Deterministic Algorithms for Multi-Criteria Max-TSP*

Bodo Manthey

University of Twente, Department of Applied Mathematics
P. O. Box 217, 7500 AE Enschede, The Netherlands
b.mantheyQutwente.nl

We present deterministic approximation algorithms for the multi-criteria maxi-
mum traveling salesman problem (Max-TSP). Our algorithms are faster and simpler
than the existing randomized algorithms.

We devise algorithms for the symmetric and asymmetric multi-criteria Max-TSP
that achieve ratios of 1/2k—¢ and 1/(4k—2)—e, respectively, where k is the number
of objective functions. For two objective functions, we obtain ratios of 3/8 — & and
1/4 — ¢ for the symmetric and asymmetric TSP, respectively. Our algorithms are
self-contained and do not use existing approximation schemes as black boxes.

1 Multi-Criteria TSP

An instance of the traveling salesman problem (TSP) is a complete graph G = (V, E) with
edge weights w : E — Q4. The goal is to find a Hamiltonian cycle (also called a tour) of
minimum or maximum weight, where the weight of a tour is the sum of its edge weights. (The
weight of an arbitrary set of edges is defined analogously.) If G is undirected, we have Min-
STSP and Maz-STSP (symmetric TSP). If G is directed, we have Min-ATSP and Max-ATSP
(asymmetric TSP). For Min-ATSP and Min-STSP, we assume that the edge weights fulfill the
triangle inequality, since otherwise the two problems cannot be approximated at all (assuming
P # NP). All these variants of TSP are NP-hard and APX-hard [3]. Thus, we are in need of
approximation algorithms. Table 1 shows the currently best approximation ratios for the four
variants of the TSP.

In many scenarios, however, there is more than one objective function to optimize. In case
of the TSP, we might want to minimize travel time, expenses, number of flight changes, etc.,
while we want to maximize, e.g., our profit along the route. This gives rise to multi-criteria
TSP, where Hamiltonian cycles are sought that optimize several objectives simultaneously. In
order to transfer the notion of optimal solutions to multi-criteria optimization problems, Pareto
curves have been introduced (cf. Ehrgott [7]). A Pareto curve is a set of all optimal trade-offs
between the different objective functions.

In the following, k always denotes the number of objective functions. We assume throughout
the paper that k > 2 is an arbitrary constant. Let [k] = {1,2,...,k}. The k-criteria variants of

*A preliminary version of these results has been presented at the 8th Ann. Conf. on Theory and Applications
of Models of Computation (TAMC) [12]

to appear in Discrete Applied Mathematics

the TSP that we consider are denoted by k-Min-STSP and k-Min-ATSP as well as k-Max-STSP
and k-Max-ATSP.

We define the following terms for Max-TSP only. After that, we briefly point out the
differences for Min-TSP. For a k-criteria variant of Max-TSP, we have edge weights w1, ..., wy :
E — Q4. For convenience, let w = (wq, ..., wy). Inequalities of vectors are meant component-
wise. A tour H dominates another tour H if w(H) > w(H) and at least one of these k
inequalities is strict. This means that H is strictly preferable to H. A Pareto curve is a set
of all solutions that are not dominated by another solution. Since Pareto curves for the TSP
cannot be computed efficiently, we have to be satisfied with approximate Pareto curves. A
set P of tours is called an a-approzimate Pareto curve for the instance (G, w) if the following
holds: For every tour H of G, there exists a tour H € P of G with w(H) > aw(H). We
have @ < 1, and a l-approximate Pareto curve is a Pareto curve. An algorithm is called an
« approzimation algorithm if it computes an a-approximate Pareto curve. A fully polynomial
time approximation scheme (FPTAS) for a multi-criteria maximization problem computes
(1 — e)-approximate Pareto curves in time polynomial in the size of the instance and 1/e for
all € > 0.

For Min-TSP, a tour H dominates H if w(H) < w(H) and at least one inequality is strict.
A set P of tours is an a-approximate Pareto curve if, for every tour H, we have an H € P
with w(H) < aw(H). Note that o > 1 for minimization problems. An FPTAS is a (1 + ¢)
approximation algorithm.

1.1 Previous Work

Table 1 shows the current approximation ratios for the different variants of multi-criteria TSP.
Many of these approximation algorithms can be extended to the case where some objectives
should be minimized and others should be maximized [13]. We remark that an « approxima-
tion for Min-ATSP or Min-STSP yields a ka approximation for k-Min-ATSP or k-Min-STSP
simply by encoding all objective functions into a single one. Thus, Feige and Singh’s algo-
rithm [8] yields a deterministic % - klogy n approximation for k-Min-ATSP and Asadpour et

logn

al.’s algorithm [2] yields a randomized O(kp;fg;) approximation.

