
Private Computation:
k-connected versus 1-connected Networks∗

Markus Bl̈aser1† Andreas Jakoby2 Maciej Liśkiewicz2‡

Bodo Manthey2§

1 Institut für Theoretische Informatik
ETH Zürich
8092 Z̈urich, Switzerland
mblaeser@inf.ethz.ch

2 Institut für Theoretische Informatik
Universiẗat zu L̈ubeck
Ratzeburger Allee 160, 23538 Lübeck, Germany
{jakoby,liskiewi,manthey }@tcs.uni-luebeck.de

Abstract

We study the role of connectivity of communication networks in private com-
putations under information theoretical settings in the honest-but-curious model.
We show that some functions can 1-privately be computed even if the under-
lying network is 1-connected but not 2-connected. Then we give a complete
characterisation of non-degenerate functions that can 1-privately be computed on
non-2-connected networks.

Furthermore, we present a technique for simulating 1-private protocols that
work on arbitrary (complete) networks onk-connected networks. For this simu-
lation, at most(1 − k

n−1) · L additional random bits are needed, whereL is the
number of bits exchanged in the original protocol andn is the number of players.

Finally, we give matching lower and upper bounds for the number of random
bits needed to 1-privately compute the parity function onk-connected networks,
namelydn−2

k−1 e − 1 random bits for networks consisting ofn players.

Keywords: private computation, secure multi-party computation, secure func-
tion evaluation, connectivity, parity, randomness.

1 Introduction

Consider a set of players, each knowing an individual secret. The goal is to compute a
function depending on these secrets such that after the computation none of the players

∗A preliminary version appeared inProc. of the 22nd Ann. Int. Cryptology Conf. (CRYPTO 2002),
volume 2442 ofLecture Notes in Comput. Sci., pages 194–209, Springer, 2002.

†Work done while at the Institut für Theoretische Informatik, Universität zu L̈ubeck, Germany
‡On leave from Instytut Informatyki, Uniwersytet Wrocławski, Poland.
§Birth name: Bodo Siebert. Supported by DFG research grant Re 672/3.

Submitted toJournal of Cryptology.

knows anything about the secrets of the other players that cannot be derived from the
function value and its own secret. An example for such a computation is the “secret
ballot problem”: The members of a committee wish to decide whether the majority
votes for yes or no. However, after the vote nobody should know anything about
the opinions of the other committee members, not even about the exact number of
votes for yes and no, except for whether the majority has voted for yes or no. To
come to a decision, any two members can talk to each other in private. If however
the members are distributed in a network, then only those members can talk to each
other that are connected by a link. In this work, we investigate the influence of the
underlying network on the ability to perform private computations.

Let f be ann-ary Boolean function and letx1, . . . , xn be bits distributed amongn
players. A protocol for computingf(x1, . . . , xn) is calledt-private, if after executing
the protocol all players knowf(x1, . . . , xn), but no group of at mostt players learns
anything about the bits of the other players except for what they can deduce from the
function value and their own bits.

Depending on the computational power of the players we distinguish between cryp-
tographically secure privacy and information theoretically secure privacy. In the first
case we assume that no player is able to gain any information about the input bits of the
other players within polynomial time [28, 29]. In the second case we do not restrict the
computational power of the players. This notion of privacy (sometimes called uncon-
ditional privacy) has been introduced by Ben-Or et al. [3] and Chaum et al. [8]. Private
computation has been examined with two different types of players. Malicious players
(also called Byzantine players) may arbitrarily deviate from the protocol in order to
jam the correctness or the privacy constraint [19, 28, 29]. Honest-but-curious players
follow the protocol precisely but are allowed to “gossip” afterwards [19, 23].

We are concerned with 1-privacy in the information theoretically secure setting
with honest-but-curious players.

1.1 Previous results

Private computation has been the subject of a considerable amount of research. In the
information theoretically secure model, alln-ary Boolean functions cant-privately be
computed ift < n

2
in the case of honest-but-curious players and ift < n

3
in the case of

malicious players [3, 8]. In the cryptographically secure model, this holds fort ≤ n in
the case of honest-but-curious players andt < n

2
in the case of malicious players [19,

28] (assuming that trapdoor functions exist). Canetti and Ostrovsky [7] proved that
in the cryptographically secure setting, it can be tolerated that all parties deviate from
the protocol under the restriction that most parties do not risk being detected by other
parties. (Malicious players do not care about being detected.)

Traditionally, one investigates the number of rounds and random bits as complexity
measures for private protocols. According to Canetti et al. [6], the quantification of the
amount of randomness needed in cryptographically secure privacy is not meaningful,
since it can be reduced using pseudorandom generators [4, 21].

2

The following papers deal with information theoretical private computation with
honest-but-curious players: Chor and Kushilevitz [12] have studied the number of
rounds necessary for privately computing the sum modulo an integer. This function
has also been investigated by Blundo et al. [5] and Chor et al. [10]. The number of
random bits needed for privately computing the parity function has been examined by
Kushilevitz and Mansour [25] and Kushilevitz and Rosén [27]. Ǵal and Rośen [16]
have shown that the parity function cannot be computed by any private protocol in
o(log n/ log d) rounds usingd random bits. They have also given an almost tight
randomness-round tradeoff for private computations of arbitrary Boolean functions
depending on their sensitivity. Bounds on the maximum number of rounds needed for
privately computing a function have also been given by Bar-Ilan and Beaver [2] and
by Kushilevitz [24]. Ǵal and Rośen [17] have proved an upper and lower bound for
the number of random bits needed fort-privately computing parity.

