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Abstract. A cycle cover of a graph is a set of cycles such that every
vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in
which the length of every cycle is in the set L ⊆ N.

We investigate how well L-cycle covers of minimum weight can be ap-
proximated. For undirected graphs, we devise a polynomial-time approx-
imation algorithm that achieves a constant approximation ratio for all
sets L. On the other hand, we prove that the problem cannot be approx-
imated within a factor of 2− ε for certain sets L.

For directed graphs, we present a polynomial-time approximation al-
gorithm that achieves an approximation ratio of O(n), where n is the
number of vertices. This is asymptotically optimal: We show that the
problem cannot be approximated within a factor of o(n).

To contrast the results for cycle covers of minimum weight, we show
that the problem of computing L-cycle covers of maximum weight can,
at least in principle, be approximated arbitrarily well.

1 Introduction

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such
that every vertex is part of exactly one cycle. Cycle covers are an important tool
for the design of approximation algorithms for different variants of the traveling
salesman problem [2, 4, 8–10, 16], for the shortest common superstring problem
from computational biology [7, 24], and for vehicle routing problems [13].

In contrast to Hamiltonian cycles, which are special cases of cycle covers,
cycle covers of minimum weight can be computed efficiently. This is exploited
in the above mentioned algorithms, which in general start by computing a cycle
cover and then join cycles to obtain a Hamiltonian cycle. Short cycles limit the
approximation ratios achieved by such algorithms. Roughly speaking, the longer
the cycles in the initial cover, the better the approximation ratio. Thus, we
are interested in computing cycle covers without short cycles. Moreover, there
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are algorithms that perform particularly well if the cycle covers computed do
not contain cycles of odd length [4]. Finally, some vehicle routing problems [13]
require covering vertices with cycles of bounded length. Therefore, we consider
restricted cycle covers, where cycles of certain lengths are ruled out a priori:
For a set L ⊆ N, an L-cycle cover is a cycle cover in which the length of each
cycle is in L. Unfortunately, computing L-cycle covers is hard for almost all sets
L [15, 20]. Thus, in order to fathom the possibility of designing approximation
algorithms based on computing cycle covers, our aim is to find out how well
L-cycle covers can be approximated.

Beyond being a basic tool for approximation algorithms, cycle covers are
interesting in their own right. Matching theory and graph factorization are im-
portant topics in graph theory. The classical matching problem is the problem
of finding one-factors, i. e., spanning subgraphs in which every vertex is incident
to exactly one edge. Cycle covers of undirected graphs are also called two-factors
since every vertex is incident to exactly two edges in a cycle cover. Both struc-
tural properties of graph factors and the complexity of finding graph factors have
been the topic of a considerable amount of research (cf. Lovász and Plummer [17]
and Schrijver [23]).

1.1 Preliminaries

Let G = (V,E) be a graph. If G is undirected, then a cycle cover of G is a subset
C ⊆ E of the edges of G such that all vertices in V are incident to exactly two
edges in C. If G is a directed graph, then a cycle cover of G is a subset C ⊆ E
such that all vertices are incident to exactly one incoming and one outgoing
edge in C. Thus, the graph (V,C) consists solely of vertex-disjoint cycles. The
length of a cycle is the number of edges it consists of. We are concerned with
simple graphs, i. e., the graphs do not contain multiple edges or loops. Thus, the
shortest cycles of undirected and directed graphs are of length three and two,
respectively. We call a cycle of length λ a λ-cycle for short.

An L-cycle cover of an undirected graph is a cycle cover in which the length
of every cycle is in the set L ⊆ U = {3, 4, 5, . . .}. An L-cycle cover of a directed
graph is analogously defined except that L ⊆ D = {2, 3, 4, . . .}. A special case
of L-cycle covers are k-cycle covers, which are {k, k + 1, . . .}-cycle covers. Let
L = U \ L in the case of undirected graphs, and let L = D \ L in the case of
directed graphs (whether we consider undirected or directed cycle covers will be
clear from the context).

