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Abstract
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1 Introduction

A cycle cover of a graph is a spanning subgraph that consists solely of cycles
such that every vertex is part of exactly one cycle. Cycle covers are an impor-
tant tool for the design of approximation algorithms for different variants of
the traveling salesman problem [3, 5, 6, 9–12, 21], for the shortest common su-
perstring problem from computational biology [8, 28], and for vehicle routing
problems [18].

In contrast to Hamiltonian cycles, which are special cases of cycle covers, cycle
covers of minimum weight can be computed efficiently. This is exploited in the
above mentioned algorithms, which in general start by computing a cycle cover
and then join cycles to obtain a Hamiltonian cycle (this technique is called
subtour patching [14]).

Short cycles limit the approximation performances achieved by such algo-
rithms. Roughly speaking, the longer the cycles in the initial cover, the better
the approximation ratio. Thus, we are interested in computing cycle covers
without short cycles. Moreover, there are algorithms that perform particu-
larly well if the cycle covers computed do not contain cycles of odd length [5].
Finally, some vehicle routing problems [18] require covering vertices with cy-
cles of bounded length. Therefore, we consider restricted cycle covers, where
cycles of certain lengths are ruled out a priori: For a set L ⊆ N, an L-cycle
cover is a cycle cover in which the length of each cycle is in L.

Unfortunately, computing L-cycle covers is NP-hard for almost all sets L [20,
23]. Thus, in order to fathom the possibility of designing approximation al-
gorithms based on computing cycle covers, our aim is to find out how well
L-cycle covers can be approximated.

Beyond being a basic tool for approximation algorithms, cycle covers are in-
teresting in their own right. Matching theory and graph factorization are im-
portant topics in graph theory. The classical matching problem is the problem
of finding one-factors, i. e., spanning subgraphs in which every vertex is in-
cident to exactly one edge. Cycle covers of undirected graphs are also called
two-factors since every vertex is incident to exactly two edges in a cycle cover.
Both structural properties of graph factors and the complexity of finding graph
factors have been the topic of a considerable amount of research (cf. Lovász
and Plummer [22] and Schrijver [27]).
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1.1 Preliminaries

Let G = (V, E) be a graph with vertex set V and edge set E. If G is undirected,
then a cycle cover of G is a subset C ⊆ E of the edges of G such that all
vertices in V are incident to exactly two edges in C. If G is a directed graph,
then a cycle cover of G is a subset C ⊆ E such that all vertices are incident
to exactly one incoming and one outgoing edge in C. Thus, the graph (V, C)
consists solely of vertex-disjoint cycles. The length of a cycle is the number of
edges it consists of. We are concerned with simple graphs, i. e., the graphs that
do not contain multiple edges or loops. Thus, the shortest cycles of undirected
and directed graphs are of length three and two, respectively. We call a cycle
of length λ a λ-cycle for short.

An L-cycle cover of an undirected graph is a cycle cover in which the length
of every cycle is in the set L ⊆ U = {3, 4, 5, . . .}. An L-cycle cover of a directed
graph is analogously defined except that L ⊆ D = {2, 3, 4, . . .}. A special case
of L-cycle covers are k-cycle covers, which are {k, k + 1, . . .}-cycle covers.
Let L = U \L in the case of undirected graphs, and let L = D \L in the case
of directed graphs (whether we consider undirected or directed cycle covers
will be clear from the context).

Given edge weights w : E → N, the weight w(C) of a subset C ⊆ E of the
edges of G is w(C) =

∑
e∈C w(e). In particular, this defines the weight of a

cycle cover since we view cycle covers as sets of edges.

Min-L-UCC is the following optimization problem: Given an undirected
complete graph with non-negative edge weights that satisfy the triangle in-
equality (w({u, v}) ≤ w({u, x})+w({x, v}) for all u, x, v ∈ V ) find an L-cycle
cover of minimum weight. Min-k-UCC is defined for k ∈ U like Min-L-UCC
except that k-cycle covers rather than L-cycle covers are sought. The trian-
gle inequality is not only a natural restriction, it is also necessary: If finding
L-cycle covers in graphs is NP-hard, then Min-L-UCC without the triangle
inequality does not allow for any approximation at all. This can be seen by re-
duction from the decision problem whether a graph contains an L-cycle cover
(the proof is similar to the inapproximability of the traveling salesman problem
without triangle inequality [26]): Given an instance G = (V, E) for which we
want to decide whether it contains an L-cycle cover, create a complete graph
on V with weights w(e) = 1 if e ∈ E and w(e) = α for some large α � n. If
G possesses an L-cycle cover, then the new graph possesses an L-cycle cover
of weight n. Otherwise, any L-cycle cover of the new graph has a weight of at
least α.

Min-L-DCC and Min-k-DCC are defined for directed graphs like Min-L-
UCC and Min-k-UCC for undirected graphs except that L ⊆ D and k ∈ D and
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the triangle inequality is of the form w(u, v) ≤ w(u, x) + w(x, v). Again, the
triangle inequality is mandatory for the existence of approximation algorithms.

Finally, Max-L-UCC, Max-k-UCC, Max-L-DCC, and Max-k-DCC are
analogously defined except that cycle covers of maximum weight are sought
and that the edge weights do not have to fulfill the triangle inequality.

