
Approximating Independent Set in Perturbed Graphs

Bodo Mantheya, Kai Plociennikb,1

aUniversity of Twente, Department of Applied Mathematics, P.O.Box 217,
7500 AE Enschede, The Netherlands

bFraunhofer Institute for Industrial Mathematics ITWM, Department “Optimization”,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

Abstract

For the maximum independent set problem, strong inapproximability bounds
for worst-case efficient algorithms exist. We give a deterministic algorithm
beating these bounds, with polynomial expected running-time for semi-ran-
dom graphs: An adversary chooses a graph with n vertices, and then edges
are flipped with a probability of ε. Our algorithm guarantees an approxima-
tion ratio of O(

√
nε) for sufficiently large ε.

Keywords: independent set, approximation algorithms, smoothed analysis

1. Introduction and Results

Given an undirected graph G = (V,E), Independent Set asks to find
a largest independent set I ⊆ V , where I is independent if no edge in E
connects two vertices of I. The size of a largest independent set in G is its
independence number α(G). Throughout this paper, n = |V |.

Since Independent Set is NP-hard [6, GT20], worst-case polynomial-
time algorithms that compute optimal solutions are unlikely to exist. Hence,
approximation algorithms have been studied extensively. The approximation
ratio of an independent set I in a graph G is α(G)/|I|. An algorithm has
approximation ratio f if it computes a solution I with approximation ratio
at most f(n) for any n ∈ N and any graph on n vertices.

Email addresses: b.manthey@utwente.nl (Bodo Manthey),
kplo@hrz.tu-chemnitz.de (Kai Plociennik)

1Work done at Chemnitz University of Technology, Department of Computer Science,
Chair of Theoretical Computer Science and Information Security.

Preprint submitted to Discrete Applied Mathematics June 18, 2012

To our knowledge, the best known worst-case efficient algorithm has ap-
proximation guarantee O(n · (log log n)2/(log n)3) [3]. Unfortunately, this
is not much better than the trivially achievable approximation guarantee
n, which can be obtained by outputting a single vertex. Even worse, it
is unlikely that this can be improved considerably by worst-case efficient
algorithms: Unless P = NP, there is no polynomial-time approximation al-
gorithm with approximation ratio n1−ε for any ε > 0 [11].

However, one often observes that there are algorithms that compute rea-
sonably good solutions quickly in practice. One way to explain this is average-
case analysis, where performance is measured in terms of fully random in-
stances. However, average-case analysis is dominated by random instances,
and random instances usually have very special properties that distinguish
them from real-world instances. Thus, an average-case analysis might be
inconclusive.

To overcome this, Spielman and Teng [8] have introduced smoothed anal-
ysis : A malicious adversary, trying to make the algorithm perform poorly,
chooses an arbitrary input. Then, this input is subject to a small random
perturbation. If, regardless of the adversary’s choice, the expected perfor-
mance is good, then this explains the good observed performance: Although
bad instances exist, one must be very unlucky to accidentally get one.

1.1. Our Results

We perform a probabilistic analysis of the approximability of Indepen-
dent Set. The probabilistic model that we use is the smoothed extension of
G(n, p) proposed by Spielman and Teng [9]: Given a graph G = (V,E), we
obtain a random graph G = (V, E) with the same vertex set by negating the
existence of any edge independently with a probability of ε > 0. Formally,
each potential edge e is contained in the random edge set E with a probability
of

pe =

{
1− ε if e ∈ E and

ε if e /∈ E.

We denote the resulting probability distribution by G(G, ε). The special case
of E = ∅ is the classical G(n, ε) model. In the extreme case ε = 0, we have
G = G and the adversary has full power. For increasing ε, the adversary loses
power. For ε = 1/2, the adversary has no influence, and we have a G(n, 1/2)
graph. (For larger ε, the adversary gains influence again, but, because of
symmetry, we exclude the case ε > 1/2.) Thus, the value of ε determines

2

the “amount of randomness” in G. Note that our algorithm needs not only
the perturbed graph, but also the original, unperturbed graph as input. A
different view on this is that the algorithm has an estimate whether an edge
is likely or unlikely to be present in the perturbed graph.

In the analysis of our algorithm, we distinguish between large and small
flip probabilities ε: We say that ε is G-high if ln(1/ε)

ε
≤ n2

|E| . Otherwise, ε

is called G-low. Asymptotically, ε is G-high if ε = Ω((|E|/n2) log(n2/|E|)).
For sparse graphs with |E| = Θ(n), this is equivalent to ε = Ω((log n)/n).
The algorithm Approx-IS, which we are going to analyze, is described in
Algorithm 1.

