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The 2-opt heuristic is a very simple local search heuristic for the traveling sales-
man problem. While it usually converges quickly in practice, its running-time can
be exponential in the worst case.

Englert, Roglin, and Vocking (Algorithmica, 2014) provided a smoothed analysis
in the so-called one-step model in order to explain the performance of 2-opt on d-
dimensional Euclidean instances. However, translating their results to the classical
model of smoothed analysis, where points are perturbed by Gaussian distributions
with standard deviation o, yields only bounds that are polynomial in n and 1/0¢.

We prove bounds that are polynomial in n and 1/ for the smoothed running-
time with Gaussian perturbations. In addition, our analysis for Euclidean distances
is much simpler than the existing smoothed analysis.

1 2-Opt and Smoothed Analysis

The traveling salesman problem (TSP) is one of the classical combinatorial optimization prob-
lems. Euclidean TSP is the following variant: given points X C [0,1]¢, find the shortest
Hamiltonian cycle that visits all points in X (also called a tour). Even this restricted variant
is NP-hard for d > 2 [21]. We consider Euclidean TSP with Manhattan and Euclidean dis-
tances as well as squared Fuclidean distances to measure the distances between points. For
the former two, there exist polynomial-time approximation schemes (PTAS) [2,20]. The lat-
ter, which has applications in power assignment problems for wireless networks [13], admits a
PTAS for d = 2 and is APX-hard for d > 3 [24].

As it is unlikely that there are efficient algorithms for solving Euclidean TSP optimally,
heuristics have been developed in order to find near-optimal solutions quickly. One very simple
and popular heuristic is 2-opt: starting from an initial tour, we iteratively replace two edges
by two other edges to obtain a shorter tour until we have found a local optimum. Experiments
indicate that 2-opt converges to near-optimal solutions quite quickly [14,15], but its worst-case
performance is bad: the worst-case running-time is exponential even for d = 2 [11] and the
approximation ratio can be Q(logn/loglogn) for Euclidean instances [7].

*An extended abstract of a preliminary version of this work appeared in the proceedings of ISAAC 2013 [19].



An alternative to worst-case analysis is average-case analysis, where the expected perfor-
mance with respect to some probability distribution is measured. The average-case running-
time for Euclidean and random instances and the average-case approximation ratio for non-
metric instances of 2-opt were analyzed [5, 7,10, 16]. However, while worst-case analysis is
often too pessimistic because it is dominated by artificial instances that are rarely encountered
in practice, average-case analysis is dominated by random instances, which have often very
special properties with high probability that they do not share with typical instances.

In order to overcome the drawbacks of both worst-case and average-case analysis and to
explain the performance of the simplex method, Spielman and Teng invented smoothed anal-
ysis [22]: an adversary specifies an instance, and then this instance is slightly randomly per-
turbed. The smoothed performance is the expected performance, where the expected value is
taken over the random perturbation. The underlying assumption is that real-world instances
are often subjected to a small amount of random noise. This noise can come from measurement
or rounding errors, or it might be a realistic assumption that the instances are influenced by
unknown circumstances, but we do not have any reason to believe that these are adversarial.
Smoothed analysis often allows more realistic conclusions about the performance than worst-
case or average-case analysis. Since its invention, it has been applied successfully to explain
the performance of a variety of algorithms [3,4,6,8,18,25]. We refer to two surveys for an
overview [17,23].

Englert, Roglin, and Vocking [11] provided a smoothed analysis of 2-opt in order to explain
its performance. They used the one-step model: an adversary specifies n density functions
fiseoy fn 2 [0,1]% = [0, ¢]. Then the n points 1, ..., z, are drawn independently according to
the densities f1, ..., f,, respectively. Here, ¢ is the perturbation parameter. If ¢ = 1, then the
only possibility is the uniform distribution on [0, 1]%, and we obtain an average-case analysis.
The larger ¢, the more powerful the adversary. Englert et al. [11] proved that the expected
number of iterations of 2-opt is O(n*®) and O(n4+%¢>% log(ng)) for Manhattan and Euclidean
distances, respectively. These bounds can be improved slightly by choosing the initial tour
with an insertion heuristic. However, if we transfer these bounds to the classical model of
points perturbed by Gaussian distributions of standard deviation o, we obtain bounds that
are polynomial in n and 1/¢? [11, Section 6]. This is because the maximum density of a d-
dimensional Gaussian with standard deviation ¢ is ©(¢~¢). While this is polynomial for any
fixed d, it is unsatisfactory that the degree of the polynomial depends on d.

1.1 Our Contribution

We provide a smoothed analysis of the running-time of 2-opt in the classical model, where
points in [0, 1] are perturbed by independent Gaussian distributions of standard deviation o.
The bounds that we prove for Gaussian perturbations are polynomial in n and 1/0, and the
degree of the polynomial is independent of d. As distance measures, we consider Manhattan
(Section 3), Euclidean (Section 5), and squared Euclidean distances (Section 4).

The analysis for Manhattan distances is essentially an adaptation of the existing analysis
by Englert et al. [11, Section 4.1]. Note that our bound does not have any factor that is
exponential in d.

Our analysis for Euclidean distances is considerably simpler than the one by Englert et al.,
which is rather technical and takes more than 20 pages [11, Section 4.2 and Appendix CJ.

