Private Computation:
k-connected versus 1-connected Netwodrks

Markus Biset’! Andreas Jakoby Maciej LiskiewicZ*
Bodo Manthey?

L Institut fir Theoretische Informatik 2 |nstitut fur Theoretische Informatik
ETH Zirich Universift zu Litbeck

8092 Zirich, Switzerland Ratzeburger Allee 160, 235381heck, Germany
mblaeser@inf.ethz.ch {jakoby,liskiewi,manthey }@tcs.uni-luebeck.de
Abstract

We study the role of connectivity of communication networks in private com-
putations under information theoretical settings in the honest-but-curious model.
We show that some functions can 1-privately be computed even if the under-
lying network is 1-connected but not 2-connected. Then we give a complete
characterisation of non-degenerate functions that can 1-privately be computed on
non-2-connected networks.

Furthermore, we present a technique for simulating 1-private protocols that
work on arbitrary (complete) networks @naconnected networks. For this simu-
lation, at most(1 — %) - L additional random bits are needed, whéres the
number of bits exchanged in the original protocol and the number of players.

Finally, we give matching lower and upper bounds for the number of random
bits needed to 1-privately compute the parity functiorkeconnected networks,
namely[’g—:ﬂ — 1 random bits for networks consisting efplayers.

Keywords: private computation, secure multi-party computation, secure func-
tion evaluation, connectivity, parity, randomness.

1 Introduction

Consider a set of players, each knowing an individual secret. The goal is to compute a
function depending on these secrets such that after the computation none of the players

*A preliminary version appeared roc. of the 22nd Ann. Int. Cryptology Conf. (CRYPTO 2002)
volume 2442 ot ecture Notes in Comput. Sghages 194-209, Springer, 2002.

fWork done while at the Instituif Theoretische Informatik, Univergitzu Lilbeck, Germany

tOn leave from Instytut Informatyki, Uniwersytet Wroctawski, Poland.

§Birth name: Bodo Siebert. Supported by DFG research grant Re 672/3.

Submitted taJournal of Cryptology

knows anything about the secrets of the other players that cannot be derived from the
function value and its own secret. An example for such a computation is the “secret
ballot problem”: The members of a committee wish to decide whether the majority
votes for yes or no. However, after the vote nobody should know anything about
the opinions of the other committee members, not even about the exact number of
votes for yes and no, except for whether the majority has voted for yes or no. To
come to a decision, any two members can talk to each other in private. If however
the members are distributed in a network, then only those members can talk to each
other that are connected by a link. In this work, we investigate the influence of the
underlying network on the ability to perform private computations.

Let f be ann-ary Boolean function and let;, . . ., x,, be bits distributed among
players. A protocol for computing(x4, ..., z,) is calledt-private, if after executing
the protocol all players knowf(x4, ..., z,), but no group of at mostplayers learns
anything about the bits of the other players except for what they can deduce from the
function value and their own bits.

Depending on the computational power of the players we distinguish between cryp-
tographically secure privacy and information theoretically secure privacy. In the first
case we assume that no player is able to gain any information about the input bits of the
other players within polynomial time [28, 29]. In the second case we do not restrict the
computational power of the players. This notion of privacy (sometimes called uncon-
ditional privacy) has been introduced by Ben-Or et al. [3] and Chaum et al. [8]. Private
computation has been examined with two different types of players. Malicious players
(also called Byzantine players) may arbitrarily deviate from the protocol in order to
jam the correctness or the privacy constraint [19, 28, 29]. Honest-but-curious players
follow the protocol precisely but are allowed to “gossip” afterwards [19, 23].

We are concerned with 1-privacy in the information theoretically secure setting
with honest-but-curious players.

1.1 Previous results

Private computation has been the subject of a considerable amount of research. In the
information theoretically secure model, aHary Boolean functions canprivately be
computed ift < 7 in the case of honest-but-curious players artckf 3 in the case of
malicious players [3, 8]. In the cryptographically secure model, this holds<{on in

the case of honest-but-curious players ard 7 in the case of malicious players [19,

28] (assuming that trapdoor functions exist). Canetti and Ostrovsky [7] proved that
in the cryptographically secure setting, it can be tolerated that all parties deviate from
the protocol under the restriction that most parties do not risk being detected by other
parties. (Malicious players do not care about being detected.)

Traditionally, one investigates the number of rounds and random bits as complexity
measures for private protocols. According to Canetti et al. [6], the quantification of the
amount of randomness needed in cryptographically secure privacy is not meaningful,
since it can be reduced using pseudorandom generators [4, 21].

2

The following papers deal with information theoretical private computation with
honest-but-curious players: Chor and Kushilevitz [12] have studied the number of
rounds necessary for privately computing the sum modulo an integer. This function
has also been investigated by Blundo et al. [5] and Chor et al. [10]. The number of
random bits needed for privately computing the parity function has been examined by
Kushilevitz and Mansour [25] and Kushilevitz and Rag27]. Gal and Roén [16]
have shown that the parity function cannot be computed by any private protocol in
o(logn/logd) rounds usingl random bits. They have also given an almost tight
randomness-round tradeoff for private computations of arbitrary Boolean functions
depending on their sensitivity. Bounds on the maximum number of rounds needed for
privately computing a function have also been given by Bar-llan and Beaver [2] and
by Kushilevitz [24]. Gl and Roén [17] have proved an upper and lower bound for
the number of random bits needed feprivately computing parity.

