
Approximation Algorithms for Restricted Cycle
Covers Based on Cycle Decompositions?

Bodo Manthey??

Universität des Saarlandes, Informatik
Postfach 151150, 66041 Saarbrücken, Germany

manthey@cs.uni-sb.de

Abstract. A cycle cover of a graph is a set of cycles such that every
vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in
which the length of every cycle is in the set L ⊆ N. For most sets L,
the problem of computing L-cycle covers of maximum weight is NP-hard
and APX-hard.
We devise polynomial-time approximation algorithms for L-cycle covers.
More precisely, we present a factor 2 approximation algorithm for com-
puting L-cycle covers of maximum weight in undirected graphs and a
factor 20/7 approximation algorithm for the same problem in directed
graphs. Both algorithms work for arbitrary sets L. To do this, we develop
a general decomposition technique for cycle covers.
Finally, we show tight lower bounds for the approximation ratios achiev-
able by algorithms based on such decomposition techniques.

1 Introduction

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such
that every vertex is part of exactly one cycle. Cycle covers play an important
role in the design of approximation algorithms for several variants of the trav-
elling salesman problem [3, 5, 6, 9–12, 17], for the shortest common superstring
problem [8, 21], and for vehicle routing problems [14].

We consider cycle covers in (directed or undirected) edge-weighted complete
graphs. Given such a graph, the aim is to find a cycle cover of maximum weight.
In contrast to Hamiltonian cycles, which are special cases of cycle covers, cycle
covers of maximum weight can be computed efficiently. This is exploited in the
aforementioned approximation algorithms, which usually start by computing an
initial cycle cover and then join cycles to obtain a Hamiltonian cycle.

Short cycles in a cycle cover limit the approximation ratios achieved by such
algorithms. In general, the longer the cycles in the initial cover, the better the
approximation ratio. Thus, we are interested in computing cycle covers that
do not contain short cycles. Moreover, there are approximation algorithms that

? A full version of this work is available at http://arxiv.org/abs/cs/0604020.
?? Work done in part at the Institut für Theoretische Informatik of the Universität zu

Lübeck and supported by DFG research grant RE 672/3.

32nd Workshop on Graph-Theoret. Concepts in Comput. Sci. (WG 2006) c© Springer

perform particularly well if the cycle covers computed do not contain cycles
of odd length [5]. Finally, some vehicle routing problems [14] require covering
vertices with cycles of bounded length.

Therefore, we consider restricted cycle covers, where cycles of certain lengths
are ruled out a priori: For L ⊆ N, an L-cycle cover is a cycle cover in which the
length of each cycle is in L.

Unfortunately, computing L-cycle covers of maximum weight is hard in gen-
eral [16, 19]. Thus, in order to fathom the possibility of designing approximation
algorithms based on computing cycle covers, our aim is to find out how well
L-cycle covers can be approximated.

Beyond being a basic tool for approximation algorithms, cycle covers are in-
teresting in their own right. Matching theory and graph factorisation are impor-
tant topics in graph theory. Cycle covers of undirected graphs are also known as
two-factors since every vertex is incident to exactly two edges in a cycle cover. A
considerable amount of research has been done on structural properties of graph
factors and on the complexity of finding graph factors (cf. Lovász and Plum-
mer [18] and Schrijver [20]). In particular, the complexity of finding restricted
two-factors, i.e. L-cycle covers in undirected graphs, has been investigated, and
Hell et al. [16] and Manthey [19] showed that finding L-cycle covers in graphs is
NP-hard for almost all L.

1.1 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. If G is undirected,
then a cycle cover of G is a subset C ⊆ E of the edges of G such that all vertices
in V are incident to exactly two edges in C. If G is a directed graph, then a
cycle cover of G is a subset C ⊆ E such that all vertices are incident to exactly
one incoming and one outgoing edge in C. Thus, the graph (V,C) consists solely
of vertex-disjoint cycles. The length of a cycle is the number of edges it consists
of. We are concerned with simple graphs, i.e. the graphs do not contain multiple
edges or loops. Thus, the shortest cycles of undirected and directed graphs are
of length three and two, respectively. We will refer to a cycle of length ` as an
`-cycle for short. Furthermore, cycles of odd or even length will simply be called
odd or even cycles, respectively.

An L-cycle cover of an undirected graph is a cycle cover in which the length
of every cycle is in L ⊆ U = {3, 4, 5, . . .}. An L-cycle cover of a directed graph
is analogously defined except that L ⊆ D = {2, 3, 4, . . .}. A k-cycle cover is a
{k, k+1, . . .}-cycle cover. In the following, let L = U \L in the case of undirected
graphs and L = D \ L in the case of directed graphs. (This will be clear from
the context.)