The number of random bits necessary for privately computing a Boolean function is
closely related to its circuit size. Kushilevitz et al. [26] have shown that every function
can be computed with linear circuit size if and only if it can privately be computed
with a constant number of random bits.

Chor and Kushilevitz [11] have characterised the class of Boolean functions that
cant-privately be computed for somet ≥ n

2
. Any such function can alreadyn-privately

be computed.
Chor et al. [9, 10] have extended the field of private computation to functions de-

fined over finite domains. Kilian et al. [22, 23] have introduced a notion of reduction
and completeness in private computation.

All the papers mentioned above do not restrict the communication capabilities of
the players. In other words, they use complete graphs as underlying communication
networks. However, most realistic parallel architectures have a restricted connectivity
and nodes of bounded degree. Franklin and Yung [15] have been the first who studied
the role of connectivity in private computations. They have presented a protocol for
k-connected bus networks that simulates communication steps of a private protocol
that was originally written for a complete graph. To simulate a single communication
step, their protocol usesO(n) additional random bits. Franklin and Wright [14] have
examined which functions are still privately computable, if the players are malicious
and the network connectivity is low.

1.2 Our results

As mentioned above, we are concerned with 1-privacy in the information theoretically
secure setting with honest-but-curious players. In the following we use the term “pri-
vate” for “1-private”.

In this paper we investigate the number of random bits needed to compute functions
by private protocols onk-connected networks. We present a simulation of private
protocols designed for arbitrary networks on arbitraryk-connected networks (fork ≥
2) in Section 3. For this simulation, only

(
1 − k

n−1

)
· min

{
L, k−2

k−1
· (n2 − n) + L

k−1

}
3

additional random bits are needed, whereL is the total number of bits sent in the
original protocol.

In Section 4 we study the parity function to a greater extent. For everyk-connected
graph withk ≥ 2, we design a private protocol for computing the parity function that
uses only

⌈
n−2
k−1

⌉
−1 random bits. This considerably reduces the number of random bits

compared with the general simulation technique of Section 3 for the specific case of
the parity function. This result is tight: There arek-connected graphs on which every
private protocol needs that many random bits to compute the parity function.

All of the above results hold fork ≥ 2. In Section 5, we investigate graphs that are
not 2-connected. Our first insight is the following: The parity function overn > 2 bits
cannot be computed by a private protocol on any network that is not 2-connected. This
can be generalised to a large class of non-degenerate functions. Ann-ary Boolean
function is callednon-degenerate, if it depends on all of itsn input bits. It turns
out that there are functions that can privately be computed, even if the underlying
network is not 2-connected. An example is the following non-degenerate function
f : {0, 1}2n+1 → {0, 1} (for n ≥ 2):

f(x, y, z) = (x ∧
∧n

i=1 yi) ∨ (x ∧
∧n

i=1 zi) .

Here,x is a single bit and bothy andz are bit strings of lengthn. We construct a
communication networkG for f as follows: LetGy andGz be complete networks with
n players each. Then connect another playerPx with all players in bothGy andGz.
The network obtained is not 2-connected. Using a slight modification of the protocol
presented by Kushilevitz et al. [26], one can privately compute the subfunctions

fy(x, y) = x ∧
∧n

i=1 yi and

fz(x, z) = x ∧
∧n

i=1 zi

on the networksGy with Px andGz with Px, respectively. Overall, the protocol is
private as will be shown in Section 5.

We fully characterise the class of non-degenerate functions that can privately be
computed on non-2-connected networks. It turns out that the above example is fairly
representative: Each such function has thisif-then-else structure. The corre-
sponding non-2-connected network consists of two 2-connected components of appro-
priate sizes.

2 Preliminaries

For n ∈ N let [n] = {1, . . . , n}. A graphG is calledk-connected if, after deleting
an arbitrary subset of at mostk − 1 nodes, the resulting node-induced graph remains
connected. Equivalently, for any two nodesu andv of G, there are at leastk pair-
wise node-disjoint paths betweenu andv. A blockof G is a maximum node-induced
subgraph ofG that is 2-connected.

4

We consider the computation of Boolean functionsf : {0, 1}n → {0, 1} on a
network ofn players. In the beginning each player knows a single bit of the input
x. The players can send messages to other players using secure links where the link
topology is given by an undirected graphG = (V, E). When the computation stops,
all players know the valuef(x). The goal is to computef(x) such that no player
learns anything about the other input bits in an information theoretical sense, i.e. with
unbounded computational power, except for the information he can deduce from his
own bit and the result. Such a protocol is called private. (Recall that private in this
paper means 1-private and that we are considering honest players.)

Definition 2.1 Let Ci be a random variable of the communication string seen by
player Pi and letRi be his random string. A protocolA for computing a function
f is private with respect to playerPi if for every pair of input vectorsx and y with
f(x) = f(y) andxi = yi, the following conditions hold:

1. for all r, Pr(Ri = r | x) = Pr(Ri = r | y), and

2. for all r with Pr(Ri = r | x) > 0 and for all c,

Pr(Ci = c | Ri = r, x) = Pr(Ci = c | Ri = r, y) .

(The probabilities are taken over the random strings of all other players.) A protocol
A is privateif it is private with respect to all players.

If the number of random bits each player uses is independent of the input, we can
omit the first condition since in this case all these probabilities are equal. However, if
the number of random bits a player uses depends on the input of the other players and
on their random bits, this player might be able to learn something from his random
string if Pr(Ri = r | x) 6= Pr(Ri = r | y).

In all the protocols presented here it is known in advance how many random bits
a player uses. The lower bound for the number of random bits needed for computing
parity however holds also for the more general case when this is not known in advance.