Unfortunately, no deterministic algorithms are known except for k-Min-STSP, k-Min-ATSP,
and 2-Max-STSP. The reason for this is that most approximation algorithms for multi-criteria
TSP use cycle covers. A cycle cover of a graph is a set of vertex-disjoint cycles such that
every vertex is part of exactly one cycle. Hamiltonian cycles are special cases of cycle cov-
ers that consist of just one cycle. In contrast to Hamiltonian cycles, cycle covers of optimal
weight can be computed in polynomial time. Cycle covers are among the main tools for de-
signing approximation algorithms for the TSP [4-6,8,11,17]. However, only a randomized fully
polynomial-time approximation scheme (FPTAS) for multi-criteria cycle covers is known [19].
This randomized FPTAS builds on a reduction to a specific unweighted matching problem [18],
which is then solved using the RNC algorithm by Mulmuley et al. [16]. Derandomizing this
algorithm seems to be difficult [1], and these nested reductions make the algorithm quite slow.
Hence, it is natural to ask whether there exist deterministic, faster approximation algorithms
for multi-criteria TSP.

variant single-criterion multi-criteria

randomized deterministic randomized deterministic new

Min-STSP 3/2 (3] 2+ ¢ [15]

2 (k=2) 9]
Min-ATSP O(p285-) 2] §-logon [8] logn+e [14] 3 -klogyn [§]

klogn
O(loglggn) [2]

Max-STSP 7/9 [17] 2/3 [10] gik —¢

(k=214 3-¢c(k=2)
Max-ATSP 2/3 [11] 1/2 [10] T — €

= iy

Table 1: Approximation ratios for single-criterion and multi-criteria TSP.

1.2 New Results

We present deterministic approximation algorithms for multi-criteria Max-TSP, which are self-
contained and considerably simpler and faster than the existing randomized algorithms. (Ta-
ble 1 shows an overview.) Our algorithms do not use other algorithms as black boxes except for
maximum-weight matching with a single objective function. Furthermore, they do not make
any assumption about the representation of the edge weights. The existing algorithms require
the (admittedly weak and natural) assumption that the edge weights are encoded in binary.
For k-Max-ATSP, we get a ratio of ;= — ¢ for any € > 0 (Section 2). For k-Max-STSP,
we achieve a ratio of i — ¢ (Section 3). For the special case of two objective functions, we
can improve this to 1/4 — ¢ for 2-Max-ATSP and 3/8 — ¢ for 2-Max-STSP. The latter is an

improvement over the existing deterministic 7/27 approximation for 2-Max-STSP [14,17].

2 Max-ATSP

The rough idea behind our algorithm for k-Max-ATSP is as follows: First, we “guess”’ a few
edges that we contract to get a slightly smaller instance. The number of edges that we have
to contract depends only on k£ and . Second, we compute k£ maximum-weight matchings in
the smaller instance, each with respect to one of the k£ objective functions. Third, we compute
another matching that uses only edges of the £ matchings and that contains much weight with
respect to each objective function. One note is here in order: Usually, cycle covers instead
of matchings are used for Max-ATSP. However, although the weight of a cycle cover can be
(roughly) twice as large as the weight of a maximum-weight matching, we do not get a better
approximation ratio by using cycle covers. The reason is that we lose a factor of roughly 1/2
if we compute a collection of paths from k initial cycle covers compared to k initial matchings.

The following lemma is a key ingredient of our algorithm. It shows how to get a matching
from k different matchings such that a significant fraction of the weight with respect to each
matching is preserved. This works as long as no single edge contributes too much weight. The
lemma immediately gives a polynomial-time algorithm for this task.

Lemma 2.1. Let G = (V, E) be a directed graph, and let w = (w1, ..., wg) be edge weights.
Let My, ..., My C E be matchings. Let n € (0,1) be arbitrary such that wi(e) < 5l - wi(M;)

for all e € M; and all i € [k]. Then there exists a matching P C Ule M; such that w;(P) >
21,;—_7’1 ~w;(M;) for alli € [k]. Such a matching P can be computed in polynomial time.

Proof. We construct the matching as follows: We add one heaviest edge e € M; with respect

to wi to P and remove e and all edges adjacent to e from Ms,..., M. Then we put one
heaviest remaining edge from My into P and remove it and all adjacent edges. We proceed
with Ms, ..., M and repeat the process until no edges remain.

Let us analyze w;(P). In each step, at most two edges of any M; are removed. Thus, we
have removed at most 2i — 2 edges from M; until we added the first edge from M; to P. The
weight of these edges is at most (2i — 2) - spl5w;(M;) < nw;(M;). Now let e be an edge of M;
that we added to P, and let eq,...,e; be the t < 2k — 2 edges that are removed from M; in
the subsequent rounds of the procedure until again an edge of M; is added. By construction,
we have w;(e) > w;(e;) for all j € [t]. Thus, w;(e) > 5 - (wile) + 22:1 w;(e;)). Taking the
initial loss of nw;(}M;) into account, we observe that we can put a 57— fraction of (1—n)w;(M;)
into P for each i € [k]. O

Now we have to make sure that, for a tour H, we can find appropriate matchings Mj, . .., Mj.
For a directed complete graph G = (V, E) and a set K C E that forms a subset of a tour, we
obtain G_g by contracting all edges of K. Contracting an edge (u,v) means that we remove
all outgoing edges of u and all incoming edges of v, and then identify u and v. We denote
the vertex set of G_g by V_g. Analogously, for a tour H D K, we obtain a tour H_j by
contracting the edges in K.