The number of random bits necessary for privately computing a Boolean function is
closely related to its circuit size. Kushilevitz et al. [26] have shown that every function
can be computed with linear circuit size if and only if it can privately be computed
with a constant number of random bits.

Chor and Kushilevitz [11] have characterised the class of Boolean functions that
cant-privately be computed for sonte> 3. Any such function can alreadyprivately
be computed.

Chor et al. [9, 10] have extended the field of private computation to functions de-
fined over finite domains. Kilian et al. [22, 23] have introduced a notion of reduction
and completeness in private computation.

All the papers mentioned above do not restrict the communication capabilities of
the players. In other words, they use complete graphs as underlying communication
networks. However, most realistic parallel architectures have a restricted connectivity
and nodes of bounded degree. Franklin and Yung [15] have been the first who studied
the role of connectivity in private computations. They have presented a protocol for
k-connected bus networks that simulates communication steps of a private protocol
that was originally written for a complete graph. To simulate a single communication
step, their protocol use3(n) additional random bits. Franklin and Wright [14] have
examined which functions are still privately computable, if the players are malicious
and the network connectivity is low.

1.2 Our results

As mentioned above, we are concerned with 1-privacy in the information theoretically
secure setting with honest-but-curious players. In the following we use the term “pri-
vate” for “1-private”.

In this paper we investigate the number of random bits needed to compute functions
by private protocols ork-connected networks. We present a simulation of private
protocols designed for arbitrary networks on arbitrargonnected networks (far >
2) in Section 3. For this simulation, onlt — -£-) - min{L, 22 . (n? — n) + &

3

additional random bits are needed, whéres the total number of bits sent in the
original protocol.

In Section 4 we study the parity function to a greater extent. For éwepnnected
graph withk > 2, we design a private protocol for computing the parity function that
uses onlyf 2=2] —1 random bits. This considerably reduces the number of random bits
compared with the general simulation technique of Section 3 for the specific case of
the parity function. This result is tight: There dreconnected graphs on which every
private protocol needs that many random bits to compute the parity function.

All of the above results hold far > 2. In Section 5, we investigate graphs that are
not 2-connected. Our first insight is the following: The parity function over 2 bits
cannot be computed by a private protocol on any network that is not 2-connected. This
can be generalised to a large class of non-degenerate functions-afAnBoolean
function is callednon-degenerateif it depends on all of its: input bits. It turns
out that there are functions that can privately be computed, even if the underlying
network is not 2-connected. An example is the following non-degenerate function
f 40,1} — {0,1} (for n > 2):

f(xvya Z) = (l’ A /\?:1 yl) \% (f/\ /\?:1 Zi) .

Here, z is a single bit and botly and = are bit strings of lengtm. We construct a
communication network: for f as follows: LetG,, andG, be complete networks with

n players each. Then connect another plaggwwith all players in both, andG..

The network obtained is not 2-connected. Using a slight modification of the protocol
presented by Kushilevitz et al. [26], one can privately compute the subfunctions

fy(zy) = AN,y and
fz(x,z) = E/\/\?:lzi

on the networkg, with P, and G, with P,, respectively. Overall, the protocol is
private as will be shown in Section 5.

We fully characterise the class of non-degenerate functions that can privately be
computed on non-2-connected networks. It turns out that the above example is fairly
representative: Each such function has thihen-else structure. The corre-
sponding non-2-connected network consists of two 2-connected components of appro-
priate sizes.

2 Preliminaries

Forn € Nlet[n] = {1,...,n}. A graphG is calledk-connected if, after deleting
an arbitrary subset of at moBt— 1 nodes, the resulting node-induced graph remains
connected. Equivalently, for any two nodesandv of G, there are at least pair-
wise node-disjoint paths betweerandv. A blockof G is a maximum node-induced
subgraph of~ that is 2-connected.

We consider the computation of Boolean functiohs {0,1}" — {0,1} on a
network ofn players. In the beginning each player knows a single bit of the input
z. The players can send messages to other players using secure links where the link
topology is given by an undirected graph= (V, E). When the computation stops,
all players know the valug(x). The goal is to computg(z) such that no player
learns anything about the other input bits in an information theoretical sense, i.e. with
unbounded computational power, except for the information he can deduce from his
own bit and the result. Such a protocol is called private. (Recall that private in this
paper means 1-private and that we are considering honest players.)

Definition 2.1 Let C; be a random variable of the communication string seen by
player P, and let R; be his random string. A protocofl for computing a function

f is private with respect to playep; if for every pair of input vectors: and y with
f(z) = f(y) andz; = y;, the following conditions hold:

1. forallr, Pr(R;, =r | z) = Pr(R;, = | y), and
2. forall r with Pr(R; = r | =) > 0 and for allc,

Pr(Ci=c| R, =r,x)=Pr(C;=c| R, =m1,9).

(The probabilities are taken over the random strings of all other players.) A protocol
A is privateif it is private with respect to all players.

