
Approximability of Minimum AND-Circuits∗

Jan Arpe†,1 Bodo Manthey‡,2

1 University of California
Department of Statistics
367 Evans Hall #3860
Berkeley, CA 94720-3860, USA
arpe@stat.berkeley.edu

2 Yale University
Department of Computer Science
P. O. Box 208285
New Haven, CT 06520-8285, USA
manthey@cs.yale.edu

Abstract

Given a set of monomials, the Minimum AND-Circuit problem asks for
a circuit that computes these monomials using AND-gates of fan-in two and
being of minimum size. We prove that the problem is not polynomial-time
approximable within a factor of less than 1.0051 unless P = NP, even if the
monomials are restricted to be of degree at most three. For the latter case,
we devise several efficient approximation algorithms, yielding an approxima-
tion ratio of 1.278. For the general problem, we achieve an approximation
ratio of d − 3/2, where d is the degree of the largest monomial. In addition,
we prove that the problem is fixed parameter tractable with the number of
monomials as parameter. Finally, we discuss generalizations of the Minimum
AND-Circuit problem and relations to addition chains and grammar-based
compression.

1 Introduction

Given a set of Boolean monomials, the Minimum-AND-Circuit problem asks for a
circuit that consists solely of logical AND-gates with fan-in two and that computes
these monomials. The monomials may for example arise in the DNF-representation
of a Boolean function or in some decomposed or factored form. Thus, the Minimum-
AND-Circuit problem is of fundamental interest for automated circuit design, see
Charikar et al. [6, Sect. VII.B] and references therein. In this paper, we assume that
all variables always occur positively; no negations are permitted. The investigation

∗A preliminary version has been presented at the 10th Scandinavian Workshop on Algorithm
Theory (SWAT 2006) [4].

†Work done as a member of the Institut für Theoretische Informatik of the Universität zu
Lübeck and supported by DFG research grant RE 672/4. Supported by the Postdoc-Program of
the German Academic Exchange Service (DAAD).

‡Work done as a member of the Institut für Theoretische Informatik of the Universität zu
Lübeck and supported by DFG research grant RE 672/3. On leave from Universität des Saarlandes,
Informatik, Saarbrücken, Germany. Supported by the Postdoc-Program of the German Academic
Exchange Service (DAAD).

Submitted to Algorithmica

of minimum AND-circuits from a complexity theoretic standpoint was proposed by
Charikar et al. [6]. According to them, no approximation guarantees have been
proved at all yet.

We give the first positive and negative approximability results for the Minimum-
AND-Circuit problem. Specifically, we show that the problem is not approximable
within a factor of less than 983

978
unless P = NP, even if the monomials are restricted

to be of maximum degree three (Sect. 3). For the latter variant, we present several
algorithms and prove an upper bound of 1.278 on its approximation ratio (Sect. 4).
Furthermore, if in addition to restricting the degrees to be at most three, the number
of occurrences of each submonomial of size two in the input instance, called the
multiplicity, is bounded from above by a constant µ ≥ 3, similar hardness results
are achieved (Sect. 3) and the upper bounds are slightly improved (Sect. 4.4). For
maximum degree three and µ = 2, the problem is even in P (Sect. 4.2). However,
if we allow the monomials to be of maximum degree four, it remains open whether
the case µ = 2 is solvable in polynomial time. We prove that the general problem
with multiplicity bounded by µ is approximable within a factor of µ (Sect. 6.2).

In general, restricting the monomials to be of degree at most d admits a straight-
forward approximation within a factor of d − 1, which we improve to d − 3/2
(Sect. 6.1). If the degrees are required to be exactly d and in addition, the multi-
plicity is bounded by µ, we prove an upper bound on the approximation ratio of
µ(d− 1)/(µ + d− 2) (Sect. 6.2).

Besides from fixing the maximum degree or the multiplicity of the input monomi-
als, we consider fixing the number of monomials (Sect. 5). We show that Minimum-
AND-Circuit instances have small problem kernels, yielding a fixed-parameter trac-
table algorithm (for terminology, see Downey and Fellows [10]).

There are two evident generalizations of AND-circuits. The first one is to ask
for a minimum Boolean circuit (with AND-, OR-, and NOT-gates) that computes a
given function. This problem has, for example, been investigated by Kabanets and
Cai [14]; its complexity is still open. Even if the functions to be computed consist
solely of positive monomials, allowing the circuit to contain AND- and OR-gates can
reduce the circuit size, as has been shown by Tarjan [18] (see also Wegener [21]).
Further related problems in this direction are the construction of formulas or circuits
of restricted structure (such as DNF or low-depth) of minimum size. The function
for which such a minimum representation is sought may be given either explicitly
by its truth table (see, e.g., Allender et al. [3] and Feldman [11]) or implicitly by a
(non-optimal) formula or circuit (see, e.g., Umans [20]).

The second generalization is to consider monomials over other structures such as
the additive group of integers or the monoid of finite words over some alphabet (see
also Sect. 6.3). While the former structure leads to addition chains [16, Sect. 4.6.3],
the latter yields the smallest grammar problem which has attracted much attention
in the past few years; a summary of recent results has been provided by Charikar
et al. [6, Sect. I and II]. In fact, Charikar et al.’s suggestion to investigate minimum
AND-circuits was motivated by the lack of understanding the hierarchical structure
of grammar-based compression. In particular, there is a bunch of so-called global
algorithms for the smallest grammar problem which are believed to achieve quite
good approximation ratios, but no one has yet managed to prove this.

2

2 Preliminaries

For i ∈ N, let [i] = {1, . . . , i}.

2.1 Monomials and Circuits

We study the design of small circuits that simultaneously compute given monomials
M1, . . . ,Mk over a set of Boolean variables X = {x1, . . . , xn}. More precisely, a
(Boolean) monomial is an AND-product of variables of a subset of X, and by an
AND-circuit, we mean a circuit consisting solely of AND-gates with fan-in two. We
identify a monomial M = xi1 ∧ . . . ∧ xid with the subset {xi1 , . . . , xid}, which we
denote by M again. Since we only use one type of operation, we often omit the ∧
signs and simply write xi1 . . . xid . The degree of M is |M |.

An (AND-)circuit C over X is a directed acyclic graph with node set G(C) (gates)
and edge set W (C) (wires) satisfying the following properties:

1. To each input variable x ∈ X is associated exactly one input gate gx ∈ G(C)
that has indegree zero and arbitrary outdegree.

2. All nodes that are not input nodes have indegree exactly two and arbitrary
outdegree. These nodes are called computation gates.