Theorem 1. Let G = (V,E) be a graph and ε = ε(n) with
√

1/n ≤ ε ≤ 1/2.
Let G be drawn from G(G, ε). Then Approx-IS(G, G, ε) has polynomial ex-
pected running-time. If ε is G-high, it has approximation guarantee O(

√
nε).

If ε is G-low, the approximation guarantee is O
(|E| log(1/ε)

n3/2
√
ε

)
.

Our algorithm Approx-IS and parts of its analysis are based on techniques
by Krivelevich and Vu [7]. For the G(n, p) model, with n−1/2+δ ≤ p ≤ 1/2
(δ > 0 is arbitrary but fixed), they have presented an algorithm with poly-
nomial expected running-time and approximation guarantee O(

√
nε/ log n).

Theorem 1 extends this from G(n, ε) to G(G, ε). It slightly enlarges the range
of ε from ε ≥ n−1/2+δ to ε ≥ n−1/2, while slightly worsening the approxima-
tion guarantee by a factor of log n if ε is G-high. If ε is G-high, then we have
an approximation ratio of O(

√
nε). If ε is G-low, then the approximation

guarantee gets worse since the adversary gains more influence.
In our algorithm, we use a well-known greedy coloring algorithm as a sub-

routine. Given a graphG = (V,E), a coloring is a partition C = {C1, . . . , Ck}
of V into disjoint classes Ci such that all Ci are independent sets. From now
on, we assume that V = {1, 2, . . . , n}. GreedyColoring computes a coloring
of G as follows: We set C1 = {1}, χ = 1, and C = {C1}. Then, we consider
the vertices v = 2, . . . , n one by one. If there is an index 1 ≤ i ≤ χ such
that Ci ∪ {v} is independent, we set Ci := Ci ∪ {v} for the smallest such i.
Otherwise, we set χ := χ + 1, let Cχ = {v}, and let C := C ∪ {Cχ}. Given
a graph G, the greedy independent set gis(G) is a largest color class in the
greedy coloring C.

Theorem 2. Fix δ > 0. Let G = (V,E) be any graph, and let ε = ε(n)
with n−1+δ ≤ ε ≤ 1/2. Let G be drawn from G(G, ε). Then the expected

3

approximation ratio of the greedy algorithm for G drawn from G(G, ε) is O(1)

if ε is G-high and O
(|E| log(1/ε)

n2ε

)
if ε is G-low.

The goal of this paper is to prove these theorems. We implicitly assume n
to be sufficiently large whenever necessary. In the following, we log denotes
the logarithm to base 2.

2. Proofs of the Theorems

Let G be a graph drawn from G(G, ε). Our algorithm Approx-IS (see
page 11) checks whether the greedy independent set gis(G) has the desired
approximation ratio. To do this, it checks whether gis(G) is large enough
and whether the independence number α(G) is small enough. In the anal-
ysis, we use two corresponding tail bounds, which we state and prove next.
Approx-IS is analyzed in Section 2.3. After that, we prove Theorem 2.

2.1. A Tail Bound on the Greedy Independent Set Size

Lemma 3 states that the greedy independent set gis(G) (a largest color
class in the greedy coloring of G) is sufficiently large with high probability.
We define the threshold tgis. For a graph G = (V,E) and ε, δ > 0, let

tgis(G, ε) =
δ

16
·min

{
lnn

ε
,

n2 lnn

|E| ln(1/ε)

}
.

We assume δ > 0 to be small and fixed and thus omit it as a parameter.
By the definition of G-low and G-high, tgis(G, ε) = Ω

(
logn
ε

)
if ε is G-high

and tgis(G, ε) = Ω
(

n2 logn
|E| log(1/ε)

)
if ε is G-low. Krivelevich and Vu [7] proved a

lemma similar to the below Lemma 3 for G(n, p). Our proof is based on the
same technique.

Lemma 3. Fix δ ∈ (0, 1). For any graph G = (V,E) and any flip probability
ε = ε(n) with n−1+δ ≤ ε ≤ 1/2, we have

Pr [|gis(G)| < tgis(G, ε)] ≤ e−n lnn.

