ≤ TSP(G). AB(G) and a corresponding minimum weight cycle cover can be computed
in time O(n3); there are various algorithms with this time bound, for instance based on
bipartite matching (see [1] for an overview).

2 The approximation algorithm

Our new approximation algorithm SHORTCUT is based on the repeated cycle cover approach
by Frieze, Galbiati, and Maffioli [11]. The algorithm of Frieze, Galbiati, and Maffioli without
any modifications already yields a 1/(1 − γ) approximation for ∆(γ)-ATSP, as noticed by
Bläser [6].

We sketch the improved algorithm now; an illustration is given in Figure 2 (using notation
for vertices later introduced in the algorithm). First a minimum weight cycle cover C is
computed. The nodes are split into two sets V1 and V2 so that the two sets alternate along in
each cycle of C (to be precise, in case of an odd cycle, two nodes of V1 are adjacent). Then

3



we recursively compute two TSP tours T1 and T2, one in the graph G1 induced by V1 (i.e.,
G1 = (V1,K(V1)) with weight function w1 where w1 is the restriction of w to K(V1)) and
the other one in the graph G2 induced by V2. Finally, we combine C and one of Tp into an
Eulerian tour and obtain the resulting Hamiltonian tour T by taking shortcuts.

(a)

1u

=vu2 11 0u=u

(b)

(c) (d)

Figure 2: An example of a run of SHORTCUT. (a) A graph with nodes of V1 drawn as solid
bullets, edges of C drawn as solid arrows, and edges of T1 drawn dashed. (Edges of T2 and
unused edges are omitted.) (b) The Eulerian tour E1 drawn with nodes from V1 duplicated.
(c) and (d): The Hamiltonian tours H11 and H12, respectively; the bullets and arrows at the
nodes skipped by shortcuts are omitted.

Taking shortcuts is the place where we use the power of the strengthened triangle inequal-
ity. Suppose that walk S′ is obtained by taking shortcuts from another walk S. Even with reg-
ular triangle inequality, we have w(S′) ≤ w(S). The additional power of the γ-parameterized
triangle inequality is used when we bound w(S′) by the sum of the contributions of (the oc-
currences of) the edges e ∈ S. If the edge e appears in S′, its contribution is w(e). If the edge
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e is contracted at least once, i.e., one of its endpoints is omitted, its contribution is bounded
by γ · w(e). If the edge e is contracted at least twice—for example, if both of its endpoints
are omitted—its contribution further decreases and is bounded by γ2w(e).

For each Tp, the corresponding Eulerian tour contains two occurrences of each vertex in
Vp and a single occurrence of the other vertices. For each vertex we may omit either one of
the two occurrences. We actually generate two candidate Hamiltonian tours (for each Tp), so
that at each vertex Vp, each of the two ways of arranging shortcuts is used once. At the end
we output the shortest tour of the four candidates.

To get the best approximation factors we need to arrange the shortcuts quite carefully. If
each cycle has two vertices, this can be described easily: The Eulerian tour always takes one
edge of Tp, then goes around a cycle of T , and so on. In one candidate Hamiltonian tour we
skip each vertex in Vp upon entering the corresponding cycle, while in the other candidate,
we skip it upon leaving the cycle. The result is that each edge of Tp is contracted in both
candidate tours, while each edge of C is contracted in exactly one of the two candidate tours.
In the general case, we arrange the shortcuts along Tp so that each edge of Tp is contracted
in both candidates; this is possible with the exception of one edge. This one edge can be
contracted twice in one candidate tour and not contracted at all in the other candidate. It
turns out that if this edge is short, this does not hurt us, see Lemma 2.2. A similar problem
can occur with the edge of an odd cycle which connects two vertices of V1; again, choosing
it to be a short edge, Lemma 2.2 solves this problem. Note that the example in Figure 2
contains both of these types of problematic edges, namely (u0, u1) in Tp and (u0, u2) in an
odd cycle of C.

Algorithm SHORTCUT

Input: directed graph G = (V,K(V )) with weight function w where w fulfills the
γ-parameterized triangle inequality (2) for some γ ∈ [1/2, 1)
Output: TSP tour T

1. Compute a minimum weight cycle cover C of G. If C has a single cycle, let
T = C and stop.

2. Let C1, . . . , Ct be the cycles of C. Denote the nodes in Ci by vi1, vi2, . . . , viki
=

vi0, in the order along the cycle starting so that the edge (vi0, vi1) has the
minimal weight of all the edges of Ci.

Let V1 = {vij | i = 1, . . . , t, j odd} and V2 = {vij | i = 1, . . . , t, j > 0 even}.
Furthermore, let V̄1 = {vi1 | i = 1, . . . , t} and V̄2 = {vi2 | i = 1, . . . , t}. Note
that V is a disjoint union of V1 and V2; furthermore, each V̄p has exactly one
node in each cycle of C.