We call a protocolobliviousif the communication takes place in rounds, each mes-
sage consists of a single bit, and the number of bits (which is then either zero or one)
thatPi sends toPj in roundt depends only oni, j, andt, but not on the input and the
random strings. For an oblivious protocolA let L(Pi, Pj,A) be the total number of
bits sent fromPi to Pj in A and

L(A) =
∑
i∈[n]

∑
j∈[n]\{i}

L(Pi, Pj,A) .

We distribute the input bits among the nodes of the graph. For convenience, we call
the node that gets bitxi playerPi. The playersPi andPj can communicate directly
with each other if and only if they are connected by an edge in the graph.

5

3 Private computation onk-connected networks

Most known private protocols are written for specific networks. A simulation of such
a private protocol on a different network can be done in such a way that each player
of the new network simulates a player of the original network step-by-step. Hence,
we have to find a way to realise the communication steps between all players that are
not directly connected. Franklin and Yung [15] have presented a strategy to simulate a
transmission of one single bit on a hypergraph by usingO(n) additional random bits.
Thus, the whole simulation presented by them requiresO(m + nL(A)) random bits
wherem is the number of random bits used by the original protocol. If we consider
2-connected graphs we can simulate each communication step between two playersPi

andPj by one additional random bitr as follows: AssumePi has to send bitb to Pj.
ThenPi chooses two disjoint paths toPj and sendsr to Pj along the first path and
r ⊕ b, the parity ofr andb, along the second path. In this way,m + L(A) random
bits are sufficient. To reduce the number of random bits even further, we consider the
following optimisation problem.

Definition 3.1 (Max-Neighbour-Embedding) Let G = (V, E) be a complete graph
with edge weightsσ : E → N and letG′ = (V ′, E ′) be a graph with|V | = |V ′|. Let
π : V → V ′ be a bijective mapping. Then the performance ofπ is defined as

ρ(π) =
∑

{π(u),π(v)}∈E′

σ({u, v}) .

The aim is to find a bijectionπ : V → V ′ that maximisesρ(π) over all bijections.

By reduction from 3-Dimensional-Matching [18, SP1], it can be shown that the
decision problem corresponding to Max-Neighbour-Embedding isNP-hard, even if
σ is {0, 1}-valued, the graph consisting of the weight one edges ofG has maximum
degree four, andG′ has maximum degree four. In the following lemma we estimate
the performance for the case thatG′ is k-connected.

Lemma 3.2 Let G = (V, E) be a graph withn nodes and edge weightsσ. LetG′ =
(V ′, E ′) be ak-connected graph withn nodes. Then we have

max
π : V → V ′, π is bijective

ρ(π) ≥ k

n− 1
·
∑
e∈E

σ(e) .

Proof: The graphG′ is k-connected. Thus, every node inV ′ has degree at leastk.
Let Π be a random bijection fromV to V ′. Since every node inV ′ has degree at
leastk, the probability that two arbitrary nodesu andv are neighbours underΠ, i.e.
{Π(u), Π(v)} ∈ E ′, is at least k

n−1
. Thus, the edgee = {u, v} ∈ E yields weightσ(e)

6

with probability at least k
n−1

and its expected weight is at leastk
n−1

· σ(e). Hence, the
expected performanceρ(Π) fulfils

E(ρ(Π)) ≥
∑
e∈E

k

n− 1
· σ(e) =

k

n− 1
·
∑
e∈E

σ(e) .

Thus, there exists a bijection with performance at leastk
n−1

·
∑

e∈E σ(e). ut

A bijection that fulfils the requirements of the above lemma can be computed in
polynomial time using the method of conditional expectation (see e.g. Alon et al. [1]).

In the simulation described below, the graphG is the network for which a given
protocol was designed. The edge weights are the number of bits exchanged over each
edge (with weight zero if there is no edge in the original network). The graphG′ is the
k-connected network on which we want to simulate the protocol.

The main idea is that for all nodesPi andPj in a k-connected graph, we havek
node-disjoint paths connecting these two nodes. Thus, we can simulatek− 1 bits sent
from Pi to Pj as follows: First,Pi sends a random bits toPj on one path. Then he uses
this random bit to encodek − 1 bits sent along the otherk − 1 paths.

Theorem 3.3 Every oblivious private protocolA usingm random bits can be simu-
lated withm + (1 − k

n−1
) · min{L(A), k−2

k−1
· (n2 − n) + L(A)

k−1
} random bits on every

k-connected graph.

Proof: Let G = (V, E) be the network used in protocolA and letG′ = (V ′, E ′) be the
k-connected network. To simulateA we first choose a bijection between the players in
G and the players inG′. For every edge{Pi, Pj} ∈ E letσ({Pi, Pj}) = L(Pi, Pj,A)+
L(Pj, Pi,A). In Lemma 3.2 we have seen that there exists a bijectionπ : V → V ′ with
performanceρ(π) ≥ k

n−1
L(A). Using this bijection, at leastk

n−1
·L(A) bits of the total

communication inA are sent between players that are also neighbours inG′. Thus,
this part of the communication can be simulated directly without additional random
bits.