We denote the set of computation gates of C by G∗(C), i.e., G∗(C) = G(C) \ {gx |
x ∈ X}. The circuit size of C is equal to the number of computation gates of C,
i.e., size(C) = |G∗(C)|. A gate g computes the monomial val(g), which is defined as
follows:

1. val(gx) = x.

2. For a computation gate g with predecessors g1 and g2, val(g) = val(g1)∧val(g2).

The circuit C computes a Boolean monomial M if some gate in C computes M . It
computes a setM of monomials if it computes all monomials inM. Such a circuit
is called a circuit forM. The gates that compute the monomials inM are referred
to as the output gates. Note that output gates, unless they are input gates at the
same time, are computation gates, too, and hence contribute to the circuit size.
This makes sense since in a physical realization of the circuit, such gates have to
perform an AND-operation—in the same way as all non-output computation gates.

A subcircuit C ′ of a circuit C is a subgraph of C that is again a circuit. In
particular, C ′ contains all “induced” input gates. For g ∈ G(C), let Cg be the
minimal subcircuit of C containing g. Since Cg is a circuit, it contains all input
gates gx with x ∈ val(g). Moreover, Cg contains at least | val(g)| − 1 computation
gates. Let M be a set of monomials and C be a circuit for M. For each M ∈ M,
denote the gate that computes M by gM and write CM for CgM

. The frequency of a
computation gate g ∈ G∗(C) (with respect toM) is the number of monomials that
g is used for, i.e.,

freqM(g) = |{M ∈M | g ∈ G(CM)}| .

3

A gate g with freqM(g) = 0 is called useless. The following straightforward equation
proves very useful: ∑

g∈G∗(C)

freqM(g) =
∑

M∈M

size(CM) . (1)

A gate is called strict if its predecessors compute disjoint monomials. A circuit
is called strict if all of its gates are strict. It is not hard to see that any non-strict
circuit for a Min-AC instanceM of maximum degree at most four can be turned into
a strict circuit forM of the same size. As we will show in the proof of Lemma 6.1,
this is not true if the monomials are allowed to be of degree five or more.

Let S ⊆ X. The multiplicity of S inM is the number of occurrences of S inM
as a submonomial, i.e.,

multM(S) = |{M ∈M | S ⊆M}| .

The maximum multiplicity of M is defined by

mult(M) = max
|S|≥2

multM(S) .

It is equal to the number of occurrences of the most frequent pair of variables inM.
For all computation gates g of a circuit C forM, we have

freqM(g) ≤ multM(val(g)) ≤ mult(M) . (2)

2.2 Optimization Problems

For an introduction to the approximation theory of combinatorial optimization prob-
lems, we refer to Ausiello et al. [5]. For an optimization problem P and an instance
I for P , we write optP (I) for the measure of an optimum solution for I.

Let A be an approximation algorithm for P , i.e., an algorithm, that on an
instance I of P , outputs an admissible solution A(I). The approximation ratio
ρA(I) of A at I is the ratio between the measure m(A(I)) of a solution A(I) output

by A and the size of an optimal solution, i.e., ρA(I) = m(A(I))
optP (I)

. The approximation

ratio ρA of A is the worst-case ratio of all ratios ρA(I), i.e., ρA = maxI ρA(I).
The Minimum-AND-Circuit problem, abbreviated Min-AC, is defined as follows:

Given a set of monomials M = {M1, . . . ,Mk} over a set of Boolean
input variables X = {x1, . . . , xn}, find a circuit C of minimum size that
computesM.

Throughout the paper, k denotes the number of monomials, n denotes the number
of input variables, and N =

∑
M∈M |M | denotes the total input size. In addition,

we always assume that X =
⋃

M∈M M .
We denote by Min-d-AC the Minimum-AND-Circuit problem with instances re-

stricted to monomials of degree at most d. The problem where the degrees are
required to be exactly d is denoted by Min-Ed-AC.

A vertex cover of a graph G is a subset Ṽ ⊆ V such that every edge has at least
one endpoint in Ṽ . This definition also applies to hypergraphs. The vertex cover
problem, denoted by Min-VC, is defined as follows:

4

1 2

3 4

a

b c d

(a) Graph with vertex
cover {2, 3}.

x0 x1 x2 x3 x4

x0x2 x0x3

x0x1x2 x0x1x3 x0x2x3 x0x2x4

(b) AND-circuit for the Min-3-AC instanceM = {Ma,Mb,Mc,Md} with
Ma = x0x1x2, Mb = x0x1x3, Mc = x0x2x3, and Md = x0x2x4. Input
gates are represented as circle nodes, whereas computation gates are
boxed. In addition, output gates have a double box.

Figure 1: A graph with a vertex cover and the corresponding AND-circuit as con-
structed in the proof of Lemma 3.1.

Given an undirected graph G, find a vertex cover of G of minimum size.

The restriction of Min-VC to graphs of maximum degree d is denoted by Min-d-VC.
A hypergraph is called r-uniform if all of its edges have size exactly r. The vertex
cover problem for r-uniform hypergraphs, denoted by Min-r-UVC, is:

Given an r-uniform hypergraph G, find a vertex cover of G of minimum
size.

Finally, Maximum-Coverage is the following optimization problem:

Given a hypergraph G and a number r ∈ N, find r edges e1, . . . , er ∈ E
such that

⋃r
i=1 ei is of maximum cardinality.

3 Hardness

In this section, we prove that the Minimum-AND-Circuit problem is NP-complete
and that there is no polynomial-time approximation algorithm that achieves an
approximation ratio of less than 983

978
unless P = NP. To do this, we reduce Min-VC

to Min-AC.
Let G = (V, E) be an undirected graph with n = |V | vertices and m = |E|

edges. We construct an instance of Min-AC as follows. For each node v ∈ V ,
we have a variable xv. In addition, there is an extra variable x0. For each edge
e = {v, w} ∈ E, we construct the monomial Me = x0xvxw. Our instance of Min-AC
is then MG = {Me | e ∈ E}. Note that |M | = 3 for all M ∈ MG. Moreover, if G
has maximum degree ∆, then MG has maximum multiplicity ∆. Clearly, MG can
be constructed in polynomial time. An example is shown in Figure 1.

Lemma 3.1. Let G andMG be as described above. Then optMin-AC(MG) = |E|+ `,
where ` = optMin-VC(G). Furthermore, given a circuit C of size |E|+ `′ for MG, we
can compute a vertex cover Ṽ of G with |Ṽ | ≤ `′ in polynomial time.

5

Proof. We prove the above lemma by showing that every vertex cover of size `′ yields
a circuit of size |E|+ `′ and vice versa.