Given edge weights w : E → N, the weight w(C) of a subset C ⊆ E of the
edges of G is w(C) =

∑
e∈C w(e). In particular, this defines the weight of a cycle

cover since we view cycle covers as sets of edges.
Min-L-UCC is the following optimization problem: Given an undirected

complete graph with non-negative edge weights that satisfy the triangle inequal-
ity (w({u, v}) ≤ w({u, x}) + w({x, v}) for all u, x, v ∈ V ) find an L-cycle cover
of minimum weight. Min-k-UCC is defined for k ∈ U like Min-L-UCC except
that k-cycle covers rather than L-cycle covers are sought. The triangle inequality
is not only a natural restriction, it is also necessary: If finding L-cycle covers in



graphs is NP-hard, then Min-L-UCC without the triangle inequality does not
allow for any approximation at all.

Min-L-DCC and Min-k-DCC are defined for directed graphs like Min-L-
UCC and Min-k-UCC for undirected graphs except that L ⊆ D and k ∈ D and
the triangle inequality is of the form w(u, v) ≤ w(u, x) + w(x, v).

Finally, Max-L-UCC, Max-k-UCC, Max-L-DCC, and Max-k-DCC
are analogously defined except that cycle covers of maximum weight are sought
and that the edge weights do not have to fulfill the triangle inequality.

1.2 Previous Results

Min-U-UCC, i. e., the undirected cycle cover problem without any restrictions,
can be solved in polynomial time via Tutte’s reduction to the classical perfect
matching problem [17]. By a modification of an algorithm of Hartvigsen [12], also
4-cycle covers of minimum weight in graphs with edge weights one and two can
be computed efficiently. For Min-k-UCC restricted to graphs with edge weights
one and two, there exists a factor 7/6 approximation algorithm for all k [6].
Hassin and Rubinstein [14] presented a randomized approximation algorithm
for Max-{3}-UCC that achieves an approximation ratio of 83/43 + ε. Max-L-
UCC admits a factor 2 approximation algorithm for arbitrary sets L [18, 20].
Goemans and Williamson [11] showed that Min-k-UCC and Min-{k}-UCC can
be approximated within a factor of 4. Min-L-UCC is NP-hard and APX-hard if
L 6⊆ {3}, i. e., for all but a finite number of sets L [15, 19, 20, 25].

Min-D-DCC, which is also known as the assignment problem, can be solved
in polynomial time by a reduction to the minimum weight perfect matching
problem in bipartite graphs [1]. The only other L for which Min-L-DCC can be
solved in polynomial time is L = {2}. For all L ⊆ D with L 6= {2} and L 6= D,
Min-L-DCC and Max-L-DCC are APX-hard and NP-hard [19, 20].

There is a 4/3 approximation for Max-3-DCC [5] as well as for Min-k-DCC
for k ≥ 3 with the restriction that the only edge weights allowed are one and
two [3]. Max-L-DCC can be approximated within a factor of 8/3 for all L [20].

If Min-L-UCC or Min-L-DCC is NP-hard, then the triangle inequality is
necessary for efficient approximations of this problem; without the triangle in-
equality, the problems cannot be approximated at all.

1.3 New Results

While L-cycle covers of maximum weight allow for constant factor approxima-
tions, only little is known so far about the approximability of computing L-cycle
covers of minimum weight. Our aim is to close this gap.

We present an approximation algorithm for Min-L-UCC that works for all
sets L ⊆ U and achieves a constant approximation ratio (Section 2.1). Its
running-time is O(n2 log n). On the other hand, we show that the problem cannot
be approximated within a factor of 2− ε for general L (Section 2.2).

Our approximation algorithm for Min-L-DCC achieves a ratio of O(n), where
n is the number of vertices (Section 3.1). This is asymptotically optimal: There



exist sets L for which no algorithm can approximate Min-L-DCC within a fac-
tor of o(n) (Section 3.2). Furthermore, we argue that Min-L-DCC is harder to
approximate than the other three variants even for more “natural” sets L than
the sets used to show the inapproximability (Section 3.3).

Finally, to contrast our results for Min-L-UCC and Min-L-DCC, we show
that Max-L-UCC and Max-L-DCC can be approximated arbitrarily well at least
in principle (Section 4).