For the remaining(1 − k
n−1

) · L(A) bits we proceed as follows: LetPi andPj be
two players that are not directly connected inG′. ThenPi partitions the bits he will
send toPj into blocksB1, . . . , BdL(Pi,Pj ,A)/(k−1)e of size at mostk − 1. Furthermore,
Pi choosesk node-disjoint paths fromPi to Pj. Pi uses a separate random bitr` for
each blockB`. He sendsr` along the first path andb ⊕ r` for eachb ∈ B` along the
remaining paths, each bit on a separate path.∑

i∈[n],j∈[n]\{i}dL(Pi, Pj,A)/(k−1)e ≤ k−2
k−1

·(n2−n)+ L(A)
k−1

holds, since we round
at mostn2−n fractions with denominatork−1. (This is a worst-case estimate. Given
a concrete protocol, additional knowledge about the distribution of the bits on the links
may be used to get a better bound.) However, we never need more than(1− k

n−1
)·L(A)

bits altogether. Both observations together imply the bound proposed. ut

7

4 Computing parity on k-connected networks

It is well known that the parity function ofn bits can privately be computed on a
Hamiltonian cycle by using only one random bit. On the other hand, using our simu-
lation presented in Section 3 we get an upper bound ofn− 1 random bits for arbitrary
2-connected networks. The aim of this section is to close this gap. We present a private
protocol for parity that uses

⌈
n−2
k−1

⌉
−1 random bits and show that there arek-connected

networks on which parity cannot be computed with less than
⌈

n−2
k−1

⌉
− 1 random bits.

Note that in the proof of the following lemma, we make no assumptions about
how many random bits any player uses or that the number of random bits is known in
advance. Thus, the lower bound holds also for the more general case where the number
of random bits each player uses can depend on the input and the other player’s random
tapes.

Lemma 4.1 There existk-connected networks withn ≥ 2k players on which the par-
ity function cannot be computed by a private protocol with less than

⌈
n−2
k−1

⌉
−1 random

bits.

Proof: We consider the bipartite graphKk,n−k, which isk-connected, and show that
every private protocol that computes the parity function on this network needs at least⌈

n−2
k−1

⌉
−1 random bits. Let{P1, P2, . . . , Pk} and{Pk+1, Pk+2, . . . , Pn} be the two sets

of nodes ofKk,n−k. For everyi = 1, . . . , k andj = k + 1, . . . , n we have an edge
{Pi, Pj} in Kk,n−k. Now assume to the contrary that there exists a private protocolA
onKk,n−k using less than

⌈
n−2
k−1

⌉
− 1 random bits.

Let r = 〈r1, . . . , rn〉 be the contentsr1, . . . , rn of all random tapes. For a string
x ∈ {0, 1}n andi ∈ [n], letCi(x, r) be a full description of the communication received
by Pi during the execution ofA with random bitsr on inputx. Moreover, let

C(x) = {〈c1, c2, . . . , ck〉 | ∃r ∀i ∈ [k] : ci = Ci(x, r)} and

Ci(x) = {c | ∃r : c = Ci(x, r)} .

We consider computations ofA on inputs

X = {x | x1 = x2 = . . . = xk = 0 and
⊕n

i=1 xi = 0} .

For everyx ∈ X and every communicationc1 we define

C(c1, x) = {〈c2, . . . , ck〉 | 〈c1, c2, . . . , ck〉 ∈ C(x)} .

Claim 4.2 ∃c1 ∀x ∈ X : C(c1, x) 6= ∅.

Proof: Let x ∈ X. Becausex is a valid input for the protocolA, there exists at least
one tuple〈c1, . . . , ck〉 in C(x). Hence, there exists at least onec1 with C(c1, x) 6= ∅. If
for somey ∈ X the setC(c1, y) is empty, then this violates the privacy constraint.ut

We also need the following claim, which follows from work by Kushilevitz and
Rośen [27]. For the sake of completeness we give a proof though.

8

Claim 4.3 Let d be the maximum number of random bits used. Then for alli ∈ [k],
we have|

⋃
x∈X Ci(x)| ≤ 2d.

Proof: We start by considering any fixedx ∈ X and show that|Ci(x)| ≤ 2d. We
view the execution ofA such that in each round firstP1, thenP2, . . . , and finallyPn

performs his computation. This can be done, since these computations do not depend
on each other. Viewing the computation this way, only one random bit is read at any
time. The claim follows from the following observations: Any random bit has two
outcomes, the player who reads the next random bit is determined by the previous
random bits andx, and the players read at mostd random bits.

Finally, we haveCi(x) = Ci(y) for all x, y ∈ X, sincePi must not be able to
distinguishx andy. ut

Since the number of random bits used by the protocol is less thann−k−1
k−1

, we have

|
⋃

x∈X Ci(x)| < 2
n−k−1

k−1 . Hence, we have∣∣⋃
x∈X C(c1, x)

∣∣ ≤ ∏k
j=2

∣∣⋃
x∈X Cj(x)

∣∣ < 2n−k−1 .

Since|X| = 2n−k−1 and by Claim 4.2, we get

∃c1, c2, . . . , ck ∃x, y ∈ X : x 6= y and 〈c2, . . . , ck〉 ∈ C(c1, x) ∩ C(c1, y) .

This means that there are two different stringsx, y ∈ X such that on either string the
playersP1, . . . , Pk receivec1, . . . , ck, respectively. Leti, with k + 1 ≤ i ≤ n, be a
position wherexi 6= yi. Let r = 〈r1, . . . , rn〉 andr′ = 〈r′1, . . . , r′n〉 be the contents of
the random tapes such thatci = Ci(x, r) = Ci(y, r′) for all 1 ≤ i ≤ k.

During a computation of protocolA on inputx1 . . . xi−1yixi+1 . . . xn with random
strings〈r1, . . . , ri−1, r

′
i, ri+1, . . . rn〉, the playersP1, P2, . . . , Pk again receive the com-

munication stringsc1, c2, . . . , ck. This is because the graph is bipartite andPi can only
communicate withP1, . . . , Pk. Hence, for this input they compute the same result as
for x, a contradiction. ut

Now we show that this bound is best possible. To obtain a private protocol that
computes the parity function with

⌈
n−2
k−1

⌉
− 1 random bits, we use the following result

by Egawa et al. [13].