The following lemma says that, for any tour H, there is always a small set K of edges
such that, if we contract these edges, the resulting tour H_x consists solely of edges that do
not contribute too much to the weight of H_x with respect to any objective function. The
proof is identical to the proof of the corresponding lemma for the (1/2 — ¢) approximation for
k-Max-ATSP [13,14]. In the algorithm, we will “guess” good sets K, compute Hamiltonian
cycles on G_g, and add the edges of K to get a Hamiltonian cycle of G. Small set means
that |K| < f(k,e) for some function f that does not depend on the number n of vertices.
We can choose f(k,e) € O(k/log(1/(1 —¢))) = O(k/log(l +¢)) = O(k/e) [13,14] (we have
1/log(1 4+ ¢) = O(1/e) by Taylor expansion). Moreover, we can choose K such that V_g
contains an even number of vertices. (Glafler et al. [10] have proved a similar lemma with
|K| € O(k). But their lemma does not provide a bound on the weight of the remaining edges.)

Lemma 2.2 (Manthey [14, Lemma 4.1]). Let G = (V, E) be a directed complete graph with
edge weights w = (w1, ..., wg), and let € > 0. Let H C E be any tour of G. Then there is a
subset K C H such that |K| < f(k,¢e) for some function f(k,e) = O(k/e), |V_k| is even, and,
for all i € [k], we have

1. wi(K) > % wi(H) or
2. wi(e) <e-w;(H_g) for alle € H_g

We have to make sure that any edge of G_g weighs at most an ¢ fraction of w(H_fk),
provided that w(e) < ew(H_g) for all e € H_g: Let 5; = max{w;(e) | e € H_g} be the
weight of the heaviest edge of H_x with respect to w;. Let § = (B1,...,0k). We define
new edge weights w?® by setting the weight of edges that are too heavy with respect to some
objective to 0:

WP (e) = {w(e) if w(e) < B and

0 if w;(e) > p; for some i.

Prsp < MAXATSP-APPROX(G, w, ¢)
input: directed complete graph G = (V, E), w: E — QI_‘L, >0
output: (ﬁ — ¢)-approximate Pareto curve Prgp for k-Max-ATSP
1. for all K C E that form a subset of a tour with |K| < f(k,e) and |V_g| even do
2: for all I C [k] and § do
3 compute maximum-weight matchings M; in G_g w.r.t. wiﬂ forieI=1k\I
4: compute a matching P C J,.7 M; according to Lemma 2.1
5 add edges to K U P to obtain a Hamiltonian cycle H; add H to Prsp

Algorithm 1: Approximation algorithm for k-Max-ATSP.

Since w(e) < B for every e € H by definition, we have w(H) = w®(H). The number of vectors
f3 that result in different weight functions w? is bounded by n?*: Since the number of edges is
less than n?, there are less than n? different edge weights for each objective function. Now we
can state and analyze our approximation algorithm for k-Max-ATSP (Algorithm 1).

Theorem 2.3. For ecvery ¢ > 0 and k > 2, Algorithm 1 is a deterministic approximation
algorithm for k-Maz-ATSP that achieves an approrimation ratio of ﬁ —e¢. Its running-time
is nOK/e)

Proof. We have to show that, for every tour H, there exists a tour H € Ppgp with w(H) >
(WEQ —€) w(fl) By Lemma 2.2, there exists a subset K C H of edges and an I C [k] such
that | K| < f(k,e), |[V_g| is even, w;(K) > w;(H)/4 for all i € I, and w;(e) < ew;(H_g) for all
e€ H g andi € [k]\I. Let i € [k]\I, and let 8 be defined by H_g, i.c., f; = max, g wi(e).
Consider the execution of the inner loop of Algorithm 1 corresponding to the considered values
of K, I, and 3, and let M; for i € [k] \ I and P be the matchings constructed by Algorithm 1
in this execution of the inner loop. Note that M; is a maximum-weight matching in G_ g with
respect to wiﬁ .

We have wf(Mz) > w?(ﬁ_K)/Q, which implies

w?(e) < wile) < ewi(H_g) = ew? (H_g) < 2ew’ (M)

>)
for all e € M;. This together with Lemma 2.1 with n = (2k — 2)2¢ yields

@ >1—17‘ 5 ':1—(2]{—2)2&" 5 A

— 2) - w? ().
s - %) el)

The set P U K of edges is a collection of paths in G. What remains to be done is to estimate
the weight of w(P U K). For every i € I, we have w;(P U K) > w;i(K) > w;(H)/4 >

(15 —¢€) - wi(H). For every i ¢ I, we note that w;(H) = w;(K) + w;(H_g). This gives us
1
wi(PUK) > w’ (P) 4+ wi(K) > (- 25> -w? (M) 4+ wi(K)

> () () + wiK) > (s — e) i),
4k — 2 4k — 2

The running-time is bounded from above by n@M+2k+f(ke) — pOk/e) O

If we have only two objective functions, we can improve the approximation ratio to 1/4 — e.
The key ingredient for this is the following lemma, which is the improved counterpart of
Lemma 2.1 for £ = 2. The lemma can be proved using a cake-cutting argument with one
player for each of the two objective functions.