If the number of random bits each player uses is independent of the input, we can
omit the first condition since in this case all these probabilities are equal. However, if
the number of random bits a player uses depends on the input of the other players and
on their random bits, this player might be able to learn something from his random
stringif Pr(R; =7 | z) # Pr(R; =1 | y).

In all the protocols presented here it is known in advance how many random bits
a player uses. The lower bound for the number of random bits needed for computing
parity however holds also for the more general case when this is not known in advance.

We call a protocobbliviousif the communication takes place in rounds, each mes-
sage consists of a single bit, and the number of bits (which is then either zero or one)
that P, sends taP; in roundt depends only on, 7, andt, but not on the input and the
random strings. For an oblivious protocdllet L(P;, P;, A) be the total number of
bits sent fromP; to P; in A and

=2, 2. LRBA.
i€l s}

We distribute the input bits among the nodes of the graph. For convenience, we call
the node that gets bit; player ;. The playersP; and P; can communicate directly
with each other if and only if they are connected by an edge in the graph.

5

3 Private computation on k-connected networks

Most known private protocols are written for specific networks. A simulation of such

a private protocol on a different network can be done in such a way that each player
of the new network simulates a player of the original network step-by-step. Hence,
we have to find a way to realise the communication steps between all players that are
not directly connected. Franklin and Yung [15] have presented a strategy to simulate a
transmission of one single bit on a hypergraph by ughg) additional random bits.
Thus, the whole simulation presented by them requi?és. + nL(.A)) random bits
wherem is the number of random bits used by the original protocol. If we consider
2-connected graphs we can simulate each communication step between two Blayers
and P; by one additional random bitas follows: AssumeP; has to send bit to P;.
Then P, chooses two disjoint paths 8, and sends to P; along the first path and

r @ b, the parity ofr andb, along the second path. In this way, + L(.A) random

bits are sufficient. To reduce the number of random bits even further, we consider the
following optimisation problem.

Definition 3.1 (Max-Neighbour-Embedding) Let G = (V, E)) be a complete graph
with edge weights : £ — N and letG’ = (V’/, E’) be a graph with V| = |V’|. Let
m:V — V' be a bijective mapping. Then the performance of defined as

o= Y o).

{r(w),m(v)}eb’

The aim is to find a bijection : V' — V' that maximiseg(n) over all bijections.

By reduction from 3-Dimensional-Matching [18, SP1], it can be shown that the
decision problem corresponding to Max-Neighbour-Embeddiny1&-hard, even if
o is {0, 1}-valued, the graph consisting of the weight one edges bis maximum
degree four, and:" has maximum degree four. In the following lemma we estimate
the performance for the case tltis k-connected.

Lemma 3.2 LetG = (V, E) be a graph withn nodes and edge weights LetG’ =
(V', E') be ak-connected graph with nodes. Then we have

k
> . .
TV — XI/r’l%rxls bijectivep(ﬂ-) “n-—1 ; 0(6)

Proof: The graphG’ is k-connected. Thus, every nodeii has degree at least
Let IT be a random bijection fron¥” to V'. Since every node i’ has degree at
leastk, the probability that two arbitrary nodesandv are neighbours undéi, i.e.
{II(v),II(v)} € E', is at least-". Thus, the edge = {u, v} € E yields weights (e)

with probability at least:- and its expected weight is at least; - o(e). Hence, the
expected performangg1l) fulfils

B(p() > 3 o(e) = S o(e)

Thus, there exists a bijection with performance at leést- >~ o(e). O

A bijection that fulfils the requirements of the above lemma can be computed in
polynomial time using the method of conditional expectation (see e.g. Alon et al. [1]).

In the simulation described below, the gra@ghs the network for which a given
protocol was designed. The edge weights are the number of bits exchanged over each
edge (with weight zero if there is no edge in the original network). The gtdphthe
k-connected network on which we want to simulate the protocol.

The main idea is that for all nodeg and P; in a k-connected graph, we have
node-disjoint paths connecting these two nodes. Thus, we can sirhuateits sent
from P, to P; as follows: First,P; sends a random bits 8, on one path. Then he uses
this random bit to encode — 1 bits sent along the othér— 1 paths.

Theorem 3.3 Every oblivious private protocall usingm random bits can be simu-
lated withm + (1 — £2) - min{L(A), 22 . (n?> — n) + X4} random bits on every
k-connected graph.

Proof: LetG = (V, E) be the network used in protocdland letG’ = (V/, E’) be the
k-connected network. To simulatéwe first choose a bijection between the players in
G and the players it’. For every edgéP;, P;} € Eleto({P;, P;}) = L(P;, P;, A)+
L(P;, P;, A). In Lemma 3.2 we have seen that there exists a bijeetiol” — V' with
performance(r) > -~ L(A). Using this bijection, at least- - L(A) bits of the total
communication in4 are sent between players that are also neighboufs.inrhus,
this part of the communication can be simulated directly without additional random
bits.

For the remaining1 — -*-) - L(.A) bits we proceed as follows: Lét; and P; be
two players that are not directly connecteddh Then P, partitions the bits he will
send toF; into blocks By, . .., Birp,p;.4)/k-1)) Of size at mosk — 1. Furthermore,
P, chooses: node-disjoint paths fron®; to P;. P, uses a separate random hitfor
each blockB,. He sends, along the first path antl® r, for eachb € B, along the
remaining paths, each bit on a separate path.