Suppose we are given a vertex cover Ṽ ⊆ V of G of size |Ṽ | = `′. We construct
an AND-circuit for MG as follows. The circuit consists of two layers. In the first
layer, there is one gate gv for each node v ∈ Ṽ . The gate gv computes x0xv. In
the second layer, the monomials in MG are computed: for each edge e ∈ E, there
is a gate ge. If e = {v, w} with v ∈ Ṽ , then ge has computation gate gv and input
gate gxw as predecessors, thus computes Me. The described circuit computes MG

and uses ` + |E| gates.
Now suppose that there is a circuit C of size `′ + |E| that computes MG. Since

each M ∈MG is of degree 3, we can assume that C has exactly two layers, the second
one containing the |E| output gates that compute the monomials Me. Let F denote
the set of the remaining `′ gates in the first layer. For a gate g ∈ F , let v(g) be a
node such that gxv(g)

is an input of g. Such a node exists since g has two predecessors
and at least one of them is different from x0. If both predecessors are different from
x0, then we choose one of them arbitrarily. We claim that Ṽ = {v(g) | g ∈ F} forms
a vertex cover of G. To prove this, let e = {v, w} ∈ E. The gate that computes Me

must be connected to at least one gate g ∈ F . This gate in turn has an incoming
edge from either gxv or gxw (or both). Thus v ∈ Ṽ or w ∈ Ṽ . Given the circuit, the
vertex cover can clearly be constructed in polynomial time.

Theorem 3.2. Min-AC is NP-complete, APX-hard and cannot be approximated in
polynomial time within a factor of less than 983

978
> 1.0051 unless P = NP.

This holds even for Min-3-AC restricted to instances with maximum multiplicity
six.

Proof. The NP-completeness and APX-completeness follows from Theorem 3.4 be-
low. For the inapproximability, we exploit a result of Chleb́ık and Chleb́ıková.

Theorem 3.3 (Chleb́ık and Chleb́ıková [7]). Given an instance G of Min-6-VC with
n vertices, it is, for every sufficiently small ε > 0, NP-hard to decide whether the
size of a minimum vertex cover of G is at most (474

494
+ ε) · n or at least (484

494
− ε) · n.

Thus, it is NP-hard to decide whether the instance of Min-AC corresponding to
the graph can be computed by a circuit of size at most |E| + (474

494
+ ε)|V | or if

every circuit for this instance has a size of at least |E|+ (484
494
− ε)|V | for sufficiently

small ε > 0. The inapproximability bound follows by plugging in the inequality
|E| ≤ 3|V |.
Theorem 3.4. Min-3-AC restricted to instances of maximum multiplicity three is
NP-complete, APX-hard, and cannot be approximated in polynomial time within a
factor of less than 269

268
> 1.0037 unless P = NP.

Proof. The NP-completeness and APX-hardness follow from the NP-completeness
and APX-completeness of Min-3-VC [2, 12].

What remains to be proved is the inapproximability bound. Again, we exploit a
result of Chleb́ık and Chleb́ıková.

Theorem 3.5 (Chleb́ık and Chleb́ıková [7]). Given an instance G of Min-3-VC with
n vertices, it is, for every sufficiently small ε > 0, NP-hard to decide whether the
size of a minimum vertex cover of G is at most (494

564
+ ε) · n or at least (499

564
− ε) · n.

6

Analogously to the proof of Theorem 3.2, we obtain the inapproximability result
for Min-3-AC by plugging in the inequality |E| ≤ (3/2) · |V |.

Since for fixed d, Min-d-AC can be approximated within a constant factor (see
Section 6.1), the problem is in APX and thus APX-complete.

4 Approximation Algorithms for Min-3-AC

In this section, we provide several polynomial-time approximation algorithms for
Min-3-AC, the problem of computing minimum AND-circuits for monomials of degree
at most three. The lower bounds proved in Section 3 holds already for Min-E3-AC.

Without loss of generality, we may assume that all monomials have degree exactly
three for the following reasons. Firstly, we do not need any computation gates
to compute monomials of degree one, so we can delete such monomials from the
input. Secondly, for each input monomial of size two, we are forced to construct
an output gate. On the other hand, we should use this gate wherever we can for
other input monomials, so we can delete all monomials of degree two from the
input and substitute all occurrences of such monomials in the other monomials by
extra variables. We repeat this process until no more monomials of size two are in
the input. Given a circuit of minimum size for the modified input, we obtain an
optimal circuit for the original monomials by replacing (in reverse order) the newly
introduced variables with gates computing the corresponding monomials of size two.

As we have already mentioned in Section 2, we can assume without loss of
generality that a circuit for a Min-3-AC instance is strict. Moreover, if all monomials
are exactly of degree three, then a circuit can be assumed to consist of two layers of
computation gates. The gates of the first layer compute monomials of size two, and
the gates of the second layer are the output gates.

Since each monomial M of degree at most three can be computed by a circuit
of size two, we can construct a trivial circuit Ctriv for a Min-3-AC instance M of
size 2k, where k is the number of monomials. On the other hand, the computation
of k monomials obviously requires at least k gates. Thus, we obtain an upper bound
of 2 on the polynomial-time approximation ratio for Min-3-AC. In the following, we
show how to improve this bound.

4.1 Algorithm “Cover”

We first reduce Min-3-AC to Min-3-UVC, the problem of finding a vertex cover in
three-uniform hypergraphs. Subsequently, we will present our algorithms.

Let M be a Min-3-AC instance. We introduce some notation that will be used
throughout this paper. For M ∈M, let(

M

2

)
= {S ⊆ X | |S| = 2 ∧ S ⊆M}

be the set of pairs contained in M . Note that
∣∣(M

2

)∣∣ = 3. Furthermore, let

pairs(M) =
⋃

M∈M
(

M
2

)
be the set of all pairs of variables appearing inM.

7

x1x3

x0x1 x0x3

x1x2 x0x2 x2x3

x0x4 x2x4

Figure 2: The hypergraph H(M) associated with the Min-AC instance M intro-
duced in Figure 1. Each triangle represents a hyperedge. The two bold monomials
constitute a vertex cover.