Lemma 2.4. Let G = (V, E) be a directed graph with edge weights w = (w1, w2) and an even
number of vertices. Let My, My C E be two perfect matchings, and let n € (0,1/4). Suppose
that wi(e) < 3 - w;i(M;) for all e € M; and i € {1,2}. Then there is a matching P C My U My
with wi(P) > (5 — /n)w;(M;) fori € {1,2}. The matching P can be found in polynomial time.

Proof. Without loss of generality, we assume M; N My = (). Otherwise, we can simply remove
M; N My from both matchings and add it to P. We scale the edge weights so that w;(M;) =1
for i € {1, 2}, and we will show how to obtain a matching P C M;UMj; such that wy (PNM;) >
t—vmand we(PN M) > 1 — /.

If we ignore the directions of the edges, the graph with edges M7 U M is a collection of
disjoint cycles. Every cycle has even length and edges from M; and M, alternate.

Let ¢ € My U M3 be a cycle. We say that c is a light cycle if wi(c) < /5. Otherwise, i.e., if
wi(c) > /N, we call ¢ a heavy cycle. Note that M; U M3 has at most 1/,/7 heavy cycles.

We show the lemma by a cake-cutting argument: Player 1 puts cycles (or parts of cycles)
into two sets S1 and Sy, and then Player 2 can choose which set to take. Player ¢ wants to
maximize w;. Player 1 puts light cycles as a whole into S or Se. Heavy cycles are split into two
parts as follows: Player 1 decides to remove one edge of M; and one edge of My (these edges
are lost also for Player 2). In this way, we get two paths (again disregarding the directions of
the edges). Player 1 puts one path into S; and the other path into Ss. (It can happen that one
of the paths is empty: If we have a cycle of length four, the two edges removed are necessarily
adjacent. This, however, does not cause any problem. In particular, cycles of length four are
always light cycles.) Finally, Player 2 chooses the set S; that maximizes wy. Player 1 has to
take S3_;. This yields the matching P = (S; N M) U (S3—; N My).

Let us estimate the weight that the players are guaranteed to get. Since we have at most
1/y/n heavy cycles, at most 1/,/1 edges from Ms are removed. The total weight of the edges
removed is hence at most ,/7/2. Thus,

w2((51 U SQ) N Mg) > WQ(MQ) — \/5/2 =1- \/77/2

Hence, Player 2 can always get a weight of at least % -(1—/m/2) > % -1
Let us now focus on Player 1. As for Player 2, we have

wi ((S1US2) N M) > 1 —/n/2.

For any heavy weight cycle ¢, Player 1 can choose to remove edges such that the resulting
paths differ by at most /2 with respect to w;. Since light cycles are put as a whole in either
S1 or Se and have a weight of at most |/ with respect to wy, Player 1 can make sure that
wi(S1 N M) and wy(Sz N M) differ by at most /7. Thus,

w2} (1) -zt

for both ¢ € {1,2}. Thus, for any choice of Player 2, Player 1 still gets enough weight with
respect to wi. The proof immediately gives a polynomial-time algorithm for computing P. [

Prsp < MAXATSP-APPROX-2(G, w,¢)
input: directed complete graph G = (V,E), w: E — Q%, ¢ > 0
output: (% — ¢)-approximate Pareto curve Prgp for 2-Max-ATSP
1: for all K C E with |K| < f(2,£?) that are a subset of a tour and |V_g/| even do
2: for all I C {1,2} and § do
3 compute maximum-weight matchings M; in G_g w.r.t. wiﬂ foriel
4: compute a matching P C J;.7 M; according to Lemma 2.4
5 add edges to K U P to obtain a Hamiltonian cycle H; add H to Prsp

Algorithm 2: Improved approximation algorithm for 2-Max-ATSP.

Using Lemma 2.4, we obtain the following theorem.

Theorem 2.5. For every € > 0, Algorithm 2 is a deterministic approximation algorithm for

2-Maz-ATSP with an approzimation ratio of 1/4 — e. Its running-time is nO/e*),

Proof. We have to prove that, for every tour H, there is an H € Prsp with w(H) > (1 —
e) - w(H). According to Lemma 2.2, there is a subset K C H and an I C {1,2} such that
K| < f(2,€2), |V_k| is even, w;(K) > w;(H)/4 for i € I, and wi(e) < w;(H_g) for all
ee H g and i € {1,2}\ I = I. We choose 8 = (B, 82) with 8; = max,. g . wi(e). Then
w?(I:I_K) = w;(H_g) for all i € T.

We consider the execution of the inner loop of Algorithm 2 corresponding to the considered
values of K, I, and 5. Let P and M; for i ¢ I be the corresponding matchings. Then
w?(e) < 2e%w! (M;) and w) (M;) > L -w? (H_g).

