
Non-Approximability of Weighted Multiple

Sequence Alignment for Arbitrary Metrics

Bodo Manthey 1

Universität zu Lübeck, Institut für Theoretische Informatik
Ratzeburger Allee 160, 23538 Lübeck, Germany

Abstract

We prove that the multiple sequence alignment problem with weighted sum-of-pairs
score is APX-hard for arbitrary metric scoring functions over the binary alphabet.
This holds even when the weights are restricted to zero and one.

Key words: Computational biology, multiple sequence alignment, approximation
hardness, sum-of-pairs score

1 Introduction

The multiple sequence alignment problem (MSA) is one of the most funda-
mental problems in computational biology [10]. One of the most widely used
measures for scoring multiple sequence alignments is the sum-of-pairs score
(SP-score), which is the sum of pairwise distances of the sequences in this
alignment. MSA is the problem of finding an alignment with minimum SP-
score. Elias [3] proved MSA to be NP-hard for all metric scoring functions
over binary alphabets. The currently best approximation algorithm for MSA
with SP-score achieves an approximation ratio of 2− r

n
for any metric scoring

function [2]. Here, n is the number of sequences, and r is an arbitrary fixed
constant. It is unknown whether MSA admits a polynomial time approxima-
tion scheme [6].

Although widely used, the SP-score is no longer an appropriate measure for
multiple alignments if the evolutionary distances between the sequences are

Email address: manthey@tcs.uni-luebeck.de (Bodo Manthey).
URL: www.tcs.uni-luebeck.de/pages/manthey/ (Bodo Manthey).

1 Supported by DFG research grant RE 672/3.

Preprint submitted to Information Processing Letters

not evenly distributed. In this case, several highly correlated sequences may
dominate the whole alignment. This problem can be solved by using the
weighted SP-score [5], where we have a non-negative weight for each pair of
sequences. The weighted SP-score of an alignment is the sum of all pairwise
distances, each multiplied with the corresponding weight. We call the problem
of finding an alignment with minimum weighted SP-score weighted multiple
sequence alignment (WMSA). A restriction of WMSA is binary weighted mul-
tiple sequence alignment (BMSA), where the weights are restricted to zero and
one. BMSA is equivalent to generalised SP alignment [7]: In addition to the se-
quences, we have a subset of pairs of sequences whose pairwise alignments are
especially critical. The aim is to find an alignment that minimises the sum of
all pairwise alignments of pairs in this subset. Manthey [8] proved that BMSA
and WMSA are APX-hard for a three-letter alphabet and one specific metric
scoring function. WMSA can be approximated with factor O(log n), where n
is the number of sequences, due to work by Wu et al. [11] and Fakcharoenphol
et al. [4].

We will prove the following theorem.

Theorem 1 For every metric scoring function and every alphabet that con-
tains at least two letters, WMSA and BMSA are APX-hard.

Throughout the paper, we restrict ourselves to considering WMSA. For any
fixed scoring function, the weights used in our proofs are at most linear in the
number of sequences. Thus, the APX-hardness holds for BMSA as well, since
WMSA with polynomially bounded weights and BMSA are equivalent with
respect to their approximability [8].

2 Preliminaries

Let Σ be an alphabet and Σ′ = Σ ∪ {-}, where - /∈ Σ denotes the gap. Let
S be a sequence of length ` over Σ, then S = S[1]S[2] . . . S[`] with S[k] ∈ Σ.
Let S = {S1, S2, . . . , Sn} be a multiset of sequences. An alignment of S is
a multiset A = {S̃1, S̃2, . . . , S̃n} of sequences over Σ′, such that all S̃i are of
equal length `A and S̃i is obtained from Si only by inserting gaps.

Let d : Σ′ × Σ′ → R+
0 be a scoring function. We allow arbitrary metrics as

scoring functions, i.e. for all x, y, z ∈ Σ′, we have d(x, y) ≥ 0 with d(x, y) = 0
if and only if x = y, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z). Given
an alignment A of S, the cost of two sequences Si and Sj is

DA(Si, Sj) =
`A∑

k=1

d(S̃i[k], S̃j[k]) .

2

We omit the index A when the alignment we are speaking of is clear. Further-
more, we have non-negative integer weights W = (WSi,Sj

)Si,Sj∈S . The weighted
SP-score of the alignment A is

DW (A) =
∑

1≤i<j≤n

WSi,Sj
·DA(Si, Sj) .

