Bisimplicial Edges in Bipartite Graphs

Matthijs Bomhoff, Bodo Manthey

Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Bisimplicial edges in bipartite graphs are closely related to pivots in Gaussian
elimination that avoid turning zeroes into non-zeroes. We present a new de-
terministic algorithm to find such edges in bipartite graphs. Our algorithm is
very simple and easy to implement. Its running-time is O (nm), where n is the
number of vertices and m is the number of edges. Furthermore, for any fixed p
and random bipartite graphs in the G, ,, , model, the expected running-time of
our algorithm is O (n2), which is linear in the input size.

Keywords: bipartite graphs, random graphs, algorithms, Gaussian elimination

1. Introduction

When applying Gaussian elimination to a square n X n matrix M containing
some elements with value zero, the choice of pivots can often determine the
amount of zeroes turned into non-zeroes during the process. This is called
the fill-in. Some matrices even allow Gaussian elimination without any fill-
in. Avoiding fill-in has the nice property of bounding the required space for
intermediate results of the Gaussian elimination to the space required for storing
the input matrix M. This is often important for processing very large sparse
matrices. Even when fill-in cannot be completely avoided, it is still worthwhile
to avoid it for several iterations, motivating the search for pivots that avoid
fill-in.

If we assume subtracting a multiple of one row of M from another turns
at most one non-zero into a zero, we can represent the relevant structure of
our problem using only {0, 1} matrices. (This assumption is quite natural, as
it holds with probability one for a random real-valued matrix.) Given such
a square matrix M, we can construct the bipartite graph G[M] with vertices
corresponding to the rows and columns in M, where the vertex corresponding to
row % and the one corresponding to column j are adjacent if and only if M; ; is
non-zero. We denote the number of non-zero elements of M by m. Furthermore,

Email addresses: m.j.bomhoffQutwente.nl (Matthijs Bomhoff), b.manthey@utwente.nl
(Bodo Manthey)

Preprint submitted to Discrete Applied Mathematics March 14, 2011

(&1 T2 3 T4 Ts

PRBOIX

C1 C2 C3 Cq Cs

(2) (b)

—_ == O O
o = O O O

o O O = o=
—_ O = =
S O O = =

Figure 1: An example of a {0, 1}-matrix M and its bipartite graph G[M].

we assume M has no rows or columns containing only zeroes, so the associated
bipartite graph has no isolated vertices and n < m < n2. Figure 1 shows an
example.

The {0,1} matrices that allow Gaussian elimination without fill-in corre-
spond to the class of perfect elimination bipartite graphs [1]. Central to the
recognition of this class of graphs is the notion of a bisimplicial edge: a bisim-
plicial edge corresponds to an element of M that can be used as a pivot without
causing fill-in. The fastest known algorithm for finding bisimplicial edges has a
running-time of O (nm) for sparse instances and O (n) in general [2, 3], where
w < 2.376 is the matrix multiplication exponent [4]. However, fast matrix multi-
plication using the algorithm of Coppersmith and Winograd [4] has huge hidden
constants, which makes it impractical for applications.

We present a new deterministic algorithm for finding all bisimplicial edges
in a bipartite graph. Our algorithm is very fast in practice, and it can be imple-
mented easily. Its running-time is O (nm). In addition, we analyze its expected
running-time on random bipartite graphs. For this, we use the G, 5 model.
This model consists of bipartite graphs with n vertices in each vertex class,
where edges are drawn independently, and each possible edge is present with a
probability of p. We show that the expected running-time of our algorithm on
Gron,p graphs for fixed p € (0,1) is O (nz), which is linear in the input size.
(The input size of a random G,, ., , graph is ©(n?) with high probability.)

2. Bisimplicial Edges
We denote by IT' (u) the neighbors of a vertex u and by ¢ (u) its degree.

Definition 2.1. An edge (u,v) of a bipartite graph G = (U,V,E) is called
bisimplicial, if the induced subgraph GT" (u)UT (v)] is a complete bipartite graph.

