
Approximating Maximum Weight Cycle Covers in
Directed Graphs with Weights Zero and One∗

Markus Bläser† Bodo Manthey‡

Abstract

A cycle cover of a graph is a spanning subgraph each node of which is part
of exactly one simple cycle. A k-cycle cover is a cycle cover where each cycle
has length at least k. Given a complete directed graph with edge weights
zero and one, Max-k-DCC(0, 1) is the problem of finding a k-cycle cover with
maximum weight.

We present a 2
3 approximation algorithm for Max-k-DCC(0, 1) with run-

ning time O(n5/2). This algorithm yields a 4
3 approximation algorithm for

Min-k-DCC(1, 2) as well. Instances of the latter problem are complete di-
rected graphs with edge weights one and two. The goal is to find a k-cycle
cover with minimum weight. We particularly obtain a 2

3 approximation algo-
rithm for the asymmetric maximum traveling salesman problem with distances
zero and one and a 4

3 approximation algorithm for the asymmetric minimum
traveling salesman problem with distances one and two.

As a lower bound, we prove that Max-k-DCC(0, 1) for k ≥ 3 and Max-
k-UCC(0, 1) (finding maximum weight cycle covers in undirected graphs) for
k ≥ 7 are APX-complete.

Keywords: combinatorial optimization, approximation algorithms, inap-
proximability, traveling salesman problem, cycle covers

1 Introduction

A cycle cover of a graph is a spanning subgraph such that each node is part of
exactly one simple cycle. Computing cycle covers is an important task in graph
theory and combinatorial optimization [18, 21]. A k-cycle cover (sometimes also

∗The algorithm in Section 2 generalizes results presented at the 9th Ann. European Symp. on
Algorithms (ESA), Aarhus, Denmark, 2001 [6]. In Section 3, we strengthen results presented at
the 5th Int. Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), Rome, Italy, 2002 [5].

†Supported by DFG research grant BL 511/5-1. Work performed while member of the Institut
für Theoretische Informatik, Universität zu Lübeck. Address: ETH Zürich, Institut für Theoretis-
che Informatik, IFW B46.2, ETH Zentrum, 8092 Zürich, Switzerland, mblaeser@inf.ethz.ch.

‡Birth name: Bodo Siebert. Supported by DFG research grant RE 672/3. Address: Universität
zu Lübeck, Institut für Theoretische Informatik, Ratzeburger Allee 160, 23538 Lübeck, Germany,
manthey@tcs.uni-luebeck.de.

Submitted to Algorithmica.

called the (k− 1)-restricted cycle cover) is a cycle cover each cycle of which consists
of at least k edges.

Max-k-DCC(0, 1) is the following optimization problem. An instance is a com-
plete directed loopless graph G. Each edge of G has weight either zero or one.
The goal is to find a k-cycle cover of G with maximum weight. Max-k-UCC(0, 1)
is similarly defined, except that the input graph is undirected. Analogously, Min-
k-DCC(1, 2) and Min-k-UCC(1, 2) are the problems of finding a minimum weight
k-cycle cover in a directed or undirected graph, respectively, where the edge weights
are one and two.

A special case of the cycle cover problem is the traveling salesman problem
(TSP), where the goal is to compute a Hamiltonian tour of maximum or mini-
mum weight. For directed graphs (asymmetric TSP, ATSP), we call the former
with distances zero and one Max-ATSP(0, 1) and the latter with distances one and
two Min-ATSP(1, 2). Max-STSP(0, 1) and Min-STSP(1, 2) are the corresponding
undirected variants (symmetric TSP, STSP). These problems have received much
attention within theory of approximation algorithms. Furthermore, they can be
viewed as a relaxation of the Hamilton cycle problem: we are looking for a Hamil-
ton tour that contains as few “nonedges”, i.e., edges of weight zero or of weight two,
as possible.

Max-ATSP(0, 1) generalizes Min-ATSP(1, 2) in the following sense: Every (1−α)
approximation algorithm for Max-ATSP(0, 1) for some α > 0, translates into a
(1 + α) approximation algorithm for Min-ATSP(1, 2) by replacing weight two with
weight zero [24]. The converse, however, is not known to be true. The same relation
holds for cycle cover problems as well and also for the undirected variants. Therefore,
the maximization problems with weights zero and one seem to be harder than their
minimization counterparts with weights one and two.

1.1 Previous Results

Testing whether a directed graph has a 2-cycle cover can be solved in polynomial
time by computing a maximum matching in a bipartite graph [1] (this problem is also
known as the assignment problem [16]). However, already testing whether a directed
graph has a 3-cycle cover is NP-complete [23] (see also Garey and Johnson [10,
GT 13]).

Testing whether an undirected graph has a 3-cycle cover can be solved using
Tutte’s reduction [22] to the classical perfect matching problem which can be solved
in polynomial time [7]. Max-3-UCC(0, 1) can be solved in polynomial time as well.
Hartvigsen [11] presented a polynomial time algorithm for deciding whether an undi-
rected graph possesses a 4-cycle cover. He also presented a polynomial time algo-
rithm for finding a 5-cycle cover in bipartite graphs [12]. Vornberger [25] proved
that finding a 5-cycle cover of maximum weight is NP-complete if we allow arbitrary
edge weights (see also Barvinok et al. [4]). He also proved that testing whether an
undirected graph has a 6-cycle cover is NP-complete.

Let n be the number of nodes in the graph considered. For k > n/2, Max-
k-DCC(0, 1) and Min-k-DCC(1, 2) become Max-ATSP(0, 1) and Min-ATSP(1, 2),
respectively. Analogously, we get Max-STSP(0, 1) and Min-STSP(1, 2) from the

2

undirected cycle cover problems. All these problems are APX-complete [20]. Enge-
bretsen [8] proved explicit lower bounds for the approximability of Min-STSP(1, 2)
and Min-ATSP(1, 2). These bounds were improved by Engebretsen and Karpin-
ski [9]: unless NP = P, Min-ATSP(1, 2) and Min-STSP(1, 2) do not have ap-
proximation algorithms with the ratio better than 321

320
and 741

740
, respectively. Pa-

padimitriou and Yannakakis [20] presented a factor 7
6

approximation algorithm for
Min-STSP(1, 2). Their algorithm was generalized to an approximation algorithm
with the same approximation ratio for Min-k-UCC(1, 2) for arbitrary k [6]. Vish-
wanathan [24] presented a 17

12
approximation for Min-ATSP(1, 2). By exploiting an

algorithm by Lewenstein and Sviridenko [17] for the asymmetric maximum TSP,
we get a 5

8
approximation for Max-ATSP(0, 1) and an 11

8
approximation for Min-

ATSP(1, 2). Recently, Kaplan et al. [15] presented an algorithm that achieves the
approximation ratio 2

3
for the maximum ATSP and for computing maximum weight

3-cycle covers, both with with arbitrary edge weights. Their algorithm can also be
used as a 2

3
approximation for the problem of computing maximum weight k-cycle

covers, although they do not explicitly mention that.
Closely related to the maximum ATSP with distances zero and one is the directed

node-disjoint path packing problem. This problem has various applications such as
mapping parallel programs to parallel architectures and optimization of code [24].
An instance of this problem is a directed graph. The goal is finding a spanning
subgraph consisting solely of node-disjoint paths with as many edges as possible.
The directed node-disjoint path packing problem is equivalent to Max-ATSP(0, 1).