We omit the index W if the weight matrix is clear. WMSA is the optimisa-
tion problem of finding an alignment with minimum weighted SP-score. If we
restrict the weights to zero and one, we obtain BMSA. By setting all weights
to one, we obtain MSA.

Let us now fix some terms that we will frequently use in the next section. Let
again A = {S̃1, . . . , S̃n} be an alignment of S = {S1, . . . , Sn}. Let k̃ be the
position where Si[k] occurs in S̃i. We say that Si[k] matches Sj[k

′] if k̃ is also
the position where Sj[k

′] occurs in S̃j. We say that Si[k] matches a gap in Sj

if S̃j[k̃] = -. If no letter of Si matches a gap in Sj and no letter of Sj matches
a gap of Si, we say that Si and Sj are identically aligned. When some letter
matches a different letter (but not a gap) in some other sequence, we call this
a mismatch. In the following alignment, the N matching the O is a mismatch,
and the other N matches a gap.

A L I G N M E N T - -

A L - G O R I - T H M

3 Proof

We will now give the proof of Theorem 1, which was stated in the introduction.
Throughout the paper, we consider the alphabet {0, 1}. The scoring function
d will be given as δ0 = d(0, -), δ1 = d(1, -), and α = d(0, 1). Without loss of
generality we assume 1 ≤ δ1 ≤ δ0 and 1 ≤ α. We start by considering scoring
functions with α < δ0 + δ1 and postpone the case α = δ0 + δ1 to Section 3.2.

We reduce from Max-Cut, which is APX-complete [9]. Max-Cut is the following
optimisation problem: Given an undirected graph G = (V, E), we ask for a
subset Ṽ ⊆ V that maximises the number of edges connecting Ṽ to V \ Ṽ .
Throughout this work, G = (V, E) is a graph with node set V = {v1, . . . , vn}
and edge set E of cardinality m. Node vi has degree γi and is incident with
the edges ei,1, ei,2, . . . , ei,γi

(in arbitrary order).

3

3.1 The case α < δ0 + δ1

Let η = min{1, δ0 + δ1 −α} > 0. We construct a set of sequences that depend
on a parameter κ. This parameter depends on the scoring function, and we
will set its value later on.

• We have one control sequence Z = 000 . . . 000 of length 4κ + 4.
• For each node vi ∈ V , we have a sequence Xi = 1 000 . . . 000 1 of length

4κ + 5 containing 4κ + 3 0s.
• Let ei,j = ei′,j′ = {vi, vi′} be any edge of G. (Without loss of generality we

assume i < i′.) We represent this edge by two sequences

Yi,j = 1 00 . . . 00︸ ︷︷ ︸
(κ+1) 0s

01010 . . . 1010︸ ︷︷ ︸
κ 1s and (κ+1) 0s

00 . . . 00︸ ︷︷ ︸
(κ+1) 0s

1 and

Yi′,j′ = 1 00 . . . 00︸ ︷︷ ︸
(κ+1) 0s

10101 . . . 0101︸ ︷︷ ︸
(κ+1) 1s and κ 0s

00 . . . 00︸ ︷︷ ︸
(κ+1) 0s

1 .

Let S be the set of all sequences thus constructed.

The weights between the sequences are as follows (we will specify w later):

• For i ∈ {1, . . . , n}, we set WZ,Xi
= γiw.

• For i ∈ {1, . . . , n} and j ∈ {1, . . . , γi}, we set WXi,Yi,j
= w.

• For all edges ei,j = ei′,j′ of G, we set WYi,j ,Yi′,j′
= 1.

• All pairs not mentioned have weight 0.

We call an alignment A of S consistent with ei,j = ei′,j′ if

• Xi and Yi,j are identically aligned,
• Xi′ and Yi′,j′ are identically aligned,
• only either the first or the last character of Xi matches a gap in Z, and
• only either the first or the last letter of Xi′ matches a gap in Z.

We call an alignment consistent if it is consistent with all edges in E.