The analysis for squared Euclidean distances is, to our knowledge, not preceded by a
smoothed analysis in the one-step model. Because of the nice properties of squared Euclidean
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Table 1: Our bounds compared to the bounds obtained by Englert et al. [11] for the one-step
model. The bounds can roughly be transferred to Gaussian noise by replacing ¢
with o~¢. For convenience, we added our bounds for small and large values of o: for
o = O0(1/y/nlogn), we have Dy.x = O(1), for larger o, we have Dyax = ©(oy/nlogn).
The notation O4 means that terms depending on d are hidden in the O.

distances and Gaussian perturbations, this smoothed analysis is relatively compact and elegant
(see in particular Section 4.2).
Table 1 summarizes our bounds.

2 Preparation and Technical Lemmas

Throughout the rest of this paper, X denotes a set of n points in R?, where each point is
drawn according to an independent d-dimensional Gaussian distribution with mean in [0, 1]¢
and standard deviation o.

We assume that ¢ < 1. This is justified by two reasons. First, small o are actually the
interesting case, i.e., when the order of magnitude of the perturbation is relatively small.
Second, the smoothed number of iterations that 2-opt needs is a monotonically decreasing
function of o if we have o > 1, then this is equivalent to adversarial instances in [0,1/0]¢ that
are perturbed with standard deviation 1. This in turn is dominated by adversarial instances
in [0, 1]¢ that are perturbed with standard deviation 1, as [0,1/0]¢ C [0,1]¢. Thus, any bound
for o = 1 holds also for larger o.

Note that we make the dependence on all parameters (the number n of points, the dimension
d, and the perturbation parameter o) explicit, i.e., the O or £ do not hide factors depending
on, e.g., the dimension d.

2.1 2-Opt State Graph and Linked 2-Changes

Given a tour H that visits all points in X, a 2-change replaces two edges {x1,z2} and {x3, 24}
of H by two new edges {x1,z3} and {z2, x4}, provided that this yields again a tour (this is the
case if x1,x9, x3, x4 appear in this order in the tour) and that this decreases the length of the
tour, i.e., d(x1,z2) + d(x3, x4) — d(x1,23) — d(x2,24) > 0, where d(a,b) = |ja — b||2 (Euclidean
distances), d(a,b) = ||a — b||; (Manhattan distances), or d(a,b) = ||a — b||3 (squared Euclidean
distances). The 2-opt heuristic iteratively improves an initial tour by applying 2-changes until
it reaches a local optimum.

The number of iterations that 2-opt needs depends of course heavily on the initial tour and
on which 2-change is chosen in each iteration. We do not make any assumptions about the
initial tour and about which 2-change is chosen. Following Englert et al. [11], we consider the



2-opt state graph: we have a node for every tour and a directed edge from tour H to tour H’
if H' can be obtained by one 2-change. The 2-opt state graph is a directed acyclic graph, and
the length of the longest path in the 2-opt state graph is an upper bound for the number of
iterations that 2-opt needs.

In order to improve the bounds, we also consider pairs of linked 2-changes [11]. Two 2-
changes form a pair of linked 2-changes if there is one edge added in one 2-change and removed
in the other 2-change. Formally, one 2-change replaces {x1,x2} and {z3,z4} by {z1,23} and
{z2,x4} and the other 2-change replaces {z1,z3} and {x5,z¢} by {x1,25} and {z2,26}. The
edge {z1,x3} is the one that appears and disappears again (or the other way round). It can
happen that {z2,z4} and {z5, x¢} intersect. Englert et al. [11] called a pair of linked 2-changes
a type i pair if [{xg, x4} N{x5,26}| = i. As type 2 pairs, which involve in fact only four nodes,
are difficult to analyze because of dependencies, we ignore them. Fortunately, the following
lemma states that we will find enough disjoint pairs of linked 2-changes of type 0 and 1 in any
sufficiently long sequence of 2-changes.

Lemma 2.1 (Englert et al. [11, Lemma 9]). Every sequence of t consecutive 2-changes contains
at least t/6 — Tn(n — 1)/24 disjoint pairs of linked 2-changes of type 0 or type 1.

Following Englert et al. [11, Figure 8], we subdivide type 1 pairs into type la and type 1b
depending on how {x2,z4} and {x5,x6} intersect. With one of the 2-changes being {z1,x2}
and {x3, x4} being replaced by {z1,z3} and {z2, x4}, we obtain the following types according
to the other 2-change:

Type 0: {x1,z3} and {x5,x¢} are replaced by {x1,z5} and {x3,z6}.
Type la: {x1,x3} and {x9, x5} are replaced by {x1,z5} and {x2,z3}.
Type 1b: {x1,x3} and {x2, x5} are replaced by {z1, 22} and {z3,x5}.

The main idea in the proofs by Englert et al. [11] and also in our proofs is to bound the
minimal improvement of any 2-change or the minimal improvement of any pair of linked 2-
changes. We denote the smallest improvement of any 2-change by Ap, and the smallest
improvement of any pair of linked 2-changes by Alﬁﬂ‘l It will be clear from the context which
distance measure is used for A, and Alink,

Suppose that the initial tour has a length of at most L, then 2-opt cannot run for more than
L/Apin iterations and not for more than ©(L/AlRK) iterations, provided that L/Alnk = ((n?)
because of Lemma 2.1.