Proof. For brevity, let s = tgis(G, ε), and let r = n/(2s). We call a set
D = {D1, . . . , Dr} of r disjoint independent sets Di ⊆ V with |Di| ≤ s for
all Di a partial r-coloring. Let D = V \ (D1 ∪ . . . ∪ Dr). We call D bad if
every vertex v ∈ D is connected to all classes D1, . . . , Dr.

4

Let C be the greedy coloring of G. Assume that our bad event “|gis(G)| <
s” happens. Then all color classes in C are smaller than s. Thus, there are
at least n/s > r color classes in C. Let C∗ = {C1, . . . , Cr} contain the
first r color classes of C. C∗ is a partial r-coloring. Furthermore, C∗ is
bad since otherwise some vertex v ∈ C∗ is inserted into a class Ci ∈ C∗

by GreedyColoring. Thus, Pr[|gis(G)| < s] ≤ Pr[there is a bad partial
r-coloring].

We fix an arbitrary partial r-coloring D = {D1, . . . , Dr} and estimate
Pr[D is bad]. We have |D1 ∪ . . . ∪ Dr| ≤ rs = n/2. Thus, |D| ≥ n/2. For
a vertex v ∈ D and a class Di, let nv,i be the number of vertices w ∈ Di

such that the edge {v, w} is contained in the original (unperturbed) edge
set E of G. The number of vertices in Di to which v is not adjacent in
G is |Di| − nv,i. Fix a vertex v and a class Di. Then the probability that
the random G contains an edge that connects v to some vertex in Di is
1 − (1 − ε)|Di|−nv,iεnv,i . Let f(x) = (1 − ε)s−xεx for short. Together with
1− x ≤ e−x for x ∈ R and |Di| ≤ s for all Di, we get

Pr
[
D is bad

]
≤
∏
v∈D

r∏
i=1

(
1− (1− ε)|Di|−nv,iεnv,i

)
≤ exp

−∑
v∈D

r∑
i=1

f(nv,i)

 .

Without loss of generality, we assume |D| = n/2. Let N̂ =
∑

v,i nv,i ≤ |E|.
Since f(x) is convex, Jensen’s inequality, the fact that f is monotonically
decreasing, and the fact that the number of terms in the sum equals rn/2
yield

2

rn
·
∑
v,i

f(nv,i) ≥ f

(
2

rn
·
∑
v,i

nv,i

)
= f

(
2N̂

rn

)
≥ f

(
2|E|
rn

)
.

Thus, we get

Pr
[
D is bad

]
≤ exp

(
−rn

2
· (1− ε)s−2|E|/(rn)ε2|E|/(rn)

)
. (1)

Now we show that the absolute value of the exponent in (1) is at least 2n lnn.
For brevity, let a = (1−ε)s−2|E|/(rn) and b = ε2|E|/(rn). Then this is equivalent
to rab ≥ 4 lnn or ln r + ln a + ln b ≥ ln(4 lnn). Since s = tgis(G, ε) ≤ δ lnn

16ε

and ε ≥ n−(1−δ), we get s ≤ δn1−δ lnn
16

. This yields

ln r = ln
(n

2s

)
≥ ln

(
8nδ

δ lnn

)
= δ lnn− o(lnn) ≥ δ

2
· lnn. (2)

5

With ln a ≥ s ln(1− ε) and s ≤ δ lnn
16ε

and 1−x ≥ e−2x for x ∈ [0, 1/2], we get

ln a ≥ −2εs ≥ −(δ/8) lnn. (3)

From ln b = 2|E|
rn
· ln ε and s = tgis(G, ε) ≤ δn2 lnn

16|E| ln(1/ε) and r = n/(2s), we get

ln b =
4|E|s
n2
· ln ε ≥ 4|E| ln ε · δn2 lnn

16|E| ln(1/ε) · n2
= −δ

4
· lnn. (4)

Finally, (2), (3), and (4) lead to (ln r)+(ln a)+(ln b) ≥ (δ/2−δ/8−δ/4) lnn ≥
ln(4 lnn), which proves Pr[D is bad] ≤ e−2n lnn for a fixed partial r-coloring.
The number of choices for one color class of a partial r-coloring is bounded
by ns+1. Thus, the number of partial r-colorings is at most n(s+1)r ≤ nn =
exp(n lnn). A union bound over all partial r-colorings D combined with
Pr[D is bad] ≤ e−2n lnn for any fixed D completes the proof.