Clearly, we can determine in O (m) time if an edge (u,v) is bisimplicial: we
simply have to check all edges adjacent to it. So a simple algorithm to find a
bisimplicial edge in a bipartite graph G, if one exists, takes O (m2) time. The
bisimplicial edges in our example matrix M and associated graph G[M] are
shown in Figure 2. As mentioned above, Goh and Rotem [2] have presented

r=—-r~ "

O O Ol

1) 3 (] T's

[
C1 Co C3 Cy Cy

(2) (b)

Figure 2: Bisimplicial edges in M and its bipartite graph G[M] (bisimplicial edges are bold,
the corresponding matrix entries are dashed).

a faster algorithm based on matrix multiplication that can be implemented in
either O (n*) or O (nm).

We present a different approach that first selects a set of candidate edges.
The candidate edges are not necessarily bisimplicial and not all bisimplicial
edges are marked as candidates. However, knowing which candidates, if any,
are bisimplicial allows us to quickly find all other bisimplicial edges as well. By
bounding the number of candidates, we achieve an improved expected running-
time. The following observation is the basis of our candidate selection procedure.

Lemma 2.2. If an edge (u,v) of a bipartite graph G = (U, V, E) is bisimplicial,
we must have § (u) = min, cp,) 6 (v') and 6§ (v) = min, cp) d (V).

Proof. Let (u,v) € E be a bisimplicial edge, and let A = G[T" (u) UT (v)] be the
complete bipartite graph it induces. Now assume that there is a vertex v’ € Uy
with § (v') < & (u). Then there must be a v’ € V4 with u'v' ¢ E4. But this
would mean A is not a complete bipartite graph, leading to a contradiction. [J

Translated to the matrix M, this means that if M; ; = 1, it can only cor-
respond to a bisimplicial edge if row 7 has a minimal number of 1s over all the
rows that have a 1 in column j and column j has a minimal number of 1s over
all the columns having a 1 in row 4. In what follows, we will call the row (col-
umn) in M with the minimal number of 1s over all the rows (columns) in M
the smallest row (column). Using this observation, we construct an algorithm
to pick candidate edges that may be bisimplicial.

Algorithm 2.3. Perform the following steps:

1. Determine the row and column sums for each row i and column j of M.

2. Determine for each row i the index c; of the smallest column among those
with M; ., = 1 (breaking ties by favoring the lowest index); or let ¢; = 0 if
row ¢ has no 1.

3. Determine for each column j the index r; of the smallest row among those
with M., ; = 1 (breaking ties by favoring the lowest index); or let r; = 0
if column j has no 1.

W11t o

111110 0

P reo T2 Try T4 Ts
01010 . .
000 1i1;

01 01 0 > 0

Figure 3: selected candidate edges in M (shaded) and its bipartite graph G[M] (bold)

4. Mark M; ; as a candidate edge if c; = j and rj = 1.

Clearly, all steps in the algorithm can be performed in O (n2) time. Fur-
thermore, the last step will mark at most n candidate edges and at least 1.
(The reason that we have at least one candidate edge is as follows: Let ¢ be
the smallest row with the smallest index. Row 4 will select a column j. Due
to the tie-breaking mechanism, column j will also select row i, which leads to
a candidate.) The candidate edges marked by this algorithm in our example
matrix M are shown in Figure 3.

The following lemmas establish a few more characteristics of the candidate
edges.

Lemma 2.4. Let i,j,j" be such that the following properties hold:

1. Mi,j =1 and Mi’j/ =1 and
2. columns j and j' contain an equal number of 1s and
3. (i,7) 1is bisimplicial.

Then (i,j') is also bisimplicial and columns j and j' are identical. Due to
symmetry, the same holds if we exchange the roles of rows and columns.

Proof. If columns j and j' are not identical, but contain an equal number of 1s,
then there is some row ¢’ such that M;, ; = 1 and M,/ ;; = 0. In that case (4, j)
cannot be bisimplicial, so columns j and j' have to be identical. But then (i, j)
and (4,j’) both have to be bisimplicial due to symmetry. O

Lemma 2.5. If (i/,7') is bisimplicial, then there are i < i’ and j < j' such
that rows i and ' are identical, columns j and j' are identical, and (i,j) is
bisimplicial and selected as a candidate by algorithm 2.3.