Y icinl ey | LB Py A)f(k=1)] < k=2 (n?—n)+ XA holds, since we round
at mostn? — n fractions with denominatot — 1. (This is a worst-case estimate. Given
a concrete protocol, additional knowledge about the distribution of the bits on the links
may be used to get a better bound.) However, we never need mor@ thaf;)- L(A)
bits altogether. Both observations together imply the bound proposed. O

4 Computing parity on k-connected networks

It is well known that the parity function of bits can privately be computed on a
Hamiltonian cycle by using only one random bit. On the other hand, using our simu-
lation presented in Section 3 we get an upper bound-efl random bits for arbitrary
2-connected networks. The aim of this section is to close this gap. We present a private
protocol for parity that useﬁzéﬂ — 1 random bits and show that there areonnected
networks on which parity cannot be computed with less g | — 1 random bits.

Note that in the proof of the following lemma, we make no assumptions about
how many random bits any player uses or that the number of random bits is known in
advance. Thus, the lower bound holds also for the more general case where the number
of random bits each player uses can depend on the input and the other player’'s random
tapes.

Lemma 4.1 There exisk-connected networks with > 2k players on which the par-
ity function cannot be computed by a private protocol with less m@ﬂ —1random
bits.

Proof: We consider the bipartite grapki; ,,_x, which isk-connected, and show that
every private protocol that computes the parity function on this network needs at least
[2=2] —1 random bits. Le{ P, P,, ..., Py} and{Py1, Pys2, .. ., P, } be the two sets
of nodes ofKj ,,_,. Foreveryi = 1,...,kandj = k+ 1,...,n we have an edge
{P;, P;} in K} ,_,. Now assume to the contrary that there exists a private proscol
on Ky, ., using less tha2=2| — 1 random bits.
Letr = (ry,...,r,) be the contents,, ..., r, of all random tapes. For a string
x € {0,1}"andi € [n], letC;(x, r) be afull description of the communication received
by P, during the execution a#l with random bits- on inputz. Moreover, let

C(z) = {(c1,co,...,cx) | IrVie[k]: ¢; =Ci(x,r)} and
Ci(r) = {c|3Ir: c=Ci(z,r)}.
We consider computations gf on inputs
X={z|zmy=x=...=x,=0andP;_, z; =0} .
For everyr € X and every communicatioy we define
Cler,x) ={{ca,...,cr) | {c1,09,...,c) €C(x)}.
Claim4.2 3¢, Ve € X : C(cy,x) # 0.

Proof: Letx € X. Becauser is a valid input for the protocald, there exists at least
one tuple(cy, . .., ¢x) in C(z). Hence, there exists at least anewith C(cy, z) # 0. If
for somey € X the setC(cy,y) is empty, then this violates the privacy constraint

We also need the following claim, which follows from work by Kushilevitz and
Rosn [27]. For the sake of completeness we give a proof though.

8

Claim 4.3 Letd be the maximum number of random bits used. Then far all[%],
we have |, Ci(z)] < 2

Proof: We start by considering any fixed € X and show thatC;(z)| < 2¢. We
view the execution of4 such that in each round firgt, then /P, ..., and finallyP,
performs his computation. This can be done, since these computations do not depend
on each other. Viewing the computation this way, only one random bit is read at any
time. The claim follows from the following observations: Any random bit has two
outcomes, the player who reads the next random bit is determined by the previous
random bits and, and the players read at mestandom bits.

Finally, we haveC;(z) = C;(y) for all z,y € X, since P, must not be able to
distinguishz andy. O

Since the number of random bits used by the protocol is Iessftgfgﬁ, we have
|U,cx Ciz)| < 2°F7 . Hence, we have

‘UxeXC<Clax)‘ < H?:Q |UxeX CJ(CL’)‘ < 2n7k71 .
Since| X | = 2"7*~1 and by Claim 4.2, we get
ey, 9, 0 dny € X0 x#y and (co, ..., cx) € C(c1,x) NC(c1,y) -

This means that there are two different stringg € X such that on either string the
playersP;,. .., P, receivecy,. .., ¢, respectively. Let, withk +1 < i < n, be a
position wherer; # y;. Letr = (ry,...,r,) andr’ = (r},...,r!) be the contents of
the random tapes such that= C;(x,r) = C;(y,’") forall 1 <i < k.

During a computation of protocod on inputzx;y ... x;_1y;xi41 - . . T, With random

strings(ry, ..., ri 1,7, riv1, - . -), the playersPy, P, . .., P, again receive the com-
munication strings, cs, . . ., ¢;. This is because the graph is bipartite d@jadan only
communicate withP,, . .., P,. Hence, for this input they compute the same result as
for x, a contradiction. O

Now we show that this bound is best possible. To obtain a private protocol that
computes the parity function witﬁij} — 1 random bits, we use the following result
by Egawa et al. [13].

Lemma 4.4 (Egawa et al. [13])Let G be ak-connected graphk > 2, with minimum
degreed and at leas®d vertices. Lel/’ be an arbitrary set ok vertices ofG. ThenGG
has a cycle of length at leag8t/ that contains every vertex of.