2.2. A Tail Bound on the Independence Number

Now we analyze how to certify that the independence number α(G) is
small. It is an adaption of Krivelevich and Vu’s method in their algorithm
for G(n, p) [7]. The idea is as follows: Denote by λ1(A) the largest eigenvalue
of a suitable real, symmetric matrix A = A(G, G, ε). Then we compute
λ1(A(G)). Lemma 4 states that always α(G) ≤ λ1(A), and that λ1(A) is
sufficiently small with high probability .

Let G = (V,E) be a graph, ε > 0 be a flip probability, and G = (V, E) be
drawn from G(G, ε). Remember that pe is the probability that a potential
edge e is contained in E (pe = ε if e 6∈ E and pe = 1 − ε if e ∈ E). Let
A(G, G, ε) = (aij)1≤i,j≤n be the n× n matrix given by

aij =

{
1 if e = {i, j} 6∈ E and

−(1− pe)/pe if e = {i, j} ∈ E .

In particular, we have aii = 1 for all i, because our graphs do not contain
loops.

Note that aij depends on whether e = {i, j} ∈ E and whether e ∈ E.
The matrix A is a canonical extension of the matrix used by Krivelevich and
Vu [7] to handle two different edge probabilities.

Lemma 4. Fix a graph G and ε = ε(n) ≤ 1/2 with ε = Ω((log n)2/n). Let
A = A(G, G, ε). Then always α(G) ≤ λ1(A). Furthermore,

E[λ1(A)] ≤ 27 · (log n) ·
√
n/ε (5)

6

and

Pr
[
λ1(A) ≥ 28 · (log n) ·

√
n/ε
]
≤ 4 · exp(−29 · nε · (log n)2). (6)

Throughout the rest of Section 2.2, we prove Lemma 4.
The claim that we always have α(G) ≤ λ1(A(G)) follows immediately

from Krivelevich and Vu [7, Lemma 2.4]. They have proved a similar result
for G(n, p), for which they used a matrix with A with entry aij = 1 for non-
edges and aij = −(1− p)/p if i and j are connected. This corresponds to our
setting if the adversary chooses the empty graph and p = ε.

In A = A(G, G, ε), an entry corresponding to a non-edge has a value of
1. Since the corresponding proof of Krivelevich and Vu [7] for their matrix
does not depend on the values of the other entries, we have α(G) ≤ λ1(A).

It remains to prove (5) and (6). Krivelevich and Vu [7, Lemma 2.3]
have proved their counterpart for G(n, p) using the matrix described above
as follows: Füredi and Komlós [5] have bounded the expected value of the
largest eigenvalue λ1(M) of the matrix M used by Krivelevich and Vu. Then
a tail bound similar to (6) is proved by estimating the probability that λ1(M)
deviates significantly from E[λ1(M)]. We first have to bound E[λ1(A)] from
above, which will give us (5) (Section 2.2.1). Then we prove (6) by the large
deviation technique [7] (Section 2.2.2).

2.2.1. The Expectation of the Largest Eigenvalue

The trace of a matrix A ∈ Rn×n is tr(A) =
∑n

i=1 aii. To bound E[λ1(A)]
from above, we use Wigner’s trace method [10] for estimating λ1(A), which
was also used by Füredi and Komlós [5]: For any (random) real, symmetric
matrix A and even k ∈ N, we have E[λ1(A)] ≤ E[tr(Ak)]1/k. To prove (5) in
Lemma 4, we thus have to estimate E[tr(A(G, G, ε)k)]. We have

E[tr(Ak)]

= E

 n∑
l0=1

n∑
l1=1

. . .
n∑

lk−1=1

al0l1al1l2 . . . alk−1l0

 =
∑
~l∈L

E[al0l1al1l2 . . . alk−1l0], (7)

where we abbreviate the set of sequences~l = (l0, . . . , lk−1) by L = {1, . . . , n}k.
We fix ~l ∈ L and estimate the corresponding summand E[al0l1al1l2 . . . alk−1l0]
in (7). Since A is symmetric, we identify the two equal entries aij and aji
and consider aij (i ≤ j) as representative. (This means that we replace

7

all occurrences of aji by aij. Let ai1j1 , . . . , aimjm be the representatives in
E[al0l1al1l2 . . . alk−1l0] with multiplicities r1, . . . , rm ≥ 1, respectively. Since
the presence of different edges in G is independent, we have

E[tr(Ak)] =
∑
~l∈L

m∏
s=1

E
[
arsisjs

]
. (8)

To estimate E[tr(Ak)], we bound (8) from above. First, consider the

sequences ~l ∈ L for which all representatives aisjs lie on the main diagonal.