Proof. Let j < j’ be the column with (1) the lowest index, (2) My ; = 1, and
(3) an equal number of 1s to column j'. As (i, j') is bisimplicial, we know three
things from Lemma 2.2 and Lemma 2.4: First, (¢, j) is also bisimplicial. Second,
columns j and j' are identical. Third, columns j and j’ are smallest columns
in row ¢/. Due to symmetry, there is also such a row 7 < ¢’ equal to row ¢/ with

the lowest index and (i,5’) bisimplicial. As (¢/,7) and (4,4’) are bisimplicial,
rows 4 and i’ are identical and columns j and j’ are identical, also (7,) must
be bisimplicial. Furthermore, by construction, columns j must be the smallest
column in row ¢ with the lowest index, and row 7 must be the smallest row in
column j with the lowest index. Thus, (4,7) is selected as a candidate. O

Using Algorithm 2.3 as a subroutine, we can construct Algorithm 2.6 to find
all bisimplicial edges of G[M]. Finding all bisimplicial edges instead of just a
single one can be beneficial in practice when performing Gaussian elimination
as not every possible pivot may preserve numerical stability.

Algorithm 2.6. Perform the following steps:

1. Determine candidates using Algorithm 2.3.

2. Test each candidate for bisimpliciality.

3. For each candidate (i,j) marked as bisimplicial, mark all also each (i, j)
as bisimplicial for each row 1" with an equal number of non-zeroes as row
i and My j = 1 and column j' with an equal number of non-zeroes as
column j and M; j = 1.

Theorem 2.7. Algorithm 2.6 finds all bisimplicial edges in time O (n3)

Proof. Step 1 marks up to n candidates in time O (n2) Each of these candidates
can be checked for bisimpliciality in time O (112)7 so step 2 can be completed in
time O (n?’) Finally, step 3 marks all non-candidate bisimplicial edges as can
be seen from Lemma 2.4 and Lemma 2.5. For a single candidate (4, 7) that is
found to be bisimplicial, all relevant rows ¢’ and columns j’ can be found in time
O (n). A total of O (n2) additional edges can be marked as bisimplicial during
this step and every non-candidate edge is considered at most once. Thus, this
step can also be completed in time O (nQ) O

To give a bit more insight into the working of Algorithm 2.6, Figure 4 shows
several example matrices with their bisimplicial and candidate edges: Figures
4(a) and 4(c) show situations in which candidates and bisimplicial edges are the
same. Figure 4(b) illustrates how a single candidate can be used to identify all
edges as bisimplicial. Figure 4(d) shows how an arbitrarily large matrix can be
constructed with n/3 candidates and no bisimplicial edges at all.

The running-time of Algorithm 2.6 is dominated by step 2 in which we have
to check all candidates in O (n2) time each. As we can find up to n candidates,
this leads to a worst-case running-time of O (n3) In the next section, we present
an improved running-time analysis for sparse instances. After that, we show
that our algorithm performs significantly better on random bipartite graphs.
The reason for this is that our algorithm will usually select only a few candidate
edges.

O O O O O o olmIo

[

O O O O O O O Otk

[
|
1

[

O O O O O oo O

[t
o O o O o:»—wo o O
|

[t
o O O O:l—“O o O O
|

[

O O OoO'RIOoO O O O O

[

O OoOIRITOo O O O o O

[
1
r
|

|
-
|

|
-
|

|
-
|

|
-
|

|
-
I

1

ORI O O O OO o O

o O 0 0 o0 o o o
—
—
—
—
—
—

-
-
-
-
-
-

[
|
r
|
|
-
|
|
-
|
|
-
|
|
-
|
|
-
|
|

—
o
Nt
—~
=2
=

O O O O O O Ol

[

O O O O O O O Ol

[
|
1

[

O O O O O OllE =

[
R R
I

[
o o O O:»—tw— —_ = =
I

[

O O ORIk R B =R

[

O ORIk R R B B B

[

=R N e T e e T

o O O O O o O = =
O O O O O O = O
SO O O O OO O = = O
O O O = O
O 0O O R R, O R R o
(=R L e e
= I e R O e N
— = O = = s =