1.2 Our Results

We present an approximation algorithm for Max-k-DCC(0, 1) that achieves approxi-
mation ratio 2

3
. Its running time is O(n5/2). The analysis of the approximation ratio

and the running time are independent of k. Thus, we also obtain a 2
3

approximation
algorithm for Max-ATSP(0, 1).

Recently, Kaplan et al. presented an algorithm that achieves the same ratio in
graphs with arbitrary weights [15]. Our algorithms still remains interesting because
the algorithm presented by Kaplan et al. requires solving a linear program with n2

variables. In contrast, our algorithm is purely combinatorial and thus much faster.
Our algorithm can also be used for approximating Min-k-DCC(1, 2), for which we

obtain a 4
3

approximation algorithm. This result can be applied to Min-ATSP(1, 2)
as well, for which we obtain the same approximation ratio.

As a consequence of the approximation for Max-ATSP(0, 1), we obtain a 2
3

ap-
proximation for the directed node-disjoint path packing problem.

As already mentioned, the maximization variants with distances zero and one
seem to be harder than their minimization counterparts with distances one and
two. The reason for this is that with distances one and two, every tour is a 2-
approximation. In the case of distances zero and one, the ratio between an arbitrary
tour (which might have weight zero) and an optimum tour may be unbounded.
Thus, our algorithm for Max-ATSP(0, 1) is more complicated than our previous
one for Min-ATSP(1, 2) [6], though it has the same running time. We use a new
type of maximum matching and the analysis is more involved. One reason why

3

the maximization problems are harder is the following: Consider Min-ATSP(1, 2)
and assume that an optimum 2-cycle cover has weight 3

2
n. Then any tour is a

4
3

approximation. In other words, the problem becomes easier once the assignment
bound is away from the lower bound of n for the weight of an optimum tour. On the
other hand, if in the case of Max-ATSP(0, 1), an optimum 2-cycle cover has weight
1
2
n, then there might be tours (with weight zero) that are not an approximation at

all. Thus, the problem remains hard even if the assignment bound is away from the
upper bound of n for the weight of an optimum tour.

As a lower bound, we prove that Max-3-DCC(0, 1) is APX-complete (Section 3.1)
and generalize this result to a larger class of problems (Section 3.2): Max-k-DCC(a, b)
is the problem of finding a maximum weight k-cycle cover in directed graphs, the
edges of which have weight either a or b. Min-k-DCC(a, b), Max-k-UCC(a, b), and
Min-k-UCC(a, b) are analogously defined. We prove that Max-k-DCC(a, b) and Min-
k-DCC(a, b) are APX-hard for any k ≥ 3 and 0 ≤ a < b and that Max-k-UCC(a, b)
and Min-k-UCC(a, b) are APX-hard for any k ≥ 7 and 0 ≤ a < b.

2 A 2/3 Approximation for Max-k-DCC(0, 1)

In this section we present an algorithm for approximating Max-k-DCC(0, 1). This
algorithm is shown in Figure 1. An example of how the algorithm works is presented
in Figure 2.

An input for this algorithm is a complete directed graph G. The node set V has
cardinality n. Furthermore, we have a function w that assigns each edge weight zero
or one. Finally, we have an integer k ≤ n. The goal is to compute a k-cycle cover
with maximum weight. (The integer k will usually be a fixed constant. However, the
running time and approximation ratio are independent of k. Hence, we can assume
that k is part of the input. Particularly for Max-ATSP(0, 1) we need k > n/2, thus
k is nonconstant in this case.) For the analysis, we assume that an optimal k-cycle
cover, i.e., one with maximum weight, has weight n− `. In other words, an optimal
k-cycle cover consists of n− ` edges of weight one and ` edges of weight zero.

Next, we describe the steps of the algorithm in greater detail. Step 2, which
treats a technical special case, is deferred to Section 2.5.

2.1 Computing an Initial Cycle Cover

We start by computing an initial cycle cover (2-cycle cover) C of G with maxi-
mum weight. This can be done by reduction to (unweighted) matching in bipartite
graphs [1], which can be solved in time O(n5/2) [13]. Then we normalize the cycles
of C as follows:

1. We can assume that there is at most one cycle z containing edges of weight
zero. If there are two such cycles, then we can merge them without loss of
weight by discarding one edge of weight zero from either cycle.

2. Let (u, v) be an edge in the cycle z with w(u, v) = 0. Then we can assume
that there does not exist an edge (x, v) for some node x /∈ z with w(x, v) = 1.
Otherwise, we can merge z and the cycle to which x belongs without loss of

4

Input: a complete directed loopless graph G, a function w assigning
each edge weight either zero or one, and a k ∈ N.

Output: a k-cycle cover Capx of G.

1. Compute a normalized maximum weight cycle cover C of G.

2. If C contains exactly two weight zero edges, these two edges (u, x)
and (x, v) share one node x, w(u, v) = 1, and all edges in G incident
with x have weight zero, then remove x from G and replace the edges
(u, x) and (x, v) in C by (u, v).

3. Build the bipartite graph B, compute a Z-minimum maximum match-
ing M of B, and construct the function F .

4. Decompose F into a spanning subgraph S the connected components
of which are trees of height one, paths of length two, and isolated
nodes.

5. Merge the cycles according to the decomposition of F to obtain a k-
cycle cover Capx. If x was removed in step 2, insert it arbitrarily into
Capx, breaking an edge of weight zero if possible.

Figure 1: The approximation algorithm for Max-k-DCC(0, 1).

weight. Analogously, we can assume that there does not exist an edge (u, x)
for some x /∈ z with w(u, x) = 1.

During the normalization, we look at each edge only once and perform at most n
mergings. Thus, the normalization can be performed in time O(n2).