Using Lemma 2.4 with n = 4¢2, we have w?(P) > (3 - 25)wf(Mi) for each i € I. Again,
P UK is a collection of paths. For any i € I, we have w;(P U K) > w;(K) > w;(H)/4, which
is sufficient. For any i € I, we have

1
wi(PUK) > wl (P) + wi(K) > <2 - 26> w? (M) + wi (K)
1 5 1 .
>(7-¢) w (H_g) 4+ wi(K) > 1€ ~w;(H).
The running-time is bounded by nOM+/(2:2s%) — O1/e*), O

3 Max-STSP

One key ingredient for our algorithm for k-Max-STSP is the following lemma, which is the
undirected counterpart to Lemma 2.1. In contrast to k-Max-ATSP, we now start with k cycle
covers rather than k& matchings.

Lemma 3.1. Let G = (V, E) be an undirected graph with edge weights w = (w1, ..., wg), and
let C1,...,Cy C E be cycle covers. Assume that, for some n > 0, we have w;(e) < 55w (Cy)
for all e € C; and all i € [k]. Then there exists a collection P C Ule C; of vertex-disjoint

paths such that w;(P) > 12_7”10@-(01-) for alli. Such a collection P can be computed in polynomial
time.

Proof. We have to select edges for P such that the degree of every vertex is at most two and
that do not form any cycle. Instead of immediately removing edges (as in Lemma 2.1), we
leave edges a “second chance”: Only if two edges adjacent to an edge e are put into P, then
we remove e. To keep track of which edges have to be removed, we mark an edge e if an edge
adjacent to e is put into P. If e is already marked and another edge adjacent to e is put into
P, then e is removed. The order in which we put the edges into P is as follows: We start with
the heaviest edge with respect to w;. Then we proceed with ws, ..., wy, then start over with
wi again, and so on. If we proceed with some w;, we select the heaviest edge with respect to
w; among all edges that are not yet removed.

Let e € C; be an edge that we put into P, and let eq,...,¢e; € Ulzzl Cy be the edges that are
adjacent to e. Then, different from the proof of Lemma 2.1, we do not remove ey, ..., e, but
we mark them. Only if an edge e; is already marked, we remove it. Thus, an edge e; is only
removed if it is either put into P or if two edges adjacent to e are in P. Marked edges are still
eligible for selection. This means that if we consider Cj, then we select the heaviest edge from
C; with respect to w; that has not been deleted. Whether it is marked or not is irrelevant.

Now we claim that P is indeed a collection of paths. First, every vertex is incident to at
most two edges of P: Assume that edges e and €’ are adjacent to vertex v. If first e is added
to P, all other edges adjacent to v (including €’) are marked. If then €’ is added to P, all edges
adjacent to v are already marked. Thus, they will be deleted. This implies that P cannot
contain a third edge incident to v.

Second, P does not contain cycles. Assume to the contrary that P contains a cycle. Let e
be the last edge added to P, and let ¢’ and €” be the two edges of the cycle that are adjacent
to e. If € is added, then e is marked. If ¢’ is added afterwards, then e is deleted. Thus, e
cannot be added to P, a contradiction.

Third, we have to prove that P contains enough weight with respect to wq,...,wg. If an
edge e is deleted, we charge half of this loss to the edge that caused e to be marked and half
to the edge that caused e to be deleted.

Fix any i. At most 47 — 2 times, we have marked or removed an edge from C; until we added
the first edge from C; to P (this includes the at most two edges of C; that are marked while
selecting an edge from C;). The loss caused by these edges is at most 252 =L-w;(C;) < nw;(C;)
by assumption. Now let e be an edge of C; that we add to P. Let ej,...,e; € C; be the
t < 4k — 2 edges of C; that are removed or marked in this and the subsequent rounds of the
procedure until again an edge of C; is added (if an edge is both marked and removed during
the subsequent rounds, it occurs twice on this list). By construction, we have w;(e) > w;(e;)
for all j € [t]. Thus, wi(e) > 5 - (w;(e) + %Z;:l w;(e;)). Taking into account the initial loss
of at most nw;(C;) yields w;(P) > 12%7 ~w;(Cy) for all i € [k]. O

As in Section 2, we would like to keep a set K C FE of heavy edges. Unfortunately, it is
impossible to contract edges in the same way as in directed graphs [14]. As already done for
the randomized algorithms, we circumvent this by setting the weight along paths of sufficient
length to 0 [13,14]. To do this formally, we need the following notation: Let H be a Hamiltonian
cycle, and let K C H. Let

L=LK)={v|dec K:vece}
be the set of vertices that are adjacent to edges of K. Let

T =T(K)={e € H]|eis adjacent to K but not in K}.

P +— MAXSTSP-AprPROX(G, w,¢)
input: undirected complete graph G = (V, E), w: E — Q’j_, e>0
output: (i — ¢)-approximate Pareto curve Prgp for k-Max-STSP

1. for all K C E with |K| < g(k,¢/2) that form a subset of a tour do

2: for all I C [k], and 8 do

3: compute maximum-weight cycle covers C; in G w.r.t. w; KB forieT
4: compute a collection P C Uie[k}\ ; C; of paths according to Lemma 3.1
5: remove edges incident to L(K) from P to obtain P’

6: add edges to K U P’ to obtain a Hamiltonian cycle H; add H to Prsp

Algorithm 3: i — ¢ approximation for k-Max-STSP.