Let C be a circuit forM. Then C consists of two layers, the second one containing
the k = |M| output gates. In the first layer, certain monomials of size two are
computed: for each monomial M ∈M, one of the pairs S ∈

(
M
2

)
has to be computed

at the first level of C. The task is thus to find a minimum set of pairs S ∈ pairs(M)
such that each monomial M ∈ M contains one such pair. This corresponds to
finding a minimum vertex cover of the three-uniform hypergraph H(M) = (V, E)
described in the following. The node set is the set of pairs appearing in M, i.e.,
V = pairs(M), and for each monomial M ∈M, there is a hyperedge containing the
pairs that appear in M , i.e., E =

{(
M
2

)
|M ∈M

}
. A circuit C for M with gates

computing the pairs S1, . . . , S` at its first level corresponds to the vertex cover of
H(M) given by {Si | 1 ≤ i ≤ `} and vice versa. We denote the circuit corresponding
to a vertex cover Ṽ by CṼ . By the preceding discussion, we have shown the following

Lemma 4.1. Let Ṽ be a vertex cover of H(M). Then size(CṼ) = k + |Ṽ |. In
particular,

optMin-3-AC(M) = k + optMin-3-UVC(H(M)) .

Our first polynomial-time approximation algorithm for Min-3-AC, which is pre-
sented in Figure 3, is based on the reduction we have just presented. The set Ṽ
consists of all nodes that are incident with the matching Ẽ. Thus the size of Ṽ
equals 3 · |Ẽ|. The set Ṽ is a vertex cover since Ẽ cannot be enlarged. On the
other hand, any vertex cover of H(M) must include at least one vertex from each
hyperedge of the maximum matching Ẽ, so any vertex cover of IG(M) must be of
size at least |Ẽ|. In conclusion, we have |Ṽ | ≤ 3 · optMin-3-UVC(H(M)). Together
with Lemma 4.1 this proves the following

Lemma 4.2. Let optMin-3-AC(M) = k + `. Then Cover outputs a circuit CCover

for M of size at most k + 3 · `.

E.g., for instancesM that consist of pairwise disjoint monomials of degree three,
size(CCover) = k + 3` is indeed achieved (with ` = k).

8

Cover

1: Input M = {M1, . . . ,Mk}.
2: Compute the hypergraph H = H(M).
3: Compute greedily an inclusion-maximal matching Ẽ in H, i.e., a

collection of disjoint hyperedges that cannot be enlarged.

4: Let Ṽ =
⋃

e∈Ẽ e.
5: Compute C = CṼ .
6: Output C.

Figure 3: Algorithm Cover for Min-3-AC.

Ma Mb

Mc Md

x0x1

x0x2

x 0
x 2

x
0 x

3

x0x2

Figure 4: Intersection graph IG(M) associated with the Min-AC instanceM intro-
duced in Figure 1. The edges are labeled by the pairs that their endpoints have in
common. The bold edges constitute a maximal matching.

In case that ` ≥ 1
3
k, Cover outputs a circuit that is larger than the trivial

one. Choosing to output the trivial circuit instead, yields an algorithm with an
approximation ratio of

max{k + 3`, 2k}
k + `

≤ 2

4/3
=

3

2
.

Thus, we have already found an algorithm that achieves a non-trivial approximation
ratio. In the course of this paper, we will improve this ratio to below 1.3.

4.2 Algorithm “Match”

Before we present our next algorithm, we introduce another technical utility. Asso-
ciate withM the intersection graph IG(M) defined as follows: the nodes of IG(M)
are the monomials ofM, and two monomials M, M ′ ∈M are connected by an edge
if and only if |M ∩M ′| = 2. An example is shown in Figure 4.

Algorithm Match, which is presented in Figure 5, is a polynomial-time algo-
rithm; in particular, a maximum matching in IG(M) can be computed in time
O(n2.5) [1]. To bound the approximation ratio of Match, we need the following

Lemma 4.3. Let optMin-3-AC(M) = k+` and Ẽ be the matching computed in step 3
of Match on input M. Then |Ẽ| ≥ 1

2
(k − `).

Proof. Let C be a minimum circuit forM. Let S = {S1, . . . , S`} be the set of pairs
computed by the gates at the first level of C. We construct a matching of IG(M)

9

Match

1: Input M = {M1, . . . ,Mk}.
2: Compute G = IG(M).
3: Compute a matching Ẽ of G of maximum cardinality.

4: For each {M, M ′} ∈ Ẽ:

5: Add a gate computing M ∩M ′ to C.
6: Add subcircuits computing M and M ′ to C, using two additional

gates.

7: For each M ∈M \
⋃

e∈Ẽ e (not incident with Ẽ):

8: Add a subcircuit computing M, using |M | − 1 gates.

9: Output C.

Figure 5: Algorithm Match for Min-3-AC.

of size 1
2
(k − `). For each M ∈ M, we select an SM ∈ S ∩

(
M
2

)
. This partitions

the monomials into sets ES = {M ∈ M | SM = S}, S ∈ S. Since all monomials
in ES have the pair S in common, each set ES forms a clique of the intersection
graph IG(M). Hence we can choose

⌊ |ES |
2

⌋
≥ |ES |−1

2
disjoint edges of IG(M) with

endpoints in ES. In total, this yields a matching of size at least∑
S∈S

|ES| − 1

2
=

1

2
(|M| − |S|) =

1

2
(k − `) .

Lemma 4.4. Let optMin-3-AC(M) = k + `. Then Match outputs a circuit CMatch

for M of size at most 3
2
· k + 1

2
· `.

Proof. Each edge of the matching Ẽ saves us at least one gate compared with the
trivial solution (since we compute two monomials with only three gates). Hence
size(CMatch) ≤ 2k − |Ẽ|. By Lemma 4.3, |Ẽ| ≥ 1

2
(k − `). Consequently,

size(CMatch) ≤ 2k − |Ẽ| ≤ 3

2
k +

1

2
` .

It is not hard to construct instances for which the upper bound on size(CMatch)
stated in Lemma 4.4 is indeed achieved.

Although the analysis of Match is not needed for our best upper bound result
for Min-3-AC, the algorithm is the only one for which we can prove a non-trivial
approximation ratio for Min-d-AC in case that d ≥ 4. We will discuss this issue in
Section 6.1.

For Min-3-AC with instances restricted to a multiplicity of at most two, Match
computes an optimum solution.

Lemma 4.5. Let M be a Min-3-AC instance with multiplicity at most two. Then
Match outputs a circuit CMatch of minimum size for M.

10

Greedy

1: Input M = {M1, . . . ,Mk}.
2: While there exists an S ∈

(
X
2

)
such that |{M ∈M | S ⊆M}| ≥ 3:

3: Arbitrarily select S ∈
(

X
2

)
with maximum |{M ∈M | S ⊆M}|.

4: Add a gate computing S to C.
5: For each M ∈M with S ⊆M:

6: Add subcircuit computing M to C, using at most |M | − 2
additional gates.

7: M←M\ {M}.
8: C ′ ←Match(M).
9: C ← C ∪ C ′.
10: Output C.

Figure 6: Algorithm Greedy for Min-3-AC.