Let C = {c1, . . . , cr} be the set of cycles of C after normalization. Some of these
cycles may already have length at least k while others are strictly shorter (short
cycles). We assume that c1, . . . , cs (s ≤ r) are the short cycles. Let C< = {c1, . . . , cs}
and C≥ = C \ C<. If k > n/2, then we can assume that k = n. Thus, either C<

contains all cycles or we already have a Hamiltonian tour. For technical reasons, we
do not treat z as a short cycle, even if its length is strictly less than k. That means
z = ci for some i > s, or z does not exist at all.

The basic idea for eliminating the short cycles is to use subtour patching [16].
If we delete one edge (if possible, one of weight zero) of every cycle and merge the
paths obtained, we get a 1

2
approximation for Max-k-DCC(0, 1). To improve on this

approximation ratio, we try to merge the paths with as many edges of weight one
as possible.

2.2 Finding Additional Edges

To find such edges of weight one, we build a bipartite graph B as follows. The set
of nodes on the left-hand side is C<. The set of nodes on the right-hand side is V ,

5

(a) (b) (c)

(f)(e)(d)

v7 v4

v3

v6

v5

c1

c3 = z

c2
c2

c1

v1

v2

v2

v3

v4

v5

v2

v3

v4

v5

c1

c2

v1

v1

v6

v7

v6

v7

c2 c1 c3

v6 v1
v2

v3
v4

v7

v5

Figure 2: An example of computing a 3-cycle cover. (a) A directed graph G (only
weight one edges are drawn). (b) A cycle cover of G (weight zero edges are drawn
dashed). (c) The bipartite graph B. (d) A Z-minimum maximum matching M of
B. (e) The graph/function F . (f) The final cycle cover after merging the cycles.

the node set of G. We connect a cycle c ∈ C< to a node v ∈ V if and only if v /∈ c
and there is a node u ∈ c with w(u, v) = 1.

Let us estimate the size of a maximum matching of B.

Lemma 1 B has a matching of size at least s− `.

Proof: Let Copt be a maximum weight k-cycle cover of G. For any cycle c ∈ C< we
have at least one edge (u, v) in Copt with u ∈ c and v /∈ c. We construct a matching
T using these edges. With each cycle c ∈ C< we associate one edge of Copt that
starts at c. No edge will be associated with more than one cycle in this way. The
optimal k-cycle cover Copt contains at most ` edges of weight zero. Thus, at least
s − ` of the edges associated with cycles in C< have weight one. All these edges
correspond to edges in B. They all start at different cycles on the left-hand side of
B and end at different nodes on the right-hand side of B, since they are all part of
a cycle cover. Thus, they build a matching T of size at least s− `. ut

In the analysis of the approximation ratio, it will turn out that we need a maxi-
mum matching with a special property.

Definition 1 Let B = (U ∪ V, E) be a bipartite graph and let V ′ ⊆ V . We say
that a maximum matching M is V ′-minimum, if the number of nodes in V ′ that are
incident with an edge of M is minimal among all maximum matchings of B.

Let Z denote the nodes of z. The matching M computed in the algorithm is sup-
posed to be a Z-minimum maximum matching. (When we treated Min-k-DCC(1, 2),

6

any maximum matching was sufficient [6]. This again gives evidence that approx-
imating Max-k-DCC(0, 1) is harder than approximating Min-k-DCC(1, 2).) The
next lemma, which is an algorithmic version of a principle in matching theory [18,
Exer. 1.4.3], shows that such a matching can be computed efficiently.

Lemma 2 Let B = (U ∪V, E) be a bipartite graph and let V ′ ⊆ V . A V ′-minimum
maximum matching can be computed in time O(n5/2) (where n = |U |+ |V |).

Proof: Let X be a maximum matching of B = (U ∪ V, E) and m = |X|. Let
V ′ = V \ V ′. Let Y be a maximum matching of the graph induced by U ∪ V ′ and
p = |Y |.

Any V ′-minimum maximum matching is incident with at least m−p nodes of V ′.
Otherwise there would exist a matching of the graph induced by U ∪ V ′ consisting
of more than p edges, a contradiction.

Let W ⊆ V ′ be the set of all nodes that are matched by both X and Y . We
prove the following claim. From this claim, the lemma follows easily: By applying
the claim repeatedly (at most |V ′| times), we obtain a maximum matching that is
incident with p nodes of V ′ and consequently with m− p nodes of V ′. As observed
above, this means that we have found a V ′-minimum maximum matching.

Claim 1 If there is a node v ∈ V ′ \ W that is matched by Y (and hence v /∈ X),
then we can replace X by a maximum matching X̃ such that X̃ matches the nodes
in W ∪ {v}. X̃ can be computed from X in linear time.

Proof of Claim 1: To prove the claim, we consider the graph (U ∪V, X ∪Y). Each
node in this graph has degree at most two. By assumption, v has degree one. Set
v0 = v and assume that v0 is incident with the edge (u1, v0). If the degree of u1 is
two, let (u1, v1) be the other edge incident with u1. Repeating this process with v1,
we obtain an alternating path (u1, v0) ∈ Y , (u1, v1) ∈ X, (u2, v1) ∈ Y , . . . This path
ends with a node of degree one. The number of edges in this path is necessarily
even, because otherwise, we have found an augmenting path for Y . This contradicts
the maximality of Y . Let (u`, v`) ∈ X be the last edge in the path. Since v` has
degree one, it is not matched by Y . We now replace the edges (ui, vi), 1 ≤ i ≤ `,
in X with the edges (ui, vi−1). This yields a matching X̃ that matches v0 and all
the nodes in V \ {v`} that are matched by X. The running time is linear, since the
involved graph has only m + p edges. ut

It remains to estimate the overall running time. X and Y can be computed in
time O(n5/2). The final matching can be computed from X and Y in time O(n2),
since it only needs O(n) applications of the procedure described in the claim. ut

2.3 Decomposition of Functions

Using M , we build a directed graph F = (C, A) as follows. We have an edge
(c, c′) ∈ A if and only if there is an edge (c, v) ∈ M with v ∈ c′. Every node in F
has outdegree at most one. Thus, we can view F as a partial function C → C which
we again call F . Let dom(F) ⊆ C< be the domain of F , i.e., the set of cycles at

7

which an edge in F starts. By construction we have F (c) 6= c for any c ∈ dom(F),
i.e., F is loopless.

The function F can be decomposed into simple pieces using the following lemma.
For total functions, this lemma has been proved by Papadimitriou and Yannakakis [20].
For partial functions, it is implicitly contained in their proof.

Lemma 3 Any loopless partial function F contains a spanning subgraph S, such
that S consists solely of pairwise node-disjoint

• trees of height one,

• paths of length two, and

• isolated nodes such that no node in dom(F) is isolated.

Such an S can be computed in polynomial time.