As for the directed case, let 5= (f51,...,Br). Now we define

~LB (¢) w(e) ifenL=0and w(e) < p and
w P (e) =
0 if eN L #) or there is an i with w;(e) > §;.

Furthermore, we define w=# = w~L(K).8 This means that under w=#, all edges of K or
adjacent to K have weight 0. Furthermore, all edges that exceed [for some objective are also
set to 0.

If we omit the parameter 3, then no edges are set to 0 because they are too heavy, i.e.,
w—L — w—L,(oo7...,oo) and w—K — w—K7(oo,...7oo).

Now we are prepared to state the undirected counterpart of Lemma 2.2. As in Lemma 2.2,
its proof is identical to the proof of the corresponding lemma for the (% — ¢) approximation
for k—Ma3x—STSP [13,14]. We can choose the function g in the lemma such that g(k,n) €
O (smati=ye) = O /n?).

In the following, we assume that |V| is even. If |V] is indeed odd, then only the analysis
becomes a bit more technical, but the decrease of the approximation ratio is negligible.

Lemma 3.2 (Manthey [14, Lemma 4.5]). Let G = (V, E) be an undirected complete graph,
and let w = (w1, ...,wy) be edge weights. Let n > 0. Let H C E be any Hamiltonian cycle of
G. Then there exists a collection K C H of paths such that |K| < g(k,n) for some function
g(k,e) = O(K3/n?) and the following properties hold: Let L = L(K) and T = T(K). For all
i € [k], we have

1. wi(K) > 1 w;(H) or
2. wi(e) §77-wi_K(H) foralle e H\ K and w;(T) <n-w;(H).

Now we are prepared to state and analyze our approximation algorithm for k-Max-STSP
(Algorithm 3), and we obtain the following theorem.

Theorem 3.3. For ecvery k > 2 and ¢ > 0, Algorithm 8 is a deterministic approximation
algorithm for k-Max-STSP that achieves an approximation ratio of ﬁ — ¢ and has running-
time nOKk* /%),

Proof. We have to show that, for every Hamiltonian cycle H, there exists a Hamiltonian cycle
H € Prgp with w(H) > (ﬁ —¢)-w(H). By Lemma 3.2 with n = £/2, there exists a subset
K C H of edges and an I C [k] such that |K| < g(k,&/2) and the following properties are met:

1. For all i € I, we have w;(K) > w;(H)/2.

2. Foralli € [k]\I =T, we have w;(e) < £-w; X (H) for all e € H\ K and w;(T) < %wl(ﬁ)

€
2
Let 8= (B1, ..., B) with 8; = max__g w; ™ (
the maximum-weight cycle covers C; with respect to w,

e). For all i € I, the following properties hold for
K.

1w 5P) > wi_K’B(I:I) and

7

2. w; P (e) < 5w TP (Cy) for all e € C.

(2

The first property holds since the cycle cover weight bounds the weight of the Hamiltonian
cycle from above. The second property holds because of the following sequence of inequalities:

_ € _Kg, A € e _
w; P (e) < 5w M (H) = 5w ().
2 2 2
Now we consider the execution of the inner loop of Algorithm 3 for the corresponding K, I,
and . Let C; for i € [k]\ I be the corresponding cycle covers, and let P be the corresponding

collection of paths. Lemma 3.1 with = ke shows that

;) <

— 1—ke _
SR 2 e),

w

Without changing the weight of P with respect to w™# we can remove all edges incident
to L = L(K) from P. Let P’ C P be the corresponding subset constructed in Line 5 of
Algorithm 3. The set P'UK is a collection of paths in G, and we have w™5#(P") = w= K8 (P).
What remains to be done is to estimate the weight of w(P’ U K). For every i € I, we have

/ wZ(I:I) 1 %
wi(P UK)sz(K)Z 9 > <2k—8>-wi(H).

For any i ¢ I, we observe that w;(H) = w;(K) + w;K’ﬂ(ﬁ \ K) + w;(T). Recalling that
wi(T) < ew;(H) yields

_ 1-k _
wi(P'UK) > w; (P) 4 wi(K) >~ = w0 (C) + wi(K)
1—k _ ~
> LS RN K 4w (K)

- <21k - 2> (N K+ wi(K))

> (-0 (5 - 5) i) > (5 <) i,

The bound on the running-time follows from g(k,s/2) € O(k3/£3). O

As for 2-Max-ATSP, we can achieve a better approximation ratio of 3/8 — ¢ for k = 2. This
improves over the known deterministic 7/27 approximation [14,17].

Lemma 3.4. Let G = (V,E) be an undirected graph with edge weights w = (w1, w2), and
let My, My C E be two perfect matchings. Assume that w;(e) < nw;(M;) for i € {1,2} and
all edges e € M;. Then there exists a collection P C My U My of paths such that w;(P) >
(2 —n) - w;(M;) fori € {1,2}. Such a collection P can be found in polynomial time.