1.2 Previous Results

Min-U -UCC, i. e., the undirected cycle cover problem without any restrictions,
can be solved in polynomial time via Tutte’s reduction to the classical perfect
matching problem [22]. By a modification of an algorithm of Hartvigsen [17],
also 4-cycle covers of minimum weight in graphs with edge weights one and
two can be computed efficiently. For Min-k-UCC restricted to graphs with
edge weights one and two, there exists a factor 7/6 approximation algorithm
for all k [7]. Hassin and Rubinstein [19] presented a randomized approximation
algorithm for Max-{3}-UCC that achieves an approximation ratio of 83/43+ε.
Max-L-UCC admits a factor 2 approximation algorithm for arbitrary sets
L [23]. Goemans and Williamson [15] showed that Min-k-UCC and Min-{k}-
UCC can be approximated with a factor of 4. Min-L-UCC is NP-hard and
APX-hard if L 6⊆ {3}, i. e., for all but a finite number of sets L [20,23,29]. This
means that for almost all L, these problems are unlikely to possess polynomial-
time approximation schemes (PTAS, see Ausiello et al. [2] for a definition).

Min-D-DCC, which is also known as the assignment problem, can be solved
in polynomial time by a reduction to the minimum weight perfect matching
problem in bipartite graphs [1]. The only other L for which Min-L-DCC can
be solved in polynomial time is L = {2}. For all L ⊆ D with L 6= {2} and
L 6= D, Min-L-DCC and Max-L-DCC are APX-hard and NP-hard, even if
only two different edge weights are allowed [23]. There is a 4/3 approximation
algorithm for Max-3-DCC [6] as well as for Min-k-DCC for k ≥ 3 with the
restriction that the only edge weights allowed are one and two [4]. Max-L-DCC
can be approximated with a factor of 8/3 for all L [23].

1.3 New Results

While L-cycle covers of maximum weight allow for constant factor approxi-
mations, only little is known so far about the approximability of computing
L-cycle covers of minimum weight. Our aim is to close this gap.

We prove that approximation algorithms exist for Min-L-UCC for all sets
L ⊆ U . The approximation ratios achieved are constant; they depend only on
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the set L (Section 2.1). More specifically, we present an algorithm into which
a finite set L′ ⊆ U is “hardwired” that achieves constant approximation ratio
for Min-L′-UCC. Given a set L, our algorithm, equipped with an appropriate
L′ ⊆ L, yields also an approximation algorithm for Min-L-UCC.

On the other hand, we show that the problem cannot be approximated with
a factor of 2− ε for general L (Section 2.2).

Then we transfer our results to Min-L-DCC, for which we achieve a ratio of
O(n), where n is the number of vertices (Section 3.1). This is asymptotically
optimal: There exist sets L for which no algorithm can approximate Min-L-
DCC with a factor of o(n) (Section 3.2).

Finally, to contrast our results for Min-L-UCC and Min-L-DCC, we show that
Max-L-UCC and Max-L-DCC can be approximated arbitrarily well at least
in principle (Section 4).

2 Approximability of Min-L-UCC

2.1 An Approximation Algorithm for Min-L-UCC

The aim of this section is to prove the existence of approximation algorithms
for Min-L-UCC for all sets L ⊆ U . The catch is that for most L it is impossible
to decide whether some cycle length is in L since there are uncountably many
sets L: If, for instance, L is not a recursive set, then deciding if a cycle cover
is an L-cycle cover is impossible. One option would be to restrict ourselves to
sets L such that the unary language {1λ | λ ∈ L} is in P. For such L, Min-
L-UCC and Min-L-DCC are NP optimization problems (see Ausiello et al. [2]
for a definition). Another possibility for circumventing the problem would be
to include the permitted cycle lengths in the input. While such restrictions
are mandatory if we want to compute optimum solutions, they are not needed
for our approximation algorithms.

A complete n-vertex graph contains an L-cycle cover as a spanning subgraph
if and only if there exist (not necessarily distinct) lengths λ1, . . . , λk ∈ L for
some k ∈ N with

∑k
i=1 λi = n. We call such an n L-admissible and define

〈L〉 = {n | n is L-admissible}. Although L might not be a recursive set, 〈L〉
allows efficient membership testing according to the following lemma.

Lemma 2.1 (Manthey [23, Lem. 3.1]) For all L ⊆ N, there exists a finite
set L′ ⊆ L with 〈L′〉 = 〈L〉.

In the following, L will always the set of cycle lengths we are actually in-
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terested in, while L′ ⊆ L will be a finite set according to the lemma above.
Unfortunately, there is no effective way of obtaining a finite set L′ from L.
In this sense, the proof of approximability is nonconstructive, similar to the
nonconstructive proof that any minor-closed family of graphs can be decided
in polynomial time [13]. But at least for many “natural” sets L, an appropri-
ate finite subset L′ can be found easily: If L itself is finite, then, of course,
L = L′ will do. If L is finite, then L′ can also be found easily. More generally, if
the set L contains exactly all multiples of a certain number g above a certain
threshold p (it can contain any subset of the numbers smaller than p), then
L′ can also be computed easily.

To cope with this problem, we always assume that the finite set L′ is given
and hardwired into our algorithm. Since there are only countably many finite
sets L′, we obtain a countable number of approximation algorithms for an
uncountable number of optimization problems. Then we prove that this algo-
rithm achieves a constant approximation ratio for Min-L-UCC for any L ⊇ L′

with 〈L〉 = 〈L′〉.

Let gL be the greatest common divisor of all numbers in L. Then 〈L〉 is a
subset of the set of natural numbers divisible by gL. The proof of Lemma 2.1
shows that there exists a minimum pL ∈ N such that ηgL ∈ 〈L〉 for all η > pL.
The number pL is the Frobenius number [25] of the set {λ | gLλ ∈ L}, which
is L scaled down by gL. For instance, if L = {8, 10}, then gL = 2 and pL = 11
since the Frobenius number of {4, 5} is 11.

In the remainder of this section, we will allow 2-cycles, where an undirected
2-cycle consisting of vertices u and v contains the edge {u, v} twice. (It also
contributes twice its weight to the weight of the cycle cover.) We allow 2-cycles
in order to be prepared for the directed variant of the problem (Section 3.1).