Proof: Any weakly connected component of F is either a cycle, possibly with some
trees leading into it, or a tree (the root of which is not in dom(F)), or an isolated
node (which as well is not in dom(F)). It suffices to prove the lemma for weakly
connected components.

First, we consider a tree. We choose a leaf cl that is farthest from the root cr.
Let c̃ = F (cl). If c̃ = cr, then we already have a tree of height one. Otherwise we
build a tree of height one with root c̃ and all its predecessors, i.e., all nodes c with
F (c) = c̃. We remove this tree and proceed with the remaining component. In this
way we obtain a collection of trees of height one. It can happen that cr remains as
an isolated node, but cr /∈ dom(F).

Second, we consider a cycle. If the cycle does not have any tree leading into it,
then we can decompose it into paths of length one (which are trees of height one
as well) and possibly one path of length two. (We need a path of length two, if the
cycle has odd length.) If there are trees leading into the cycle, we decompose them
as described in the previous paragraph. We either end up with a cycle without any
trees or we have removed some of the roots of the trees. In the latter case we have
obtained a collection of paths that can be decomposed into paths of length one and
two.

Finally, if a weakly connected component is a single node, then this node is not
in the domain of F , since F is loopless.

The decomposition can clearly be done in polynomial time. ut
Let Ciso be the set of all cycles that are isolated nodes in S, the spanning subgraph

of F obtained via Lemma 3. We denote with C<
iso = Ciso ∩ C< the set of all short

isolated cycles and with C≥iso = Ciso ∩ C≥ the isolated cycles that are long enough.
An example of a decomposition of a cycle with two trees leading into it is shown

in Figure 3.

2.4 Merging Cycles

Now we merge the cycles. Consider a weakly component K of S as obtained by
Lemma 3. We remove one edge of each of K’s nodes (which are cycles in C) and
merge the paths obtained to get a longer cycle.

8

(d)

(b)

(c)

(a)

Figure 3: An example of a decomposition of a cycle with trees leading into it.

v1
v

u1

v v1

u1

c c

c
′

1

Figure 4: Trees of height one.

For all these new cycles, we take into account that we might have to add an edge
with weight zero. Thus, we can merge these cycles to one big cycle without losing
anymore weight.

First we treat the isolated nodes of S. The cycles in C≥iso are long enough and
do not need to be considered any further. The cycles in C<

iso are merged to one big
cycle d. If the length of z is strictly less than k and z is isolated, then we merge z
with d, too. (Note that we excluded z from C<.) If z is the only isolated cycle of
length less than k, then z becomes d.

Next we consider the components of S that are trees of height one. Let c be the
root of such a tree and let c′1, . . . , c

′
m ∈ C< be its leaves. For each cycle c′µ, there

is an edge (uµ, vµ) of weight one in G such that uµ belongs to c′µ and vµ to c. By
construction, the nodes v1, . . . , vm are pairwise distinct. The cycles c′1 and c are
merged as depicted in Figure 4. We call the resulting cycle again c and continue
the merging with the remaining cycles c′2, . . . , c

′
m in the same manner. (The node

v in Figure 4 can be one of the other vµ. This does not matter.) After that, we
merge c and d. In c, we remove one of the edges drawn dashed in Figure 4. In d,
we break one of the edges that do not belong to a cycle in C<, i.e., an edge that
was introduced during the merging. We call the resulting cycle again d and proceed
with the next connected component of S.

Finally we treat the components of S that are paths of length two. The three
cycles belonging to such a path are merged as shown in Figure 5. (The head of e

9

fe e f

Figure 5: Paths of length two.

may be the tail of f . The two removed edges in the cycle in the middle may also
coincide. In the latter case we enter the middle cycle via e, go through all its edges
except one, then enter the right cycle via f . From the right cycle, we go directly
back to the left one. We only lose weight one.) The resulting cycle is merged with
d as already described above.

We end up with a cycle d and the cycles in C≥iso. If the cycle d still has length
strictly less than k, we break an arbitrary cycle of C≥iso and merge d and this cycle.
The resulting cycle has length at least k. Thus, we obtain a k-cycle cover.

2.5 Analysis

To estimate the approximation performance of our algorithm, we introduce a number
of parameters:

1. T denotes the matching constructed from an optimum k-cycle cover Copt in
Lemma 1 and t = |T |.

2. Let m = |M |, where M is the matching constructed in the algorithm. Obvi-
ously, m ≥ t. Let mz denote the number of edges of M , that are incident with
nodes from z.

3. With n<
iso we denote the total number of nodes in the cycles of C<

iso.

4. Let ζ0 and ζ1 denote the number of edges of weight zero and one of z, respec-
tively, and ζ = ζ0 + ζ1.

5. Let Iopt be set of edges (x, v) of Copt such that v belongs to z and x does not.
In the same way, Oopt is the set of all edges (v, x) of Copt such that v belongs
to z and x does not. Let σ = |Iopt| = |Oopt|.

6. We set σI = |{e ∈ Iopt | w(e) = 1}| and σO = |{e ∈ Oopt | w(e) = 1}|.

7. Let Zopt be the set of all edges (u, v) of Copt such that w(u, v) = 1 and both u
and v belong to z. Let λ = |Zopt|.

Let us estimate the weight of the k-cycle cover Capx constructed by the algorithm.
We first estimate the loss of weight by patching the isolated cycles, the trees of height
one, and the paths of length two. If the weight of an optimum k-cycle cover is n,
then we are done at this point. If there are weight zero edges in an optimum k-cycle
cover, then the analysis has to be further refined.

The 2-cycle cover C computed in step 1 has weight n − ζ0. For each isolated
cycle in C<

iso, we break one edge and might lose weight one. This gives a total loss of

10

|C<
iso|. (If z exists, it contains an edge of weight zero. For any edge merged in d we

already took a loss of one into account. Thus, the possible merging of z and d does
not cause any loss.)

Next, we consider the merging as shown in Figure 4. We charge the loss of the
merging to vµ and the nodes of cµ. These are at least three nodes. Since the edge we
got from M has weight one, the loss of this merging is at most 1

3
per node involved.

The merging of c with d produces no loss at all, since we only break edges we have
already paid for when forming c and d.