Lemma 4.5 LetG = (V, E) be ak-connected graph with/| > 2k andk > 2. Then
for every subset” C V with |V’| = k, there exists a simple cycle of length at |le2ést
containing all nodes iv”’.

Proof: Sinced is k-connected, every node has degree at lka3thus,G contains a
simple cycle of length at leagt running through all nodes i’ by Lemma 4.4. O

Lemma 4.6 LetG = (V, E) be ak-connected graphk > 2, with |V'| > 2k. Then for
every subset” C V with |V’| = k + 1, there exists a simple path containing all nodes
inV’.

Proof: By Lemma 4.5 contains a cycl&’ running throught of the nodes in/”.
If the last nodev of V' is also onC', we simply delete one edge 6f and are done.
Otherwise, sincé& is connected there is a path franto a nodeu of C' such that each
internal node of this path is not ifi. By deleting one edge @ incident withu, we
obtain the desired path. O

Lemma 4.7 LetG = (V, E) be ak-connected graph; > 2, with |V'| > 2k + 1. Then
G has a simple path with at leagt + 1 nodes.

Proof: By Lemma 4.5 has a cycle” of length at leas2k. If this length is strictly
greater tharzk, we delete one of its edges and are done. Otherwise, there is anode
not in C. SinceG is connected there is a path franto a nodeu of C' such that each
internal node of this path is not ifi. By deleting one edge af incident withu, we
obtain the desired path. O

Now we present a protocol for computing parity on arbitresgonnected networks
G. We first assume that has at leas?k + 1 nodes. Basically, our protocol works as
follows. Each player is either red or black. Initially, all players are red. A player is
red as long as he holds some (input or random) bit that has not contributed to parity
yet. Otherwise, he is black. Using Lemmas 4.5, 4.6, and 4.7, we find paths or cycles
containing a certain number of red players, who then contribute their bits. For each
such path or cycle, we need one random bit.

1. Mark all nodes irnG red. Setz; := z; for each playel;.

2. Choose a path i@ of length2k + 1. According to Lemma 4.7 such a path exists.
The first playerP; in the path generates a randombiThenP; computes & z;,
sends the result to the next player in the path, and:sets r.

Each internal playef; on the path receives a itfrom his predecessor in the
path, computes @ z;, sends this bit to his successor, and changes his colour to
black.

The last player”, on the path receives a Bifrom his predecessor and computes
20 =2 D b.

After this step2k — 1 players have changed their colour.

3. We repeat the following stelg-2:1] times.

Choosek + 1 red nodes and a path @& containing all these nodes. According
to Lemma 4.6 such a path exists. We can assume that the start and the end node
of the path are among thie+ 1 given players, hence both are red. Then the first

10

player P; on this path generates a randombitomputes: & z;, sends the result
to the next player in the path, and sets= r.

Each internal player of the path; receives a bib from his predecessor in the
path. If P; is a black player, he senéi$o his successor. IP; is red, he computes
b ® z;, sends this bit to his successor, and changes his colour to black.

The last playe®, on the path receives a lbifrom its predecessor and computes
20 = 2y D b.

After this step, at least — 1 players have changed their colour. Hence, after
[2=2k£17 jterations of this step we have at least

[t (k- 1)+ 2k—1>n—k

black players. Thus, at moktare red.

4. Choose a cycle it containing all red nodes. According to Lemma 4.5 such a
cycle exists. Lef,, be ared player. TheR,, generates a random bitcomputes
r @ z;,, and sends the result to the next player in the cycle.

Each other playeP; on the cycle receives a hitfrom its predecessor. IP; is
black, he sendsto its successor. IP; is red, he computes® z;, sends this bit
to his successor, and changes his colour to black.

If P, receives a bib, he compute$ @ r. The result of this step is the result of
the parity function.

Let us count the number of random bits used in the protocol above. In the second
and in the last step we use one random bit. In the third step we|[#eég | random
bits. Hence, the total number of random bitg #s2%tL] + 2 = [2=2] — 1. It remains
to show that the protocol is private and computes the parity function. The correctness
follows from the fact that each input hit is stored by exactly one red player and each
random bit is stored by either none or two players that are red after each step. By
storing a bith we mean that a playér;, knows a value; that depends ol SinceP;,
is the last red player, he knows the result of the parity function.

Every bit received by some player in the second and third steps is masked by a
separate random bit. Hence, none of these players can learn anything from these bits.
The same holds for all players except for playgy in the last step. So we have to
analyse the bits sent and received By more carefully. In the last step, is either
x;,, & random bit, or the parity of a subset of input bits masked by a random bit. In
neither case’;, does learn anything about the other input bits from the bit he receives
and the value ot;, except for what can be derived from the result of the function and
Tig,-

Theorem 4.8 Let GG be an arbitraryk-connected network; > 2, with n nodes such
thatn > 2k. Then the parity of. bits can be computed by a private protocol Gnh

11

using at mosf2=21 — 1 random bits. If» < 2k, then the parity can be computed with
one random bit.

For all £ > 2 andn > k, there exists &-connected network om nodes for which
this bound is best possible.