Lemma 4.4 (Egawa et al. [13])LetG be ak-connected graph,k ≥ 2, with minimum
degreed and at least2d vertices. LetV ′ be an arbitrary set ofk vertices ofG. ThenG
has a cycle of length at least2d that contains every vertex ofV ′.

Lemma 4.5 LetG = (V, E) be ak-connected graph with|V | ≥ 2k andk ≥ 2. Then
for every subsetV ′ ⊆ V with |V ′| = k, there exists a simple cycle of length at least2k
containing all nodes inV ′.

Proof: SinceG is k-connected, every node has degree at leastk. Thus,G contains a
simple cycle of length at least2k running through all nodes inV ′ by Lemma 4.4. ut

9

Lemma 4.6 LetG = (V, E) be ak-connected graph,k ≥ 2, with |V | ≥ 2k. Then for
every subsetV ′ ⊆ V with |V ′| = k +1, there exists a simple path containing all nodes
in V ′.

Proof: By Lemma 4.5,G contains a cycleC running throughk of the nodes inV ′.
If the last nodev of V ′ is also onC, we simply delete one edge ofC and are done.
Otherwise, sinceG is connected there is a path fromv to a nodeu of C such that each
internal node of this path is not inC. By deleting one edge ofC incident withu, we
obtain the desired path. ut

Lemma 4.7 LetG = (V, E) be ak-connected graph,k ≥ 2, with |V | ≥ 2k + 1. Then
G has a simple path with at least2k + 1 nodes.

Proof: By Lemma 4.5,G has a cycleC of length at least2k. If this length is strictly
greater than2k, we delete one of its edges and are done. Otherwise, there is a nodev
not in C. SinceG is connected there is a path fromv to a nodeu of C such that each
internal node of this path is not inC. By deleting one edge ofC incident withu, we
obtain the desired path. ut

Now we present a protocol for computing parity on arbitraryk-connected networks
G. We first assume thatG has at least2k + 1 nodes. Basically, our protocol works as
follows. Each player is either red or black. Initially, all players are red. A player is
red as long as he holds some (input or random) bit that has not contributed to parity
yet. Otherwise, he is black. Using Lemmas 4.5, 4.6, and 4.7, we find paths or cycles
containing a certain number of red players, who then contribute their bits. For each
such path or cycle, we need one random bit.

1. Mark all nodes inG red. Setzi := xi for each playerPi.

2. Choose a path inG of length2k+1. According to Lemma 4.7 such a path exists.
The first playerPi in the path generates a random bitr. ThenPi computesr⊕zi,
sends the result to the next player in the path, and setszi := r.

Each internal playerPj on the path receives a bitb from his predecessor in the
path, computesb ⊕ zj, sends this bit to his successor, and changes his colour to
black.

The last playerP` on the path receives a bitb from his predecessor and computes
z` := z` ⊕ b.

After this step,2k − 1 players have changed their colour.

3. We repeat the following stepdn−3k+1
k−1

e times.

Choosek + 1 red nodes and a path inG containing all these nodes. According
to Lemma 4.6 such a path exists. We can assume that the start and the end node
of the path are among thek + 1 given players, hence both are red. Then the first

10

playerPi on this path generates a random bitr, computesr⊕ zi, sends the result
to the next player in the path, and setszi := r.

Each internal player of the pathPj receives a bitb from his predecessor in the
path. IfPj is a black player, he sendsb to his successor. IfPj is red, he computes
b⊕ zj, sends this bit to his successor, and changes his colour to black.

The last playerP` on the path receives a bitb from its predecessor and computes
z` := z` ⊕ b.

After this step, at leastk − 1 players have changed their colour. Hence, after
dn−3k+1

k−1
e iterations of this step we have at least⌈

n−3k+1
k−1

⌉
· (k − 1) + 2k − 1 ≥ n− k

black players. Thus, at mostk are red.

4. Choose a cycle inG containing all red nodes. According to Lemma 4.5 such a
cycle exists. LetPi0 be a red player. ThenPi0 generates a random bitr, computes
r ⊕ zi0, and sends the result to the next player in the cycle.

Each other playerPj on the cycle receives a bitb from its predecessor. IfPj is
black, he sendsb to its successor. IfPj is red, he computesb⊕ zj, sends this bit
to his successor, and changes his colour to black.

If Pi0 receives a bitb, he computesb ⊕ r. The result of this step is the result of
the parity function.

Let us count the number of random bits used in the protocol above. In the second
and in the last step we use one random bit. In the third step we needdn−3k+1

k−1
e random

bits. Hence, the total number of random bits is
⌈

n−3k+1
k−1

⌉
+ 2 =

⌈
n−2
k−1

⌉
− 1. It remains

to show that the protocol is private and computes the parity function. The correctness
follows from the fact that each input bitxi is stored by exactly one red player and each
random bit is stored by either none or two players that are red after each step. By
storing a bitb we mean that a playerPi knows a valuezi that depends onb. SincePi0

is the last red player, he knows the result of the parity function.
Every bit received by some player in the second and third steps is masked by a

separate random bit. Hence, none of these players can learn anything from these bits.
The same holds for all players except for playerPi0 in the last step. So we have to
analyse the bits sent and received byPi0 more carefully. In the last stepzi0 is either
xi0, a random bit, or the parity of a subset of input bits masked by a random bit. In
neither casePi0 does learn anything about the other input bits from the bit he receives
and the value ofzi0 except for what can be derived from the result of the function and
xi0.