In the following, L ⊆ U ∪{2} = D will be arbitrary, and L′ ⊆ L will be chosen
as to fulfill Lemma 2.1. Note that pL = pL′ and gL = gL′ . We compare the
weight of the L′-cycle cover computed to the weight of an optimal 〈L′〉-cycle
cover to bound the approximation ratio. Every L′-cycle cover is also an L-
cycle cover. Furthermore, L ⊆ 〈L〉 = 〈L′〉. Thus, the weight of an optimum
〈L′〉-cycle cover is no greater than the weight of an optimum L-cycle cover.
Thus, the ratio of the weight of the cycle cover computed and the weight of the
optimum 〈L′〉-cycle cover will provide an upper bound for the approximation
ratio for Min-L-UCC.

Goemans and Williamson have presented a technique for approximating con-
strained forest problems [15], which we will exploit. Let G = (V, E) be an
undirected graph, and let w : E → N be non-negative edge weights. Let 2V

denote the power set of V . A function f : 2V → {0, 1} is called a proper
function if it satisfies
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• f(S) = f(V \ S) for all S ⊆ V (symmetry),
• if A and B are disjoint, then f(A) = f(B) = 0 implies f(A ∪ B) = 0

(disjointness), and
• f(V ) = 0.

The aim is to find a set F of edges such that there is an edge connecting S to
V \ S for all S ⊆ V with f(S) = 1. (The name “constrained forest problems”
comes from the fact that it suffices to consider forests as solutions; cycles only
increase the weight of a solution.) For instance, the minimum spanning tree
problem corresponds to the proper function f with f(S) = 1 for all S with
∅ ( S ( V .

Goemans and Williamson have presented an approximation algorithm [15,
Fig. 1] for constrained forest problems that are characterized by proper func-
tions. We will refer to their algorithm as GoeWill.

Theorem 2.2 (Goemans, Williamson [15, Thm. 2.4]) Let ` be the num-
ber of vertices v with f({v}) = 1. Then GoeWill is a (2− 2

`
)-approximation

for the constrained forest problem defined by a proper function f .

In particular, the function fL′ given by

fL′(S) =

 1 if |S| 6≡ 0 (mod gL′) and

0 if |S| ≡ 0 (mod gL′)

is proper if |V | = n is divisible by gL′ . (If n is not divisible by gL′ , then G
does not contain an L′-cycle cover at all.) Given this function, a solution is
a forest H = (V, F ) such that the size of every connected component of H is
a multiple of gL′ . In particular, if gL′ = 1, then fL′(S) = 0 for all S, and an
optimum solution are n isolated vertices.

If the size of all components of the solution obtained are in 〈L′〉, we are done:
By duplicating all edges, we obtain Eulerian components. Then we construct
an 〈L′〉-cycle cover by traversing the Eulerian components and taking shortcuts
whenever we come to a vertex that we have already visited. Finally, we divide
each λ-cycle into paths of lengths λ1 − 1, . . . , λk − 1 for some k such that
λ1 + . . .+λk = λ and λi ∈ L′ for all i. By connecting the respective endpoints
of each path, we obtain cycles of lengths λ1, . . . , λk. We perform this for all
components to get an L′-cycle cover. A straightforward analysis yields an
approximation ratio of 8. A more careful analysis shows that the actual ratio
achieved is 4. The details for the special case of L′ = {k} are spelled out by
Goemans and Williamson [15].

However, this procedure does not work for general sets L′ since the sizes of
some components may not be in 〈L′〉. This can happen if pL′ > 0 (for L′ = {k},
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for which the algorithm works, we have pL′ = 0). At the end of this section, we
argue why it seems to be difficult to generalize the approach of Goemans and
Williamson in order to obtain an approximation algorithm for Min-L-UCC
whose approximation ratio is independent of L.

In the following, our aim is to add edges to the forest H = (V, F ) output by
GoeWill such that the size of each component is in 〈L′〉. This will lead to
an approximation algorithm for Min-L-UCC with a ratio of 4 · (pL +4), which
is constant for each L. Let F ∗ denote the set of edges of a minimum-weight
forest such that the size of each component is in 〈L〉. The set F ∗ is a solution
to G, w, and fL, but not necessarily an optimum solution.

By Theorem 2.2, we have w(F ) ≤ 2 ·w(F ∗) since w(F ∗) is at least the weight
of an optimum solution to G, w, and fL. Let C = (V ′, F ′) be any connected
component of F with |V ′| /∈ 〈L〉. The optimum solution F ∗ must contain an
edge that connects V ′ to V \V ′. The weight of this edge is at least the weight
of the minimum-weight edge connecting V ′ to V \ V ′.

We will add edges until the sizes of all components is in 〈L〉. Our algorithm
acts in phases as follows: Let H = (V, F ) be the graph at the beginning of the
current phase, and let C1, . . . , Ca be its connected components, where Vi is
the vertex set of Ci. We will construct a new graph H̃ = (V, F̃ ) with F̃ ⊇ F .
Let C1, . . . , Cb be the connected components with |Vi| /∈ 〈L〉. We call these
components illegal. For i ∈ {1, . . . , b}, let ei be the cheapest edge connecting
Vi to V \ Vi. (Note that ei = ej for i 6= j is allowed.)

We add all these edges to F to obtain F̃ = F ∪ {e1, . . . , eb}. Since ei is the
cheapest edge connecting Vi to V \ Vi, the graph H̃ = (V, F̃ ) is a forest.
(If some ei are not uniquely determined, cycles may occur. We can avoid
these cycles by discarding some of the ei to break the cycles. For the sake of
simplicity, we ignore this case in the following analysis.) If H̃ still contains
illegal components, we set H to be H̃ and iterate the procedure.