Proof: The casen > 2k + 1 has already been demonstratedn IK 2k, then every
node inG' has degree at leagt Thus,G contains a Hamiltonian cycle due to Dirac’s
theorem, see e.g. Harary [20], and parity can be computed using one random bit.
The lower bound follows from Lemma 4.1 far > 2k. Forn < 2k, only one
random bit is needed, which is optimal. O

5 Private computation on non-2-connected networks

In this section, we characterise the class of non-degenerate Boolean functions that can
privately be computed on networks that are 1-connected but not 2-connected.

A function f : {0,1}" — {0, 1} is non-degenerate if for all < i < n, there are
x,y € {0,1}" that differ only at theth position andf(x) # f(y).

Let f be a non-degenerateary Boolean function. We say that a variabledom-
inatesf, if there is a partitiorY’, Z of the variableq 1, ...z, } \ {z;} with Y, Z # 0,
such thatf (x4, ..., z,) depends only on variables ¥ if x; = 0 and only on vari-
ables inZ if x; = 1. (This patrtition is unique, sincé is non-degenerate.) We call
bal¢(z;) = min{|Y|],|Z|} thebalanceof z; in f. If f is dominated by a variable,
then we can reorder the variablesfoand findg, andg; such that

| gly) ifzx=0and
f(:z:,y,z)—{ g(l)(z) ifx=1.

Fork < %, we denote byB, . the class of all networks with nodes and with
exactly two blocks such that one block consistgef 1 and the other block consists

of n — k nodes. (The bridge node belongs to both components.)

Lemma 5.1 Let f be a non-degenerate Boolean function. Tlfecannot be both-
andy-dominated.

Proof: Let f depend on, y, andz, ..., z,. Assume thai is dominated by: and
y. Then forz = 0, f depends on variableX, C {y,z,...,2,}, and forz = 1, f
depends on variable¥; = {y, z1,...,2,} \ Xy, sincef is non-degenerate. Similarly,
we have two disjoint sets, andY; of variables withY, UY) = {z, z1,..., 2, }.
Without loss of generality we assume thatc Y, andy € X,. Now consider
x = 1. Sincey ¢ X, f does not depend apwhen settingc = 1. Hence,f depends
onlyonX; = YyNY; = (forz = 1, because we assumed thfais y-dominated.
Thus,z does not dominatg. O

12

Lemma 5.2 Let f be a non-degenerate-ary Boolean functionp > 3. LetG be a
network inB,, ;. Assume that either

1. x does not dominat¢ or
2. x dominatesf butbal;(x) # k or

3. x dominatesf with partition Y and Z, bals(x) = k but both blocks hold input
bits from bothY” and 7.

Thenf cannot privately be computed éhwhen the bridge playeP, holds:z.

Proof: Let G, and G, be the two blocks ofi. The vectors of input bits fot,
without P, andG, without P, arey andz, respectively. In all three case§0, y, z) or
f(1,y, z) depends on both andz. Without loss of generality assume th&D, y, z)
depends on both andz. Then there exisy’ andz’ such thatf (0, ', z) depends on
andf(0,y, z’') depends omy. Thus, there exigy” andz" such that

f0,9,2") = f£(0,y",) # f(0,4/,) .

Now consider any protocol for computingon the given network. We fix some arbi-
trary content ofP,’s random tape and = 0.

In the following,m; denotes a message receivediyfrom G, in roundt. Anal-
ogously,m’ denotes a message receivedyfrom G in round¢. We assume that
in any round firstP, receivesmg, thenP, receivesn!, and finally P, sends messages
to G, andG,. (Formally, this means splitting up one round into three.) Th%n
does not depend om! andm! does not depend om/"'. Letc, = (m,,...,m})
andc, = (m?,...,m}). We call a certain!, undecidedif P, can observe], both on
inputy’ andy” for G,. Otherwise, we calt! decided For c., the terms decided and
undecided are analogously defined. The intuition behind these terms is as follows: If
c, is decided, therP, has learned that eithef or y” is notG,’s input. On the other
hand, ifc;, is undecided, then we can char@g's input fromy’ to 3" or vice versa and
modify its random bits such th&, does not perceive any differences. Clea@wnd
® are undecided.

We start our protocol on’, z' as input forG,, G,. Now we prove two things:
First, if bothc;, andc. are undecided for al, then we can fool the protocol such that
it computes a wrong function value. Second, if eventu@]lgr ¢t is decided, then the
protocol is not private with respect 1@,.

Assume that] andc. are undecided for all. Our protocol eventually outputs
f(0,9',2") andc andc! are still undecided. Then we can replacdy y” and adjust
G,’s random bits such thaP, does not notice a difference. Thus, our protocol has
computedf (0,y', ") # f(0,y”,2"), but £(0,"”, z’) would have been the right value.

So consider the firston whichc], or ¢! is decided. Due to symmetry, we restrict
ourselves to considering the first cage. has learned that” is no longer possible as
input for G,. SinceP, receivesn!, afterm, the current ™" is still undecided. Thus,

13

we can replace’ with z”. When the protocol terminateB, knows the function value
f(0,9,2") = f(0,y", 7). In addition, he knows that”, z’) has not been the input.
Thus, the protocol is not private. O

Lemma 5.3 Let f be a non-degenerate-ary Boolean function that is dominated by
x with bal¢(z) = 1. Thenf cannot privately be computed on any non-2-connected
network.