Then l0 = . . . = lk−1 = i for i ∈ {1, . . . , n}. For such ~l, the corresponding
summand in (8) is 1 by the definition of A. Therefore, the n summands for the
sequences l0 = . . . = lk−1 = i, i = 1, . . . , n, contribute n to (8). Now, consider

the sequences ~l ∈ L choosing at least one off-diagonal representative entry
aisjs . If such an aisjs with multiplicity rs = 1 appears, then

∏m
s=1 E

[
arsisjs

]
= 0

by the definition of A: We have E[aisjs] = 1 · (1− pe)− 1−pe
pe
· pe = 0. Hence,

it suffices to consider the set L′ of sequences ~l with at least one off-diagonal
entry and every such entry appearing at least twice.

To bound |L′| from above, let us view a sequence ~l ∈ L′ as a closed
walk l0, l1, . . . , lk−1, lk = l0 of length k in an undirected complete graph. A
step (lj, lj+1) is identical if lj = lj+1 and real otherwise. Entry alj lj+1

is off-
diagonal if and only if the corresponding step is real. Let k′ be the number
of real steps, and let m′ be the number of different edges that the walk visits
(no edge is traversed in identical steps). We call such a walk a (k, k′,m′)-
walk. We have 2 ≤ k′ ≤ k and 1 ≤ m′ ≤ k′/2 since each of the m′ edges is
traversed at least twice.

First, we count the possible (k, k′,m′)-walks for given k′ and m′. For the
positions of the k−k′ identical steps, we have

(
k

k−k′
)
≤ 2k choices. It remains

to choose a closed walk of length k′ with real steps only and each of the m′

traversed edges appearing at least twice. Call such a walk a (k′,m′)-real-
walk. Friedman et al. [4, p. 425ff] showed an upper bound of 2kkknm

′+1 for
the number of such walks. (They have called them duplicated walks. In fact,

they showed a bound of k′2k
′
nm
′+1, which can be improved by using an upper

bound of 2k
′

instead of k′k
′

for
(
k′

m′

)
. Moreover, we have used m′ ≤ k′ ≤ k.)

Together with at most 2k choices for the positions of the identical steps, the
total number of (k, k′,m′)-walks is at most

2k · 2k · kk · nm′+1 = 22k · kk · nm′+1. (9)

8

For a (k, k′,m′)-walk ~l ∈ L′, we estimate its summand
∏m

s=1 E[arsisjs] in (8).
Since aisjs = 1 for is = js, we can omit their factors E[arsisjs] = 1. For an
off-diagonal representative aisjs , is < js, we have

E
[
arsisjs

]
= 1rs · (1− pe) +

(
−1− pe

pe

)rs
· pe

≤ 1 +
1

prs−1e

≤ 2

prs−1e

≤ 2

εrs−1
. (10)

Observe that our estimate pe ≥ ε in the inequality in (10) neglects the
potential edges e which are actually present in the adversarial graph G. For
such an e, we have pe = 1 − ε ≥ ε, and one might think that this could
improve (10) and our final result. However, asymptotically we lose nothing:
Assume that G’s edges form a clique of size n/2. Then |E| = Θ(n2) but G
still contains an independent set of size n/2. This part of our random graph
G behaves as G(n/2, ε). Thus, we cannot expect to get a better bound than
for G(n/2, ε).

We continue our proof. Without loss of generality, we assume that the
off-diagonal representatives aisjs have indices s = 1, . . . ,m′. Then

m′∑
s=1

(rs − 1) = k′ −m′.

This together with (10) yields, for a fixed (k, k′,m′)-walk ~l ∈ L′,

m∏
s=1

E
[
arsisjs

]
=

m′∏
s=1

E
[
arsisjs

]
≤

m′∏
s=1

2

εrs−1
=

2m
′

ε
∑m′
s=1(rs−1)

=
2m
′

εk′−m′
.