The following lemma formalizes this and shows how to bound the expected number of iter-

ations using a tail bound for A, or Aﬂﬁﬁ

Lemma 2.2. Suppose that, with a probability of at least 1 — 1/n!, any tour has a length of at
most L. Let v > 1. Then

(1) If P(Amin < €) = O(Pe), then the expected length of the longest path in the 2-opt state
graph is bounded from above by O(PLnlogn).

(2) If P(Anin < €) = O(Pg7), then the expected length of the longest path in the 2-opt state

graph is bounded from above by O(Pl/”fL).

(3) The same bounds as (1) and (2) hold if we replace Apmin by AR provided that PL = Q(n?)
for Case 1 and PYYL = Q(n?) for Case 2.



Proof. If the length of the longest tour is longer than L, then we use the trivial upper bound
of n!. This contributes only O(1) to the expected value.

Consider the first statement. Let T' be the longest path in the 2-opt state graph. If T' > ¢,
then Apin < L/t. Plugging this in and observing the n! is an upper bound for 7" yields

E(T) = iIP’(T > 1) < iO(PL/t) = O(log(n!) - PL) = O(PLnlogn).
t=1 t=1

Now consider the second statement, and let T' be as above. Let K = O(L - P'/7). Then

B(T) =S P> 1) < min(1,0(P(L/1)"))
t=1 t=1

=K+PL"-> Ot ") =K+PL"-O(K'7) = 0(K).
t>K

Finally, we consider the third statement. The statement follows from the observation that the
maximal number of disjoint pairs of linked 2-changes and the length of the longest path in the
2-opt state graph are asymptotically equal if they are of length at least Q(n?) (Lemma 2.1) and
the probability statements become nontrivial only for t = Q(PL) in the first and t = Q(PY7L)
in the second case. O

2.2 Basic Probability Theory

In order to get an upper bound for the length of the initial tour, we need an upper bound for the
diameter of the point set X. Such an upper bound is also necessary for the analysis of 2-changes
with Euclidean distances (Section 5). We choose Dyyay such that X C [~ Diyax, Dimax)? with a
probability of at least 1 —1/n!. For fixed d and o < 1, we can choose Dyax = O(1+0+v/nlogn)
according to the following lemma. For 0 = O(1/y/nlogn), we have Dy = O(1).

Lemma 2.3. Let ¢ > 2 be a sufficiently large constant, and let Dyax = ¢+ (0y/nlogn + 1).
Then P(X € [~ Dmax; Dmax)?) < 1/nl.

Proof. We have X Z [—Dyax, Dmax]d only if there is a point z; and a coordinate of z; that is
perturbed by more than Dyax — 1 > co - v/nlogn. According to Durrett [9, Theorem 1.2.3],
the probability that a 1-dimensional Gaussian of standard deviation ¢ is more than co+/nlogn

away from its mean is bounded from above by 2 - %\/%2/2). Thus, the probability that

X & [~ Duax, Dmax]? is bounded from above by 2dn - %. For sufficiently large c,

this is at most 1/n!. O

The following lemma is well known and follows from the fact that the density of a d-
dimensional Gaussian with standard deviation ¢ is bounded from above by (20)~%.

Lemma 2.4. Let a € R? be drawn according to a d-dimensional Gaussian distribution of
standard deviation o, and let B = {b € R? | ||b — c|2 < €} be a d-dimensional hyperball of
radius ¢ centered at ¢ € RY. Then P(a € B) < (¢/0)?.

For z,y € R% with x # y, let L(z,y) = {¢- (y — x) + = | £ € R} denote the straight line
through = and y.



Lemma 2.5. Let a,b € RY be arbitrary with a # b. Let ¢ € R? be drawn according to a
d-dimensional Gaussian distribution with standard deviation o. Then the probability that c is
e-close to L(a,b), i.e., mingcrqp) llc — c*|l2 < ¢, is bounded from above by (e/o)d 1.

Proof. We divide drawing c into drawing a 1-dimensional Gaussian ¢* in the direction of a — b
and drawing a (d — 1)-dimensional Gaussian ¢ in the hyperplane orthogonal to a — b and
containing ¢*. Then the distance of ¢ to L(a, b) is ||c — c¢*||2. For every c¢*, the point c is e-close
to L(a,b) only if ¢ falls into a (d — 1)-dimensional hyperball of radius € around ¢*. The lemma
follows by applying Lemma 2.4. O

We need the following lemma in Section 5.

Lemma 2.6. Let f : R — R be a differentiable function whose derivative is bounded from
above by B, let ¢ be distributed according to Gaussian distribution with standard deviation
o. Let I be an interval of size e, and let f(I) = {f(x) | = € I} be the image of I. Then
P(c e f(I)) = O(Be/o).

Proof. Since the derivative of f is bounded by B, the set f(I) is contained in some interval of
length Be. The lemma follows since the density of ¢ is bounded from above by O(1/0). O

2.3 Chi Distribution

The chi distribution [12, Section 8] is the distribution of the Euclidean length of a d-dimensional
Gaussian random vector of standard deviation o and mean 0. In the following, we denote its
density function by x4. It is given by

=5 () axp (= (2/0)2
rale) = 2 (5) a~F(dI/)§) (2/0)/2) 0

where I' denotes the gamma function. We need the following lemma a couple of times.