Theorem 4.8 Let G be an arbitraryk-connected network,k ≥ 2, with n nodes such
that n ≥ 2k. Then the parity ofn bits can be computed by a private protocol onG

11

using at mostdn−2
k−1

e − 1 random bits. Ifn < 2k, then the parity can be computed with
one random bit.

For all k ≥ 2 andn > k, there exists ak-connected network onn nodes for which
this bound is best possible.

Proof: The casen ≥ 2k + 1 has already been demonstrated. Ifn ≤ 2k, then every
node inG has degree at leastn

2
. Thus,G contains a Hamiltonian cycle due to Dirac’s

theorem, see e.g. Harary [20], and parity can be computed using one random bit.
The lower bound follows from Lemma 4.1 forn ≥ 2k. For n < 2k, only one

random bit is needed, which is optimal. ut

5 Private computation on non-2-connected networks

In this section, we characterise the class of non-degenerate Boolean functions that can
privately be computed on networks that are 1-connected but not 2-connected.

A function f : {0, 1}n → {0, 1} is non-degenerate if for all1 ≤ i ≤ n, there are
x, y ∈ {0, 1}n that differ only at theith position andf(x) 6= f(y).

Let f be a non-degeneraten-ary Boolean function. We say that a variablexi dom-
inatesf , if there is a partitionY, Z of the variables{x1, . . . xn} \ {xi} with Y, Z 6= ∅,
such thatf(x1, . . . , xn) depends only on variables inY if xi = 0 and only on vari-
ables inZ if xi = 1. (This partition is unique, sincef is non-degenerate.) We call
balf (xi) = min{|Y |, |Z|} thebalanceof xi in f . If f is dominated by a variablex,
then we can reorder the variables off and findg0 andg1 such that

f(x, y, z) =

{
g0(y) if x = 0 and
g1(z) if x = 1 .

For k ≤ n
2
, we denote byBn,k the class of all networks withn nodes and with

exactly two blocks such that one block consists ofk + 1 and the other block consists
of n− k nodes. (The bridge node belongs to both components.)

Lemma 5.1 Let f be a non-degenerate Boolean function. Thenf cannot be bothx-
andy-dominated.

Proof: Let f depend onx, y, andz1, . . . , zn. Assume thatf is dominated byx and
y. Then forx = 0, f depends on variablesX0 ⊆ {y, z1, . . . , zn}, and forx = 1, f
depends on variablesX1 = {y, z1, . . . , zn} \X0, sincef is non-degenerate. Similarly,
we have two disjoint setsY0 andY1 of variables withY0 ∪ Y1 = {x, z1, . . . , zn}.

Without loss of generality we assume thatx ∈ Y0 andy ∈ X0. Now consider
x = 1. Sincey /∈ X1, f does not depend ony when settingx = 1. Hence,f depends
only on X1 = Y0 ∩ Y1 = ∅ for x = 1, because we assumed thatf is y-dominated.
Thus,x does not dominatef . ut

12

Lemma 5.2 Let f be a non-degeneraten-ary Boolean function,n ≥ 3. Let G be a
network inBn,k. Assume that either

1. x does not dominatef or

2. x dominatesf butbalf (x) 6= k or

3. x dominatesf with partition Y andZ, balf (x) = k but both blocks hold input
bits from bothY andZ.

Thenf cannot privately be computed onG when the bridge playerPx holdsx.

Proof: Let Gy andGz be the two blocks ofG. The vectors of input bits forGy

withoutPx andGz withoutPx arey andz, respectively. In all three cases,f(0, y, z) or
f(1, y, z) depends on bothy andz. Without loss of generality assume thatf(0, y, z)
depends on bothy andz. Then there existy′ andz′ such thatf(0, y′, z) depends onz
andf(0, y, z′) depends ony. Thus, there existy′′ andz′′ such that

f(0, y′, z′′) = f(0, y′′, z′) 6= f(0, y′, z′) .

Now consider any protocol for computingf on the given network. We fix some arbi-
trary content ofPx’s random tape andx = 0.

In the following,mt
y denotes a message received byPx from Gy in roundt. Anal-

ogously,mt
z denotes a message received byPx from Gz in roundt. We assume that

in any round firstPx receivesmt
y, thenPx receivesmt

z, and finallyPx sends messages
to Gy andGz. (Formally, this means splitting up one round into three.) Thenmt

y

does not depend onmt
z andmt

z does not depend onmt+1
y . Let ct

y = (m1
y, . . . ,m

t
y)

andct
z = (m1

z, . . . ,m
t
z). We call a certainct

y undecided, if Px can observect
y both on

input y′ andy′′ for Gy. Otherwise, we callct
y decided. For ct

z, the terms decided and
undecided are analogously defined. The intuition behind these terms is as follows: If
ct
y is decided, thenPx has learned that eithery′ or y′′ is notGy’s input. On the other

hand, ifct
y is undecided, then we can changeGy’s input fromy′ to y′′ or vice versa and

modify its random bits such thatPx does not perceive any differences. Clearly,c0
y and

c0
z are undecided.

We start our protocol ony′, z′ as input forGy, Gz. Now we prove two things:
First, if bothct

y andct
z are undecided for allt, then we can fool the protocol such that

it computes a wrong function value. Second, if eventuallyct
y or ct

z is decided, then the
protocol is not private with respect toPx.

Assume thatct
y and ct

z are undecided for allt. Our protocol eventually outputs
f(0, y′, z′) andct

y andct
z are still undecided. Then we can replacey′ by y′′ and adjust

Gy’s random bits such thatPx does not notice a difference. Thus, our protocol has
computedf(0, y′, z′) 6= f(0, y′′, z′), butf(0, y′′, z′) would have been the right value.