2 Approximability of Min-L-UCC

2.1 An Approximation Algorithm for Min-L-UCC

The aim of this section is to devise an approximation algorithm for Min-L-UCC
that works for all sets L ⊆ U . The catch is that for most L it is impossible to
decide whether some cycle length is in L since there are uncountably many sets
L: If, for instance, L is not a recursive set, then deciding whether a cycle cover
is an L-cycle cover is impossible. One option would be to restrict ourselves to
sets L such that the unary language {1λ | λ ∈ L} is in P. For such L, Min-
L-UCC and Min-L-DCC are NP optimization problems. Another possibility for
circumventing the problem would be to include the permitted cycle lengths in
the input. While such restrictions are mandatory if we want to compute optimum
solutions, they are not needed for our approximation algorithms.

A complete n-vertex graph contains an L-cycle cover as a spanning subgraph
if and only if there exist (not necessarily distinct) lengths λ1, . . . , λk ∈ L for
some k ∈ N with

∑k
i=1 λi = n. We call such an n L-admissible and define

〈L〉 = {n | n is L-admissible}. Although L can be arbitrarily complicated, 〈L〉
always allows efficient membership testing: For all L ⊆ N, there exists a finite
set L′ ⊆ L with 〈L′〉 = 〈L〉 [20].

Let gL be the greatest common divisor of all numbers in L. Then 〈L〉 is a
subset of the set of natural numbers divisible by gL. There exists a minimum
pL ∈ N such that ηgL ∈ 〈L〉 for all η > pL. The number pL is the Frobenius
number [22] of {λ | gLλ ∈ L}, which is L scaled down by gL.

In the following, it suffices to know such a finite set L′ ⊆ L. The L-cycle covers
computed by our algorithm will in fact be L′-cycle covers. In order to estimate
the approximation ratio, this cycle cover will be compared to an optimal 〈L′〉-
cycle cover. Since L′ ⊆ L ⊆ 〈L′〉, every L′- or L-cycle cover is also a 〈L′〉-cycle
cover. Thus, the weight of an optimal 〈L′〉-cycle cover provides a lower bound for
the weight of both an optimal L′- and an optimal L-cycle cover. For simplicity,
we do not mention L′ in the following. Instead, we assume that already L is
a finite set, and we compare the weight of the L-cycle cover computed to the
weight of an optimal 〈L〉-cycle cover to bound the approximation ratio.

Goemans and Williamson have presented a technique for approximating con-
strained forest problems [11], which we will exploit. Let G = (V,E) be an undi-
rected graph, and let w : E → N be non-negative edge weights. Let 2V denote
the power set of V . A function f : 2V → {0, 1} is called a proper function if
it satisfies



– f(S) = f(V \ S) for all S ⊆ V (symmetry),
– if A and B are disjoint, then f(A) = f(B) = 0 implies f(A ∪ B) = 0

(disjointness), and
– f(V ) = 0.

The aim is to find a set F of edges such that there is at least one edge connecting
S to V \S for all S ⊆ V with f(S) = 1. (The name “constrained forest problems”
comes from the fact that it suffices to consider forests as solutions; cycles only
increase the weight of a solution.) Goemans and Williamson have presented
an approximation algorithm [11, Fig. 1] for constrained forest problems that are
characterized by proper functions. We will refer to their algorithm as GoeWill.

Theorem 1 (Goemans and Williamson [11]). Let ` be the number of ver-
tices v with f({v}) = 1. Then GoeWill is a (2 − 2

` )-approximation for the
constrained forest problem defined by a proper function f .

In particular, the function fL given by

fL(S) =
{

1 if |S| 6≡ 0 (mod gL) and
0 if |S| ≡ 0 (mod gL)

is proper if |V | = n is divisible by gL. (If n is not divisible by gL, then G does
not contain an L-cycle cover at all.) Given this function, a solution is a forest
H = (V, F ) such that the size of every connected component of H is a multiple
of gL. In particular, if gL = 1, then fL(S) = 0 for all S, and an optimum solution
are n isolated vertices.