Given a weight function w : E → N, the weight w(C) of a subset C ⊆ E of
the edges of G is w(C) =

∑
e∈C w(e). In particular, this defines the weight of a

cycle cover since we view cycle covers as sets of edges.
Max-L-UCC is the following optimisation problem: Given an undirected com-

plete graph with non-negative edge weights, find an L-cycle cover of maximum

weight. Max-k-UCC is defined for k ∈ U like Max-L-UCC except that k-cycle
covers are sought instead of L-cycle covers.

Max-L-DCC and Max-k-DCC are defined for directed graphs like Max-L-
UCC and Max-k-UCC for undirected graphs except that L ⊆ D and k ∈ D.

A single is a single edge (or a path of length one) in a graph, while a double
is a path of length two.

1.2 Previous Results

Undirected Cycle Covers. Max-U-UCC, i.e. the undirected cycle cover problem
without any restrictions, can be solved in polynomial time via Tutte’s reduction
(cf. Lovász and Plummer [18, Sect. 10.1]) to the perfect matching problem, which
can be solved in polynomial time [1, Chap. 12]. By a modification of an algorithm
of Hartvigsen [13], it is possible to show that 4-cycle covers of maximum weight
in graphs with edge weights zero and one can be computed efficiently [19].

For the problem of computing k-cycle covers of minimum weight in graphs
with edge weights one and two, there exists a factor 7/6 approximation algorithm
for all k [7]. Hassin and Rubinstein [15] devised a randomised approximation
algorithm for Max-{3}-UCC that achieves an approximation ratio of 169/89+ ε.
Max-L-UCC can be approximated within a factor of 2.5 for arbitrary sets L [19].

Testing whether an undirected graph contains an L-cycle cover as a spanning
subgraph is NP-hard if L 6⊆ {3, 4}, i.e. for almost all L [16]. Vornberger showed
that Max-5-UCC is NP-hard [22]. Max-L-UCC is APX-hard if L 6⊆ {3} [19], i.e.
for almost all L, Max-L-UCC is unlikely to possess a polynomial-time approxima-
tion scheme. (We refer to Ausiello et al. [2] for a survey on optimisation problems
and their approximability.) Even a restriction of Max-L-UCC where only edge
weights zero and one are allowed is APX-hard for all L with L 6⊆ {3, 4} [19].

Directed Cycle Covers. Max-D-DCC, which is also known as the assignment
problem, can be solved in polynomial time by a reduction to the maximum
weight perfect matching problem in bipartite graphs [1, Chap. 12]. The only
other L for which Max-L-DCC can be solved in polynomial time is L = {2}. For
all L ⊆ D with L 6= {2} and L 6= D, Max-L-DCC is APX-hard and NP-hard,
even if only edge weights zero and one are allowed [19].

There are a factor 4/3 approximation algorithm for Max-3-DCC [6] and a
factor 3/2 approximation algorithm for computing k-cycle covers of maximum
weight for k ≥ 3 with the restriction that the only edge weights allowed are zero
and one [4]. Max-L-DCC admits a factor 3 approximation for arbitrary L [19].

1.3 New Results

In this paper, we present approximation algorithms for Max-L-UCC and Max-
L-DCC that work for arbitrary sets L. Our algorithms achieve an approximation
ratio of 2 for Max-L-UCC (Section 3.1) and an approximation ratio of 20/7 for
Max-L-DCC (Section 3.2). The best approximation algorithms previously known
for these problems achieve ratios of 2.5 and 3, respectively [19].

As a main ingredient of the algorithms, we prove a decomposition lemma
that shows how an arbitrary cycle cover can be decomposed while preserving as
much of its weight as possible (Section 2).

Finally, we show the limits of decomposition-based approximation algorithms
(Section 4): For approximating undirected L-cycle covers, a ratio of 2 is the best
one can achieve using decomposition techniques. Thus, our algorithm for Max-L-
UCC is an optimal decomposition-based algorithm. For directed L-cycle covers,
only a ratio of 3 can be achieved. Our approximation algorithm for Max-L-DCC
achieves the ratio of 20/7 < 3 by a combination of the decomposition technique
and a matching-based algorithm.

2 Decomposing Cycle Covers

In this section, we present a general decomposition technique for cycle covers.
The technique can be applied to all cycle covers that do not contain 2-cycles,
thus in particular to cycle covers of undirected graphs. But it can also be applied
to directed cycle covers without 2-cycles.