Proof. Since every edge of the matching Ẽ computed by Match in step 3 saves
exactly one gate, we have size(CMatch) = 2k − |Ẽ|.

Claim 4.6. An arbitrary circuit C for M yields a matching F of the intersection
graph IG(M) of size 2k − size(C).

Proof of Claim 4.6. Without loss of generality, assume that C is strict. Let ` =
2k − size(C). Since M has multiplicity at most two, each gate is used for at most
two monomials and thus saves at most one gate. But then there must be exactly
` gates that are used in two monomials. Let these gates be g1, . . . , g` with gi used
for Mi and M ′

i , i ∈ [`]. We claim that F = {{Mi, M
′
i} | i ∈ [`]} is a matching

in IG(M). Clearly, {Mi, M
′
i} ∈ E. Moreover, the edges are disjoint since otherwise

two different gates gi and gj would be used for the same monomial, which would
contradict the strictness of C. Consequently, F̃ is indeed a matching of size `.

Now let Copt be a circuit for M of minimum size. By the above claim, the
intersection graph IG(M) has a matching of size 2k − size(Copt). Since Ẽ is a
matching of maximum size, |Ẽ| ≥ 2k − size(Copt). Hence size(CMatch) = 2k − |Ẽ| ≤
size(Copt).

Corollary 4.7. Min-3-AC with instances restricted to a maximum multiplicity of at
most two can be solved in polynomial time.

4.3 Algorithm “Greedy”

Our last algorithm Greedy is presented in Figure 6. It greedily constructs gates
for pairs that occur most frequently in the input instance M until each remaining
pair is shared by at most two monomials. At that point, instead of proceeding in
an arbitrary order, an optimal solution is computed for the remaining monomials.
The latter task is achieved by Match, as we have shown in Lemma 4.5.

11

Lemma 4.8. Let M = {M1, M2, . . . ,Mk} be an instance for Min-3-AC such that
optMin-3-AC(M) = k + `. Then Greedy outputs a circuit CGreedy for M of size at
most

min

{
4

3
· k + `,

(
1 +

1

e2

)
k + 2`

}
.

Proof. Clearly, for every M ∈M, Greedy eventually adds M to C = CGreedy, hence
C computes M. Let k1 denote the number of monomials in M that are computed
by C after steps 1–8 and k2 denote the size of C ′ computed in step 9 of Greedy.
Since the sets S selected in step 3 are all shared by at least three monomials each,
at most k1/3 gates are added to C in step 4. In addition, k1 gates are added to C in
step 6. We denote by M′ the set of monomials that remain in M after the while

loop is exited. By Lemma 4.5, the circuit C ′ constructed in step 8 is of minimum
size for M′. Let Copt be a circuit for M of minimum size k + `. Clearly, we can
construct an alternative circuit for M′ by only using the ` non-output gates of C
and k2 output gates for the monomials M ∈ M′, i.e., size(C ′) ≤ k2 + `. In total,
size(C) ≤ 4

3
· k + `.

Next we show that also size(C) ≤
(
1 + 1

e2

)
k + 2`. Although not necessary for

our investigations, we start by showing that size(C) ≤
(
1 + 1

e

)
k + ` since the proof

of this latter bound is easily understandable and the proof of the former bound
follows the same line. Let H(M) = (V, E) be the hypergraph associated with the
Min-3-AC instance M. The greedy algorithm for Maximum-Coverage achieves an
approximation ratio of (1 − 1

e
) [8]. We will exploit this fact twice in the following

analysis.
In particular, if optMin-3-AC = k + `, then all k elements of M can be covered

by ` pairs by Lemma 4.1, and so the greedy algorithm covers at least (1 − 1/e)k
monomials. To cover the remaining (1/e)k monomials, the greedy algorithm will
clearly need to select at most (1/e)k additional nodes. Thus, size(C) ≤ k + ` + 1

e
k.

However, this bound is worse than size(C) ≤ 4
3
k + `. But let us take the analysis

one step further, for it may happen that 1
e
k is still quite large compared to `. Let k1

denote the number of monomials covered by the first ` nodes selected by the greedy
algorithm. By the preceding argument, k1 ≥ (1− 1/e)k. The remaining k − k1 can
easily be covered by ` nodes again since this is even possible for the entire set of
monomials. Consequently, the greedy algorithm covers at least (1 − 1/e)(k − k1)
out of these monomials, and we remain with at most k − k1 − (1 − 1/e)(k − k1) =
1
e
(k − k1) ≤ 1

e2 k uncovered monomials. Again, this number is an upper bound on
the number of nodes picked by the greedy algorithm after having chosen 2` nodes.
In total, we obtain the desired bound: size(C) ≤

(
1 + 1

e2

)
k + 2`.

It does not make sense to reiterate the last step of the analysis since this would
give us a circuit of size larger than k + 3`, the size achieved by Cover.

Corollary 4.9. The approximation ratio achieved by Greedy for Min-3-AC is at
most 5e2−3

4e2−3
≈ 1.278.

Proof. Let M be a Min-3-AC instance with optMin-3-AC = k + `, k = |M|. By
Lemma 4.8, the approximation ratio of Greedy is at most

min{ρ1(`), ρ2(`)} , (3)

12

Figure 7: Graph with vertex cover of size 3, but for which the greedy algorithm
outputs a cover of size 4.

where ρ1(`) =
4
3
k+`

k+`
and ρ2(`) =

(1+ 1
e2

)k+2`

k+`
. We have

ρ1(`) ≥ ρ2(`) ⇔
4

3
k+` ≥

(
1 +

1

e2

)
k+2` ⇔ ` ≤

(
1

3
− 1

e2

)
k =

e2 − 3

3e2
≈ 0.1980·k .

Since ρ1 is monotone decreasing and ρ2 is monotone increasing in `, the minimum
in (3) is attained for ` = (e2 − 3)k/(3e2). It is

ρ1

(
e2 − 3

3e2
k

)
=

4
3

+ e2−3
3e2

1 + e2−3
3e2

=
5e2 − 3

4e2 − 3
≈ 1.278 .

The best lower bound that we are able to show for the approximation ratio of
Greedy is 10/9 = 1.111 It is obtained by the reduction from vertex cover pre-
sented in Lemma 3.1. The corresponding vertex cover instance is shown in Figure 7.

4.4 Summary of Approximation Ratios

In this subsection, we summarize the approximation ratios of the algorithms pre-
sented in the preceding subsections and present some improvements for Min-3-AC
instances with bounded multiplicity. So far, we have found the following bounds for
the approximation ratios of the Min-3-AC algorithms:

ρCover ≤ k+3`
k+`

increasing in ` ,

ρGreedy ≤ (1+e−2)k+2`
k+`

increasing in ` ,

ρGreedy ≤
4
3
k+`

k+`
decreasing in ` ,

ρMatch ≤
3
2
k+ 1

2
`

k+`
decreasing in ` .