We can now estimate the contribution of the collection of all sequences
~l ∈ L′ to (8). The number of (k, k′,m′)-walks ~l is at most 22k · kk · nm′+1

by (9). We sum up all possibilities for k′ and m′ and get

∑
~l∈L′

m∏
s=1

E
[
arsisjs

]
≤

k∑
k′=2

k′/2∑
m′=1

22k · kk · nm′+1 · 2m
′

εk′−m′

≤
k∑

k′=2

k′/2∑
m′=1

23k · kk · n ·
(n
ε

)k/2
≤ 24k · kk · n ·

(n
ε

)k/2
, (11)

9

using that 2 ≤ k′ ≤ k and 1 ≤ m′ ≤ k′/2 and (1/(nε))k/2−m
′ ≤ 1.

Now we can bound E[tr(Ak)] from above: We have shown that the con-

tribution of the sequences ~l ∈ L \ L′ is n. The contribution of the sequences
~l ∈ L′ is given by (11). Using (8), we get

E[tr(Ak)]

=
∑
~l∈L

m∏
s=1

E
[
arsisjs

]
≤ n+ 24kkkn ·

(n
ε

)k/2
≤ 25kkkn ·

(n
ε

)k/2
. (12)

Now we set k = 2dlog ne and apply the trace method to (12), which yields

E[λ1(A)] ≤ E
[
tr(Ak)

]1/k ≤ (25k · kk · n ·
(n
ε

)k/2)1/k

= 25 · k · n1/k ·
√
n/ε ≤ 27 · (log n) ·

√
n/ε.

For the last inequality, we have used that n1/k = n1/(2dlogne) ≤
√

2. This
completes the proof of (5) in Lemma 4.

2.2.2. A Tail Bound on the Largest Eigenvalue

To prove (6) of Lemma 4, we adapt a result by Krivelevich and Vu [7,
Lemma 2.3] to our model. Since pe can be either ε or 1 − ε, there are two
types of corresponding entries aij. In order to adapt their proof, we have to
bound the difference of two different outcomes of an entry of A = A(G, G, ε):
This difference is at most 1 + (1 − pe)/pe = 1/pe ≤ 1/ε. Let m′ be the
median of the largest eigenvalue λ1(A) of the matrix A. Then we can apply
Krivelevich and Vu’s proof [7, Proof of Lemma 2.3], for which only an upper
bound on the difference of the two different outcomes of each entry of A is
needed. This yields

Pr
[
|λ1(A)−m′| ≥ t

]
≤ 4 exp

(
−(tε)2/8

)
and (13)∣∣E[λ1(A)]−m′

∣∣ = O(1/ε).

From this, we can conclude that the median and the mean do not differ by
too much: |E[λ1(A)] − m′| = O(1/ε) = o(log n ·

√
n/ε) by the assumption

that ε = Ω((log n)2/n). Together with (5), we obtain

m′ ≤ E[λ1(A)] + o(log n ·
√
n/ε) ≤ (27 + o(1)) · (log n)

√
n/ε.

Now assume that λ1(A) ≥ 28(log n)
√
n/ε happens. Then the bound for m′

above implies |λ1(A)−m′| ≥ 26(log n)
√
n/ε for sufficiently large n. Plugging

t = 26(log n)
√
n/ε into (13) completes the proof.

10

Algorithm 1 Approx-IS(G, G, ε)
1: Compute the greedy independent set I = gis(G). If |I| < tgis(G, ε) then

go to Step 5.
2: Compute λ1(A(G, G, ε)). If λ1 < 28 · (log n) ·

√
n/ε then output I.

3: For all S ′ ⊆ V , |S ′| = (8 log n)/ε, compute |N(S ′)|. If |N(S ′)| ≤ (2 log n)·√
n/ε for all tested subsets S ′ then output I.

4: Check all subsets S ′′ ⊆ V with |S ′′| = (8 log n)
√
n/ε. If none of them is

independent then output I.
5: Find a largest independent set by exhaustive search and output it.

2.3. Approximating the Independence Number

Now we prove Theorem 1 and state our algorithm Approx-IS (Algo-
rithm 1). To do this, let, for a graph G = (V,E) and a set S ⊆ V , the
non-neighborhood N(S) of S be the set of all vertices v ∈ V \ S for which
there is no edge {v, w} ∈ E with w ∈ S. Approx-IS gets an adversarial
graph G, a flip probability ε, and a random graph G drawn from G(G, ε) as
input. Recall the definition of the threshold for the greedy independent set
size: tgis(G, ε) = δ

16
·min

{
lnn
ε
, n2 lnn
|E| ln(1/ε)

}
. From now on, we fix δ = 1/2.