S VAT U VA GHG U
[R e B S o SO O U U

[

—
e}
~
—
[oW)
Nt

Figure 4: several example matrices with bisimplicial (dashed) and candidate (shaded) elements

3. Sparse Matrices

Algorithm 2.6 can be implemented such that it makes use of any sparsity
in the matrix M. This section describes how a running-time of O (Cm) can be
obtained, where C' denotes the number of candidates found in the first phase
of the algorithm. As C < n, the running-time is bounded by O (nm). We
assume the input matrix M is provided in the form of adjacency lists of the
corresponding graph G[M]: For every row (column) we have a list of columns
(rows) where non-zero elements occur.

The first step of Algorithm 2.6 consists of running Algorithm 2.3, which
selects the candidates. Algorithm 2.3 itself consists of three steps. The first
step, determining the row and column sums, can be completed in time O (m) by
simply traversing the lists. The same holds for the second step: by traversing
the adjacency lists the values of ¢; and r; can be determined in time O (m).
Constructing the actual set of candidates from these values can subsequently be
done in time O (n). In total, Algorithm 2.3 determines the set of candidates in
time O (m). After this time, the number C' of candidates is known.

Checking a single candidate can be done in time O (m). Thus, the second
step of Algorithm 2.6, which consists of checking all candidates for bisimplicial-
ity, can be performed in time O (Cm).

Finally, we analyze the third step of Algorithm 2.6, marking the remainder
of the bisimplicial edges. For each bisimplicial candidate (4, j), we have to find
all rows ¢ identical to row 7 and columns j’ identical to column j. Due to
Lemma 2.4, we can simply traverse the adjacency lists for row 4 and column j
and check the column and row sums. As every row and every column contains
at most one candidate, all adjacency lists are traversed at most once. Thus, this
takes at most time O (m) for all candidates together. For each candidate, once
all relevant rows i’ and columns j’ have been determined, we have to mark all
combinations (i’,j’) as bisimplicial. As every edge is considered at most once
during this process, this can also be completed in time O (m).

Summarizing we have that the total running-time of Algorithm 2.6 is O (Cm)
where C' is bounded from above by n and known in time O (m) after the first
phase of the algorithm has been completed.

4. A First Bound on the Number of Candidate Edges

In order to justify the good practical performance of our algorithm theoret-
ically, we study the behavior of Algorithm 2.6 on random bipartite graphs in
the G, n,p, model in the following sections. For such instances, we show that the
number of candidates is significantly smaller than n, both with high probability
and in expectation. This yields an improved expected running-time on these
instances. In this section, we show a logarithmic bound on the expected number
of candidates for a fixed value of the parameter p in the G, 5, , model. This also
provides tail bounds for the distribution of the number of candidates. The two
subsequent sections improve the bound for the expected number of candidates
to a constant.

For a fixed value of p € (0,1), we consider random bipartite graphs in the
G n,p model. This means that we have n vertices in each vertex class and each
edge is present with a probability of p. Such a random graph corresponds to a
stochastic n x n {0,1} matrix M with P [M; ; = 1] = p. Let X; be the (random)
i-th row of M, and let | X;| be the (random) sum of its elements. If we order
the X; vectors according to the number of 1s they contain (breaking ties by
favoring lower values of 7), we denote by X (1) the row with the least number of
1s, by X(2) the row with the second-to-least number etc.

Lemma 4.1. Let e = 2,/98% Then

pn
1
P (1) < (1 - <)pr] <+
Proof. Fix any ¢ € {1,...,n}. By Chernoff’s bound [5], we have
1

—n, 2 - ogn
P[|X;| < (1 —e)pn] < e7™P /2 = ¢=2los =3

By a union bound over all rows, we get

P[| Xl < (1 —¢)pn] <nP[X; < (1 —e)pn] = %

Lemma 4.2. Fizp € (0,1). For k € o(y/n/logn), we have

P[C > k] < (l+0(1))-n(1—p)k+%.