If an alignment is consistent with ei,j = ei′,j′ , then Yi,j and Yi′,j′ are either
identically aligned or they are displaced by one position (as Y1,1 and Y2,1 in
Figure 1 are). We obtain a subset Ṽ ⊆ V from a consistent alignment by
considering the Xi: If the first letter of an Xi matches a gap in Z, then we
have vi ∈ Ṽ . If the last letter of the Xi matches a gap in Z, we have vi /∈ Ṽ .
See Figure 1 for an example. If, for an edge ei,j = ei′,j′ , Yi,j and Yi′,j′ are
identically aligned (meaning that either vi, vi′ ∈ Ṽ or vi, vi′ /∈ Ṽ), they cost
(2κ + 1) ·α. If they are displaced by one position (meaning that either vi ∈ Ṽ
or vi′ ∈ Ṽ), they cost 3α + 2δ1. Let ∆κ = (2κ + 1) ·α− (3α + 2δ1). We choose
κ sufficiently large such that ∆κ becomes positive. Then having exactly one

4

v1

v2

e1,1 = e2,1

Z = - 0 0 0 0 0 0 0 0 0 0 0 0 -

X1 = 1 0 0 0 0 0 0 0 0 0 0 0 1 -

Y1,1 = 1 0 0 0 0 1 0 1 0 0 0 0 1 -

Y2,1 = - 1 0 0 0 1 0 1 0 1 0 0 0 1

X2 = - 1 0 0 0 0 0 0 0 0 0 0 0 1

Fig. 1. A simple graph and a consistent alignment for κ = 2 representing Ṽ = {v1}.

of vi and vi′ in Ṽ is cheaper than having both or none of them in Ṽ .

For all edges e = ei,j = ei′,j′ of G, we define

De = D(Xi, Z) + D(Xi, Yi,j) + D(Xi′ , Z) + D(Xi′ , Yi′,j′) .

Then
D(A) =

∑
e=ei,j=ei′,j′∈E

w ·De + D(Yi,j, Yi′,j′) .

The costs γiw · D(Xi, Z) of Xi with Z are equally distributed among the γi

edges incident with vi. We define Kκ = (2κ + 3) · α + 2δ1.

Claim 2 If A is consistent with e, then De = Kκ. Otherwise, De ≥ Kκ + η.

PROOF. Let e = ei,j = ei′,j′ . If A is consistent with e, we have D(Xi, Yi,j) =
κα, D(Xi′ , Yi′,j′) = (κ + 1) · α, and D(Xi, Z) = D(Xi′ , Z) = α + δ1.

If A is not consistent with ei,j, we have four possibilities: Xi and Yi,j, Xi and
Z, Xi′ and Yi′,j′ , or Xi′ and Z are inconsistently aligned. Due to symmetry,
we only consider the first two cases.

We start with the first case. There is at least one letter of Xi matching a gap
in Yi,j and one letter in Yi,j matching a gap in Xi. We call all 1s except for the
first and the last of each sequence internal 1s. If all internal 1s in Yi,j match
0s in Xi, we are done: The internal 1s cost at least κα, and additionally we
have costs of at least 2δ1 for the two gaps. If an internal 1 in Yi,j matches a 1
in Xi, then we have at least κ 0s and one 1 in Yi,j matching gaps in Xi, which
costs at least κδ0 +δ1, and at least κ+1 letters in Xi match gaps in Yi,j, which
costs at least (κ + 1) · δ1.

The case that remains to be considered is that an internal 1 of Yi,j matches a
gap in Xi. For every such 1, there is also one letter in Xi matching a gap in
Yi,j. If that letter is a 0, we are done, since δ0 + δ1 ≥ α + η. If that letter is a
1, then the first or last 1 of Yi,j matches a 0 in Xi (if it matches a gap again,
there must be another letter in Xi matching a gap in Yi,j). Thus, every such
1 results in costs of at least α + 2δ1.

5

Now we turn to the case that Xi and Z are not consistently aligned. Then
either both 1s of Xi match a 0 in Z (then still at least one 0 of Xi matches
a gap in Z) or there is a 0 in Z that matches a gap in Xi. In the former
case, we have D(Xi, Z) ≥ 2α + δ0. In the latter case, we have D(Xi, Z) ≥
δ1 + min{δ1, α}+ δ0. 2

Claim 3 Let A be an arbitrary alignment. We can construct a consistent
alignment Ã with D(Ã) ≤ D(A) in polynomial time.

PROOF. Let I ⊆ E be the set of edges e such that A is not consistent with e.
Let e = ei,j = ei′,j′ be any edge. Due to Claim 2, we have De = Kκ for e /∈ I and
De ≥ Kκ+η for e ∈ I. IfA is consistent with e, then D(Yi,j, Yi′,j′) ≤ (2κ+1)·α.