So consider the firstt on whichct
y or ct

z is decided. Due to symmetry, we restrict
ourselves to considering the first case.Px has learned thaty′′ is no longer possible as
input forGy. SincePx receivesmt

z aftermt
y, the currentct−1

z is still undecided. Thus,

13

we can replacez′ with z′′. When the protocol terminates,Px knows the function value
f(0, y′, z′′) = f(0, y′′, z′). In addition, he knows that(y′′, z′) has not been the input.
Thus, the protocol is not private. ut

Lemma 5.3 Let f be a non-degeneraten-ary Boolean function that is dominated by
x with balf (x) = 1. Thenf cannot privately be computed on any non-2-connected
network.

Proof: Due to Lemma 5.2, the only possibility for computingf is a network fromBn,1

with bridge nodePx. Let Py be the other player of the block of size 2. Without loss
of generality we assume that forx = 0, f(x, y, z) = g(z), and forx = 1, f(x, y, z) is
eithery or y. We assume thatf(1, y, z) = y.

We show how to compute the conjunction of two variables (namelyx andy) pri-
vately. Considerf on some inputz0 with g(z0) = 0. Thenf(x, y, z0) = x ∧ y. If Px

andPy could computef privately, then a single player would be able to simulate the
behaviour of the large block on inputz0 andPx on x while another player would be
able to simulatePy on y. This would yield a protocol for privately computingx ∧ y,
which is impossible for two players [24]. ut

Theorem 5.4 Letf be a non-degeneraten-ary Boolean function,n ≥ 3, and letG be
a connected network ofn nodes. Thenf cannot privately be computed onG, if one of
the following conditions holds:

1. G ∈ Bn,k, but there is no variablex that dominatesf with balf (x) = k.

2. G consists of more than two blocks.

3. f is x-dominated withbalf (x) = 1.

Proof: Items 1 and 3 follow immediately from Lemmas 5.2 and 5.3, respectively.
Now assume thatG consists of more than two blocks. There are two possibilities:

Either all blocks share one bridge node or we have at least two bridge nodes. In both
cases our aim is to apply Lemma 5.2. This is not directly possible since Lemma 5.2
only speaks about networks with two blocks. Note however that if one cannot privately
compute a function on a given networkH, then one cannot privately compute it on any
subnetwork ofH. Hence, if we cannot privately compute a function on a networkH
with two blocks, we cannot privately compute it on any network that is obtained by
splitting up each of the two blocks into several new blocks.

First, we treat the case that there is only one bridge nodePx holding variablex.
Sincef is non-degenerate, for eitherx = 0 or x = 1 the function value depends on
input bits of at least two blocksB1 andB2. Let G′ be the network with two blocks
such that one block isB1 and the other block is the complete graph on the remaining
nodes with the bridge nodePx. If f could privately be computed onG, thenf could
also privately be computed onG′, but this contradicts Lemma 5.2.

14

Second, assume that there are two bridge nodes. Iff could privately be computed
on G, then there must be two variablesx andx′ that dominatef due to Lemma 5.2.
(Here, we again unite blocks to end up with two blocks as above.) This contradicts
Lemma 5.1. ut

Many well-known Boolean functions like and, or, majority, and parity are not dom-
inated and thus cannot privately be computed on non-2-connected networks.

Theorem 5.5 Let f be a non-degeneraten-ary Boolean function,n ≥ 5, that is dom-
inated byx with balf (x) = k > 1. Thenf can privately be computed onBn,k.

Proof: The protocol works the same as the one presented in Section 1.2. Letf be of
the form

f(x, y, z) =

{
g0(y) if x = 0 and
g1(z) if x = 1

for someg0 andg1. Thenf(x, y, z) = (x∧g0(y))∨(x∧g1(z)). Assume thaty contains
k variables andz containsn−k−1 variables. Let the bridge playerPx, which is part of
both components, holdx. We share thek variables ofy among thek remaining nodes
of the first component and then− k − 1 variables ofz among the remaining nodes of
the second component. Then we privately compute(x ∧ g0(y)) within the first block
and(x∧ g1(z)) within the second block. This can be done since both blocks consist of
at least three nodes. (Every Boolean function can privately be computed on a complete
network of at least three players [3] and henceforth on any 2-connected network with
at least three players.) Finally,Px knows the result.

It remains to prove the protocol is private. It is clearly private with respect to
all players except forPx, since no players needs to learn anything about(x ∧ g0(y))
or (x ∧ g1(z)). Let x = 0 (x = 1 follows analogously due to symmetry). Then
(x ∧ g1(z)) = 0 and thusPx does not learn anything aboutz. Furthermore,Px only
learns(x ∧ g0(y)) = g0(y) abouty, which is justf(x, y, z). ut

Note that when the conditions of Theorem 5.5 are not fulfilled, we can always
apply Theorem 5.4. Furthermore, there is no function on three or four variables that
can privately be computed on a non-2-connected network: Either the function is not
dominated or the balance is one.

6 Conclusions and open problems

We have investigated the relation between the connectivity of networks and the possi-
bility of computing functions by private protocols on these networks. Special emphasis
has been put on the amount of randomness needed.

We have presented a general simulation technique that allows us to transfer every
oblivious private protocol on an arbitrary network into an oblivious private protocol
on a givenk-connected network of the same size, wherek ≥ 2. The new protocol

15

needs
(
1 − k

n−1

)
· min

{
L, k−2

k−1
· (n2 − n) + L

k−1

}
additional random bits, whereL is

the total number of bits sent in the original protocol. A future goal is either to reduce
the number of additional random bits further or to prove general lower bounds.