Proof. Choose ¢ = 2,/ l';)gn" as in Lemma 4.1 above. If | X)| > (1 — ¢)pn, we
have for any column j

P [Column j has no 1 in rows X(q),..., X | [X1yl = (1 —¢)pn]
<1 -p+ep).

Thus, the probability that in this case, any column does not have a 1 in the k
rows with the smallest number of 1s is bounded from above by

P [Hj : Column j has no 1 in rows Xyy,..., X | [Xy > (1 - E)pn]
<n(l—p+ep)k.
If all columns have at least one 1 in rows X(1),..., X(x), all candidates selected
must be among these k rows, as they contain the smallest number of 1s over all
the rows in M. Since each row contributes at most 1 candidate, Algorithm 2.3
selects at most k£ candidates in this case.

By Lemma 4.1, the probability that | X ;)| < (1 —¢)pn, i.e., the smallest row
contains too few 1s, is bounded from above by 1/n. Altogether, we get

P[C>kz]§n(1—p+5p)k+%
k
" ((1 Y (e p>’“‘> +2
i=1
k %
oo ()4

i=1

1-p 1-p

of ¢ and k. O

The lemma follows because Ele (ksp) € o(1) since ££2 ¢ o(1) by our choice

Lemma 4.2 says that at most O (logn) candidates are selected with high
probability. This bound also holds in expectation: We use k = 2log(;_ % =

2logy/(1—pyn- If the number of candidate edges exceeds k, then we use the
worst-case bound of n. This gives us

E[C] <k+nP[C > K
<k+n*1—-o1)(1-plr+1
< (2+40(1))logy (1_pyn

and the following theorem and corollary.

Theorem 4.3. Fiz p € (0,1) and consider random instances in the G, p
model. With a probability of 1 — O(%) and in expectation, Algorithm 2.8 selects
at most (2 + o(1))log; _, L candidates.

Corollary 4.4. For any fixed p, Algorithm 2.6 has an expected running-time

of O (n2 1ogy /(1-p) n) on instances drawn according to Gy p p.

5. Isolating Lemma for Binomial Distributions

The tie-breaking of Algorithm 2.3 always chooses the row or column with
the lowest index. Thus, the probability of the event that row ¢ and column j
becomes a candidate edge depends also on the number of rows (or columns)
that actually have the minimum number of 1s.

Let us analyze the number of rows (or columns) that attain the minimum
number of 1s. At first glance, one might argue as follows: the number of 1s in
the rows are independent random variables with binomial distribution. Thus,
according to Chernoff’s bound, the number of 1s in each row is np + O(y/n)
with high probability. Hence, we have roughly np random variables that assume
values in an interval of size roughly O (y/n). From this, we would expect that
the minimum is assumed by roughly O (y/n) random variables. However, first,
this bound does not give us any good bound on the number of candidates.
Second, it is far too pessimistic. It turns out that, although relatively many
random variables fall into a relatively small interval, the minimum is usually
unique: The probability that the minimum is unique is 1 —o(1). This resembles
the famous isolating lemma [6]. Even stronger, the expected number of random
variables that assume the minimum is 1 + o(1). The following lemma is the
crucial ingredient for this, and it captures most of the intuition.

Lemma 5.1. Let k € N, and let Xq,..., X, be independent and identically
distributed random variables with values in Z. Let Y = min{Xy,..., Xy}, and
let Z = |{i | X; = Y}| be the number of random wvariables that assume the
minimum value. Let t € Z, q € (0,1), and ¢ € (0,1) such that the following
properties hold:

1. PIX; <t]<q foranyie{l,...,k}.
2. For every s > t, we have P[X; =s| X; <s] <ec.

Then i
E[Z] < T k%q.