For all e ∈ I, we realign Xi, Xi′ , Yi,j, and Yi′,j′ to obtain a consistent align-
ment Ã. (For both vi and vi′ , we choose arbitrarily whether to put them into
Ṽ or not.) This decreases De by at least η due to Claim 2. On the other
hand, no D(Yi,j, Yi′j′) increases by more than (2κ + 1) · α − (δ0 + δ1). For

w =
⌈

(2κ+1)·α−δ0−δ1

η

⌉
, no w ·De + D(Yi,j, Yi′,j′) increases, which completes the

proof. 2

We have a consistent alignment with cost

wmKκ + (2κ + 1) · α · (m− c) + (2δ1 + 3α) · c
= (wKκ + (2κ + 1) · α) ·m−∆κ · c ,

if and only if the graph G has a cut of size c.

Lemma 4 WMSA is APX-hard for the binary alphabet and all scoring func-
tions d fulfilling d(0, 1) < d(0, -) + d(-, 1).

PROOF. We show that the reduction presented above is an L-reduction [9]
(see also Ausiello et al. [1, Def. 8.4]). Let opt(S) be the cost of an optimal
alignment and opt(G) be the size of a maximum cut. We have opt(S) ≤
(wKκ + (2κ + 1) · α) ·m by the choice of κ and opt(G) ≥ m

2
, since any graph

with m edges has a cut of size at least m
2
. Thus, opt(S) ≤ 2 · (wKκ + (2κ +

1) · α) · opt(G).

On the other hand, let A be any alignment with cost D(A). We can construct
a consistent alignment Ã with D(Ã) ≤ D(A) in polynomial time. This align-
ment yields a subset Ṽ of the nodes, which yields a cut of size c. Then we
have | opt(G)− c| = 1

∆κ
· |D(Ã)− opt(S)| ≤ 1

∆κ
· |D(A)− opt(S)|. 2

6

3.2 The case α = δ0 + δ1

Now we turn to scoring functions with α = δ0 + δ1. The difficulty is that a
substitution can be explained by an insertion plus a deletion. The result is
that we cannot guarantee consistency when applying the reduction presented
in the previous section. Thus, we present a slightly different reduction from
Max-Cut.

Given a graph as in the previous sections, we create sequences as follows:

• We have three control sequences

Zshort = 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 ,

Zmed = 00 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 00 , and

Zlong = 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 .

• For each node vi ∈ V , we have a sequence

Xi = 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 .

• Let ei,j = ei′,j′ = {vi, vi′} be any edge of G and i < i′. We represent this
edge by two sequences (the spaces are only for readability):

Yi,j = 1 0000 1 0000 1 1 0000 1 1 0000 1 0000 1 ,

Yi′,j′ = 1 0000 1 1 0000 1 1 0000 1 1 0000 1 .

The weights between the sequences are as follows (we will again specify w
later on):

• We set WZshort,Zmed
= WZmed,Zlong

= mw.
• For i ∈ {1, . . . , n}, we set WZshort,Xi

= WZlong,Xi
= γiw.

• For i ∈ {1, . . . , n} and j ∈ {1, . . . , γi}, we set WXi,Yi,j
= w.

• For all edges ei,j = ei′,j′ of G, we set WYi,j ,Yi′,j′
= 1.

• All pairs not mentioned have weight 0.

We need a slightly different notion of consistency. An alignment is now called
consistent with ei,j = ei′,j′ if the following properties hold:

• All 0s and 1s in Zshort match 0s and 1s, respectively, in Zmed. All 0s and 1s
in Zmed match 0s and 1s, respectively, in Zlong.

• One of the following two cases holds for Xi:
· The first five letters of Xi match gaps in Zshort, and the last five letters of

Zlong match gaps in Xi. This corresponds to vi ∈ Ṽ .

7

Zshort = - - - - -1000010000100001000010000100001 - - - - -

Zmed = - - -00100001000010000100001000010000100 - - -

Zlong = 10000100001000010000100001000010000100001

X1 = 100001000010000100001000010000100001 - - - - -

Y1,1 = 10000100001 - - - -100001 - - - -10000100001 - - - - -

Y2,1 = - - - - -100001 - - - -100001 - - - -100001 - - - -100001

X2 = - - - - -100001000010000100001000010000100001

Fig. 2. A consistent alignment representing Ṽ = {v1} for the graph shown in Fig-
ure 1.

· The last five letters of Xi match gaps in Zshort, and the first five letters of
Zlong match gaps in Xi. This corresponds to vi /∈ Ṽ .

All other letters in Xi, Zshort, and Zlong match equal letters in the other two
sequences.