In the case depicted in Figure 5, the loss of the merging is shared by the nodes
of the three cycles. These are at least six nodes. Altogether, the loss of this merging
is again at most 1

3
per node involved. As above, we do not lose any weight when

merging with d.
Each node is only charged once this way. For the moment, assume that the cycle

d has length at least k, thus an additional merging is not needed.
To how many nodes do we assign a loss of 1

3
? Certainly, we do not assign any

loss to the nodes in C<
iso. Furthermore, z has ζ − mz nodes that are not matched

and we do not assign any loss to them, too. (Note that z can only be the root of a
tree of height one, since it can only appear in a connected component of F that is
a tree, because z does not appear on the left-hand side of the bipartite graph B.)
Consequently,

w(Capx) ≥ n− ζ0 − 1
3
(n− n<

iso − (ζ −mz))− |C<
iso|

≥ 2
3
n− ζ0 + 1

3
ζ − 1

3
mz − 1

3
|C<

iso| , (1)

since n<
iso ≥ 2|C<

iso|.
The matching T obtained from Copt in Lemma 1 matches ≤ σI nodes of z by

definition of σI . Since M is a Z-minimum maximum matching, we have

mz ≤ σI + (m− t) . (2)

The matching M can match at most m− t nodes more of z than T . If this were not
the case, then we would be able to find a maximum matching that matches fewer
nodes of z (by using the procedure of Lemma 2 on M and T), contradicting the
choice of M .

Next we estimate |C<
iso|. Lemma 1 yields |C<

iso| ≤ `, but this bound is not strong
enough. We have to refine it in terms of the parameters introduced above. First,
Copt has (ζ − σ − λ) edges of weight zero that have both nodes in z. Thus, we do
not have to take them into account while estimating the size of T . Second, (σ−σO)
weight zero edges have their tail in z but not their head. These edges cannot appear
in T by construction, since we only used edges that left short cycles when building
T . Third, M has m− t edges more than T . Altogether,

|C<
iso| ≤ `− (ζ − σ − λ)− (σ − σO)− (m− t)

≤ `− (m− t)− ζ + λ + σO . (3)

Plugging Inequalities 2 and 3 into Inequality 1, we obtain

w(Capx) ≥ 2
3
n− ζ0 + 1

3
ζ − 1

3
σI − 1

3
`− 1

3
(m− t) + 1

3
ζ − 1

3
λ− 1

3
σO + 1

3
(m− t)

= 2
3
n− 1

3
ζ0 − 1

3
` + 2

3
ζ1 − 1

3
σI − 1

3
λ− 1

3
σO . (4)

11

x u

y v

x u

y v

Figure 6: This configuration would increase the weight of z.

The last ingredient we need is the following bound.

Lemma 4 We have σI + σO + λ ≤ 2ζ1, unless ζ0 = 2, the two weight zero edges
(u, x) and (x, v) of z share one node x, w(u, v) = 1, and all edges of G incident with
x have weight zero.

Proof: Since z is normalized, for any edge (x, v) ∈ Iopt with w(x, v) = 1, v is the head
of a weight one edge of z. Analogously, for any edge (v, x) ∈ Oopt with w(v, x) = 1,
v is the tail of a weight one edge of z. Thus, we can associate with each edge of
weight one in Iopt ∪Oopt either the head or the tail of a weight one edge of z. Since
there are ζ1 edges of weight one in z, we are done if we can also associate such a
node with each edge of Zopt.

Let (u, v) be an edge in Zopt. If (u, v) is an edge of z, then we associate u with
(u, v). (This choice is arbitrary, we could also take v.) If (u, v) is not an edge of z,
let (u, x) and (y, v) be the unique edges of z with tail u and head v, respectively.
We claim that if ζ0 6= 2, then either w(u, x) = 1 or w(y, v) = 1. If ζ0 < 2, this
is certainly true. If ζ0 > 2, assume on the contrary, that both weights were zero.
Then we could remove the edges (u, x) and (y, v) and insert the edges (u, v) and
(y, x) into C (Figure 6). If x 6= y, then we create two cycles of length at least two.
Thus, we would obtain a 2-cycle cover of strictly larger weight. This contradicts
the optimality of C. If x = y, then we create one cycle and an isolated node x.
Since ζ0 > 2, then the new cycle has a weight zero edge. We can remove this edge
and insert x. Again we have a found a 2-cycle cover of strictly larger weight, a
contradiction.

What can we do if ζ0 = 2? The only case that creates any problem is the case
where z contains exactly two consecutive edges (u, x) and (x, v) both of weight zero.
If x is incident with a weight one edge e, then we could insert x into the cycle the
other node of e belongs to using the edge e and we would again get a 2-cycle cover
with strictly larger weight than C, a contradiction.

We now associate with (u, v) one of u or v depending on which of w(x, u) or
w(v, y) equals one. (If both weights are one, we choose the node arbitrarily.)

Note that we associate the head or tail of a particular edge of z at most once
with an edge of Copt, since the intersection of z and Copt is a collection of disjoint
paths. ut

Except for the case excluded in Lemma 4, Inequality 4 and Lemma 4 imply

w(Capx) ≥ 2
3
n− 1

3
ζ0 − 1

3
` ≥ 2

3
(n− `) . (5)

We are left with the case that the node x is only incident with edges of weight
zero. In this case, we transform G into a new graph G′ by removing x and start

12

with the cycle cover C ′ obtained from C by replacing (u, x) and (x, v) by (u, v).
The graph G′ has n′ = n − 1 nodes. This new 2-cycle cover C ′ fulfills ζ ′0 = 0 since
w(u, v) = 1. Any optimum k-cycle cover of G′ has weight at least n′− `′ with `′ ≤ `,
since we can transform any k-cycle cover of G into a k-cycle cover of G′ as follows:
We shortcut the two edges incident with x. The resulting cycle cover has one weight
zero edge fewer, since these two edges have weight zero. The resulting cycle c might
have length k − 1. Thus, we have to merge it with an arbitrary cycle and we might
lose weight one. (Note that if c does not have any weight zero edge, then we have
two weight zero edges less after shortcutting.)

Now we are in a situation where we can apply Lemma 4. We get a k-cycle cover
C ′

apx of G′ of weight

w(C ′
apx) ≥ 2

3
n′ − 1

3
ζ ′0 − 1

3
`′ = 2

3
n− 1

3
`− 2

3
.

Since 2
3
n < n, C ′

apx contains a weight zero edge (or we have taken such an edge into
account). Thus, we can insert x into C ′

apx without any loss and obtain a k-cycle
cover Capx of G. Its weight is

w(Capx) = w(C ′
apx) = 2

3
n− 1

3
`− 2

3
≥ 2

3
(n− `) ,

since ` ≥ ζ0 = 2. Thus, in the case where d, the cycle obtained by patching the
short cycles, has length at least k, the cycle cover Capx is a 2

3
approximation to an

optimum k-cycle cover.
If d has length strictly less than k, then one additional merging is needed. We

refine the analysis as follows: All cycles in C≥iso consist solely of weight one edges.
Since C≥iso is nonempty, these are at least n/2 edges. The cycle d contains at least
half of the original edges of the merged cycles, since d is the only short cycle left.
Hence, d and the cycles in C≥iso contain at least a fraction of 3

4
of the edges of the

2-cycle cover C. Thus, after the last merging step we have a cycle cover of weight
at least 3

4
(n− `)− 1 ≥ 2

3
(n− `) for n− ζ0 ≥ 12.