Lemma 2.7. Assume that ¢ € N is a fixred constant and d € N is arbitrary with d > c¢. Then

we have " (d )
w2
/O Yala)z dw—ac.F(g)—@<dc/z.UC)'

Proof. The first equality follows by integration. For the second inequality, we observe 27¢/2 is
a fixed constant and that

[(z) = V2ra® 1/ 2e 2 t1(@)

for some function p with p(z) € [0, 3| according to Stirling’s formula [1, 6.1.37]. We have
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Here, the third equality follows from two facts: ¢ is a fixed constant, thus exp(c/2) = (1)
and dgc,% > 1. Thus, u(%) and ,u(g) lie between 0 and a constant. Hence, the exponential
term is ©(1).

Analyzing A and B remains to be done: We have B < (d/2)~%?, thus B = O(d~/?).
If d < 2¢, then B is bounded from below by a constant and so is d~¢/2. If d > 2¢, then
B > (d/4)=¢/? = Q(d—/?).

(d—1)-c

d—1
We have A = (1 — 5)7 < exp(—T) = O(1). Distinguishing the cases d < 2¢ and
d > 2c as for B yields A = Q(1). O

The analysis with Euclidean and squared Euclidean distances depends on the distribution
of the distance between two points perturbed by Gaussians, where larger distance is better for
the analysis. The following two lemmas show that, given that larger distance is better, we can
replace the distribution of the distance by the corresponding chi distribution.

Lemma 2.8. Assume that a is drawn according to a d-dimensional Gaussian distribution with
standard deviation o and mean 0. Assume that b is drawn according to a d-dimensional Gaus-
sian distribution with standard deviation o and mean p. Then ||b||2 stochastically dominates
lalla, i.e., P(||b]l2 < t) <P(|lalls < t) for all t € R.

Proof. For d =1, we have the following:
P(|[o]lo <t) =P(be [~t,t]) =P(a € [t — p,t — p])
=P(a€ [t 1)) +Plac [~t—pu,—t]) —Pla€ [t —ut]) <P(|lall2 <?)

<0

Now we prove the lemma for larger d. Since Gaussian distributions are rotation symmetric,
we can assume that u = (4,0,...,0) for some § > 0.

We observe that ||b]|2 dominates ||a||2 if and only if ||b||3 dominates |a|/3. Let &’ = a + u. Tt
suffices to prove the lemma for this choice of ¥/, as b’ follows the same distribution as b. Fixing
as, ..., aq fixes also ab,...,a’;. Then ||V'||3 dominates ||a||3 if |a1 + 6| dominates |ai|. This is
true because the lemma holds for d = 1. O

Lemma 2.9. Let b be as in Lemma 2.8, and let h : [0,00] — [0,00) be a monotonically
decreasing function. Let g be the density function of ||b||. Then

/0 o(@)h(e) d < /0 foo(2)h() do,



provided that both integrals exist.

Proof. Let a denote the d-dimensional Gaussian random variable of standard deviation ¢ and
mean 0. Then ||a||2 has density fj,. By Lemma 2.8, ||al|2 is dominated by ||b[|2. This implies
that h(||all2) dominates h(||b||2) since h is monotonically decreasing. The lemma follows by
observing that the two integrals are the two expected values of h(]|all2) and A(]|b]|2). O

For Euclidean and squared Euclidean distances, it turns out to be useful to study A, (c) =
d(c,a) —d(c,b) for points a,b,c € X. By abusing notation, we sometimes write A; ;(k) instead
of Ay, «,(z) for short. A 2-change that replaces {71, z2} and {x3,z4} by {71, 73} and {z2, 74}
improves the tour length by Aj 4(2) — A1 4(3) = Ag3(1) — Az 3(4).

3 Manhattan Distances

The essence of our analysis for Manhattan distances is a straightforward adaptation of the
analysis in the one-step model. The extra factor of Dy, comes from the bound of the initial
tour, and the extra factor of d? stems from stating the dependence on d explicitly and getting
rid of the exponential dependence on d [11, Proofs of Theorem 7 and Lemma 10].

Lemma 3.1. P(AlIk < &) = O(d?n5e%/0?).

Proof. We consider a pair of linked 2-changes as described in Section 2.1. The improvement
of the first 2-change is

d
Ty = e — w2l + w3 — zas| — w15 — w3i] — w25 — 2adl,

i=1
where z; is the i-th coordinate of z; € X. The improvement of the second 2-change is

d
Iy = Z |T1; — 234| + |75: — 26i| — |15 — 50| — |23 — Tl
i=1
Note that we can have a type 1 pair, i.e., two of the points x2, x4, x5, z¢ can be identical.