Lemma 2.3 Let F and F̃ be as described above. Then w(F̃ ) ≤ w(F ) + 2 ·
w(F ∗).

PROOF. We observe that F ∗ contains at least one edge e∗i connecting Vi

to V \ Vi for every i ∈ {1, . . . , b}. If e∗i = e∗j for i 6= j, then e∗k 6= e∗i for all
k 6= i, j. This means that every edge occurs at most twice among e∗1, . . . , e

∗
b ,

which implies

b∑
i=1

w(e∗i ) ≤ 2 · w(F ∗).
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By the choice of ei, we have w(ei) ≤ w(e∗i ). Putting everything together yields

w(F̃ ) ≤ w(F ) +
b∑

i=1

w(ei) ≤ w(F ) +
b∑

i=1

w(e∗i ) ≤ w(F ) + 2w(F ∗).

2

Let us bound the number of phases that are needed in the worst case.

Lemma 2.4 After at most bpL/2c+ 1 phases, H̃ does not contain any illegal
components.

PROOF. In the beginning, all components of H = (V, F ) contain at least gL

vertices. If gL ∈ L′, no phases are needed at all. Thus, we can assume that
min(L′) ≥ 2gL.

To bound the number of phases needed, we will estimate the size of the smallest
illegal component. Consider any of the smallest illegal components before some
phase t, and let s be the number of its vertices. In phase t, this component will
be connected either to another illegal component, which results in a component
with a size of at least 2s, or to a legal component, which results in a component
with a size of at least s + 2gL. (It can happen that more than two illegal
components are connected to a single component in one phase.)

In either case, except for the first phase, the size of the smallest illegal com-
ponent increases by at least 2gL in every step. Thus, after at most bpL/2c+ 1
phases, the size of every illegal component is at least (pL + 1)gL. Hence,
there are no more illegal components since components that consist of at
least (pL + 1)gL vertices are not illegal. 2

Eventually, we obtain a forest that consists solely of components whose sizes
are in 〈L′〉. We call this forest H̃ = (V, F̃ ). Then we proceed as already
described above: We duplicate each edge, thus obtaining Eulerian components.
After that, we take shortcuts to obtain an 〈L′〉-cycle cover, which is also a 〈L〉-
cycle cover. Finally, we break edges and connect the endpoints of each path
to obtain an L′-cycle cover, which is also an L-cycle cover since L ⊇ L′. The
weight of this L′-cycle cover is at most 4 · w(F̃ ).

Overall, for the set L′, we obtain ApxUndirL′ (Algorithm 1) and the following
theorem.

Theorem 2.5 Let L ⊆ U∪{2} = D be arbitrary and L′ ⊆ L be chosen accord-
ing to Lemma 2.1. Then ApxUndirL′ is a factor (4 · (pL + 4)) approximation
algorithm for Min-L-UCC. Its running-time is O(n2 log n).
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Algorithm 1 ApxUndirL′ .

Input: undirected complete graph G = (V, E), |V | = n; edge weights w :
E → N satisfying the triangle inequality

Output: an L′-cycle cover Capx of G if n is L′-admissible, ⊥ otherwise
1: if n /∈ 〈L〉′ then
2: return ⊥
3: run GoeWill using the function fL′ described in the text to obtain H =

(V, F )
4: while the size of some connected components of H is not in 〈L′〉 do
5: let C1, . . . , Ca be the connected components of H, where Vi is the vertex

set of Ci; let C1, . . . , Cb be its illegal components
6: let ei be the lightest edge connecting Vi to V \ Vi

7: add e1, . . . , eb to F
8: while H contains cycles do
9: remove one ei to break a cycle

10: duplicate each edge to obtain a multi-graph consisting of Eulerian com-
ponents

11: for all components of the multi-graph do
12: walk along an Eulerian cycle
13: take shortcuts to obtain a Hamiltonian cycle
14: discard edges to obtain a collection of paths, the number of vertices of

each of which is in L′

15: connect the two endpoints of every path in order to obtain cycles
16: the union of all cycles constructed forms Capx; return Capx

PROOF. Let C∗ be a minimum-weight 〈L′〉-cycle cover. The weight of F̃ is
bounded from above by

w(F̃ ) ≤
(⌊

pL

2

⌋
+ 1

)
· 2 · w(F ∗) + 2 · w(F ∗) ≤

(
pL + 4

)
· w(C∗).

Combining this with w(Capx) ≤ 4 · w(F̃ ) yields the approximation ratio.

Executing GoeWill takes time O(n2 log n). All other operations can be im-
plemented to run in time O(n2), where the O hides a constant that depends
on L′. 2

We conclude the analysis of this algorithm by providing an example that shows
that the approximation ratio of the algorithm depends indeed linearly on pL.
To do this, let p ∈ N be even. We choose L = {4, 2p+2, 2p+4, 2p+6, . . . , 4p+4}.
Thus, gL = 2 and pL = p− 1. Since L is finite, we can choose L′ = L. Figure 1
shows the graph that we consider and its optimal L-cycle cover. The graph
consists of 4p+4 vertices. The weights of the edges, which satisfy the triangle
inequality, are as follows:
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p/2 groups of four vertices
︷ ︸︸ ︷

(a) The graph. (b) The optimal L-cycle cover.

Fig. 1. An example on which ApxUndirL′ achieves only a ratio of roughly pL/2.

• Solid bold edges have a weight of 1.
• Dashed bold edges have a weight of 1+ε, where ε > 0 can be made arbitrarily

small.
• Solid non-bold edges have a weight of ε.
• Dashed non-bold edges have a weight of 2ε.
• The weight of the edges not drawn is given by the shortest path between

the respective vertices.