Approximation Guarantee. We start with the approximation guarantee. We

show that we always get a solution with approximation ratio O
(logn·√n/ε

tgis(G,ε)

)
.

Plugging in the definition of tgis completes the proof.
Step 5 outputs an optimal solution with approximation ratio 1. If any

other step outputs the greedy independent set I = gis(G), we have |I| ≥
tgis(G, ε), since otherwise we jump to exhaustive search (Step 5) in Step 1.
Furthermore, the independence number α(G) is small: If Step 2 outputs I,
then Lemma 4 yields

α(G) ≤ λ1(A(G)) = O(log n ·
√
n/ε).

The same holds if Step 3 outputs I: Then, for all sets S ′ ⊆ V of size
(8 log n)/ε, the non-neighborhood has size |N(S ′)| ≤ 2 log n

√
n/ε. Hence,

α(G) ≤ (8 log n)/ε+ 2 log n ·
√
n/ε = O(log n ·

√
n/ε),

since ε ≥
√

1/n. For Step 4, this upper bound on α(G) is obvious if I is
output. With our bounds on α(G) and |I|, we get the desired approximation

ratio of α(G)
|I| = O

(logn√n/ε

tgis(G,ε)

)
.

11

The Expected Running-Time. Now we analyze the expected running-time of
Approx-IS. The expected running-time of a step is the product of the time
it takes to execute it (its effort) and the probability of executing it. We show
that the expected running-time of every step is polynomial.

Let Ti be the random variable for the time spent in Step i. Steps 1 and 2
have polynomial worst-case running-time. In particular, eigenvalues can be
computed in polynomial time [1].

We turn to Steps 3, 4, and 5. Let s′ = (8 log n)/ε. Step 3’s effort is

O

(
poly(n) ·

(
n

s′

))
= O(poly(n) · ns′) = O

(
poly(n) · exp

(
8(lnn)2

ε ln 2

))
,

since it tests
(
n
s′

)
sets, each of which in polynomial time. The step is only

executed if Step 2 does not output I. Then λ1 ≥ 28 · log n
√
n/ε, which

happens with a probability of at most 4 exp(−29nε(log n)2) by Lemma 4.
We conclude that the expected running-time of Step 3 is

E[T3] = O

(
poly(n) · exp

(
8(lnn)2

ε ln 2

)
· exp(−29 · nε · (log n)2)

)
= O

(
poly(n) · exp

(
8(lnn)2

ε ln 2
− 29 · nε · (lnn)2

(ln 2)2

))
. (14)

The exponent in (14) is non-positive if ε ≥
√

(8 ln 2)/29 ·
√

1/n, which holds

since ε ≥
√

1/n. Thus, E[T3] is bounded by a polynomial.

Now let n′ = (2 log n)
√
n/ε. Then

Pr[Step 3 does not output I] = Pr[∃S ′ ⊆ V, |S ′| = s′ : |N(S ′)| > n′].

If Step 3 does not output I, then there are sets S ′, N ′ ⊆ V with |S ′| = s′ and
|N ′| = n′ such that none of the s′n′ potential edges between S ′ and N ′ exists
in E . Each edge is absent with probability at most 1 − ε. A union bound
over all sets S ′ and N ′ combined with 1− x ≤ e−x yields

Pr[Step 3 does not output I]

≤
(
n

s′

)
·
(
n

n′

)
· (1− ε)s′n′ ≤ ns

′ · nn′ · exp(−εs′n′)

= exp

(
8 · (lnn)2

ε ln 2
+

2 · (lnn)2
√
n/ε

ln 2
−

16 · (lnn)2
√
n/ε

(ln 2)2

)

≤ exp

((
8

ln 2
+

2

ln 2
− 16

(ln 2)2

)
· (lnn)2 ·

√
n

ε

)
≤ exp

(
−8(lnn)2

√
nε

ln 2

)
,

12

using 8·(lnn)2
ε ln 2

≤ 8
ln 2
· (lnn)2

√
n/ε due to ε ≥

√
1/n ≥ 1/n for the second-to-

last inequality. Since the number of tested sets S ′′ in Step 4 is(
n

8 log n
√
n/ε

)
≤ exp

(
8

ln 2
· (lnn)2

√
n/ε

)
,

we can infer that also E[T4] is bounded by a polynomial.
In a fixed tested set S ′′, there are(

8 log n
√
n/ε

2

)
≥ 16n(lnn)2

(ln 2)2ε

potential edges. Thus, S ′′ is independent with a probability of at most

(1− ε)
16n(lnn)2

(ln 2)2ε ≤ exp

(
−ε · 16n(lnn)2

(ln 2)2ε

)
= exp

(
−16(lnn)2n

(ln 2)2

)
.