Proof. The probability that Y < ¢ is bounded from above by kg by a union
bound over the k events X; < ¢. If indeed Y < t, we use the trivial upper bound
of Z < k. This contributes the term k2q. Otherwise, we consider X1, Xo, ..., X}
one after the other. Let ¥; = min{X;,..., X;}. Let Yy = oo for consistency.
Clearly, we have Y, = Y. For every i € {1,...,k}, we let an adversary decide
whether X; <Y, or X; >Y,;_1.

Fix any £ € N, and let jo, j1,...,j¢ be the last £ + 1 positions for which the
adversary has chosen X;, <Y}, _;. By our choice of j;, we have Y;,_1 =Y, .

The crucial observation is that Z > ¢ 4 1 if and only if X;, = Y;,_, for
all i € {1,...,¢}. By independence and assumption, the probablhty of this is
bounded from above by ¢’. This essentially shows that the distribution of Z —1
is dominated by a geometric distribution with parameter c¢. Overall, we obtain

= 1

Zc +k2q*7+k2q
1-c

£=0

as claimed. O

To actually get the result for binomial random variables, we show that the
value for ¢ from the lemma above can be chosen arbitrarily small. Intuitively,
this is because for binomial distributions, adjacent values have approximately
the same probability.

Lemma 5.2. Fiz any p € (0,1). Let Xq,..., Xy, ~ Binom (n,p) be inde-
pendent random variables distributed according to a binomial distribution with
parameters n and p, and let k € O(n). Let Y = min{Xy,...,Xx}, and let
=|{i|X; =Y}|. Then
E[Z] <1+40(1).

Proof. We show that the value for ¢ in Lemma 5.1 can be chosen as ¢ = o(1),
provided that n is sufficiently large.

Let t = np — a for a = \/nlogn. According to Chernoff’s bound, we have
P[X; <t] = o(1/k?) for any i. Thus, we can choose ¢ = o(1/k?) for the appli-
cation of Lemma 5.1.

Now we choose a slowly growing = = z(n) € w(1). We will give constraints
for the function z later on. Our goal is to show that it is possible to choose
¢ =2/x = o(1). This together with our choice of ¢ yields

2
_|_qk_2: /'1:

1
E[Z] < 1 2=1 1
[]_1_2/96 +1_2/x+qk +o(1)

as claimed.

10

Now fix any s > t. We have

PIX; =s|X; <s] <
| | “] P[X;e{s,s—1,...,s —x+1}]

_ @pra-p
Zz:s—m+1 (2)10[(1 - p)nfé
_ nl-p*(1—p)»—*
sl (n - S)' : Zz:sfm+1 ﬁlalpé(l - p)n—f

_ L (1)
= 1—p)s—¢ i
> w1 (pspi_)z A= 75

Let us estimate the product within the summation in the denominator. For
some appropriately chosen € > 0, we have

s . s—L s—4 _a s—4
a5e65) =65) (5
i:“_ln—z n—s n—1 -+

(00 75)

The last inequality holds in particular for e =

a 1 1
a. (ﬂ + ;) and n large enough
)

such that p > logn/+/n. Plugging this into (1) yields
< 1 < !
>~ 22:57m+1(1 _ €)s—l ~ . (1 o 5)z .

The term on the right-hand side is bounded by 2/x for < In(1/2)/In(1 — ¢).
Thus, we can choose x = [In(1/2)/In(1 — ¢)] = w(1), which completes the
proof. O

6. Constant Bound for the Number of Candidates

Theorem 6.1. Fiz any p € (0,1), and let C be the (random) number of candi-
dates if we draw instances according to Gy, np. Then

E[C] < 1+ 0(1)
s

logn
n

Proof. Similar to Lemma 4.1, for p’ = (1 —¢)p and € = , the probability
that some row or column in M contains less than np’ 1s is o(1/n) by Chernoff’s
bound [5]. If some row or column of M does have fewer 1s, we simply assume
that we have n candidates. This adds only o(1) to our final expected value,
which is negligible. For the remainder of the proof we may thus assume all rows

and columns contain at least np’ 1s.