3. Recursively compute two TSP tours T1 and T2 of the graphs G1 and G2 that
are induced by V1 and V2.

4. For each p ∈ {1, 2}, construct an Eulerian tour Ep of (V,C ∪ Tp) as follows.
Visit the nodes of Vp in the order given by Tp. For each node v ∈ V̄p, the
tour runs through the (unique) cycle in C that v belongs to; after that, it
continues with the next node of Tp. For v ∈ Vp \ V̄p, the tour continues
immediately with the next node of Tp.

Note that each node of Vp occurs exactly twice on Ep and each node of V −Vp

occurs exactly once.
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5. For each p ∈ {1, 2}, construct two Hamiltonian tours Hp1 and Hp2 from Ep

by taking shortcuts. To do this, we need to determine for each u ∈ Vp which
of its two occurrences in Ep is removed. There are two possibilities for each
node, we make sure that each of Hpq uses a different one. In addition, we
choose a special way to do it:

(a) First, we choose a starting node u1 as follows: If Vp = V̄p, let u1 be
an arbitrary node from Vp. Otherwise let u be an arbitrary node from
Vp \ V̄p; choose (u0, u1) to be the lighter edge of the two edges of Tp

incident with u (i.e., u = u0 or u = u1). Denote the nodes of Vp by
u1, u2, . . . , uk = u0 in the order along the tour Tp.

(b) For u1, do the following: In Hp1, omit (i.e., take a shortcut at) the
occurrence of u1 where Ep continues by an edge from Tp (i.e., the next
node in Ep is u2); in Hp2 omit the occurrence of u1 where Ep continues
along C.

(c) Process the nodes ui, for i = 2, . . . , k as follows. Consider the consecutive
occurrences of ui−1 and ui in Ep (i.e., the place when Ep traverses the
edge (ui−1, ui)). Let Hpq be the tour where this occurrence of ui−1 was
not skipped. Skip the occurrence of ui following ui−1 in Hpq and skip
the other occurrence of ui in Hp,3−q.

6. Output as T the shortest tour of the four tours Hpq.

The next lemma uses the analysis of shortcuts to bound the weight of a minimum weight
TSP tour of G1 and G2 in terms of the weight of a minimum weight TSP tour of G.

Lemma 2.1 Let V1, V2 ⊆ V be two disjoint sets of nodes. Let G1 and G2 be the graphs
induced by V1 and V2, respectively. Then

TSP(G1) + TSP(G2) ≤ (1 + γ2)TSP(G).

Proof. Let T be a minimum weight TSP tour of G. Thus w(T ) = TSP(G). We construct
two TSP tours T1 and T2 of G1 and G2, respectively, such that w(T1)+w(T2) ≤ (1+γ2)w(T ).
This proves the claim of the lemma.

Given T , we construct T1 and T2 by taking shortcuts. We move along the tour T starting
with an arbitrary node in V1 or V2, respectively. Whenever we would visit a node not in V1

or V2, respectively, we directly go to the next node of T that is in V1 or V2.
Let e = (u, v) be an edge of T . If both u and v belong to V1, then the edge e appears in

T1 but is contracted (at least) twice when constructing T2. Thus e contributes weight w(e)
to T1 and γ2w(e) to T2 yielding a total contribution of (1 + γ2)w(e). If both u and v belong
to V2, the same analysis works. If u belongs to V1 and v belongs to V2 or vice versa, then
e is contracted at least once to obtain T1 and at least once to obtain T2. Thus the total
contribution is at most 2γ · w(e) ≤ (1 + γ2)w(e). Summing over all edges e of T yields the
result. �

Next we use a similar analysis to show that the algorithm guarantees that the total weight
of the four tours Hpq is bounded by (2+2γ)w(C)+2γ(w(T1)+w(T2)). As mentioned before,
in case of an odd cycle and also in case of the edge (u0, u1) in Tp, an edge may be contracted
twice in one of the four tours instead of being contracted in two distinct tours. This would
multiply the weight of the edge by 1 + γ2 instead of 2γ and thus increase its contribution
beyond the claimed bound. The next lemma gives a tighter bound in these cases.
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Lemma 2.2 Let v, x, y, z ∈ V be such that w(x, y) ≤ max{w(v, x), w(y, z)}. Then

w(v, z) ≤ γw(v, x) + (2γ − 1)w(x, y) + γw(y, z).

Proof. Suppose that w(x, y) ≤ w(v, x); the other case is symmetric. By contracting first the
node x and then y we have

w(v, z) ≤ γ2w(v, x) + γ2w(x, y) + γw(y, z).

For any γ ∈ [1/2, 1), we have

0 ≤ γ2 − 2γ + 1 ≤ γ − γ2,

as the corresponding equation has roots 1/2 and 1. Thus

(γ2 − 2γ + 1)w(x, y) ≤ (γ − γ2)w(v, x)

and

w(v, z) ≤ γ2w(v, x) + γ2w(x, y) + γw(y, z)

≤ γw(v, x) + (2γ − 1)w(x, y) + γw(y, z).