If n− ζ0 ≤ 12, then the cycle z has at least length ζ0 ≥ n− 12. Thus, d has at
least the same length and no additional merging is necessary, since we may assume
without loss of generality that k ≤ n/2 + 1 and n > 24.

Theorem 1 The algorithm presented in this section is a factor 2
3

approximation
algorithm for Max-k-DCC(0, 1) with running time O(n5/2) for any k ≥ 3.

Corollary 1 Min-k-DCC(1, 2) can be approximated with factor 4
3

in time O(n5/2)
for any k ≥ 3.

Corollary 2 Max-ATSP(0, 1) can be approximated with factor 2
3

and Min-ATSP(1, 2)
can be approximated with factor 4

3
in time O(n5/2).

2.6 Tightness of the Approximation Ratio

In this section we provide an example to show that the analysis of the approximation
ratio of our algorithm is best possible.

We construct a graph with 3m nodes u1, . . . , um, v1, . . . , vm, x1, . . . , xm and the
following edges of weight one:

13

(a) (b)

(d)(c)

x2

u4

v2

u3
x3

x4

v1

v4

v3

u2

u1

x1

Figure 7: Tightness example for m = 4. (a) The graph. (b) The maximum weight
cycle cover. (c) The final result. (d) The optimal Hamiltonian tour.

• (ui, vi) and (vi, ui) for 1 ≤ i ≤ m,

• (xi, xi+1) for 1 ≤ i ≤ m− 1 and (xm, x1),

• (ui, xi) for 1 ≤ i ≤ m, and

• (vi, ui+1) for 1 ≤ i ≤ m− 1 and (vm, u1).

All other edges have weight zero. An example of such a graph is shown in Figure 7.
One maximum cycle cover consists of m cycles (ui, vi) of length two and one cycle

(x1, . . . , xm) of length m. One possible maximum matching matches the cycle (ui, vi)
with xi for 1 ≤ i ≤ m. We obtain the tour (v1, u1, x1, v2, . . . , xm−1, vm, um, xm),
which has weight 2m. An optimal k-cycle cover for 3 ≤ k ≤ m consists of the
two cycles (x1, . . . , xm) and (u1, v1, u2, . . . , vm−1, um, vm) and has weight 3m. For
m + 1 ≤ k ≤ 3m, an optimal k-cycle cover is a Hamiltonian tour of weight 3m− 1.
One such tour is (v1, u2, v2, u3, . . . , um, vm, u1, x1, . . . , xm). Thus, the analysis in
Section 2.5 is best possible: for all k, we cannot expect any approximation ratio
better than 2

3
in general.

3 APX-Hardness of Computing Cycle Covers

3.1 APX-Hardness of Max-3-DCC(0, 1)

In this section we prove that Max-3-DCC(0, 1) is APX-complete. For this purpose
we present an L-reduction [19] (see also, e.g., Ausiello et al. [3]) from Min-E3-Vertex-
Cover. An instance for Min-Vertex-Cover is an undirected graph H = (X, F). The
aim is to find a subset X̃ ⊆ X of minimum cardinality such that at least one

14

(b)(a)

vin

c,1=vout

c,4

vin

b,1=vout

b,3
vout

a,1 =vin

a,2

vin

a,1=vout

a,2

vout

b,1 =vin

b,3

vout

c,1 =vin

c,4

x2
x3

x4

x1
fa

fb

fc

Figure 8: (a) Node x1 and its edges fa, fb, and fc in H. (b) The corresponding
subgraph of G. Dashed edges are associated with x2, x3, or x4.

endpoint of each edge in F is a node in X̃. Min-E3-Vertex-Cover is Min-Vertex-
Cover restricted to cubic graphs, i.e., to graphs each node of which is incident with
exactly three edges. Alimonti and Kann [2] proved that even this restricted version
is APX-complete.

Let H = (X, F) be a cubic graph with node set X = {x1, . . . , xn} and edge set
F = {f1, . . . , f 3n

2
} as an input for Min-E3-Vertex-Cover. We construct a complete

edge weighted directed graph G as an instance for Max-3-DCC(0, 1) as follows. For
each edge fj = {xi, xi′} ∈ F we use two nodes vin

j,i = vout
j,i′ and vout

j,i = vin
j,i′ . We

connect the former to the latter node with an edge of weight one and vice versa. To
simplify the further considerations, we have introduced two names for each node.

Let fj1 , fj2 , and fj3 be the three edges (in arbitrary order) incident with node
xi ∈ X. Then we add two edges (vout

j1,i, v
in
j2,i) and (vout

j2,i, v
in
j3,i) both with weight one.

All edges not mentioned above have weight zero. An example of the construction
described is shown in Figure 8.

We say that the edges starting at vout
j1,i, vout

j2,i, and vout
j3,i as well as the edges ending

at vin
j1,i, vin

j2,i, and vin
j3,i are associated with xi. There are be edges in a cycle cover C

that are associated with two nodes.

Observation 1 All edges having weight one are associated with exactly one node.

We call C consistent with respect to xi if the edges associated with xi are as depicted
in Figure 9. In particular, if C is consistent with respect to xi, then all of the edges
associated with xi are not associated with any other node. The weight wC(xi) of
node xi in cycle cover C is the sum of the weight of all edges associated with xi.

Claim 2 We have w(C) =
∑n

i=1 wC(xi).

Proof: When considering
∑n

i=1 wC(xi), it can happen that we take an edge into
account twice. Due to Observation 1, such edges have weight zero. ut

By construction, we also have the following observation.

Observation 2 For any 3-cycle cover C and any xi ∈ X, we have wC(xi) ≤ 3.
Furthermore, if wC(xi) = 3, then the edges associated with xi run as depicted in
Figure 9(a). If they run as shown in Figure 9(b), then wC(xi) = 2.

Lemma 5 Let C be a 3-cycle cover of G. We can construct a consistent 3-cycle
cover C̃ of G with w(C̃) ≥ w(C) in polynomial time.

15

(a)

(b) ei,1 ei,2

vout

j3,i
vin

j3,i
vout

j2,i
vin

j2,i
vout

j1,i
vin

j1,i

vin

j1,i
vout

j1,i
vin

j2,i
vout

j2,i
vin

j3,i
vout

j3,i

Figure 9: The two possibilities of consistency. (a) Node xi does not belong to the
vertex cover. (b) Node xi belongs to the vertex cover.