The weight of the optimum L-cycle cover is 2 + (6p + 4)ε: The four central
vertices contribute 2+4ε, and each of the p remaining 4-cycles contributes 6ε.
By decreasing ε, the weight of the optimum L-cycle cover can get arbitrarily
close to 2.

Figure 2 shows what ApxUndirL′ computes. Let us assume that GoeWill
returns the optimum L-forest shown in Figure 2(a). GoeWill might also
return a different forest of the same weight: Instead of creating a component
of size four, it can take, e. g., two vertical edges of weights ε and 2ε. However,
the resulting L-cycle covers will be equal.

Starting with the output of GoeWill, ApxUndirL′ chooses greedily the bold
edges, which have a weight of 1, rather than the two edges of weight 1 + ε
(Figure 2(b)). From the forest thus obtained, it constructs an L-cycle cover
(Figure 2(c)). The weight of this L-cycle cover is 2(p/2 + 1) + (4p + 2)ε. For
sufficiently small ε, this is approximately p + 2 = pL + 3, which is roughly
pL/2 + 3/2 times as large as the weight of the optimum L-cycle cover.

Of course, it would be desirable to have an approximation algorithm with a
ratio that does not depend on L. Directly adapting the technique of Goemans
and Williamson [15] does not seem to work: The function f(S) = 1 if and
only if |S| /∈ 〈L〉 is not proper because it violates symmetry. To force it to
be symmetric, we can modify it to f ′(S) = 1 if and only if |S| /∈ 〈L〉 or
|V \ S| /∈ 〈L〉. But f ′ does not satisfy disjointness. There are generalizations
of Goemans and Williamson’s approximation technique to larger classes of
functions [16]. However, it seems that L-cycle covers can hardly be modeled
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(a) The output of GoeWill. (b) The final forest.

(c) The L-cycle cover Capx.

Fig. 2. How ApxUndirL′ computes an L-cycle cover of the graph of Figure 1(a).

even by these more general functions.

2.2 Unconditional Inapproximability of Min-L-UCC

In this section, we provide a lower bound for the approximability of Min-L-
UCC as a counterpart to the approximation algorithm of the previous section.
We show that the problem cannot be approximated with a factor of 2−ε. This
inapproximability result is unconditional, i. e., it does not rely on complexity
theoretic assumptions like P 6= NP.

The key to the inapproximability of Min-L-UCC are immune sets [24]: An
infinite set L ⊆ N is called an immune set if L does not contain an infinite
recursively enumerable subset. Such sets exist. Our result limits the possibility
of designing general approximation algorithms for L-cycle covers. To obtain
algorithms with a ratio better than 2, we have to design algorithms tailored
to specific sets L.

Finite variations of immune sets are again immune sets: If a finite number
of elements is added to or removed from an immune set, the resulting set is
still immune. Thus for every k ∈ N, there exist immune sets L containing no
number smaller than k.

Theorem 2.6 Let ε > 0 be arbitrarily small. Let k > 2/ε, and let L ⊆
{k, k + 1, . . .} be an immune set. Then Min-L-UCC cannot be approximated
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with a factor of 2− ε.

PROOF. Let Gn be an undirected complete graph with vertices 1, 2, . . . , n.
The weight of an edge {i, j} for i < j is min{j− i, n+ i− j}. This means that
the vertices are ordered along an undirected cycle, and the distance from i to
j is the number of edges that have to be traversed in order to get from i to j.
These edge weights fulfill the triangle inequality.

For all n ∈ L, the optimal L-cycle cover of Gn is a Hamiltonian cycle of weight
n. Furthermore, the weight of every cycle c that traverses ` ≤ n/2 vertices has
a weight of at least 2` − 2: Let i and j be two vertices of c that are farthest
apart according to the edge lengths of Gn. Assume that i < j. By the triangle
inequality, the weight of c is at least 2 · min{j − i, n + i − j}. Since ` ≤ n/2
and by the choice of i and j, we have min{j − i, n + i − j} ≥ ` − 1, which
proves w(c) ≥ 2`− 2.

Consider any approximation algorithm Approx for Min-L-UCC. We run
Approx on Gn for n ∈ N. By outputting the cycle lengths occurring in the
L-cycle cover of Gn for all n, we obtain an enumeration of a subset S ⊆ L.
Since L is immune, S must be a finite set, and s = max(S) exists. Let n ≥ 2s.
The L-cycle cover output for Gn consists of cycles whose lengths are at most
s ≤ n/2. Since min(L) ≥ k, we also have min(S) ≥ k and the L-cycle cover
output for Gn consists of at most n/k cycles. Hence, the weight of the cycle
cover computed by Approx is at least n

k
· (2k− 2). For n ∈ L, this is a factor

of 2− 2
k

> 2− ε away from the optimum solution. 2

Theorem 2.6 is tight since L-cycle covers can be approximated with a factor
of 2 by L′-cycle covers for every set L′ ⊆ L with 〈L′〉 = 〈L〉 as we will prove
now. Let minL(G, w) denote the weight of a minimum-weight L-cycle cover of
G with edge weights w.

Theorem 2.7 Let L ⊆ U be a non-empty set, and let L′ ⊆ L with 〈L′〉 = 〈L〉.
Then we have minL′(G, w) ≤ 2 ·minL(G, w) for all undirected complete graphs
G with edge weights w that satisfy the triangle inequality.