If the size of all components of the solution obtained are in 〈L〉, we are done:
By duplicating all edges, we obtain Eulerian components. Then we construct
an 〈L〉-cycle cover by traversing the Eulerian components and taking shortcuts
whenever we come to a vertex that we have already visited. Finally, we divide
each λ-cycle into paths of lengths λ1 − 1, . . . , λk − 1 for some k such that λ1 +
. . .+λk = λ and λi ∈ L for all i. By connecting the respective endpoints of each
path, we obtain cycles of lengths λ1, . . . , λk. We perform this for all components
to get an L-cycle cover. A careful analysis shows that the ratio achieved is 4.
The details for the special case of L = {k} are spelled out by Goemans and
Williamson [11].

However, this procedure does not work for general sets L since the sizes of
some components may not be in 〈L〉. This can happen if pL > 0 (for L = {k},
for which the algorithm works, we have pL = 0).

In the following, our aim is to add edges to the forest H = (V,E) output by
GoeWill such that the size of each component is in 〈L〉. This will lead to an
approximation algorithm for Min-L-UCC with a ratio of 4 · (pL + 4), which is
constant for each L. Let F ∗ denote the set of edges of a minimum-weight forest
such that the size of each component is in 〈L〉. The set F ∗ is a solution to G, w,
and fL, but not necessarily an optimum solution.

By Theorem 1, we have w(F ) ≤ 2 ·w(F ∗) since w(F ∗) is at least the weight
of an optimum solution to G, w, and fL. Let C = (V ′, F ′) be any connected



component of F with |V ′| /∈ 〈L〉. The optimum solution F ∗ must contain an
edge that connects V ′ to V \ V ′. The weight of this edge is at least the weight
of the minimum-weight edge connecting V ′ to V \ V ′.

We will add edges until the sizes of all components is in 〈L〉. Our algorithm
acts in phases as follows: Let H = (V, F ) be the graph at the beginning of
the current phase, and let C1, . . . , Ca be its connected components, where Vi is
the vertex set of Ci. We will construct a new graph H̃ = (V, F̃ ) with F̃ ⊇ F .
Let C1, . . . , Cb be the connected components with |Vi| /∈ 〈L〉. We call these
components illegal. For i ∈ {1, . . . , b}, let ei be the cheapest edge connecting Vi

to V \Vi. (Note that ei = ej for i 6= j is allowed.) We add all these edges to F to
obtain F̃ = F ∪{e1, . . . , eb}. Since ei is the cheapest edge connecting Vi to V \Vi,
the graph H̃ = (V, F̃ ) is a forest. (If some ei are not uniquely determined, cycles
may occur. We can avoid these cycles by discarding some of the ei to break the
cycles. For the sake of simplicity, we ignore this case in the following analysis.) If
H̃ still contains illegal components, we set H to be H̃ and iterate the procedure.

Now we have w(F̃ ) ≤ w(F )+2 ·w(F ∗), i. e., in the overall weight increases by
at most 2 ·w(F ∗) in every phase. Furthermore, after at most bpL/2c+ 1 phases,
H̃ does not contain any illegal components.

Eventually, we obtain a forest that consists solely of components whose sizes
are in 〈L〉. We call this forest H̃ = (V, F̃ ). Then we proceed as already described
above: We duplicate each edge, thus obtaining Eulerian components. After that,
we take shortcuts to obtain an 〈L〉-cycle cover. Finally, we break edges and
connect the endpoints of each path to obtain an L-cycle cover. The weight of
this L-cycle cover is at most 4 · w(F̃ ).

Overall, we obtain ApxUndir (Algorithm 1) and the following theorem.

Theorem 2. For every L ⊆ U , ApxUndir is a factor (4 · (pL +4)) approxima-
tion algorithm for Min-L-UCC. Its running-time is O(n2 log n).

Proof. Let C∗ be a minimum-weight 〈L〉-cycle cover. The weight of F̃ is bounded
from above by w(F̃ ) ≤

(⌊
pL

2

⌋
+ 1

)
· 2 · w(F ∗) + 2 · w(F ∗) ≤

(
pL + 4

)
· w(C∗).

Combining this with w(Capx) ≤ 4 · w(F̃ ) yields the approximation ratio.
Executing GoeWill takes time O(n2 log n). All other operations can be

implemented to run in time O(n2). ut

We conclude the analysis of this algorithm by mentioning that the approxi-
mation ratio of the algorithm depends indeed linearly on pL.