We decompose cycle covers into a collection of vertex-disjoint singles, doubles,
and isolated vertices. Our aim is to decompose a cycle cover C on n vertices into
roughly n/6 singles and n/6 doubles. Thus, we retain half of the edges of C. We
aim at decomposing the cycle covers such that at least half of the weight of the
cycle cover is preserved.

The reason why we decompose cycle covers into singles and doubles is the
following: If we decomposed them into longer paths, then we would run into
trouble when trying to decompose a 3-cycle. If we restricted ourselves to decom-
posing the cycle covers into singles only, then 3-cycles would limit the weight
preserved: We would get only one third of the edges of the 3-cycles, thus at most
one third of their weight in general. Finally, if we restricted ourselves to doubles,
then 5-cycles would limit the weight we could obtain since we would get only a
fraction of 2/5 of their edges.

In our approximation algorithms, we exploit the following observation: If
every cycle cover on n vertices can be decomposed into α singles and β doubles,
then, for every L, every L-cycle cover on n vertices can be decomposed in the
same way. This implies that we can build cycle covers from such a decomposition:
Given α singles and β doubles, and n − 2α − 3β isolated vertices, we can join
them to form an L-cycle cover. (The only restriction is that there must exist
L-cycle covers on n vertices. We refer to Section 3 for more details.)

If n is not divisible by six, we replace n/6 by bn/6c or dn/6e: Assume that
n = 6k+` for k, ` ∈ N and ` ≤ 5. Then we take k+α` singles and k+β` doubles,
where α` and β` are given in Table 1.

Since we want a decomposition weighing at least half of the weight of the cycle
cover, we need to take at least half of the edges of the cycle cover. Otherwise,
we would get a decomposition of less weight. It can be checked easily that by
taking k + α` singles and k + β` doubles, we obtain dn/2e edges of C.

` 0 1 2 3 4 5

α` 0 1 1 0 0 1

β` 0 0 0 1 1 1

Table 1. A cycle cover on n = 6k + ` vertices will be decomposed into k + α` singles
and k + β` doubles.

Lemma 1 (Decomposition Lemma). Let C = (V,E) be a cycle cover on
n = 6k + ` vertices such that the length of each cycle is at least three. Let
w : E → N be an edge weight function.

Then there exists a decomposition D ⊆ E of C with the following properties:

– (V,D) consists of k + α` singles, k + β` doubles, and n − 5k − 3β` − 2α`

isolated vertices, such that all these subgraphs are pairwise vertex-disjoint,
and

– w(D) ≥ 1
2 · w(E).

The following two lemmas will simplify the proof of the decomposition lemma.

Lemma 2. Let λ, α, β ∈ N with α + 2β ≥ λ/2 and 2α + 3β ≤ λ. Then every
cycle c of length λ can be decomposed into α singles and β doubles such that the
weight of the decomposition is at least w(c)/2.

Lemma 3. Let λ ∈ N. Suppose that every cycle c of length λ can be decomposed
into α singles and β doubles of weight at least w(c)/2. Then every cycle c′ of
length λ + 6 can be decomposed into α + 1 singles and β + 1 doubles of weight at
least w(c′)/2.

Lemma 3 also holds if we consider more than one cycle: Assume that every
collection of k cycles of lengths λ1, . . . , λk can be decomposed into α singles and
β doubles such that the weight of the decomposition is at least half the weight
of the cycles. Then k cycles of lengths λ1 +6, λ2, . . . , λk can be decomposed into
α + 1 singles and β + 1 doubles such that also at least half of the weight of the
cycles is preserved.

Due to Lemma 3, we can restrict ourselves to cycles of length at most eight in
the following. The reason for this is the following: If we know how to decompose
cycles of length λ, then we also know how to decompose cycles of length λ +
6, λ + 12, . . . from Lemma 3.

We now come to the proof of the decomposition lemma. The decomposition
described can clearly be done in polynomial time.

Proof (Decomposition Lemma). We prove the lemma by induction on the number
of cycles. As induction basis, we consider two cases:

One cycle. Due to Lemma 3, we can restrict ourselves to considering cycles of
length at most eight.

3-cycles and 4-cycles have to be decomposed into one double. 5-cycles and
6-cycles have to be decomposed into one double and one single. Finally, 7-
cycles and 8-cycles have to be decomposed into two singles and one double.
According to Lemma 2, these decompositions can be made such that at least
half of the weight of the cycle is preserved.

Two odd cycles. The two cycles can be of length three, five, or seven. Thus, there
are six cases to be considered. We describe exemplarily how to decompose
two 3-cycles. The other five cases are treated similarly.
Six vertices are involved, thus we need one single and one double. A single
can be chosen such that at least one third of the weight of the cycle is
preserved. Analogously, a double can be chosen such that at least two thirds
of the weight of the cycle are preserved. We take the double of the heavier
cycle and the single of the lighter cycle. Both the single and the double are
chosen such that their weight is maximised. Then their total weight is at
least one half of the sum of the weight of the two cycles.