PROOF. Consider an arbitrary L-cycle cover C and any of its cycles c of
length λ ∈ L. To prove the theorem, we show how to obtain an L′-cycle cover
C ′ from C with w(C ′) ≤ 2 ·w(C). Consider any cycle c of C that has a length
of λ. If λ ∈ L′, we simply put c into C ′. Otherwise, since 〈L′〉 = 〈L〉 ⊇ L, there
exist λ1, . . . , λk ∈ L′ for some k ∈ N such that

∑k
i=1 λi = λ. We remove k edges

from c to obtain k paths consisting of λ1, . . . , λk vertices. No additional weight
is incurred in this way. Then we connect the respective endpoints of each path
to obtain k cycles of lengths λ1, . . . , λk. By the triangle inequality, the weight
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Algorithm 2 ApxDirL′ .

Input: directed complete graph G = (V, E), |V | = n; edge weights w : E → N
satisfying the triangle inequality

Output: an L′-cycle cover Capx of G if n is L′-admissible, ⊥ otherwise
1: if n /∈ 〈L〉′ then
2: return ⊥
3: construct an undirected complete graph GU = (V, EU) with edge weights

wU({u, v}) = w(u, v) + w(v, u)
4: run ApxUndirL′ on GU and wU to obtain Capx

U

5: for all cycles cU of Capx
U do

6: cU corresponds to a cycle of G that can be oriented in two ways; put
the orientation c that yields less weight into Capx

7: return Capx

of an edge added to close a cycle is at most the weight of the corresponding
path. By performing this for every cycle of C, we obtain an L′-cycle cover C ′

as claimed. 2

An immediate consequence of Theorem 2.7 is that approximation algorithms
for L′-cycle covers for finite L′ can be turned into approximation algorithms
for arbitrary L by losing only a factor of 2 in the approximation performance.

Corollary 2.8 Let L ⊆ U be a non-empty set, and let L′ ⊆ L with 〈L〉 = 〈L′〉.
If Min-L′-UCC can be approximated with a factor of r, then Min-L-UCC can
be approximated with a factor of 2r.

PROOF. Let (G, w) be an instance of Min-L-UCC and Min-L′-UCC. Let C ′

be the L′-cycle cover of G output by the r approximation for Min-L′-UCC.
Clearly, C ′ is also an L-cycle cover. Furthermore, w(C ′) ≤ r · minL′(G, w) ≤
2r ·minL(G, w). 2

3 Approximability of Min-L-DCC

3.1 An Approximation Algorithm for Min-L-DCC

In this section, we prove the existence of approximation algorithms for Min-L-
DCC for all sets L ⊆ D. Again, we provide an algorithm ApxDirL′ that con-
tains a particular set L′ ⊆ D hardwired into it. This algorithm will then serve
as approximation algorithm for Min-L-DCC for sets L ⊇ L′ with 〈L〉 = 〈L′〉.
The algorithm ApxDirL′ exploits ApxUndirL′ to achieve an approximation
ratio of O(n). The hidden factor depends on pL′ again. This result matches
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asymptotically the lower bound of Section 3.2 and shows that Min-L-DCC
can be approximated at least to some extent.

In order to approximate Min-L-DCC, we reduce the problem to a variant of
Min-L-UCC, where also 2-cycles are allowed (now it pays off that we included
2 in the possible cycle lengths in Section 2.1): We obtain a 2-cycle of an
undirected graph by taking an edge {u, v} twice. Let G = (V, E) be a directed
complete graph with n vertices and edge weights w : E → N that fulfill
the triangle inequality. The corresponding undirected complete graph GU =
(V, EU) has weights wU : EU → N with wU({u, v}) = w(u, v) + w(v, u).

Let C be any cycle cover of G. The corresponding cycle cover CU of GU is
given by CU = {{u, v} | (u, v) ∈ C}. Note that we consider CU as a multiset:
If both (u, v) and (v, u) are in C, i. e., u and v form a 2-cycle, then {u, v}
occurs twice in CU . Let us bound the weight of CU in terms of the weight of
C.

Lemma 3.1 For every cycle cover C of G, we have wU(CU) ≤ n · w(C).

PROOF. Consider any edge e = (u, v) ∈ C, and let c be the cycle of length
λ that contains e. By the triangle inequality, we have wU({u, v}) = w(u, v) +
w(v, u) ≤ w(c). Let cU be the cycle of CU that corresponds to c. Since c
consists of λ edges, we obtain wU(cU) ≤ λ ·w(c) ≤ n ·w(c). Summing over all
cycles of C completes the proof. 2

Our algorithm computes an L′-cycle cover for some finite L′ ⊆ L with 〈L′〉 =
〈L〉. As in Section 2.1, the weight of the cycle cover computed is compared to
an optimum 〈L〉-cycle.

Let Capx
U be the L′-cycle cover output by ApxUndirL′ on GU . We transfer Capx

U

into an L′-cycle cover Capx of G. For every cycle cU of Capx
U , we can orient the

corresponding directed cycle c in two directions. We take the orientation that
yields less weight, thus w(Capx) ≤ wU(Capx

U )/2. Overall, we obtain ApxDirL′

(Algorithm 2), which achieves an approximation ratio of O(n).

Theorem 3.2 Let L ⊆ D be arbitrary, and let L′ ⊆ L be chosen according to
Lemma 2.1. Then ApxDirL′ is a factor (2n·(pL+4)) approximation algorithm
for Min-L-DCC. Its running-time is O(n2 log n).

PROOF. We start by estimating the approximation ratio. Theorem 2.5 yields
wU(Capx

U ) ≤ 4 · (pL + 4) · wU(C∗
U), where C∗

U is an optimal 〈L〉-cycle cover of
GU . Now consider an optimum 〈L〉-cycle cover C∗ of G. Lemma 3.1 yields
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wU(C∗
U) ≤ n · w(C∗). Overall,

w(Capx) ≤ 1

2
· wU(Capx

U ) ≤ 2 · (pL + 4) · wU(C∗
U) ≤ 2 · (pL + 4) · n · w(C∗).