These approximation ratios are presented in Figure 8. Concerning restricted multi-
plicity, we prove the following result.

Theorem 4.10. The Min-3-AC problem restricted to instances of maximum multi-
plicity µ, µ ∈ {3, 4, 5}, is approximable with a factor of

(a) 5/4 = 1.25 if µ = 3,

(b) 19/15 = 1.26 if µ = 4, and

(c) 23/18 = 1.27 if µ = 5.

13

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

Greedy
Cover
Match

(a) Upper bounds for Greedy, Cover,
and Match.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

(b) Upper bounds for Greedy given by
Lemma 4.8.

Figure 8: Upper bounds on the approximation ratios of the Min-3-AC algorithms
dependent on the ratio `/k.

Proof. LetM be a Min-3-AC instance with mult(M) = µ and C be a circuit forM.
Then each of the ` gates at the first layer of C can be used for at most µ mono-
mials in M. Consequently, ` ≥ k/µ. For µ = 3, Match has approximation ratio

at most max`≥ 1
3
k

3
2
k+ 1

2
`

k+`
= 5

4
. For µ = 4 and µ = 5, Greedy achieves ratio at

most max`≥ 1
µ

k

4
3
k+`

k+`
, which evaluates to 19/15 and 23/18 for ` = k/4 and ` = k/5,

respectively.

5 Fixing the Number of Monomials

In this section, we show that Min-AC is fixed parameter tractable with respect to
the number k of monomials in the input instance. A (parameterized) problem is
called fixed-parameter tractable if it can be solved in time f(k) · p(n) where k is a
parameter, in our case the number of input monomials, f is an arbitrary function,
independent of the input size n, and p is a polynomial. For more details on fixed
parameter tractability, we refer to Downey and Fellows [10]. In the following, we
do not give f and p explicitly. We reduce to a problem kernel of size O(2k), which
we solve using exhaustive search in time f(k). The reduction to the problem kernel
can easily be implemented to run in time O(n2k).

Theorem 5.1. Min-AC, parameterized by the number of input monomials, is fixed-
parameter tractable.

Proof. To prove the theorem, we show that the instances of Min-AC have problem
kernels that can be computed in polynomial time and the size of which depends only
on the number k of monomials.

LetM = {M1, . . . ,Mk} be a Min-AC instance and X =
⋃

i∈[k] Mi = {x1, . . . , xn}.
We describe a problem kernel of M of size f(k), i.e., a Min-AC instance M̃ such
that we can compute a minimum AND-circuit forM from a minimum AND-circuit
for M̃.

Define the equivalence relation ∼ on X by xi ∼ xj if and only if for all M ∈M,
xi ∈ M if and only if xj ∈ M . Denote the equivalence classes of ∼ by X1, . . . , Xr,

14

so that X is partitioned into X1 ∪ . . . ∪ Xr. For each j ∈ [r], let ij ∈ [n] be the
minimal variable index in Xj. We call the variables xi1 , . . . , xir primary variables.
They are unique representatives of their equivalence classes. All other variables are
referred to as secondary variables.

Now M̃ is obtained from M by identifying equivalent variables: the variables
of M̃ are the equivalence classes X1, . . . , Xr, and the monomials are M̃1, . . . , M̃k,
where for a monomial M = xj1 . . . xjd

, the reduced monomial M̃ is defined by

M̃ = Xξ1 . . . Xξd

with ξt chosen such that xjt ∈ Xξt for t ∈ [d]. Since there are only k monomials
in M, there can be at most 2k different equivalence classes. Thus, the size of the
instance M̃, i.e., the sum of the lengths of its monomials, is bounded by O(k · 2k).

Given a circuit C̃ for M̃, we now describe how to construct a circuit C for M
such that

size(C) = size(C̃) +
r∑

i=1

(|Xi| − 1) . (4)

For each equivalence class Xi, we build a trivial circuit Ci of size |Xi| − 1 that
computes the monomial that consists of all variables in Xi. Subsequently, we merge
the circuits C̃ and C1, . . . , Cr by replacing each input gate gXi

of C̃ with the output
gate of Ci. The resulting circuit C clearly computesM and satisfies (4).

What remains to be proved is that if C̃ is of minimum size for M̃, then C is of
minimum size for M. We do this by showing how to turn an arbitrary circuit C
without useless gates forM into a circuit C̃ for M̃ with

size(C̃) ≤ size(C)−
r∑

i=1

(|Xi| − 1) . (5)

The corresponding Procedure Reduce is presented in Figure 9.
Let T = {xi1 , . . . , xid} be the transversal of primary variables and let g1, . . . , g|C|

be the original computation gates of C.

Claim 5.2. After step 8 of Reduce, C computes exactly the monomials val(gi)∩T ,
i ∈ [|C|].

Proof of Claim 5.2. If a gate g is deleted from C, then its predecessors are gxi
and

g′ for some secondary variable xi and some other gate g′. Thus, using set notation,
val(g′) = val(g)\{xi}. Consequently, for each gate g of C, after each iteration of the
for-loop in steps 2–7 processing the secondary variable xi, the monomial val(g)\{xi}
is computed by some gate (either by g itself or by one of its predecessors). Since
every secondary variable is eventually processed, the claim follows.

In step 9 of Reduce, for each i ∈ [k], the value of the gate that computes

Mi ∩ T changes to M̃i. Thus, C̃ computes M̃. Finally, we show that for every
secondary variable xi, at least one gate is deleted and hence (5) is satisfied. Since
by assumption, xi appears in some monomial Mj, the input gate gxi

has at least one
successor in C when starting Procedure Reduce. Moreover, before variable xi is

15

Reduce

1: Input circuit C for M = {M1, . . . ,Mk}.
2: For each secondary variable xi:

3: For each successor gate g of gxi
in C:

4: Let gxi
and g′ be the predecessors of g.

5: For all successors g′′ of g:
6: Replace the wire (g′, g) with (g′, g′′).
7: Delete g from C.
8: Delete all connected components of C that do not contain any

input gates.

9: Replace each input gate gxi
of C with the input gate gXi

.

10: Output C̃ = C.

Figure 9: Procedure Reduce turns a circuit for M into a circuit for M̃ satisfy-
ing (5), see proof of Theorem 5.1.

processed in the for-loop in steps 2–7 of Reduce, gxi
keeps at least one successor.