11

We proceed by bounding the probability that a row i contains a candidate.
To establish an upper bound on this probability, we introduce a game on an
unknown matrix M in which our adversary aims to increase the probability
of row ¢ containing a candidate as much as possible. For any fixed i, let us
consider an unknown n X n matrix M and let our adversary pick a column j.
We set M; ; = 1 and let our adversary place additional 1s in column j so that it
contains at least np’ 1s. The other elements of M (i.e., those not in column j) are
subsequently each assigned a 1 with probability p. Based on our assumption,
every row and column now contains at least np’ 1s. We now determine an
upper bound on the maximum probability our adversary can achieve of row i
containing a candidate.

The number and placement of 1s in column j is the only element of the game
our adversary can influence to maximize the probability of row ¢ containing a
candidate. Thus, the optimal strategy is to maximize the probability of (i, j)
becoming a candidate. In order to do this, the number of 1s in column j has to
be as small as possible (to force row ¢ to select column j), so we may assume
our adversary places no more than np’ — 1 additional 1s for a total of np’. We
assume row ¢ thus selects column j.

Now let Z again be a random variable denoting the number of rows contain-
ing the smallest number of 1s among all rows having a 1 in column j. Recall
that E[Z] < 14 o(1) by Lemma 5.2. The probability of column j selecting row
i in our algorithm is now bounded from above by E[Z] /np’, which implies the
probability of (i,7) becoming a candidate is also bounded by this probability.
Plugging this in, we get

E[C] < Z P [row i contains a candidate] + o(1)

O

For any fixed p € (0, 1), we have a constant bound on the expected number of
candidates. This implies the expected running-time of Algorithm 2.6 on random
instances of G, p,p is O (nz) This expected running-time is linear in the input
size.

7. Conclusion

Avoiding fill-in while performing Gaussian elimination is related to finding
bisimplicial edges in bipartite graphs. Existing algorithms to find bisimplicial

12

edges are based on matrix multiplication. Their running-time is dominated
by the matrix multiplication exponent (w < 2.376). We have presented a new
algorithm to find such pivots that is not based on matrix multiplication. Instead,
our algorithm selects a limited number of candidate edges, checks them for
bisimpliciality, and finds all other bisimplicial edges based on that. The worst-
case running-time of our algorithm is O (n3), but the expected running-time for
random G, instances for fixed values of p is O (n?), which is linear in the
input size. The main reason for this difference is that the expected number of
candidates is only o)

Besides improving on the expected running-time on random instances, our
new algorithm is also very easy to implement in an efficient way. The running-
time can be brought down easily to O (C'm), where the number of candidates
C' is known after time O (m) and is bounded from above by n. Thus, we have
a worst-case running-time of O (nm). The combination of ease of efficient im-
plementation and a linear bound on the average-case running-time makes our
algorithm very practical.

The existing algorithms for the recognition of perfect elimination bipartite
graphs are based on finding a sequence of bisimplicial edges. We ask whether it
is possible to extend our new algorithm to a new algorithm for the recognition
of perfect elimination bipartite graphs.

Acknowledgement

We gratefully acknowledge the support of the Innovation-Oriented Research
Programme ‘Integral Product Creation and Realization (IOP IPCR)’ of the
Netherlands Ministry of Economic Affairs, Agriculture and Innovation.

References

[1] M. C. Golumbic, C. F. Goss, Perfect elimination and chordal bipartite
graphs, J. Graph Theory 2 (1978) 155-163.

[2] L. Goh, D. Rotem, Recognition of perfect elimination bipartite graphs,
Inform. Process. Lett. 15 (1982) 179-182.

[3] J. P. Spinrad, Recognizing quasi-triangulated graphs, Discrete Appl. Math.
138 (2004) 203 213,

[4] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Comput. 9 (1990) 251-280.

[5] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, Cambridge, United Kingdom, 1995.

[6] K. Mulmuley, U. V. Vazirani, V. V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica 7 (1987) 105-113.

13