The parity function can be computed on a cycle using only one random bit and only
one message per link. (Strictly speaking, an additional message per link is necessary
to broadcast the result in the end. However, we do not need to use any random bits
to encode this broadcast, hence we can assume thatn bits are sent altogether.) Thus,
1 + n − kn

n−1
≤ n − k + 1 random bits are sufficient to compute the parity function

on an arbitraryk-connected graph by a private protocol using our simulation. We
have strengthened this bound by showing that on everyk-connected graph, parity can
be computed by an oblivious private protocol using at most

⌈
n−2
k−1

⌉
− 1 random bits.

Furthermore, there existk-connected networks for which this bound is tight.
While every Boolean function can be computed on a 2-connected network by a

private protocol, this is no longer true for 1-connected networks. Starting from this
observation, we have completely characterised the functions that can be computed by
a private protocol on non-2-connected networks.

Our simulation results focus on the extra amount of randomness needed. It would
also be interesting to bound the number of rounds of the simulation in terms of the
number of rounds of the original protocol and, say, the diameter of the new network.

Acknowledgements

We thank Adi Rośen for fruitful discussions and hints to literature and Jan Arpe and
the anonymous referees for valuable comments that helped improve the presentation.

References

[1] Noga Alon, Joel H. Spencer, and Paul Erdös. The Probabilistic Method, chapter
Derandomization, pages 223–232. John Wiley and Sons, 1992.

[2] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing
in a constant number of rounds of interaction. InProc. of the 8th Ann. ACM
Symp. on Principles of Distributed Computing (PODC), pages 201–209, 1989.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. InProc. of the 20th
Ann. ACM Symp. on Theory of Computing (STOC), pages 1–10, 1988.

[4] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits.SIAM J. Comput., 13(4):850–864, 1984.

16

[5] Carlo Blundo, Alfredo de Santis, Giuseppe Persiano, and Ugo Vaccaro. Ran-
domness complexity of private computation.Comput. Complexity, 8(2):145–168,
1999.

[6] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Randomness
versus fault-tolerance.J. Cryptology, 13(1):107–142, 2000.

[7] Ran Canetti and Rafail Ostrovsky. Secure computation with honest-looking par-
ties: What if nobody is truly honest? InProc. of the 31st Ann. ACM Symp. on
Theory of Computing (STOC), pages 255–264, 1999.

[8] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols. InProc. of the 20th Ann. ACM Symp. on Theory of Computing
(STOC), pages 11–19, 1988.

[9] Benny Chor, Mih́aly Geŕeb-Graus, and Eyal Kushilevitz. On the structure of the
privacy hierarchy.J. Cryptology, 7(1):53–60, 1994.

[10] Benny Chor, Mih́aly Geŕeb-Graus, and Eyal Kushilevitz. Private computations
over the integers.SIAM J. Comput., 24(2):376–386, 1995.

[11] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy.SIAM J.
Discrete Math., 4(1):36–47, 1991.

[12] Benny Chor and Eyal Kushilevitz. A communication-privacy tradeoff for modu-
lar addition.Inform. Process. Lett., 45(4):205–210, 1993.

[13] Yoshimi Egawa, Rainer Glas, and Stephen C. Locke. Cycles and paths through
specified vertices ink-connected graphs.J. Combin. Theory Ser. B, 52:20–29,
1991.

[14] Matthew Franklin and Rebecca N. Wright. Secure communication in minimal
connectivity models.J. Cryptology, 13(1):9–30, 2000.

[15] Matthew Franklin and Moti Yung. Secure hypergraphs: Privacy from partial
broadcast. InProc. of the 27th Ann. ACM Symp. on Theory of Computing (STOC),
pages 36–44, 1995.

[16] Anna Ǵal and Adi Rośen. A theorem on sensitivity and applications in private
computation.SIAM J. Comput., 31(5):1424–1437, 2002.

[17] Anna Ǵal and Adi Rośen. Lower bounds on the amount of randomness in private
computation. InProc. of the 35th Ann. ACM Symp. on Theory of Computing
(STOC), pages 659–666, 2003.

[18] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

17

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. InProc.
of the 19th Ann. ACM Symp. on Theory of Computing (STOC), pages 218–229,
1987.

[20] Frank Harary.Graph Theory. Addison-Wesley, 1969.

[21] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function.SIAM J. Comput., 28(4):1364–
1396, 1999.

[22] Joe Kilian. More general completeness theorems for secure two-party compu-
tation. InProc. of the 32nd Ann. ACM Symp. on Theory of Computing (STOC),
pages 316–324, 2000.

[23] Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility
and completeness in private computations.SIAM J. Comput., 29(4):1189–1208,
2000.

[24] Eyal Kushilevitz. Privacy and communication complexity.SIAM J. Discrete
Math., 5(2):273–284, 1992.

[25] Eyal Kushilevitz and Yishay Mansour. Randomness in private computations.
SIAM J. Discrete Math., 10(4):647–661, 1997.

[26] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear size
circuits in terms of privacy.J. Comput. System Sci., 58(1):129–136, 1999.

[27] Eyal Kushilevitz and Adi Rośen. A randomness-rounds tradeoff in private com-
putation.SIAM J. Discrete Math., 11(1):61–80, 1998.

[28] Andrew Chi-Chih Yao. Protocols for secure computations. InProc. of the 23rd
Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pages 160–164,
1982.

[29] Andrew Chi-Chih Yao. How to generate and exchange secrets. InProc. of the
27th Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pages 162–
167, 1986.

18