Proof: Let Xinc be the set of nodes with respect to which C is not consistent. For
any xi ∈ Xinc, we rearrange the edges associated with xi such that they run as shown
in Figure 9(b). In this way we obtain a new graph C̃. If an edge is associated with
two nodes xi and xi′ , then both xi, xi′ ∈ Xinc. Thus, during the rearranging we do
not change the edges of nodes with respect to which C is consistent.

The modification described can obviously be done in polynomial time. We do
not change the weight of any xi with wC(xi) = 3. For all other nodes xi we now have
wC̃(xi) = 2. Thus, w(C̃) ≥ w(C). Furthermore, the graph C̃ obtained is consistent.
Thus, the lemma follows directly from Claim 3. ut

Claim 3 C̃ is a 3-cycle cover.

Proof: Every edge in C̃ is associated with exactly one node. Thus, C̃ does not
contain any loops. Every node in G has indegree one and outdegree one. Thus, C̃
is a cycle cover.

It remains to prove that C̃ does not contain any cycle of length two. Since C̃ is
consistent, there are only two possibilities for such a cycle: it consists either of vin

j,i

and vout
j,i or of vin

j,i and vout
j′,i for j 6= j′. The latter is impossible, since H does not

contain multiple edges.
Assume that we have a cycle of length two consisting of the two nodes vin

j,i = vout
j,i′

and vout
j,i = vin

j,i′ . Then the edges associated with xi or xi′ run as shown in Figure 9(a).

While constructing C̃, we only rearranged edges such that they run as depicted in
Figure 9(b). Thus, C is already consistent with respect to both xi and xi′ . However,
then C would already have had this cycle of length two, a contradiction. ut

We construct a set X̃ as follows: We put xi ∈ X̃ if the edges associated with xi

run as shown in Figure 9(b) and otherwise xi /∈ X̃. If w(C̃) = 3n− `, then |X̃| = `.

Claim 4 The set X̃ is a vertex cover of H.

Proof: Assume that there is an edge fj = {xi, xi′} and neither xi ∈ X̃ nor xi′ ∈ X̃.
Then both (vout

j,i , vin
j,i) ∈ C̃ and (vout

j,i′ , v
in
j,i′) ∈ C̃. Hence, C̃ contains a cycle of length

two, a contradiction. ut

Now we are prepared to prove the following theorem.

Theorem 2 Max-3-DCC(0, 1) is APX-complete.

16

(a)

(b)

(c)

vout

jν,i
vin

jν ,i
vin

jν+1,i
vout

jν+1,i

vout

jν+1,i

vout

jν+1,i
vin

jν+1,i
vout

jν,i
vin

jν ,i

vout

jν,i

v1

i,ν v2

i,ν vk−1

i,ν vk
i,ν

vin

jν ,i
vin

jν+1,i

Figure 10: (a) The subgraph connecting vout
jν ,i to vin

jν+1,i for ν = 1, 2. For connecting

vout
j3,i to vin

j1,i we have the same gadget, except for (vk
i,3, v

in
j1,i) having weight zero. (b)

& (c) The two possibilities of consistency. (b) Node xi belongs to the vertex cover.
(c) Node xi does not belong the vertex cover.

Proof: We proof that the reduction presented is an L-reduction. Let opt(H) be the
size of a minimum vertex cover of H and let opt(G) be the weight of a maximum
3-cycle cover of G. Since H is cubic, we have opt(H) ≥ n/2. Thus, opt(G) ≤ 3 ·n ≤
6 · opt(H).

On the other hand we have
∣∣|X̃| − opt(H)

∣∣ ≤ ∣∣w(C̃)− opt(G)
∣∣, which completes

the proof. ut

The graph induced be the weight one edges of G has degree bounded by 4,
i.e., every node has at most two outgoing and two incoming edges. Thus, Max-3-
DCC(0, 1) remains APX-complete even if we have very few edges with weight one.
In particular, the graph constructed has exactly 3n nodes and 5n edges. This might
be of independent interest for reductions from this problem to others.

3.2 APX-Hardness of Other Cycle Cover Variants

Now we generalize the results of Section 3.1 to other variants of the cycle cover
problem.

We start by proving the APX-hardness of Max-k-DCC(0, 1) for k ≥ 4. For this
purpose, we revisit the reduction presented in the previous section. Let H be a cubic
graph for which we want to compute a minimum vertex cover. We connect the two
nodes corresponding to an edge with two edges as above. Let xi ∈ X be any node
and let fj1 , fj2 , and fj3 be the edges incident with xi. Instead of connecting vout

j1,i to
vin

j2,i and vout
j2,i to vin

j3,i with simple edges, we connect them with gadgets consisting of
nodes v1

i,1, . . . , v
k
i,1 and v1

i,2, . . . , v
k
i,2, respectively, as depicted in Figure 10. The nodes

vout
j3,i and vin

j1,i are similarly connected, except for edge (vk
i,3, v

in
j1,i) which has weight

zero.
Taking an edge (vout

jν ,i, v
in
jν′ ,i) in the graph constructed in Section 3.1 corresponds

to connecting vout
jν ,i to vin

jν′ ,i with a path via v1
i,ν , . . ., vk

i,ν . Otherwise, we connect v1
i,ν ,

. . ., vk
i,ν with a cycle of length k. In addition to the edges that are already associated

with a node xi, all edges starting or ending at some vµ
i,ν (ν = 1, 2, 3 and µ = 1, . . . , k)

are associated with xi.

17

Given an arbitrary cycle cover of the graph constructed, we can obtain a consis-
tent k-cycle cover in polynomial time without losing weight. If we have a consistent
k-cycle cover with weight (3k + 3)n − `, we obtain a vertex cover of size `. The
reduction presented is an L-reduction for fixed k.

We can extend the result to arbitrary weights: replace weights zero and one with
weights a and b, respectively (0 ≤ a < b). The proof remains the same. Finally, we
can extend the result to Min-k-DCC(a, b) (0 ≤ a < b, k ≥ 3) by replacing weights
zero and one with b and a, respectively.

Corollary 3 Max-k-DCC(a, b) and Min-k-DCC(a, b) are APX-hard for all k ≥ 3
and 0 ≤ a < b.

Now we focus our attention to the problem of computing cycle covers in undi-
rected graphs. Let G be a directed graph with node set V for which we want to
compute a minimum k-cycle cover (k ≥ 3). We construct an undirected graph G′

by using a technique for reducing the directed to the undirected Hamilton circuit
problem (see, e.g., Hopcroft et al. [14]). For every node v ∈ V we create three copies
v, vin, and vout. We connect v to both vin and vout with an edge of weight one. For
every edge e = (v, ṽ) that has weight one in G, we create an edge connecting vout to
ṽin of weight one. All other edges have weight zero.