This is because if a successor of gxi
is deleted in step 7 while processing another

variable xi′ , then the wire (gxi
, g) is redirected to (gxi

, g′′) in step 6. If no successor
g′′ of g exists, then g computes xixi′ without being used for any input monomial Mj

and is thus useless, contradicting the assumption that C does not contain any useless
gates. Consequently, for each secondary variable, at least one gate is deleted and C̃
satisfies (5).

6 Concluding Remarks and Future Research

6.1 Approximation Algorithms for Min-d-AC, d ≥ 4

Obviously, the approximation ratio of Min-d-AC is at most d − 1 since on the one
hand, every monomial of degree at most d can be computed by at most d − 1
separate gates and on the other hand, any circuit contains at least one gate per
monomial of the input instance. It is easy to see that Match achieves the slightly
better approximation ratio d− 3

2
(which is tight); the proof is almost identical to the

proofs of Lemmas 4.3 and 4.4. Unfortunately, neither do we see how to generalize
algorithm Cover to d ≥ 4, nor is it clear how to analyze greedy algorithms in
that case. The problem is that once one has decided to substitute all occurrences
of a pair of variables in all monomials, it may happen that an optimal circuit for
the remaining monomials is strictly larger than an optimal circuit for the original
instance. This makes it difficult to apply standard techniques as in the proof of the
classical 1 + ln n approximation bound for the greedy set cover algorithm [13].

We are particularly curious about whether Min-d-AC is approximable within a
factor of o(d) or whether it is possible to show an Ω(d) hardness result.

For d ≥ 4, there are several possibilities of generalizing the greedy algorithm,
some of which are presented in the following.

16

• Greedy Pairing: Select a most frequent pair, build a gate for it, and substi-
tute the pair by a new variable wherever possible. Repeat until all monomials
have size one.

• Greedy Saving: Select a monomial to be computed by a gate such that
its usage “saves” as many gates as possible compared to a trivial completion
of the circuit. Substitute the monomial by a new variable wherever possible
and add the monomial to the input instance. Repeat until all monomials are
computed by the circuit.

• Greedy Cutting: Select a longest submonomial appearing in multiple places
and build a gate for it. Substitute the monomial by a new variable wherever
possible and add the monomial to the input instance. Repeat until all mono-
mials have size one.

For d = 3, all three variants coincide.
The algorithms Greedy Pairing, Greedy Cutting, and Match produce

strict circuits. Already for d = 5, we can construct Min-AC instancesM of maximum
degree d such that any strict circuit for M is roughly 4/3 times larger than a
minimum non-strict circuit.

Lemma 6.1. There are Min-5-AC instances M such that every circuit C for M
of minimum size is non-strict. Moreover, for arbitrarily small ε > 0, there are
instances M such that the ratio between a minimum strict circuit for M and a
minimum non-strict circuit is 4/3− ε.

Proof. LetM = {xy, yz}∪{xyai, yzbi, xyzaibi | i ∈ [t]}, t ≥ 1. It is easy to construct
a minimum AND-circuit C for M such that every computation gate of C is also an
output gate, i.e., size(C) = |M| = 3t + 2. On the other hand, it is impossible to
strictly build the monomial xyzaibi from other monomials of M. Thus, in a strict
circuit C ′ for M, we must include an additional non-output gate, say to compute
the monomial aibi for each i ∈ [t]. Consequently, size(C ′) = 4t + 2, and hence

size(C ′)/ size(C) = (4t + 2)/(3t + 2) −→
t→∞

4/3 .

Corollary 6.2. Any approximation algorithm for Min-AC (or even Min-5-AC) that
produces only strict circuits does not achieve an approximation ratio better than 4/3.

6.2 Approximation of Instances with Bounded Multiplicity

In Section 4.2, we showed that Min-3-AC instances with maximum multiplicity two
are optimally solvable in polynomial time. In contrast, Min-3-AC instances with
maximum multiplicity three are hard to solve, as we saw in Section 3. We leave it
as an open problem whether Min-d-AC instances with d ≥ 4 are polynomial-time
solvable. Nonetheless we can provide a positive approximability result for general
Min-AC restricted to instances with bounded multiplicity.

17

Theorem 6.3. The Min-AC problem with instances restricted to be of maximum
multiplicity µ is polynomial-time approximable within a factor of µ.

Proof. Let M be a Min-AC instance with mult(M) = µ and let C be a circuit for
M of minimum size. As size(CM) ≥ |M | − 1 for every M ∈M, equation (1) yields∑

g∈G∗(C)

freqM(g) =
∑

M∈M

size(CM) ≥
∑

M∈M

(|M | − 1) .

By equation (2),
∑

g∈G∗(C) freqM(g) ≤ µ · size(C). We denote by Ctriv the trivial

circuit of size
∑

M∈M(|M | − 1) in which every monomial is computed by a separate
subcircuit. Then, by the preceding arguments, we have size(C) ≥ size(Ctriv)/µ and

thus size(Ctriv)
optMin-AC(M)

= size(Ctriv)
size(C) ≤ µ, which means that Ctriv is a µ-approximation forM.

Theorem 6.3 also follows from a more general result by Wegener [21, Section
6.6] about Boolean sums, which are collections of disjunctions of (positive) Boolean
variables, and thus are dual to collections of monomials. Wegener [21, Definition
6.1] defines such a collection to be (h, k)-disjoint if h+1 disjunctions have at most k
common summands. In particular, sets of monomials of multiplicity µ correspond to
(µ, 1)-disjoint collections. The claim then follows from [21, Lemma 6.1] by plugging
in h = µ and k = 1. Although the lemma is only stated for collections in which the
number of input variables equals the number of disjunctions, it also holds if these
numbers differ.

We can improve the result of Theorem 6.3 for Min-Ed-AC restricted to instances
with bounded multiplicity using the fact that for these instances, all output gates
have frequency one.

Theorem 6.4. The Min-Ed-AC problem with instances restricted to be of maximum
multiplicity µ is polynomial-time approximable within a factor of µ(d−1)

µ+d−2
.

Proof. LetM be an Min-Ed-AC instance with k monomials of maximum multiplicity
µ and C be a circuit for M of minimum size. Since |M | = d for all M ∈ M,
size(CM) ≥ d − 1 (with equality guaranteed if C is strict). Furthermore, all output
gates have frequency 1, and all other computation gates have a frequency of at
most µ. Putting these things together and using (1), we obtain

(d− 1)k ≤
∑

M∈M

size(CM) =
∑

g∈G∗(C)

freqM(g) ≤ µ(size(C)− k) + k .

Consequently, size(C) ≥ d−2+µ
µ
· k. Let Ctriv be the trivial circuit for M of size

(d− 1)k. Then
size(Ctriv)

optMin-AC(M)
) =

size(Ctriv)
size(C)

≤ µ(d− 1)

d− 2 + µ
.