As induction hypothesis, we assume that the lemma holds if the number of
cycles is less than r. Assume that we have a cycle cover C consisting of r cycles.
Let n = 6k + ` for the number of its vertices for k, ` ∈ N and ` ≤ 5. This means
that C has to be decomposed into k + α` singles and k + β` doubles. In the
following, let C ′ be the new cycle cover obtained by removing one or two cycles
of C.

We proceed as follows: First, we show how to remove an even cycle from C.
Second, we show how to remove a pair of odd cycles from C. Special care is
needed when removing a pair of one 3-cycle and one 5-cycle.

Let us start by considering the removal an even cycle. It suffices to consider
cycles of length four, six, or eight. The easiest case is removing a 6-cycle: We
decompose it into one single and one double preserving at least half of its weight.
The new cycle cover C ′ consists of n − 6 vertices. Consequently, C ′ can be
decomposed into k + α` − 1 singles and k + β` − 1 doubles by the induction
hypothesis. In addition, we have one single and one double from the 6-cycle.
Thus, C can be decomposed into k + α` singles and k + β` doubles such that at
least half of its weight is preserved.

If we want to remove a 4-cycle or an 8-cycle, several cases have to be dis-
tinguished. A 4-cycle has to be decomposed either into one double or into two
singles. This depends on the value of `: If, for instance, ` = 4, then C ′ consists of
6k vertices. Thus, C ′ has to be decomposed into k singles and k doubles. Since
α4 = 0 and β4 = 1, the 4-cycle has to be decomposed into one double. On the
other hand, if ` = 2, then C ′ consists of 6(k − 1) + 4 vertices. Thus, C ′ has to
be decomposed into k doubles and k − 1 singles, while C has to be decomposed
into k doubles and k + 1 singles. In this case, we have to decompose the 4-cycle
into two singles.

If ` ∈ {0, 3, 4, 5}, the 4-cycle has to be decomposed into one double. Other-
wise, i.e. if ` ∈ {1, 2}, it has to be decomposed into two singles. By the induction
hypothesis and Lemma 2, C ′ and the 4-cycle can be decomposed appropriately
such that at least half of the weight of both is preserved.

Analogously, an 8-cycle has to be decomposed into two doubles if ` ∈ {3, 4}
or into two singles and one double if ` ∈ {0, 1, 2, 5}.

Now we consider removing a pair of odd cycles. We have to distinguish six
cases as we already did in the proof of the induction basis. As an example, we
consider the cases of two 3-cycles and of a 3-cycle and a 7-cycle. Furthermore, we
consider the case of a 3-cycle and a 5-cycle since this case needs special attention.

Twice length three. We decompose the heavier of the 3-cycles into a double and
the lighter one into a single. The new cycle cover C ′ has n − 6 vertices. It
thus has to be decomposed into k + α` − 1 singles and k + β` − 1 doubles.
Plus one single and one double from the two 3-cycles, we obtain a feasible
decomposition of C.

Length three and seven. If ` ∈ {0, 3, 4, 5}, then we decompose the two cycles
into one single and two doubles. We take either a double of the 3-cycle and a
single and a double of the 7-cycle or a single of the 3-cycle and two doubles
of the 7-cycle. This depends on which alternative yields more weight. In this
way, we preserve at least half of the weight of the two cycles.
If ` ∈ {1, 2}, then we take three singles and one double. Either we decompose
the 3-cycle into a double and the 7-cycle into three singles or the 3-cycle into
a single and the 7-cycle into two singles and one double. Again, we choose
the alternative that yields more weight, and we preserve at least half of the
weight of the cycle cover.

Length three and five. The case of a 3-cycle and 5-cycle is a bit more complicated
than the other cases. We run into troubles if, for instance, ` = 3. In this case,
we have to decompose the two cycles into two doubles. If the 5-cycle is much
heavier than the 3-cycle, then it is impossible to preserve half of the weight
of the two cycles.
However, we can avoid the problem as follows: As long as there is an even
cycle, we decompose this one. After that, as long as their are at least three
odd cycles, we can choose two of them such that we do not have a pair of
one (3 + 6ξ)-cycle and one (5 + 6ξ′)-cycle for some ξ, ξ′ ∈ N.
Thus, the only situation in which we cannot avoid to decompose a (3 + 6ξ)-
cycle and a (5+6ξ′)-cycle is when there are only two cycles left. In this case,
we have ` = 2, and we have treated this case already in the induction basis.