2.2 Unconditional Inapproximability of Min-L-UCC

In this section, we provide a lower bound for the approximability of Min-L-UCC
as a counterpart to the approximation algorithm of the previous section. We
show that the problem cannot be approximated within a factor of 2 − ε. This
inapproximability result is unconditional, i. e., it does not rely on complexity
theoretic assumptions like P 6= NP.



Algorithm 1 ApxUndir.
Input: undirected complete graph G = (V, E), |V | = n; edge weights w : E → N

satisfying the triangle inequality
Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: run GoeWill using the function fL described in the text to obtain H = (V, F )
4: while the size of some connected components of H is not in 〈L〉 do
5: let C1, . . . , Ca be the connected components of H, where Vi is the vertex set of

Ci; let C1, . . . , Cb be its illegal components
6: let ei be the lightest edge connecting Vi to V \ Vi

7: add e1, . . . , eb to F
8: while H contains cycles do
9: remove one ei to break a cycle

10: duplicate each edge to obtain a multi-graph consisting of Eulerian components
11: for all components of the multi-graph do
12: walk along an Eulerian cycle
13: take shortcuts to obtain a Hamiltonian cycle
14: discard edges to obtain a collection of paths, the number of vertices of each of

which is in L
15: connect the two endpoints of every path in order to obtain cycles
16: the union of all cycles constructed forms Capx; return Capx

The key to the inapproximability of Min-L-UCC are immune sets [21]: An
infinite set L ⊆ N is called an immune set if L does not contain an infinite recur-
sively enumerable subset. Our result limits the possibility of designing general
approximation algorithms for L-cycle covers. To obtain algorithms with a ratio
better than 2, we have to design algorithms tailored to specific sets L.

Finite variations of immune sets are again immune sets. Thus for every k ∈ N,
there exist immune sets L containing no number smaller than k.

Theorem 3. Let ε > 0 be arbitrarily small. Let k > 2/ε, and let L ⊆ {k, k +
1, . . .} be an immune set. Then Min-L-UCC cannot be approximated within a
factor of 2− ε.

Theorem 3 is tight since L-cycle covers can be approximated within a factor
of 2 by L′-cycle covers for every set L′ ⊆ L with 〈L′〉 = 〈L〉. For finite sets L′,
all L′-cycle cover problems are NP optimization problems. This means that in
principle optimum solutions can be found, although this may take exponential
time. The following Theorem 4 holds in particular for finite sets L′. In order
to actually get an approximation algorithm for Min-L-UCC out of it, we have
to solve Min-L′-UCC finite L′, which is NP-hard and APX-hard. But the proof
of Theorem 4 shows also that any approximation algorithm for Min-L′-UCC
for finite sets L′ that achieves an approximation ratio of r can be turned into
an approximation algorithm for the general problem with a ratio of 2r. Let
minL(G, w) denote the weight of a minimum-weight L-cycle cover of G with
edge weights w.



Algorithm 2 ApxDir.
Input: directed complete graph G = (V, E), |V | = n; edge weights w : E → N

satisfying the triangle inequality
Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: construct an undirected complete graph GU = (V, EU ) with edge weights

wU ({u, v}) = w(u, v) + w(v, u)
4: run ApxUndir on GU and wU to obtain Capx

U

5: for all cycles cU of Capx
U do

6: cU corresponds to a cycle of G that can be oriented in two ways; put the
orientation c that yields less weight into Capx

7: return Capx

Theorem 4. Let L ⊆ U be a non-empty set, and let L′ ⊆ L with 〈L′〉 =
〈L〉. Then minL′(G, w) ≤ 2 · minL(G, w) for all undirected graphs G with edge
weights w satisfying the triangle inequality.

3 Approximability of Min-L-DCC

3.1 An Approximation Algorithm for Min-L-DCC

In this section, we present an approximation algorithm for Min-L-DCC. The
algorithm exploits ApxUndir to achieve an approximation ratio of O(n). The
hidden factor depends on pL again. This result matches asymptotically the lower
bound of Section 3.2 and shows that Min-L-DCC can be approximated at least to
some extent. (For instance, without the triangle inequality, no polynomial-time
algorithm achieves a ratio of O(exp(n)) for an NP-hard L-cycle cover problem
unless P = NP.)