The running-time is dominated by the time needed to execute GoeWill in
ApxUndirL′ , which is O(n2 log n). 2

3.2 Unconditional Inapproximability of Min-L-DCC

For undirected graphs, both Max-L-UCC and Min-L-UCC can be approxi-
mated to within constant factors in polynomial time. Surprisingly, in case of
directed graphs, this holds only for the maximization variant of the directed
L-cycle cover problem. Min-L-DCC cannot be approximated with a factor of
o(n) for certain sets L, where n is the number of vertices of the input graph.
In particular, ApxDirL′ achieves asymptotically optimal approximation ra-
tios for Min-L-DCC. Similar to the case of Min-L-UCC, this result shows that
to find approximation algorithms, specific properties of the sets L have to be
exploited. A general algorithm with a good approximation ratio for all sets L
does not exist.

Theorem 3.3 Let L ⊆ U be an immune set. Then no approximation algo-
rithm for Min-L-DCC achieves a ratio of o(n), where n is the number of
vertices of the instance.

PROOF. Let Gn be a directed complete graph with n vertices {1, 2, . . . , n}.
The weight of an edge (i, j) is (j− i) mod n. This means that the vertices are
ordered along a directed cycle, and the distance from i to j is the number of
edges that have to be traversed in order to get from i to j. These edge weights
fulfill the triangle inequality.

For all n ∈ L, the optimal L-cycle cover of Gn is a Hamiltonian cycle of weight
n. Furthermore, the weight of every cycle that traverses some of Gn’s vertices
has a weight of at least n: Let i and j be two traversed vertices with i < j.
By the triangle inequality, the path from i to j has a weight of at least j − i
while the path from j to i has a weight of at least i− j + n = (i− j) mod n.

Consider any approximation algorithm Approx for Min-L-DCC. We run
Approx on Gn for n ∈ N. By outputting the cycle lengths occurring in
the L-cycle cover of Gn for all n = 1, 2, . . ., we obtain an enumeration of a
subset S ⊆ L. Since L is immune, S is a finite set, and s = max(S) exists.
Thus, the L-cycle cover output for Gn consists of at least n/s cycles and has
a weight of at least n2/s. For n ∈ L, this is a factor of n/s away from the
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optimum solution, where s is a constant that depends only on Approx. Thus,
no recursive algorithm can achieve an approximation ratio of o(n). 2

Assume that we can approximate Min-L′-DCC with a ratio of r for every finite
set L′. Theorem 3.4 below shows that then Min-L-DCC can be approximated
for all L with a ratio of εnr, where ε can be made arbitrarily small. This is
the directed counterpart of Theorem 2.7 and Corollary 2.8, and it shows that
Theorem 3.3 is tight.

Theorem 3.4 For every L and every ε > 0, there exists a finite set L′ ⊆ L
with 〈L′〉 = 〈L〉 such that minL′(G, w) ≤ εn · minL(G, w) for all directed
complete graphs G with edge weights w.

For the proof of the theorem, we need the following lemma, which we will also
use for Theorem 4.1.

Lemma 3.5 For every L ⊆ N and every ε > 0, there exists a finite set L′ ⊆ L
with 〈L′〉 = 〈L〉 and the following property: For every λ ∈ L \ L′, there exist
λ1, . . . , λz ∈ L′ with z ≤ ελ such that

∑z
i=1 λi = λ.

PROOF. If L is finite, we simply choose L′ = L. So we assume that L is
infinite. Let again gL denote the greatest common divisor of all numbers of
L. Let us first describe how to proceed if gL ∈ L. After that we deal with the
case that gL /∈ L.

Let L′ = {λ ∈ L | λ ≤ m}, and let ` ∈ L′. If m is sufficiently large, then
〈L′〉 = 〈L〉 (this follows from the proof of Lemma 2.1 [23, Lem. 3.1] and also
implicitly from this proof). We will specify ` and m, which depend on ε, later
on.

Let λ ∈ L\L′. Thus, λ > m. Let r = mod (λ, `). Since λ and ` are divisible by
gL, also r is divisible by gL. Since λ /∈ L′, we have to find λ1, λ2, . . . ∈ L′ that
add up to λ. We have λ = bλ/`c · ` + (r/gL) · gL. Now we choose λ1 = . . . =
λbλ/`c = ` and λbλ/`c+1 = . . . = λbλ/`c+r/gL

= gL. What remains is to show that
bλ/`c+ r/gL ≤ ελ. To do this, we choose ` > 1/ε. Since r/gL is bounded from
above by `/gL, which does not depend on λ, we obtain bλ/`c+ r/gL ≤ ελ for
all λ > m for some sufficiently large m.

The case that gL /∈ L remains to be considered. There exist π1, . . . , πp ∈ L and
ξ1, . . . , ξp ∈ Z for some p ∈ N with gL =

∑p
i=1 ξiπi. Without loss of generality,

we assume that ξ1 = min1≤i≤p ξi. We have ξ1 < 0 since gL /∈ L.

As above, let L′ = {λ ∈ L | λ ≤ m}, and let ` ∈ L′. Let `∗ = −ξ1`·
∑p

i=1 πi > 0.
We choose m to be larger than `∗. Let λ > m, and let r = mod(λ − `∗, `).
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Then

λ =

⌊
λ− `∗

`

⌋
· ` + r + `∗ =

⌊
λ− `∗

`

⌋
· ` +

r

gL

·
p∑

i=1

πiξi − ξ1` ·
p∑

i=1

πi

=

⌊
λ− `∗

`

⌋
· ` +

p∑
i=1

πi ·
(

rξi

gL

− ξ1`

)
.