Each ordering of the x;; gives rise to a linear combination for I'y and I'y. We have (6!)d such
orderings. If we examine the case distinctions by Englert et al. [11, Lemmas 11, 12, 13] closely,
we see that any pair of linear combinations is either impossible (it uses a different ordering
of the variables for I'; and I's or one of I'y and I's is non-positive, thus the corresponding
2-change is in fact not a 2-change) or we have one variable xj; that has a non-zero coefficient
in I'y and a coefficient of 0 in I'y and another variable x;/; that has a non-zero coefficient in
I'; and a coefficient of 0 in I'y. The absolute values of the non-zero coefficients of x;; and ;s
is 2. Now I'y falls into (0,¢] only if xj; falls into an interval of length /2. This happens with
a probability of at most O(e/o). By independence, the same holds for I'y and ;.

However, we would incur an extra factor of (6!)¢ in this way, and we would like to remove
all exponential dependence of d. In order to do this, we assume that we know 7 and i’ already.
This comes at the expense of a factor of O(d?) for taking a union bound over the choices of i
and /. We let an adversary fix values for all x 47 with i #1,i. Since we know i and i/, we are
left with at most (6!)2 = O(1) possible linear combinations.

Finally, the lemma follows by taking a union bound over all O(n®) possible pairs of linked
2-changes. O



Theorem 3.2. The expected length of the longest path in the 2-opt state graph corresponding
to d-dimensional instances with Manhattan distances is at most O(d*n* Dyax /o).

Proof. The initial tour has a length of at most O(ndDyax) with a probability of at least 1—1/n!
by Lemma 2.3. We apply Lemma 2.2 for linked 2-changes using Lemma 3.1 and v = 2. O

4 Squared Euclidean Distances

4.1 Preparation

In this section, we have A, ;(c) = ||c — a||3 — [|c — b||3 for a,b,c € R%

Assume that we have a 2-change that replaces {x1,z2} and {x3, x4} by {x1, 23} and {2, z4}.
The improvement caused by this 2-change is Ag3(1) — Ag3(4) = A14(2) — A14(3). Given the
positions of the four nodes except for a single i € {1,2,3,4}, such a 2-change yields a small
improvement only if the corresponding A..(7) falls into some interval of size e. The following
lemma gives an upper bound for the probability that this happens.

Lemma 4.1. Let a,b € R%, a # b, and let ¢ be drawn according to a Gaussian distribution
with standard deviation o. Let I C R be an interval of length €. Then

€
P(Aap(c) €1) <

Proof. Since Gaussian distributions are rotationally symmetric, we can assume without loss of
generality that a = (0,...,0) and b = (4,0, ...,0) with § = ||la—b||2. Let ¢ = (c1,...,cq). Then
Agple) = & — (c1 — 6)? = 2¢16 + 6% Thus, Ayp(c) € I if and only if ¢; falls into an interval
of length 5. Since c; is a 1-dimensional Gaussian random variable with a standard deviation
of o, the probability for this is bounded from above by ;& since the maximum density of a
1-dimensional Gaussian of standard deviation o is bounded from above by % O

4.2 Single 2-Changes

In this section, we prove a simple bound for the expected number of iterations of 2-opt with
squared Euclidean distances. This bounds holds for all d > 2. In the next section, we improve
this bound for the case d > 3 using pairs of linked 2-changes.

Lemma 4.2. For d > 2, we have P(Apy, € (0,¢]) = O(g’;i;a).

Proof. Consider a 2-change where {x1,z2} and {3, x4} are replaced by {z1,z3} and {2, x4}.
Its improvement is given by Ag3(1) — Ag3(4). We let an adversary fix x3. Then we draw xa.
This fixes the distance § = ||z2 — x3]|2. Now we draw x4. This fixes Ay 3(4). The 2-change
yields an improvement of at most ¢ only if Ag3(1) falls into an interval of size at most e.
According to Lemma 4.1, the probability that this happens is at most ;5.

Now let g be the probability density of 6 = ||x2—x3||. Then the probability that the 2-change
yields an improvement of at most ¢ is bounded from above by

& € & € €
. < R = .
/0 9(9) 405015_/0 Xa(0) - —=dd 0<02\/a)

The first step is due to Lemma 2.9. The second step is due to Lemma 2.7 using ¢ = 1 and
d > 2. The lemma follows by a union bound over the O(n*) possible 2-changes. O




Theorem 4.3. For all d > 2, the expected length of the longest path in the 2-opt state
graph corresponding to d-dimensional instances with squared Euclidean distances is at most
O(n®lognvdD2,,. /0?).

Proof. With a probability of at least 1 — 1/n!, the instance is contained in a hypercube of
sidelength Dyax. Thus, the longest edge has a length of at most vdDpac. Therefore, the
initial tour has a length of at most ndD?2,.. We combine this with Lemmas 2.2 and 4.2 to

complete the proof. O

4.3 Pairs of Linked 2-Changes

We can obtain an better bound than in the previous section by analyzing pairs of linked 2-
changes. With the following three lemmas, we analyze the probability that pairs of linked
2-changes of type 0, 1a, or 1b yield an improvement of at most &.

Lemma 4.4. For d > 2, the probability that there exists a pair of type 0 of linked 2-changes
2

that yields an improvement of at most € is bounded from above by O(Zf )

Proof. Consider a fixed pair of type 0 of linked 2-changes involving the six points x1,...,Zg
as described in Section 2.1. We show that the probability that it yields an improvement of at
most ¢ is at most O(so0—2/v/d). A union bound over the O(n%) possibilities of pairs of type 0
yields the lemma.