Proof: Due to Lemma 5.2, the only possibility for computifigs a network fromp,,
with bridge nodeP,. Let P, be the other player of the block of size 2. Without loss
of generality we assume that for= 0, f(z,y,2) = g(z), and forz = 1, f(x,y, 2) is
eithery ory. We assume that(1,y, z) = v.

We show how to compute the conjunction of two variables (namedyndy) pri-
vately. Considelf on some input, with g(zy) = 0. Thenf(z,y,20) = z Ay. If P,
and P, could computef privately, then a single player would be able to simulate the
behaviour of the large block on inpu§ and P, on z while another player would be
able to simulate”, ony. This would yield a protocol for privately computingA v,
which is impossible for two players [24]. O

Theorem 5.4 Let f be a non-degenerate-ary Boolean functiony > 3, and letG be
a connected network af nodes. Therf cannot privately be computed @# if one of
the following conditions holds:

1. G € B, , but there is no variable that dominates with bal(x) = k.
2. G consists of more than two blocks.
3. fisz-dominated withbalf(x) = 1.

Proof: Items 1 and 3 follow immediately from Lemmas 5.2 and 5.3, respectively.

Now assume that' consists of more than two blocks. There are two possibilities:
Either all blocks share one bridge node or we have at least two bridge nodes. In both
cases our aim is to apply Lemma 5.2. This is not directly possible since Lemma 5.2
only speaks about networks with two blocks. Note however that if one cannot privately
compute a function on a given netwakk then one cannot privately compute it on any
subnetwork ofHf. Hence, if we cannot privately compute a function on a netwaérk
with two blocks, we cannot privately compute it on any network that is obtained by
splitting up each of the two blocks into several new blocks.

First, we treat the case that there is only one bridge nédeolding variablez.
Since f is non-degenerate, for either= 0 or x = 1 the function value depends on
input bits of at least two block®; and B,. Let G’ be the network with two blocks
such that one block i8; and the other block is the complete graph on the remaining
nodes with the bridge node,. If f could privately be computed ad, then f could
also privately be computed @#, but this contradicts Lemma 5.2.

14

Second, assume that there are two bridge nodeiscdiuld privately be computed
on G, then there must be two variablesandz’ that dominatef due to Lemma 5.2.
(Here, we again unite blocks to end up with two blocks as above.) This contradicts
Lemma 5.1. O

Many well-known Boolean functions like and, or, majority, and parity are not dom-
inated and thus cannot privately be computed on non-2-connected networks.

Theorem 5.5 Let f be a non-degenerate-ary Boolean functiony > 5, that is dom-
inated byz with bal;(z) = k£ > 1. Thenf can privately be computed ds,, ;.

Proof: The protocol works the same as the one presented in Section 1.2.becof

the form
go(y) if x =0and

gi(z) fzx=1

fz,y,2) :{

for someg, andg;. Thenf(x,y, z) = (TAgo(y))V (zAg1(z)). Assume thay contains
k variables and containg: — k£ —1 variables. Let the bridge playét,, which is part of
both components, hold. We share thé variables ofy among the: remaining nodes
of the first component and the— k£ — 1 variables of: among the remaining nodes of
the second component. Then we privately compmte go(y)) within the first block
and(z A g1(z)) within the second block. This can be done since both blocks consist of
at least three nodes. (Every Boolean function can privately be computed on a complete
network of at least three players [3] and henceforth on any 2-connected network with
at least three players.) Finall, knows the result.

It remains to prove the protocol is private. It is clearly private with respect to
all players except fof,, since no players needs to learn anything aliout go(y))
or (x A g1(2)). Letz = 0 (z = 1 follows analogously due to symmetry). Then
(x A g1(2)) = 0 and thusP, does not learn anything about Furthermore P, only
learns(z A go(y)) = go(y) abouty, which is justf(z, y,). O

Note that when the conditions of Theorem 5.5 are not fulfilled, we can always
apply Theorem 5.4. Furthermore, there is no function on three or four variables that
can privately be computed on a non-2-connected network: Either the function is not
dominated or the balance is one.

6 Conclusions and open problems

We have investigated the relation between the connectivity of networks and the possi-
bility of computing functions by private protocols on these networks. Special emphasis
has been put on the amount of randomness needed.

We have presented a general simulation technique that allows us to transfer every
oblivious private protocol on an arbitrary network into an oblivious private protocol
on a givenk-connected network of the same size, where= 2. The new protocol

15

needs(l — -£7) - min{L, }=2 - (n® — n) + 7% } additional random bits, wher& is
the total number of bits sent in the original protocol. A future goal is either to reduce
the number of additional random bits further or to prove general lower bounds.

The parity function can be computed on a cycle using only one random bit and only
one message per link. (Strictly speaking, an additional message per link is necessary
to broadcast the result in the end. However, we do not need to use any random bits
to encode this broadcast, hence we can assume thisé are sent altogether.) Thus,
1+n— % < n — k + 1 random bits are sufficient to compute the parity function
on an arbitraryk-connected graph by a private protocol using our simulation. We
have strengthened this bound by showing that on ekergnnected graph, parity can
be computed by an oblivious private protocol using at n{c%s_?ﬂ — 1 random bits.
Furthermore, there exigtconnected networks for which this bound is tight.