The number of tested sets in Step 4 is at most

exp

(
8(lnn)2

√
n/ε

ln 2

)
= exp

(
o((lnn)2n)

)
since ε ≥

√
1/n. A union bound over all tested sets yields that the proba-

bility that Step 4 does not output I is exp(−Ω((log n)2n)). Step 5 is only
executed if Step 4 does not output I or if Step 1 fails, i.e., |I| < tgis(G, ε).
Lemma 3 shows that this happens with a probability of at most e−n lnn.
Thus, Step 5 is executed with a probability of at most exp

(
−Ω((log n)2n)

)
+

exp(−n lnn) = O(e−n lnn). Since Step 5 tests 2n sets, its effort is O(poly(n) ·
2n). Hence, also E[T5] is bounded by a polynomial.

2.4. The Expected Behavior of Greedy Independent Set
Now we prove Theorem 2. Since ε ≤ 1/2, α(G) is stochastically domi-

nated by the independence number of a G(n, ε) graph. The probability that a
G(n, ε) graph contains a clique of size at least c(log n)/ε for some sufficiently
large constant c is at most 1/n, as follows for instance from Bollobás and
Erdős [2]. Lemma 3 states that the probability that GreedyColoring does
not find an independent set of cardinality at least Ω((log n)/ε) is exponen-
tially small. Combining this yields that the probability that GreedyColoring
does not achieve a constant approximation ratio is at most O(1/n). If this
nevertheless happens, we can lower-bound the size of the greedy independent
set by the trivial bound of 1 and upper-bound the independent set by the
trivial bound of n. This contributes only O(1) to the expected value of the
approximation ratio.

13

3. Conclusions and Open Problems

We have performed a probabilistic analysis of the approximability of In-
dependent Set. The probabilistic model that we have used is a smoothed
extension of G(n, ε) [9]. Our algorithm guarantees an approximation ratio
of O(

√
nε) in expected polynomial time. Furthermore, we proved that the

greedy algorithm, which has worst-case polynomial time, has constant ex-
pected approximation ratio. This shows a trade-off between guaranteed or
expected running-time and approximation ratio.

Our algorithm Approx-IS needs to know the adversarial graph G in addi-
tion to G. A different view on this is that Approx-IS has an estimate about
the probability of the existence of an edge, which can be high or low. We
leave it as an open problem to eliminate the need of knowing G.

[1] Noga Alon. Spectral techniques in graph algorithms. In Claudio L. Luc-
chesi and Arnaldo V. Moura, editors, Proc. of the 3rd Latin American
Symposium on Theoretical Informatics, volume 1380 of Lecture Notes in
Computer Science, pages 206–215. Springer, 1998.

[2] Béla Bollobás and Paul Erdős. Cliques in random graphs. Mathematical
Proc. Cambridge Philosophical Society, 80(3):419–427, 1976.

[3] Uriel Feige. Approximating maximum clique by removing subgraphs.
SIAM J. Discrete Math., 18(2):219–225, 2004.

[4] Joel Friedman, Andreas Goerdt, and Michael Krivelevich. Recognizing
more unsatisfiable random k-sat instances efficiently. SIAM J. Comput.,
35(2):408–430, 2005.

[5] Zoltán Füredi and János Komlós. The eigenvalues of random symmetric
matrices. Combinatorica, 1(3):233–241, 1981.

[6] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[7] Michael Krivelevich and Van H. Vu. Approximating the Independence
Number and the Chromatic Number in Expected Polynomial Time. J.
Comb. Optim., 6(2):143–155, 2002.

14

[8] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algo-
rithms: Why the simplex algorithm usually takes polynomial time. J.
ACM, 51(3):385–463, 2004.

[9] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: an at-
tempt to explain the behavior of algorithms in practice. Communications
of the ACM, 52(10):76–84, 2009.

[10] Van H. Vu. Spectral norm of random matrices. Combinatorica,
27(6):721–736, 2007.

[11] David Zuckerman. Linear Degree Extractors and the Inapproximability
of Max Clique and Chromatic Number. Theory of Computing, 3(1):103–
128, 2007.

15