The basic idea is that we restrict ourselves to analyzing Aj4(3) and Ajg(5) only in order
to bound the probability that we have a small improvement. In this way, we use the principle
of deferred decision to show that we can analyze the improvements of the two 2-changes as if
they were independent:

1. We let an adversary fix x; arbitrarily.
2. We draw x4, which determines the distance ||z — z4]].

3. We draw z5. This fixes the position of the interval of size bad interval for A; 4(3), and z3
is still random.

4. We draw z3. The probability that x3 assumes a position such that the first 2-change yields

an improvement of at most ¢ is thus at most ——=>—.
4o-||z1—x4]|

5. We draw xg. This determines the distance [|z1 — x¢]|.

6. We draw x5. The probability that x5 assumes a position such that the second 2-change

yields an improvement of at most ¢ is thus at most ——=>—.
40-||z1—z6||

Let g be the probability density function of the distance between x; and x4, and let ¢’ be
the probability density function of the distance between x1 and zg. By independence of the
points, the probability that both 2-changes of the pair yield an improvement of at most ¢ is
bounded from above by

> g [ as .
/5:09(5) 405d5 5:09(5) 405d5.
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We observe that ;=5 is monotonically decreasing in §. Thus, by Lemma 2.9, we can replace
g and ¢’ by the density yq of the chi distribution to get the following upper bound for the
probability that a pair of type 0 yields an improvement of at most e:

</0de(5).4§0(15>2 =0 <;42d>.

Here, we use Lemma 2.7 with ¢ = 1, which is allowed since d > 2. O

Lemma 4.5. For d > 2, the probability that there exists a pair of type_la of linked 2-changes

that yields an improvement of at most € is bounded from above by O(T(ffd )

Proof. We can analyze pairs of type la in the same way as type 0 pairs in Lemma 4.4. To do
this, we analyze Ag3(4) and A 2(5):

1. We fix zo.
2. We draw x3. This fixes ||x2 — z3]|.

3. We draw x;. This fixes |1 — x2|. In addition, this fixes the positions of the intervals into
which Ag3(4) and Aj 2(5) must fall if the first or second 2-change yield an improvement of
at most €.

4. We draw 4.
5. We draw zs.
The remainder of the proof is identical to the proof of Lemma 4.4. ]

Lemma 4.6. For d > 3, the probability that there exists a pair of type 1b of linked 2-changes
. . . 5.2

that yields an improvement of at most € is bounded from above by O(Zfd )

Proof. Again, we proceed similarly to Lemma 4.4. We analyze a fixed pair of type 1b, where

{z1,x2} and {z3, x4} are replaced by {z1, z3} and {x2, 24} in one step and {x1, 23} and {x2, 25}

are replaced by {z1,z2} and {x3, 5}, and apply a union bound over the O(n%) possible type

la pairs. We analyze the probability that Ag3(4) or Ag3(5) assume a bad value.
We draw the points in the following order:

1. We fix x5.
2. We draw x3. This fixes the distance ||xg — z3||2, which is crucial for both 2-changes.
3. We draw z.

4. We draw x4. The probability that the first 2-change yields an improvement of at most ¢ is

at most ——=—.
4o-||z2—x3||

5. We draw z5. The probability that the second 2-change yields an improvement of at most ¢

is at most ——=——.
4o-||z2—x3]|

11



The main difference to Lemma 4.4 is that the sizes of the bad intervals are not independent.
However, once the size of the bad intervals is fixed, we can analyze the probabilities that
Ag3(4) or Ag3(5) fall into their bad intervals as independent. Given that ||z2 — x3|| = ¢ is
fixed, the probability that the first and the second 2-change yield an improvement of at most &
is bounded from above by ﬁ. Since this is decreasing in J§, we can replace the distribution
of § by the chi distribution to obtain an upper bound according to Lemma 2.9. Thus, using
Lemma 2.7 with ¢ = 2 and d > 3, we obtain the following upper bound for the probability
that a pair of type 1b yields an improvement of at most &:

C ) — as—of £
/MXd()'wa?a? - <d04>

With the three lemmas above, we can obtain a bound on the expected number of iterations
of 2-opt for TSP with squared Euclidean distances.

O]

Theorem 4.7. Ford > 3, the expected length of the longest path in the 2-opt state graph corre-
4 2
sponding to d-dimensional instances with squared Euclidean distances is at most O(%).

Proof. The probability that any pair of linked 2-changes of type 0, 1a, or 1b yields an improve-
2,6

ment of at most ¢ is bounded from above by O(Eofd ) We apply Lemma 2.2 with v = 2 and

observe that the initial tour has a length of at most O(ndD? ) with a probability of at least

1—1/nl O

5 Euclidean Distances

5.1 Difference of Euclidean Distances

In this section, we have A, ,(2) = ||z—all2—|z2—b||2 for a, b, 2 € RL. Analyzing ||z—all2—||z—b||2
turns out to be more difficult than analyzing ||z — al|3 — ||z — b||3 in the previous section. In
particular the case when ||z — a2 — ||z — b||2 is close to the maximal possible value of ||a — b||2
requires special attention.