The same condition holds for Xi′ .
• All letters in Yi,j match equal letters in Xi. The same holds for Yi′,j′ and

Xi′ .

We call an alignment consistent if it is consistent with all edges. See Figure 2
for an example.

Let e = ei,j = ei′,j′ be any edge and A be any alignment. We define

De = D(Zshort, Zmed) + D(Zmed, Zlong) + D(Xi, Yi,j) + D(Xi′ , Yi′,j′)

+D(Xi, Zshort) + D(Xi, Zlong) + D(Xi′ , Zshort) + D(Xi′ , Zlong) .

Then we have

D(A) =
∑

e=ei,j=ei′,j′∈E

w ·De + D(Yi,j, Yi′,j′) .

The costs γiw · (D(Xi, Zshort) + D(Xi, Zlong)) are equally distributed among
the γi edges incident with vi. The costs mw · (D(Zshort, Zmed)+D(Zmed, Zlong))
are equally distributed among all m edges.

Claim 5 If Zshort, Zmed, and Zlong are consistently aligned, then we have
D(Zshort, Zmed) + D(Zmed, Zlong) = 8δ0 + 2δ1. Otherwise, D(Zshort, Zmed) +
D(Zmed, Zlong) ≥ 8δ0 + 3δ1.

PROOF. If Zshort, Zmed, and Zlong are consistently aligned, then we have
D(Zshort, Zmed) = 4δ0 and D(Zmed, Zlong) = 4δ0 + 2δ1. In every alignment, we

8

have D(Zshort, Zmed) ≥ 4δ0 and D(Zmed, Zlong) ≥ 4δ0 + 2δ1.

Assume that Zshort and Zmed are not consistently aligned. We prove that then
D(Zshort, Zmed) ≥ 4δ0 + δ1. Assume that there is a mismatch, which costs
α = δ0 + δ1. Additionally, at least three 0s in Zmed cannot match 0s in Zshort,
which costs at least 3δ0. If there is no mismatch, at least one letter in Zshort

matches a gap in Zmed, which costs at least δ1. Additionally, at least four 0s
in Zmed cannot match 0s in Zshort, which costs at least 4δ0.

The proof that Zmed and Zlong cost at least 4δ0+3δ1, if they are not consistently
aligned, is very similar, and we therefore omit it. 2

Claim 6 Assume that Zshort and Zlong are consistently aligned. If Xi is con-
sistently aligned with Zshort and Zlong, then D(Xi, Zshort) + D(Xi, Zlong) =
8δ0 + 2δ1. If Xi is not consistently aligned with Zshort and Zlong, then the cost
is at least δ1 higher.

PROOF. If Xi is consistently aligned with both Zshort and Zlong, then we
have D(Xi, Zshort) = D(Xi, Zlong) = 4δ0 + δ1. In every alignment, we have
D(Xi, Zshort) ≥ 4δ0 + δ1 and D(Xi, Zlong) ≥ 4δ0 + δ1.

Assume that Xi is not consistently aligned with Zshort and Zlong. Since Zshort

and Zlong are assumed to be consistently aligned, any mismatch of Xi with
Zshort results in a mismatch of Xi with Zlong.

Assume that there is a mismatch between Xi and Zlong, which costs α. Ad-
ditionally, five letters of Zlong, at least three of them 0s, cannot match equal
letters in Xi, which costs at least 3δ0 + 2δ1. Overall, D(Xi, Zlong) ≥ 4δ0 + 3δ1.
If there is no mismatch, some letter in Zshort matches a gap in Xi or some
letter in Xi matches a gap in Zlong, which costs at least δ1. In the first case,
there are at least six letters in Xi that cannot match equal letters in Zshort. At
least four of them are 0s. We obtain D(Xi, Zshort) ≥ 4δ0 + 3δ1. In the second
case, there are at least six letters in Zlong that cannot match equal letters in
Xi. At least four of them are 0s. We obtain D(Xi, Zlong) ≥ 4δ0 + 3δ1. 2

The proof of the following claim is obvious and therefore omitted.

Claim 7 Let ei,j = ei′,j′ ∈ E with i < i′. If Xi and Yi,j are consistently aligned,
then D(Xi, Yi,j) = 8δ0. Otherwise, D(Xi, Yi,j) ≥ 8δ0 + δ1. If Xi′ and Yi′,j′

are consistently aligned, then D(Xi′ , Yi′,j′) = 12δ0. Otherwise, D(Xi′ , Yi′,j′) ≥
12δ0 + δ1.