�

Lemma 2.3 The algorithm SHORTCUT guarantees for any input that

w(H11) + w(H12) + w(H21) + w(H22) ≤ (2 + 2γ)w(C) + 2γ(w(T1) + w(T2)).

Proof. We estimate the contribution of each edge e ∈ Ep, p ∈ {1, 2}, to the four tours Hpq

produced by shortcuts.
First consider e = (x, y) ∈ C; such e contributes to all four tours Hpq and we shall

bound its contribution by (2 + 2γ)w(e). If x ∈ Vp then e is contracted because of removing
this occurrence of x in exactly one of the tours Hp1 and Hp2; similarly for y. If these two
contractions happen in different tours, the contribution of e is at most (2+2γ)w(e) as claimed.
If the two contractions happen in the same tour, it has to be the case that x, y ∈ Vp for some
p. By the choice of Vp (step 2 of the algorithm), for some cycle Ci, (x, y) = (vi0, vi1), and thus
(x, y) is the lightest edge of Ci; in addition p = 1. This means that in the tour E1, the edge
(x, y) is preceded by another edge of Ci which is larger. Therefore we can apply Lemma 2.2 and
bound the contribution of (x, y) to the tour with two contractions by (2γ−1)w(x, y) (instead
of γ2); its total contribution is then at most (3 + 2γ − 1)w(x, y) as claimed. Lemma 2.2
increases the bound of the preceding edge in Ci from γ2 to γ times its weight; however, the
coefficient used in the previous analysis was γ, so the analysis for the other edges remains
valid.

Next consider e = (ui, ui+1) ∈ Tp for some p and numbering of nodes in Tp as in the
step 5(a) of the algorithm; such e contributes to two tours Hp1 and Hp2, and we shall bound
its contribution by 2γ · w(e). Each of the two occurrences of a node ui in Ep is contracted
in exactly one tour of Hp1 and Hp2. If these contractions for the occurrences of ui and
ui+1 as the endpoints of e happen in two different tours, the contribution of e is at most
2γ · w(e) as claimed. If the two contractions happen in a single tour, it has to be the case
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that e = (u0, u1), by the choices in the step 5(c) of the algorithm. Furthermore, it has to be
the case that V̄p 6= Vp: otherwise at every node in Vp the tour Ep follows the cycle Ci before
continuing on Tp and in Hp1 all occurrences of ui continuing along Ep are contracted—thus
the endpoints of e cannot be both contracted in the same tour. This means that one of the
endpoints of e was chosen as u ∈ Vp \ V̄p in step 5(a), in the tour Ep the two edges of Tp

incident with u follow each other, and e is chosen as the lighter one of these two edges. Thus
we can apply Lemma 2.2 (with e playing the role of (x, y) in the lemma) and bound the
contribution of e to the tour with two contractions by (2γ − 1)w(e) (instead of γ2); its total
contribution is then at most (1+2γ − 1)w(e) as claimed. As before, Lemma 2.2 increases the
bound of one other edge in Ep from γ2 to γ times its weight, but this does not change the
previous analysis.

The lemma now follows by summing the contributions of all the edges in C and both T1

and T2. One remaining subtle point is that an edge may appear in both C and some Tp; in
that case we need to sum over both of its occurrences, according to both cases above. �

Now we can estimate the approximation performance of our algorithm.

Theorem 2.4 The approximation ratio of the algorithm SHORTCUT is bounded by

R =
1 + γ

2 − γ − γ3
.

The running time of the algorithm is cubic in the number of nodes.

Proof. The bound on the approximation performance is shown by induction on the
number of nodes. If C in the algorithm has a single cycle (which covers all graphs with at
most three nodes), the output is an optimal tour.

Suppose that C has more cycles. By the induction hypothesis and Lemma 2.1,

w(T1) + w(T2) ≤ R(TSP(G1) + TSP(G2)) ≤ (1 + γ2)R · TSP(G). (3)

The TSP tour T computed in step 6 has weight at most

w(T ) ≤ w(H11) + w(H12) + w(H21) + w(H22)

4

≤ 1 + γ

2
w(C) +

γ

2
(w(T1) + w(T2))

≤ 1 + γ

2
TSP(G) +

γ + γ3

2
R · TSP(G)

= R · TSP(G).

by Lemma 2.3, equation (3), and the choice of R. This proves the claim about the approxi-
mation performance.

Let S(n) denote the worst case running time of the algorithm on instances with n nodes.
We have S(1) = 1 and S(n) ≤ 2 · S(2n/3) + O(n3), for all n > 1, because each instance
is divided into two subproblems of size at most 2n/3. The time for computing the two
subinstances is dominated by the time O(n3) used to construct the cycle cover C. Solving
the recurrence, we obtain S(n) = O(n3). �
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