We observe that 7 = Ag(2) behaves essentially 2-dimensionally: it depends only on the
distance of z from L(a,b) (this is z in the following lemma) and on the position of the projection
z onto L(a,b) (this is y in the following lemma). Furthermore, it depends on the distance
|la — bl|2 between a and b (this is ¢ in the following lemma). The following lemma makes the
connection between x and y explicit for a given 7. Figure 1 depicts the situation described in
the lemma.

Lemma 5.1. Let z = (x,y) € R?, 2 >0, y > 0. Let a = (0,—6/2) and b = (0,5/2) be two
points at a distance of 6. Let n = ||z — alla — ||z — b||2. Then we have

2,..2
n-x
o @

. 1202 + 42z — :f+
402 — 4n? 4
for0<n < and

o Y2 (462 — d) + 't — n25? _ y?- (62— n?) R -
4n? n? 4

for 6 >n > 0. Furthermore, n > § is impossible.

12



5/\‘2’\/92

Figure 1: The situation for Lemma 5.1.

Proof. The last statement follows from the triangle inequality.
We have n = /(y + 6/2)2 + 22— /(y — 6/2)? + 22. Rearranging terms and squaring implies

4+ (y—0/2)2 + 2%+ 207/ (y — 6/2)2 + 22 = (y + 6/2)% + a2
a2/ (y —6/2)2 + 22 = 2y5 — >

Squaring again implies

4n? - ((y — 5/2)2 + x2) = 4y%6% — 4yon?® +n*

o 4n?. (y2 —dy+6%/4+ 1:2) = 4y%6% — 4yon?® +n*

o Any? — A’y + n?6% + 4n’a? = 4y%6% — 4yon?® + 1
& dn*y? + 0?67 4 dnPa? = 4yP6% + .

Again rearranging terms implies
y2 . (462 _ 4?72> — ,]7262 +4772x2 _ ,’74.
Using the assumption n < § or > 0 implies the two claims. O

As said before, the difficult case in analyzing A, (c) = 1 is when n ~ ||a — b[|2. In terms of
the previous lemma, this can only happen if x is small, i.e., if ¢ . The following lemmas makes
this precise.

Lemma 5.2. Let a,b, z € [~ Dmax, Dax]?. Assume that ||a —b|| = § and that z has a distance
of x from L(a,b). Then

226
- 8dD?

max

[Agp(2)] <6 (4)

Proof. Let y be the distance of z from m = %2, and let n = A, ;(z). Then, according to (3),
we have s o o
R Gt/ B et
n? 4

The second term on the right-hand side is non-positive as n < §. We omit it and use the upper
bound y < V/dDyax to obtain the following weaker bound:

D3 - (02 = %)

X

13



We distinguish two cases. The first case is that n < §/2. In this case, it suffices to show that
5/2<6— de% in order to prove (4). Since |z| < 2v/dDyax, this holds because 6/2 < § —§/2.
The second case is that n > §/2. We have

FZ=n?=0-n)-0+n) <26-(5—n).

Replacing 62 — n? by 26 - (6 — 1) in the numerator and n? by 62/4 in the denominator of (5),
we obtain ) s o
2<dl)max'((S _T])<8dD12nax'(77_6)

n> §

Rearranging terms completes the proof. O

x

In order to be able to apply Lemma 2.6, we need the following upper bound on the derivative
of y with respect to n, given that x is fixed.

Lemma 5.3. For z,y > 0, let y = \/1—2—1— gf_xsg with 0 < n < . Assume further that
n<d— de% and that & < 2v/dDyax. Then the derivative of y with respect to 1 is bounded

by

1 8D3, d%?

2 * dx?
Proof. The derivative of y with respect to 7 is given by
y/ _ % _ 54— 2(52772 4 774 4 45212
dn — 2.(62 —72)3/2. /62 — 2 + 4a2
(52 _ 772)2 + 452$2

2. (62 —n2)3/2 .\ /62 — 2 + da?

(52 o 772)2 N 4521,2
2. (52 _ 772)3/2 A /82 — 772 + A2 2. (52 _ 772)3/2 A/82 — 772 + A2
26222

<1+
-2

(62 = 12)3/2 . /62 — 2 + 422

We observe that 3/ > 0 for all z and allowed choices of n and 4. For the second term, we have

26%2* < 26222 B 5z
= R AR (AR (P
By assumption, we have § —n > de% and 7 < J. Thus, we have
5z B 62 < 82 B 8D3 . d*/?
2 _ 12)3/2 3/2 — z 3/2 2
(@2 =) 2 (6 =m)- 0 +m)* T @02 ()™t O

max

O]

Using Lemmas 5.3 and 2.6, we can bound the probability that A, ;(z) assumes a value in
an interval of size €.
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Lemma 5.4. Let d > 4. Let a,b € [—Dmax,DmaX]d be arbitrary, a # b, and let z be drawn
according to a Gaussian distribution with standard deviation o. Let § = ||a — b||2. Let I be an
interval of length €. Then

o036

P(Agp(z) €1 orz ¢ [_Dmaanmax]d) -0 <W> .