10

Prsp < MAXSTSP-APPROX-2(G, w,¢)
input: undirected complete graph G = (V, E), w: E — Qa_, e>0
output: (% — ¢)-approximate Pareto curve Prgp for 2-Max-STSP

1. for all K C E with |K| < ¢g(2,¢/2) that form a subset of a tour do

2: for all I C {1,2} and § do

3: compute maximum-weight matchings M; in G w.r.t. w; KB torieT

4: compute a collection P C Uie[k}\] M; of paths according to Lemma 3.4
5: remove edges incident to L(K) from P to obtain P’

6: add edges to K U P’ to obtain a Hamiltonian cycle H; add H to Prsp

Algorithm 4: Improved approximation for 2-Max-STSP.

Proof. Without loss of generality, we assume M; N My = (). Otherwise, we can simply remove
M; N My from both matchings and add it to P. Thus, M; U M, forms a graph consisting solely
of simple cycles of even length. Every cycle of M U Ms has a length of at least 4.

For every cycle c of length at least eight, we can simply remove either the lightest edge of
c N My with respect to wy or the lightest edge of ¢ N My with respect to we. In this way, at
least 2 - w(c) of the weight of ¢ is preserved.

Thus, it remains to deal with the shorter cycles. These cycles have a length of four or six.
We deal with them by a cake-cutting argument: First, Player 1 partitions the cycles into two
sets C1 and C5. Second, Player 2 chooses some C;. Finally, the lightest edge of M is removed
from any cycle in Cj, and the lightest edge of Mj is removed from any cycle in Cs5_;. Thus,
Player 1 gets at least half the weight of C; plus the full weight of C3_;. Analogously, Player 2
gets the full weight of C; plus at least half the weight of C5_;. The paths from the long cycles
together with the paths obtained from C7 and Cs yields a collection of paths.

Now, let W71 and Wy be the weight of M; and Ms, respectively, that is contained in cycles
with a length of at least eight. Player 2’s goal is to maximize wy. If Player 2 chooses C;, then
wo(P) > %-W2+w2(0i)+%-w2(03,i). Furthermore, we have wa(C;) 4w (Cs—;)+Wa = wa(Ms).
Thus, Player 2 can always achieve ws(P) > 3 -wy(Ms), independent of how Player 1 constructs
Cl and 02.

Let us now focus on Player 1, who wants to maximize w;. Player 1 divides the cycles into
Cy and C5 such that wi(Cy; N Mp) and wy(Cy N M) differ by at most 3nw;(M;p). This can
easily be achieved because any cycle contains at most three edges of M; and wi(e) < nw (M)
for all e € M;.

Now we assume that Player 2 chooses C;. We have wy (C; N M7) w1 (Cs—;NMy) = wy (M) —
W1 and wq(C; N My) — w1 (Cs3—; N M) < 3nw;i(Mi). Player 1 loses at most w;(C;)/2 due to
Player 2 removing edges of M; from C;. Thus, we have

3 1
wl(P) > 1 - W1+ <w1(03_¢ N Ml) + 5 . wl((JZ- N M1)>
3 3 3 1
> Z - Wi+ Z . w1(03_i ﬂMl) + Z : w1<CZ' N Ml) — 1 . 377w1(M1)
3 3
2 (7-7) mon

which is enough. The proof directly yields a polynomial-time algorithm for computing P. [

11

Theorem 3.5. For any e > 0, Algorithm 4 is a deterministic algorithm for 2-Maz-STSP with
an approximation ratio of% — . Its running-time is nO/e?),

Proof. We have to prove that, for every Hamiltonian cycle H, there is an H € Prsp with
w(H) > (2 —¢) - w(H). According to Lemma 3.2 with = /2, there exist K C H and
I C {1,2} such that |K| < g(k,e/2) and

1. w;i(K) > w;(H)/2 for i € I and
2. w; K (e) < %wl(ﬁ\K) for all e € H\ K and w;(T) < %wl(fl) for all i € {1,2}\ I = 1.

Let 8 = (B1,82) with §; = max, g w; X (H). Then w; ™’(H \ K) = w; X(H \ K) for all
i € I. Consider the execution of the inner loop of Algorithm 4 for the corresponding values
of K, I, and 8. Let P be the corresponding set of paths obtained from the matchings M; for
i €[2]\ I. Then we have

1w, P (My) > w; P (H \ K)/2 and

(2

2. w._K’B(e) <e- w_K’B(MZ') for all e € M;.

% %
Applying Lemma 3.4 with n = ¢ yields w;K’ﬁ(P) > (3 —¢) 'w;K’ﬂ(Mi) for each i € . We
remove all edges incident to L(K) from P to obtain P’. By construction, we have w™5#(P") =
—KB(P)
w .