While every Boolean function can be computed on a 2-connected network by a
private protocol, this is no longer true for 1-connected networks. Starting from this
observation, we have completely characterised the functions that can be computed by
a private protocol on non-2-connected networks.

Our simulation results focus on the extra amount of randomness needed. It would
also be interesting to bound the number of rounds of the simulation in terms of the
number of rounds of the original protocol and, say, the diameter of the new network.

Acknowledgements

We thank Adi Roén for fruitful discussions and hints to literature and Jan Arpe and
the anonymous referees for valuable comments that helped improve the presentation.

References

[1] Noga Alon, Joel H. Spencer, and Paul BsdThe Probabilistic Methodchapter
Derandomization, pages 223-232. John Wiley and Sons, 1992.

[2] Judit Bar-llan and Donald Beaver. Non-cryptographic fault-tolerant computing
in a constant number of rounds of interaction. Rroc. of the 8th Ann. ACM
Symp. on Principles of Distributed Computing (POD@ages 201-209, 1989.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computationPtac. of the 20th
Ann. ACM Symp. on Theory of Computing (STQiapes 1-10, 1988.

[4] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
guences of pseudo-random bi&AM J. Comput.13(4):850-864, 1984.

16

[5] Carlo Blundo, Alfredo de Santis, Giuseppe Persiano, and Ugo Vaccaro. Ran-
domness complexity of private computati@omput. Complexity8(2):145-168,
1999.

[6] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Bos Randomness
versus fault-tolerancel. Cryptology 13(1):107-142, 2000.

[7] Ran Canetti and Rafail Ostrovsky. Secure computation with honest-looking par-
ties: What if nobody is truly honest? Proc. of the 31st Ann. ACM Symp. on
Theory of Computing (STO()ages 255-264, 1999.

[8] David Chaum, Claude @peau, and lvan Daragd. Multiparty unconditionally
secure protocols. IRroc. of the 20th Ann. ACM Symp. on Theory of Computing
(STOC) pages 11-19, 1988.

[9] Benny Chor, Milaly Gegb-Graus, and Eyal Kushilevitz. On the structure of the
privacy hierarchyJ. Cryptology 7(1):53-60, 1994.

[10] Benny Chor, Mitaly Gegb-Graus, and Eyal Kushilevitz. Private computations
over the integersSIAM J. Comput.24(2):376—386, 1995.

[11] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean priv&@haM J.
Discrete Math, 4(1):36-47, 1991.

[12] Benny Chor and Eyal Kushilevitz. A communication-privacy tradeoff for modu-
lar addition.Inform. Process. Lett45(4):205-210, 1993.

[13] Yoshimi Egawa, Rainer Glas, and Stephen C. Locke. Cycles and paths through
specified vertices irk-connected graphsJ. Combin. Theory Ser.,52:20-29,
1991.

[14] Matthew Franklin and Rebecca N. Wright. Secure communication in minimal
connectivity modelsJ. Cryptology 13(1):9-30, 2000.

[15] Matthew Franklin and Moti Yung. Secure hypergraphs: Privacy from partial
broadcast. IfProc. of the 27th Ann. ACM Symp. on Theory of Computing (STOC)
pages 36—44, 1995.

[16] Anna Gal and Adi Rogén. A theorem on sensitivity and applications in private
computation.SIAM J. Compu}.31(5):1424-1437, 2002.

[17] Anna GAl and Adi Rogén. Lower bounds on the amount of randomness in private
computation. InProc. of the 35th Ann. ACM Symp. on Theory of Computing
(STOC) pages 659666, 2003.

[18] Michael R. Garey and David S. Johns@omputers and Intractability: A Guide
to the Theory of NP-Completene8§. H. Freeman and Company, 1979.

17

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majoriti2zron
of the 19th Ann. ACM Symp. on Theory of Computing (STP&)es 218-229,
1987.

[20] Frank HararyGraph Theory Addison-Wesley, 19609.

[21] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way functi®AM J. Comput.28(4):1364—
1396, 1999.

[22] Joe Kilian. More general completeness theorems for secure two-party compu-
tation. InProc. of the 32nd Ann. ACM Symp. on Theory of Computing (STOC)
pages 316—-324, 2000.

[23] Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility
and completeness in private computatio8$AM J. Comput.29(4):1189-1208,
2000.

[24] Eyal Kushilevitz. Privacy and communication complexit@lAM J. Discrete
Math,, 5(2):273-284, 1992.

[25] Eyal Kushilevitz and Yishay Mansour. Randomness in private computations.
SIAM J. Discrete Math.10(4):647-661, 1997.

[26] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Res. Characterizing linear size
circuits in terms of privacydJ. Comput. System Scb8(1):129-136, 1999.

[27] Eyal Kushilevitz and Adi Rosn. A randomness-rounds tradeoff in private com-
putation.SIAM J. Discrete Math.11(1):61-80, 1998.

[28] Andrew Chi-Chih Yao. Protocols for secure computationsPioc. of the 23rd
Ann. IEEE Symp. on Foundations of Computer Science (FQ@&8s 160-164,
1982.

[29] Andrew Chi-Chih Yao. How to generate and exchange secret®rda of the
27th Ann. IEEE Symp. on Foundations of Computer Science (F@&§ds 162—
167, 1986.

18