We have ρi = rξi

gL
− ξ1` ≥ 0: Since ξ1 < 0, we have −ξ1` > 0. If ξi > 0, then

of course ρi ≥ 0. If ξi < 0, then −ξi ≤ −ξ1, and ρi ≥ 0 follows from r < `.
According to the deliberations above, we choose λ1 = . . . = λb(λ−`∗)/`c = `.
In addition, for 1 ≤ i ≤ p, we set ρi of the λjs equal to πi. It remains to
be shown that b(λ − `∗)/`c +

∑p
i=1 ρi ≤ ελ. This follows from the fact that

ρi ≤ ` · (ξi/gL − ξ1) for all i, which is independent of λ. Again, we choose
` > 1/ε and m sufficiently large to complete the proof. 2

PROOF of Theorem 3.4. Let ε > 0 and L ⊆ D be given. We choose L′ ⊆ L
as described in the proof of Lemma 3.5. In order to prove the theorem, let G be
a directed complete graph, and let C be an L-cycle cover of minimum weight
of G. We show that we can find an L′-cycle cover C ′ with w(C ′) ≤ εn ·w(C).

The L′-cycle cover C ′ contains all cycles of C whose lengths are in L′. Now
consider any cycle c of length λ ∈ L \ L′. According to Lemma 3.5, there
exist λ1, . . . , λz ∈ L′ with

∑z
i=1 λi = λ and z ≤ ελ. We decompose c into z

cycles of length λ1, . . . , λz. By the triangle inequality, the weight of each of
these new cycles is at most w(c). Thus, the total weight of all z cycles is at
most z · w(c) ≤ ελ · w(c) ≤ εn · w(c). By performing this for all cycles of
C, we obtain an L′-cycle cover C ′ with minL′(G, w) ≤ w(C ′) ≤ εn · w(C) =
εn ·minL(G, w). 2

4 Properties of Maximum-weight Cycle Covers

To contrast our results for Min-L-UCC and Min-L-DCC, we show that their
maximization counterparts Max-L-UCC and Max-L-DCC can, at least in prin-
ciple, be approximated arbitrarily well; their inapproximability is solely due to
their APX-hardness and not to the difficulties arising from undecidable sets L.
In other words, the lower bounds for Min-L-UCC and Min-L-DCC presented
in this paper are based on the hardness of deciding if certain lengths are in
L. The inapproximability of Max-L-UCC and Max-L-DCC is based on the
difficulty of finding good L-cycle covers rather than testing if they are L-cycle
covers.
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Let maxL(G, w) be the weight of a maximum-weight L-cycle cover of G with
edge weights w. The edge weights w do not have to fulfill the triangle inequal-
ity. We will show that maxL(G, w) can be approximated arbitrarily well by
maxL′(G, w) for finite sets L′ ⊆ L with 〈L′〉 = 〈L〉. Thus, any approxima-
tion algorithm for Max-L′-UCC or Max-L′-DCC for finite sets L′ immediately
yields an approximation algorithm for general sets L with an only negligibly
worse approximation ratio. The following theorem for directed cycle covers
contains the case of undirected graphs as a special case.

Theorem 4.1 Let L ⊆ D be any non-empty set, and let ε > 0. Then there
exists a finite subset L′ ⊆ L with 〈L′〉 = 〈L〉 such that maxL′(G, w) ≥ (1− ε) ·
maxL(G, w) for all directed complete graphs G with edge weights w.

PROOF. Let ε > 0 be given. Depending on L and ε, we choose L′ according
to Lemma 3.5. Let us compare maxL′(G, w) to maxL(G, w). Therefore, let C
be an optimum L-cycle cover. We show how to obtain an L′-cycle cover C ′ from
C. The L′-cycle cover C ′ contains all cycles of C whose lengths are in L′. Let us
consider any cycle c of length λ ∈ L \L′. There exist λ1, . . . , λz ∈ L′ for some
z ≤ ελ that sum up to λ. We break z edges of c to obtain a collection of paths
of lengths λ1 − 1, . . . , λz − 1. By doing this, we remove at most an ε fraction
of c’s weight: Let e1, . . . , eλ be the edges of c in that order, where e1 is chosen
uniformly at random from c’s edges. Then we break eλ1 , eλ1+λ2 , . . . , eλ1+...+λz .
In this way, we obtain a collection of paths consisting of λ1−1, λ2−1, . . . , λz−1
edges, each of which can be closed to form a cycle whose length is in L′. By the
random choice of e1 and since z ≤ ελ edges are broken, every edge is removed
with a probability of at most ε. Thus, the expected total weight of the paths
is at least (1− ε) · w(c). Hence, we can choose e1 deterministically such that
at most an ε fraction of the weight is removed.

We have lost at most ε · w(c) of the weight of every cycle c of C, thus
maxL′(G, w) ≥ w(C ′) ≥ (1− ε) · w(C) = (1− ε) ·maxL(G, w). 2

5 Concluding Remarks

First of all, we would like to know if there is a general upper bound for the
approximability of Min-L-UCC: Does there exist an r (independent of L)
such that Min-L-UCC can be approximated with a factor of r? If such an
algorithm works also for the slightly more general problem Min-L-UCC with
2 ∈ L (see Section 3.1), then we would obtain a factor rn/2 approximation
for Min-L-DCC as well.

While the problem of computing L-cycle cover of minimum weight can be
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approximated efficiently in the case of undirected graphs, the directed vari-
ant seems to be much harder. We are interested in developing approximation
algorithms for Min-L-DCC for particular sets L or for certain classes of sets
L. For instance, how well can Min-L-DCC be approximated if L is a finite
set? Are there non-constant lower bounds for the approximability of Min-L-
DCC, for instance bounds depending on max(L)? Because of the similarities
between Min-L-DCC and ATSP, an answer to either question would hopefully
also shed some light on the approximability of the ATSP.
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