Every k-cycle cover C with weight w corresponds to a 3k-cycle cover C ′ with
weight w + 2|V |: For v ∈ V take the edges {vin, v} and {v, vout}. Furthermore, if
e = (v, ṽ) ∈ C, then {vout, ṽin} ∈ C ′. In order to obtain an L-reduction, we need
w + 2|V | ∈ O(w). We restrict ourselves to considering the graphs obtained from
the reductions so far: for these graphs, we have w ≥ (3k + 3)n − ` with ` ≤ n and
|V | = (3k + 3)n.

A cycle cover of G′ is called consistent if it corresponds to some cycle cover of G
as described above. We now explain how to obtain a consistent 3k-cycle cover from
an arbitrary (3k − 2)-cycle cover of G′.

Assume that there is a node v ∈ V such that {vin, v} or {v, vout} is not in C ′.
Due to symmetry we restrict ourselves to considering the first case. There are two
possibilities: either vin and v belong to different cycles or they belong to the same
cycle (but are not neighbored). In either case there must be an edge with weight
zero in the cycle cover that is incident with v and some node v̂. We discard this edge
and add {vin, v}. Furthermore, there are two edges e1 and e2 different from {vin, v}
that are incident with vin. Let e1 = {vin, v̂1} and e2 = {vin, v̂2}. We choose to delete
one of these edges, say e1, and connect v̂ to v̂1. The choice will be made such that
we obtain one cycle. If v and vin have been in the same cycle, we obtain one cycle
that runs through the same set of nodes. If v and vin have been in different cycles,
we obtain one cycle running through the nodes of both cycles.

In this way we iteratively obtain a new cycle cover. This cycle cover is a 3k-cycle
cover: the length of each cycle is divisible by 3, we started with a (3k − 2)-cycle
cover, and no cycle has been shortened. The cycle cover obtained weighs at least
as much as the original cycle cover. Hence, if Max-k-DCC(0, 1) is APX-hard, then
so are Max-(3k − 2)-UCC(0, 1), Max-(3k − 1)-UCC(0, 1), and Max-3k-UCC(0, 1).
Furthermore, the reduction can be generalized as for directed graphs. Thus, we
obtain the following corollary.

18

Corollary 4 Max-k-UCC(a, b) and Min-k-UCC(a, b) are APX-hard for all k ≥ 7
and 0 ≤ a < b.

All problems mentioned in the previous corollaries are APX-complete, except for
Min-k-DCC(0, b) and Min-k-UCC(0, b) (with b > 0): these problems do not even
have a constant factor approximation, unless P = NP.

4 Open Problems

One open problem is to generalize our approximation algorithm for Min-k-UCC(1, 2),
such that it yields the approximation ratio 5

6
for Max-k-UCC(0, 1).

Another open problem is the approximability of Max-k-UCC(a, b) and Min-k-
UCC(a, b) for k = 5, 6, i.e., the question of whether these problems are APX-complete
or not.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[2] Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic
graphs. Theoret. Comput. Sci., 237(1–2):123–134, 2000.

[3] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability Properties.
Springer, 1999.

[4] Alexander Barvinok, Edward Kh. Gimadi, and Anatoliy I. Serdyukov. The
maximum traveling salesman problem. In Gregory Gutin and Abraham P.
Punnen, editors, The Traveling Salesman Problem and its Variations, pages
585–607. Kluwer Academic Publishers, 2002.

[5] Markus Bläser and Bodo Manthey. Two approximation algorithms for 3-
cycle covers. In Proc. of the 5th Int. Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), volume 2462 of Lecture
Notes in Comput. Sci., pages 40–50. Springer, 2002.

[6] Markus Bläser and Bodo Siebert. Computing cycle covers without short cycles.
In Proc. of the 9th Ann. European Symp. on Algorithms (ESA), volume 2161
of Lecture Notes in Comput. Sci., pages 368–379. Springer, 2001.

[7] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[8] Lars Engebretsen. An explicit lower bound for TSP with distances one and
two. Algorithmica, 35(4):301–319, 2003.

19

[9] Lars Engebretsen and Marek Karpinski. Approximation hardness of
TSP with bounded metrics. Manuscript, July 2002. Available at
http://www.nada.kth.se/∼enge/papers/BoundedTSP.pdf.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[11] David Hartvigsen. An Extension of Matching Theory. PhD thesis, Department
of Mathematics, Carnegie-Mellon University, 1984.

[12] David Hartvigsen. The square-free 2-factor problem in bipartite graphs. In
Proc. of the 7th Int. Conf. on Integer Programming and Combinatorial Opti-
mization (IPCO), volume 1610 of Lecture Notes in Comput. Sci., pages 234–241.
Springer, 1999. Improved version in preparation.

[13] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley, 2001.

[15] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Ap-
proximation algorithms for asymmetric TSP by decomposing directed regular
multigraphs. In Proc. of the 44th Ann. IEEE Symp. on Foundations of Com-
puter Science (FOCS), pages 56–65, 2003.

[16] Eugene L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and David B.
Shmoys, editors. The Traveling Salesman Problem: A Guided Tour of Combi-
natorial Optimization. John Wiley and Sons, 1985.

[17] Moshe Lewenstein and Maxim Sviridenko. Approximating asymmetric maxi-
mum TSP. In Proc. of the 14th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 646–654, 2003.

[18] László Lovász and Michael D. Plummer. Matching Theory. Elsevier, 1986.

[19] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxima-
tion, and complexity classes. J. Comput. System Sci., 43(3):425–440, 1991.

[20] Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman
problem with distances one and two. Math. Oper. Res., 18:1–11, 1993.

[21] William R. Pulleyblank. Matchings and extensions. In Ronald L. Graham,
Martin Grötschel, and László Lovász, editors, Handbook of Combinatorics, vol-
ume 1, pages 179–232. Elsevier, 1995.

[22] William T. Tutte. A short proof of the factor theorem for finite graphs. Canad.
J. Math., 6:347–352, 1954.

[23] Leslie G. Valiant. The complexity of computing the permanent. Theoret. Com-
put. Sci., 8(2):189–201, 1979.

20

[24] Sundar Vishwanathan. An approximation algorithm for the asymmetric trav-
elling salesman problem with distances one and two. Inform. Process. Lett.,
44(6):297–302, 1992.

[25] Oliver Vornberger. Easy and hard cycle covers. Technical report, Univer-
sität/Gesamthochschule Paderborn, 1980.

21