The set P'UK of edges is a collection of paths. For any i € I, we have w;(PUK) > w;(K) >
w;(H)/2. We observe that w(H) = w X (H) + w(K) + w(T) and w;(T) < § - w;(H) for any
i € I. Thus, for any i € I, we have

wi(P'UK) > w, *?(P) + wi(K) > < g> cwy P (M) + wi(K)
3 £ —-K,8
> ===)-w P(H) 4 wi(K)
8 2 E
€ 3 € ~ 3 ~
> 1—7>- S w2 —e) - w().
> (13 <8 2) wil)<8 5) wilH)
Finally, the bound on the running-time follows from g(2,¢/2) € O(1/%). O

4 Open Problems

We conclude with three open questions: First, does there exist a deterministic approximation
algorithm for k-Min-ATSP with a non-trivial approximation ratio? Non-trivial means smaller
than k- % -logy n, which is obtained by adding the k weights of each edge to get a single objective
function. (Such trivial approximation algorithms do not exist for maximization problems.)
A key step towards this goal would be an approximation scheme for multi-criteria perfect
matching. However, a derandomization of the randomized FPTAS for general matching [19],
which is based on the isolation lemma [16], seems to be difficult [1].

Second, are there deterministic approximation algorithms for k-Max-ATSP and k-Max-STSP
that achieve constant approximation ratios (or at least ratios of w(1/k))?

Third, are there deterministic algorithms for the case where some objectives should be
minimized while others should be maximized?

12

References

[1]

Vikraman Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma and
lower bounds for circuit size. In Ashish Goel, Klaus Jansen, José D. P. Rolim, and
Ronitt Rubinfeld, editors, Proc. of the 11th Int. Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), volume 5171 of Lecture Notes in
Computer Science, pages 276-289. Springer, 2008.

Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, and
Amin Saberi. An O(logn/loglogn)-approximation algorithm for the asymmetric traveling
salesman problem. In Proc. of the 21st Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 379-389. SIAM, 2010.

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchet-
ti-Spaccamela, and Marco Protasi. Complexity and Approximation: Combinatorial Opti-
mization Problems and Their Approximability Properties. Springer, 1999.

Markus Bléser. A 3/4-approximation algorithm for maximum ATSP with weights zero and
one. In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana Ron, editors, Proc.
of the 7th Int. Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), volume 3122 of Lecture Notes in Computer Science, pages 61-71.
Springer, 2004.

Markus Blaser and Bodo Manthey. Approximating maximum weight cycle covers in di-
rected graphs with weights zero and one. Algorithmica, 42(2):121-139, 2005.

Markus Bléser, Bodo Manthey, and Oliver Putz. Approximating multi-criteria Max-TSP.
In Dan Halperin and Kurt Mehlhorn, editors, Proc. of the 16th Ann. European Symp. on
Algorithms (ESA), volume 5193 of Lecture Notes in Computer Science, pages 185-197.
Springer, 2008.

Matthias Ehrgott. Multicriteria Optimization. Springer, 2005.

Uriel Feige and Mohit Singh. Improved approximation ratios for traveling salesperson
tours and paths in directed graphs. In Moses Charikar, Klaus Jansen, Omer Reingold, and
José D. P. Rolim, editors, Proc. of the 10th Int. Workshop on Approzimation Algorithms
for Combinatorial Optimization Problems (APPROX), volume 4627 of Lecture Notes in
Computer Science, pages 104-118. Springer, 2007.

Christian Glafler, Christian Reitwiefiner, and Maximilian Witek. Improved and derandom-
ized approximations for two-criteria metric traveling salesman. Report 09-076, Revision
1, Electronic Colloquium on Computational Complexity (ECCC), 2010.

Christian Glafler, Christian Reitwiefiner, and Maximilian Witek. Applications of discrep-
ancy theory in multiobjective approximation. In Supratik Chakraborty and Amit Kumar,
editors, Proc. of the 30th Conf. on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS), volume 13 of LIPIcs, pages 55—65. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

13

[11]

[12]

[13]

[14]

[15]

Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim I. Sviridenko. Approximation
algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of
the ACM, 52(4):602-626, 2005.

Bodo Manthey. Deterministic algorithms for multi-criteria TSP. In Mitsuniro Ogihara
and Jun Tarui, editors, Proc. of the §th Ann. Conf. on Theory and Applications of Models
of Computation (TAMC), volume 6648 of Lecture Notes in Computer Science, pages 264—
275. Springer, 2011.

Bodo Manthey. Multi-criteria TSP: Min and max combined. Operations Research Letters,
40(1):36-38, 2012.

Bodo Manthey. On approximating multi-criteria TSP. ACM Transactions on Algorithms,
8(2), 2012.

Bodo Manthey and L. Shankar Ram. Approximation algorithms for multi-criteria traveling
salesman problems. Algorithmica, 53(1):69-88, 2009.

Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105-113, 1987.

Katarzyna Paluch, Marcin Mucha, and Aleksander Madry. A 7/9 approximation algo-
rithm for the maximum traveling salesman problem. In Irit Dinur, Klaus Jansen, Joseph
Naor, and José D. P. Rolim, editors, Proc. of the 12th Int. Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), volume 5687 of Lecture
Notes in Computer Science, pages 298-311. Springer, 2009.

Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted spanning
tree problems. Journal of the ACM, 29(2):285-309, 1982.

Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In Proc. of the 41st Ann. IEEE Symp. on Foundations
of Computer Science (FOCS), pages 86-92. IEEE Computer Society, 2000.

14