9

In any consistent alignment and for any edge e = ei,j = ei′,j′ , we have

De = 8δ0 + 2δ1︸ ︷︷ ︸
Zshort,Zmed,Zlong

+ 2 · (8δ0 + 2δ1)︸ ︷︷ ︸
Xi, Xi′ with Zshort, Zlong

+ 20δ0︸ ︷︷ ︸
D(Xi,Yi,j)+D(Xi′ ,Yi′,j′)

= 44δ0 + 6δ1 .

Furthermore, we have D(Yi,j, Yi′,j′) = 20δ0 if either vi, vi′ ∈ Ṽ or vi, vi′ /∈ Ṽ ,
and D(Yi,j, Yi′,j′) = 12δ0 + 2δ1 if exactly one of vi and vi′ is in Ṽ . (We have
12δ0 + 2δ1 < 20δ0, since δ1 ≤ δ0.)

Claim 8 Let A be an arbitrary alignment. We can construct a consistent
alignment Ã with D(Ã) ≤ D(A) in polynomial time.

PROOF. Let I ⊆ E be the set of edges e such that A is not consistent
with e. Due to Claims 5, 6, and 7, we have De = 44δ0 + 6δ1 for e /∈ I and
De ≥ 44δ0 + 7δ1 for e ∈ I.

Let e = ei,j = ei′,j′ ∈ I. If A is consistent with e, we have D(Yi,j, Yi′,j′) ≤ 20δ0.
We now realign Xi, Xi′ , Yi′,j′ , and Yi′,j′ . If necessary, we realign Zshort, Zmed,
Zlong as well (this can be done without increasing any edge costs for edges
that A is consistent with). This is done in such a manner that we obtain a
consistent alignment. (For both vi and vi′ , we choose arbitrarily whether to
put them into Ṽ or not.)

For e ∈ I, the transformations that are made decrease De by at least wδ1

while D(Yi,j, Yi′,j′) increases by at most 20δ0. Setting w =
⌈

20δ0

δ1

⌉
completes

the proof. 2

The reduction presented in this section turns out again to be an L-reduction.
Thus, we obtain the following lemma, which completes the proof of Theorem 1.

Lemma 9 WMSA and BMSA are APX-hard for the binary alphabet and all
scoring functions d with d(0, 1) = d(0, -) + d(-, 1).

Acknowledgement

I thank Jan Arpe and Martin Böhme for valuable discussions and careful
proofreading.

10

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
M. Protasi, Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties, Springer, 1999.

[2] V. Bafna, E. L. Lawler, P. A. Pevzner, Approximation algorithms for multiple
sequence alignment, Theoretical Computer Science 182 (1–2) (1997) 233–244.

[3] I. Elias, Settling the intractability of multiple alignment, in: T. Ibaraki,
N. Katoh, H. Ono (Eds.), Proc. of the 14th Ann. Int. Symp. on Algorithms
and Computation (ISAAC), Vol. 2906 of Lecture Notes in Computer Science,
Springer, 2003, pp. 352–363.

[4] J. Fakcharoenphol, S. Rao, K. Talwar, A tight bound on approximating
arbitrary metrics by tree metrics, Journal of Computer and System Sciences
69 (3) (2004) 485–497.

[5] O. Gotoh, A weighting system and algorithm for aligning many phylogenetically
related sequences, Computer Applications in the Biosciences (CABIOS) 11 (5)
(1995) 543–551.

[6] T. Jiang, P. E. Kearney, M. Li, Some open problems in computational molecular
biology, Journal of Algorithms 34 (1) (2000) 194–201.

[7] G. Lancia, Optimization problems in computational molecular biology,
Ph.D. thesis, Graduate School of Industrial Administration, Carnegie Mellon
University (May 1997).

[8] B. Manthey, Non-approximability of weighted multiple sequence alignment,
Theoretical Computer Science 296 (1) (2003) 179–192.

[9] C. H. Papadimitriou, M. Yannakakis, Optimization, approximation, and
complexity classes, Journal of Computer and System Sciences 43 (3) (1991)
425–440.

[10] P. A. Pevzner, Computational Molecular Biology: An Algorithmic Approach,
MIT Press, 2000.

[11] B. Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, C. Y. Tang, A polynomial-
time approximation scheme for minimum routing cost spanning trees, SIAM
Journal on Computing 29 (3) (1999) 761–778.

11