In order to approximate Min-L-DCC, we reduce the problem to a variant of
Min-L-UCC, where also 2-cycles are allowed: We obtain a 2-cycle of an undi-
rected graph by taking an edge {u, v} twice. Let G = (V,E) be a directed
complete graph with n vertices and edge weights w : E → N that fulfill the
triangle inequality. The corresponding undirected complete graph GU = (V,EU )
has weights wU : EU → N with wU ({u, v}) = w(u, v) + w(v, u).

Let C be any cycle cover of G. The corresponding cycle cover CU of GU is
given by CU = {{u, v} | (u, v) ∈ C}. Note that we consider CU as a multiset: If
both (u, v) and (v, u) are in C, i. e., u and v form a 2-cycle, then {u, v} occurs
twice in CU . We can bound the weight of CU in terms of the weight of C: For
every cycle cover C of G, we have wU (CU ) ≤ n · w(C).

Our algorithm computes an L′-cycle cover for some finite L′ ⊆ L with 〈L′〉 =
〈L〉. As in Section 2.1, the weight of the cycle cover computed is compared to an
optimum 〈L〉-cycle cover rather than an optimum L-cycle cover. Thus, we can
again assume that already L is a finite set.



The algorithm ApxUndir, which was designed for undirected graphs, re-
mains to be an O(1) approximation if we allow 2 ∈ L. The numbers pL and gL

are defined in the same way as in Section 2.1.
Let Capx

U be the L-cycle cover output by ApxUndir on GU . We transfer Capx
U

into an L-cycle cover Capx of G. For every cycle cU of Capx
U , we can orient the

corresponding directed cycle c in two directions. We take the orientation that
yields less weight, thus w(Capx) ≤ wU (Capx

U )/2. Overall, we obtain ApxDir
(Algorithm 2), which achieves an approximation ratio of O(n) for every L.

Theorem 5. For every L ⊆ D, ApxDir is a factor (2n·(pL+4)) approximation
algorithm for Min-L-DCC. Its running-time is O(n2 log n).

Proof. Theorem 2 yields wU (Capx
U ) ≤ 4 · (pL + 4) · wU (C∗

U ), where C∗
U is an

optimal 〈L〉-cycle cover of GU . Now consider an optimum 〈L〉-cycle cover C∗

of G. Overall, we obtain w(Capx) ≤ 1
2 · wU (Capx

U ) ≤ 2 · (pL + 4) · wU (C∗
U ) ≤

2n · (pL + 4) · w(C∗).
The running-time is dominated by the time needed to execute GoeWill in

ApxUndir, which is O(n2 log n). ut

3.2 Unconditional Inapproximability of Min-L-DCC

For undirected graphs, both Max-L-UCC and Min-L-UCC can be approximated
efficiently to within constant factors. Surprisingly, in case of directed graphs, this
holds only for the maximization variant of the directed L-cycle cover problem.
Min-L-DCC cannot be approximated within a factor of o(n) for certain sets L,
where n is the number of vertices of the input graph. In particular, ApxDir
achieves asymptotically optimal approximation ratios for Min-L-DCC.

Similar to the case of Min-L-UCC, this result shows that to find approxima-
tion algorithms, specific properties of the sets L have to be exploited. Moreover,
as we will discuss in Section 3.3, Min-L-DCC seems to be much harder a problem
than the other three variants, even for more practical sets L.

Theorem 6. Let L ⊆ U be an immune set. Then no approximation algorithm
for Min-L-DCC achieves an approximation ratio of o(n), where n is the number
of vertices of the input graph.

Min-L′-DCC for a finite set L′ is an NP optimization problem. Thus, it can be
solved, although this may take exponential time. Therefore, the following result
shows that Min-L-DCC can be approximated for all L within a ratio of n/s for
arbitrarily large constants s, although this may also take exponential time. In
this sense, Theorem 6 is tight.

Theorem 7. For every L and every s > 1, there exists a finite set L′ ⊆ L with
〈L′〉 = 〈L〉 such that minL′(G, w) ≤ n

s ·minL(G, w) for all directed graphs G with
edge weights w satisfying the triangle inequality.