Proof. Let x denote the distance of z to L(a,b), and let y denote the position of the projection
of z onto L(a,b). First, let us assume that = is fixed. Then, by Lemmas 5.3 and 2.6, the
probability that Ag(2) € I is bounded from above by

D3 43?2\ ¢
14 Zmex? )=
of(1+P™) 5

Here, the requirements of Lemma 5.3 are satisfied because of Lemma 5.2, or we have z ¢
[_Dma)(7 Dmax]d-

We observe that this probability is decreasing in x. Thus, in order to get an upper bound
for the probability with random z, we can use the (d — 1)-dimensional chi distribution for z
according to Lemma 2.9. We obtain

9] D3 g3/2 e e oo D3 d3/2€
B . 14 Zmax® ) & —0(= 3 : Zmax® © ©
/:c=0Xd 1(z)- O << + 52 ) . dz O(a> +/x:0Xd 1(z)- O i dz

3
_O<E+W>'

o 038
by Lemma 2.7 using ¢ =2 and d — 1 > 3. Since § < 2\/&Dmax, the lemma follows. O

5.2 Analysis of Pairs of 2-Changes
We immediately go to pairs of linked 2-changes, as these yield the better bounds.

Lemma 5.5. For d > 4, the probability that a pair of linked 2-changes of type 0 yields an
improvement of at most € or some point lies outside [—Dyax, Dmax]d s bounded from above by

0 n%e2D8
o8 ’

Proof. We proceed similarly as in the proof of Lemma 4.4 for type 0 pairs for squared Euclidean
distances. We draw the points of a fixed pair of linked 2-changes as in the proof of Lemma 4.4.

In the same way as in the proof of Lemma 4.4, using Lemma 5.4 instead of Lemma 4.1, we
obtain that the probability that one fixed of the two 2-changes yields an improved of at most
¢ is bounded from above by

> ED?II&X\/g ED?II&X
/50Xd(5)-0(036 ) d5—0< & >

Here, we applied Lemma 2.7 with ¢ = 1.

Again in the same way as in the proof of Lemma 4.4, we can analyze both 2-changes of the
type O pair is if they are independent. Finally, the lemma follows by a union bound over the
O(n®) possibilities for a type 0 pair. O
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Lemma 5.6. For d > 4, the probability that a pair of linked 2-changes of type 1a yields an
improvement of at most € or some point lies outside [—Dyax, Dmax]d s bounded from above by

5 2D6
O<n€ 8max>.
(o

Proof. The lemma can be proved in the same way as Lemma 4.5 with differences analogous to
the proof of Lemma 5.5. O

Lemma 5.7. For d > 4, the probability that a pair of linked 2-changes of type 1b yields an
improvement of at most € or some point lies outside [—Dyax, Dmax]d s bounded from above by

0 <n5€2D§nax> .

o8

Proof. Similar to the proof of Lemma 4.6 and using Lemma 5.4, the probability that the two
2-changes of the pair both yield an improvement of at most € is bounded from above by

2
o0 eD3 \d o0 e2D6  d
5) - max V® ) ge 8) - ZmaxT ) 46,
/5:0 Xd( ) O < o35 ) /6:0 Xd( ) O ( 5662 >

Now the lemma follows by applying Lemma 2.7 with ¢ = 2. O

Theorem 5.8. For d > 4, the expected length of the longest path in the 2-opt state graph
corresponding to d-dimensional instances with Euclidean distances is at most O(%).

. nbe2 D6 . .
Proof. We have P(AIME < ¢) = O(*~—g==x) by Lemmas 5.5, 5.6, and 5.7. If all points are in
[~ Dmax; Dmax]?, then the longest edge has a length of O(\/&Dmax). Thus, the initial tour has
a length of at most O(n\/gDmaX). Plugging this into Lemma 2.2 yields the result. O

6 Concluding Remarks

Polynomial bound for Euclidean distances for all d. Our approach for Euclidean dis-
tances does not work for d = 2 and d = 3. However, we can use the bound of Englert et al. [11]
for Euclidean distances, which yields a bound polynomial in n and 1/o for both cases.

Initial tour. One reason that we obtain worse bounds is that our upper bound for the length
of the initial tour is worse because we do not truncate the Gaussian distributions. This effect
is even stronger for Euclidean distances, where the maximum distance between points plays a
role also in the analysis of the 2-changes. Only for o = O(1/y/nlogn), this effect is negligible,
as then Dy = O(1).

In the same way as Englert et al. [11], we can slightly improve the smoothed number of
iterations by using an insertion heuristic to choose the initial tour. We save a factor of n'/¢ for
Manhattan and Euclidean distances and a factor of n?/¢ for squared Euclidean distances. The
reason is that there always exist tours of length O(Dmaxnl_é) for n points in [~ Diax, Dmax]®
for Euclidean and Manhattan distances and of length O(D?naxnl_%) for squared Euclidean
distances for d > 2 [26].
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Approximation ratio. Using the fact that any local optimum of 2-opt yields a tour of
length at most O(Dmaxnl_é) [7] and that the optimal tour has a length of Q(nl_éa) [11],
we obtain a smoothed approximation ratio of O(Dmax/0). This, however, is worse than the
worst-case ratio of O(logn) [7] as Dpax/0 = Q(y/n/logn). The reason for this bound is that
the upper bound for the local optimum involves Dy x.

We conjecture an approximation ratio of O(1/c¢), which is what we would obtain if plugging
o = 0(¢~%) into the bound of Englert et al. [11] were allowed.
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