Corollary 6.5. Min-E4-AC with maximum multiplicity two is polynomial-time ap-
proximable within a factor of 3/2.

The approximation ratio of 3/2 is much lower than the ratio of 5/2 achieved by
Match for general Min-4-AC instances.

18

S ◦ k n Description Remark

{0, 1} ∧ arb. arb. Boolean monomials, Min-AC
Z + 1 1 Addition chains [16, 19] complexity unknown
Z + arb. 1 Extended addition chains NP-complete [9]
Σ∗ concat. 1 arb. Grammar-based compression [15] NP-complete for n ≥ 3 [17],

of strings over alphabets of size n complexity unknown for n ≤ 2

Table 1: The circuit problem for several semigroup structures and parameters.

6.3 Generalizations and Related Problems

Let us first mention some applications that arise as alternative interpretations of the
problem in this paper. Viewing monomials M over X as subsets of X (see also Sec-
tion 2), an AND-gate computes the union of the sets computed by its predecessors.
Thus, AND-circuits may be interpreted as compact representations of set systems.
Since each gate has to be evaluated only once, the circuit may be considered as
a straight-line program that generates the set system. Furthermore, in a Boolean
matrix-vector product, each entry of the result is a disjunction (or a parity, depend-
ing on which type of “sum” is considered) of the vector entries corresponding to the
positions of 1s in the matrix rows. Thus, if many vectors have to be multiplied by
the same matrix, it may be useful to preprocess the matrix by constructing a circuit
that computes all disjunctions (with indeterminates) first.

Beside Boolean variables and monomials, it is natural to consider monomials
over other structures. In general, the variables x ∈ X take values from some semi-
group (S, ◦) (note that we assume the structure to be associative since otherwise it
makes no sense to design small circuits). In case that S is non-commutative, the
predecessors of a gate have to be ordered. Table 1 shows several examples of semi-
groups and other parameters with their corresponding circuit problem. As one can
see, many seemingly different problems turn out to be instantiations of a general
semigroup circuit problem.

The greedy algorithms proposed in Section 6.1 are closely related to the so-
called global algorithms Re-Pair, Greedy, and Longest Match for the smallest
grammar problem [6], which deals with the compression of a given string by a
context-free grammar that generates exactly that string. Global algorithms are of
particular interest for this problem since they are believed to have low approximation
ratios. However, despite their simplicity, only very weak upper bounds are known.
We hope that techniques for proving upper and lower bounds for global algorithms
may be transferred between the smallest grammar problem and the minimum AND-
circuit problem.

6.4 Some More Open Problems

For the approximation ratio of Min-3-AC, we believe that a more concise analysis of
Greedy or similar algorithms may yield an upper bound below 5/4.

Since we still lack good approximation algorithms for any d ≥ 4, it would
already be interesting to have approximation algorithms with ratio less than 2.5
for Min-4-AC, which may be achieved by an algorithm that is similar to Cover,
tailored to the case d = 4.

Finally, as we have determined the complexity of the decision problem associated

19

with Min-d-AC with multiplicity bounded by µ for several choices of d and µ, it would
be nice to complete these results by studying the case d ≥ 4 and µ = 2.

Acknowledgments

We are grateful to Ingo Wegener for pointing to known facts about Boolean sums [21,
Sect. 6.6], including a proof of Theorem 6.3. We also thank Jehoshua Bruck, Rüdiger
Reischuk, Thomas Zeugmann, and anonymous referees for helpful suggestions.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

[2] Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic
graphs. Theoretical Computer Science, 237(1–2):123–134, 2000.

[3] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael
Saks. Minimizing DNF formulas and AC0

d circuits given a truth table. In Proc.
of the 21st Ann. IEEE Conference on Computational Complexity (CCC), pages
237–251. IEEE Press, 2006.

[4] Jan Arpe and Bodo Manthey. Approximability of minimum AND-circuits. In
Lars Arge and Rusins Freivalds, editors, Proc. of the 10th Scandinavian Work-
shop on Algorithm Theory (SWAT), volume 4059 of Lecture Notes in Computer
Science, pages 292–303. Springer, 2006.

[5] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability Properties.
Springer, 1999.

[6] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran,
Amit Sahai, and Abbi Shelat. The smallest grammar problem. IEEE Transac-
tions on Information Theory, 51(7):2554–2576, 2005.

[7] Miroslav Chleb́ık and Janka Chleb́ıková. Complexity of approximating bounded
variants of optimization problems. Theoretical Computer Science, 354(3):320–
338, 2006.

[8] Gérard P. Cornuéjols, Marshall L. Fisher, and George L. Nemhauser. Location
of bank accounts to optimize float: An analytic study of exact and approximate
algorithms. Management Science, 23(8):789–810, 1977.

[9] Peter J. Downey, Benton L. Leong, and Ravi Sethi. Computing sequences with
addition chains. SIAM Journal on Computing, 10(3):638–646, 1981.

[10] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer, 1999.

20

[11] Vitaly Feldman. Hardness of approximate two-level logic minimization and
PAC learning with membership queries. In Proc. of the 38th Ann. ACM Symp.
on Theory of Computing (STOC), pages 363–372. ACM Press, 2006.

[12] Michael R. Garey, David S. Johnson, and Larry K. Stockmeyer. Some simplified
NP-complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[13] David S. Johnson. Approximation algorithms for combinatorial problems. Jour-
nal of Computer and System Sciences, 9(3):256–278, 1974.

[14] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problems. In Proc.
of the 32nd Ann. ACM Symp. on Theory of Computing (STOC), pages 73–79.
ACM Press, 2000.

[15] John C. Kieffer and En-hui Yang. Grammar based codes: A new class of
universal lossless source codes. IEEE Transactions on Information Theory,
46(3):737–754, 2000.

[16] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, 2nd edition, 1981.

[17] James A. Storer and Thomas G. Szymanski. The macro model for data com-
pression. In Proc. of the 10th Ann. ACM Symp. on Theory of Computing
(STOC), pages 30–39. ACM Press, 1978.

[18] Robert E. Tarjan. Complexity of monotone networks for computing conjunc-
tions. Annals of Discrete Mathematics, 2:121–133, 1978.

[19] Edward G. Thurber. Efficient generation of minimal length addition chains.
SIAM Journal on Computing, 28(4):1247–1263, 1999.

[20] Christopher Umans. The minimum equivalent DNF problem and shortest im-
plicants. Journal of Computer and System Sciences, 63(4):597–611, 2001.

[21] Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

21