3.3 Remarks on the Approximability of Min-L-DCC

It might seem surprising that Min-L-DCC is much harder to approximate than
Min-L-UCC or the maximization problems Max-L-UCC and Max-L-DCC. In the
following, we give some reasons why Min-L-DCC is more difficult than the other
three L-cycle cover problems. In particular, even for “easy” sets L, for which
membership testing can be done in polynomial time, it seems that Min-L-DCC
is much harder to approximate than the other three variants.

Why is minimization harder than maximization? To get a good approxima-
tion ratio in the case of maximization problems, it suffices to detect a few “good”,
i. e., heavy edges. If we have a decent fraction of the heaviest edges, their total
weight is already within a constant factor of the weight of an optimal L-cycle
cover. In order to form an L-cycle cover, we have to connect the heavy edges
using other edges. These other edges might be of little weight, but they do not
decrease the weight that we have already obtained from the heavy edges. For
approximating cycle covers of minimum weight, it does not suffice to detect a
couple of “good”, i. e., light edges: Once we have selected a couple of good edges,
we might have to connect them with heavy-weight edges. These heavy-weight
edges can worsen the approximation ratio dramatically.

Why is Min-L-DCC harder than Min-L-UCC? If we have a cycle in an undi-
rected graph whose length is in 〈L〉 but not in L (or not in L′ but we do not
know if it is in L), then we can decompose it into smaller cycles all lengths of
which are in L. This can be done such that the weight at most doubles. However,
by decomposing a long cycle of a directed graph into smaller ones, the weight
can increase tremendously.

Finally, a question that arises naturally is if we can do better if all allowed
cycle lengths are known a priori. This can be achieved by restricting ourselves
to sets L that allow efficient membership testing. Another option is to include
the allowed cycle lengths in the input, i. e., in addition to an n-vertex graph
and edge weights, we are given a subset of {2, 3, . . . , n} of allowed cycle lengths.
A constant factor approximation for either variant would, however, yield an
approximation algorithm for the asymmetric traveling salesman problem (ATSP)
with dramatically improved approximation ratio.

4 Properties of Maximum-weight Cycle Covers

To contrast our results for Min-L-UCC and Min-L-DCC, we show that their
maximization counterparts Max-L-UCC and Max-L-DCC can, at least in prin-
ciple, be approximated arbitrarily well; their inapproximability is solely due to
their APX-hardness and not to the difficulties arising from undecidable sets L.

Let maxL(G, w) be the weight of a maximum-weight L-cycle cover of G
with edge weights w. The edge weights w do not have to fulfill the triangle
inequality. We will show that maxL(G, w) can be approximated arbitrarily well
by maxL′(G, w) for finite sets L′ ⊆ L with 〈L′〉 = 〈L〉. Thus, any approximation
algorithm for Max-L′-UCC or Max-L′-DCC for finite sets L′ immediately yields



an approximation algorithm for general sets L with an only negligibly worse
approximation ratio.

The following theorem for directed cycle covers contains the case of undi-
rected graphs as a special case.

Theorem 8. Let L ⊆ D be any non-empty set, and let ε > 0. Then there exists a
finite subset L′ ⊆ L with 〈L′〉 = 〈L〉 such that maxL′(G, w) ≥ (1−ε)·maxL(G, w)
for all graphs G with edge weights w.

5 Concluding Remarks

First of all, we would like to know if there is a general upper bound for the
approximability of Min-L-UCC: Does there exist an r (independent of L) such
that Min-L-UCC can be approximated within a factor of r? We conjecture that
such an algorithm exists. If such an algorithm works also for the slightly more
general problem Min-L-UCC with 2 ∈ L (see Section 3.1), then we would obtain
a factor rn/2 approximation for Min-L-DCC as well.

While the problem of computing L-cycle cover of minimum weight can be
approximated efficiently in the case of undirected graphs, the directed variant
seems to be much harder. We are interested in developing approximation algo-
rithms for Min-L-DCC for particular sets L or for certain classes of sets L. For
instance, how well can Min-L-DCC be approximated if L is a finite set? Are there
non-constant lower bounds for the approximability of Min-L-DCC, for instance
bounds depending on max(L)?
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3. Markus Bläser and Bodo Manthey. Approximating maximum weight cycle covers
in directed graphs with weights zero and one. Algorithmica, 42(2):121–139, 2005.
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