If there is only one odd cycle, then either r = 1 or all other cycles are of even
length. We have already dealt with the former case in the induction basis. In the
latter case, we proceed by removing even cycles as described above. ut

3 Approximation Algorithms

In this section, we apply the decomposition lemma to devise approximation
algorithms for restricted cycle covers both in undirected and directed graphs.
The catch is that for most L it is impossible to decide whether some cycle length
is in L since there are uncountably many sets L: If, for instance, L corresponds
to the halting problem, then deciding whether a cycle cover is an L-cycle cover

is impossible. One option would be to restrict ourselves to sets L such that the
unary language {1λ | λ ∈ L} is in P. For such L, Max-L-UCC and Max-L-DCC
are NP optimisation problems. Another possibility for circumventing the problem
is to include the permitted cycle lengths in the input. While such restrictions are
mandatory when we want to compute optimum solutions, they are not needed
for our approximation algorithms.

A necessary and sufficient condition for a complete graph with n vertices
to have an L-cycle cover is that there exist (not necessarily distinct) lengths
λ1, . . . , λk ∈ L for some k ∈ N with

∑k
i=1 λi = n. We call such an n L-admissible

and define 〈L〉 = {n | n is L-admissible}. Although L can be arbitrarily compli-
cated, 〈L〉 always allows efficient membership testing. In fact, it has been proved
that for all L ⊆ N, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉 [19].

For every fixed L, we can not only test in time polynomial in n whether n is L-
admissible, but we can, provided that n ∈ 〈L〉, also find numbers λ1, . . . , λk ∈ L′

that add up to n, where L′ ⊆ L denotes a finite set with 〈L〉 = 〈L′〉. This can
be done via dynamic programming in time O(n · |L′|), which is O(n) for fixed L.

Instead of computing L′-cycle covers in the following two sections, we assume
without loss of generality that already L is a finite set. This does not affect
the approximation ratios achieved by our algorithms since the L-cycle covers
computed are compared to optimal cycle covers without restrictions.

In general, our algorithms work as follows: They start by computing an initial
cycle cover C init. Then C init is decomposed according to Lemma 1. Finally, the
singles, doubles, and isolated vertices are joined to form an L-cycle cover Capx.
Since no weight is lost during the final merging, the weight of the decomposition
is a lower bound for the weight of Capx. With this approach, we can achieve
approximation ratios of 2 and 3 for undirected and directed L-cycle covers,
respectively (see Section 4, where a decomposition technique for directed graphs
is sketched). We improve on the factor of 3 for directed graphs by using a more
sophisticated algorithm.

3.1 Undirected Cycle Covers

Theorem 1. Algorithm 1 is a factor 2 approximation algorithm for Max-L-
UCC for all L ⊆ U .

Proof. Algorithm 1 returns ⊥ if and only if n /∈ 〈L〉. Otherwise, an L-cycle cover
Capx is returned. Let C? denote an L-cycle cover of maximum weight of G. We
have w(C?) ≤ w(C init) ≤ 2 · w(D) ≤ 2 · w(Capx). ut

The running-time of the algorithm is dominated by the time needed to com-
pute the initial cycle cover, which is O(n3) according to Ahuja et al. [1, Chap. 12].

3.2 Directed Cycle Covers

For directed graphs, we cannot apply the decomposition lemma directly. The
reason is that we have to cope with 2-cycles. Therefore, we balance two ap-
proaches. The first approach is a simple matching-based algorithm: We compute

Input: undirected complete graph G = (V, E), |V | = n; edge weights w : E → N
Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: compute a cycle cover C init in G of maximum weight
4: decompose C init into a set D ⊆ C init of edges according to Lemma 1
5: join the singles and doubles in D to obtain an L-cycle cover Capx

6: return Capx

Algorithm 1: A 2-approximation algorithm for Max-L-UCC.

a maximum-weight matching of a certain cardinality and join the edges of the
matching to obtain an L-cycle cover. This works particularly well if an opti-
mum cycle cover has much of its weight in cycles of even length. Since 2-cycles
are even cycles, this works well if an optimum L-cycle cover has much of its
weight in 2-cycles. The cardinality of the maximum is chosen such that an L-
cycle cover can be built from such a matching. A cycle of length λ yields a
matching of cardinality bλ/2c. Thus, a matching of cardinality d in a graph of n
vertices can be extended to form an L-cycle cover if and only if d ≤ D(n, L) =
max

{∑k
i=1bλi/2c | k ∈ N,

∑k
i=1 λi = n, and λi ∈ L for 1 ≤ i ≤ k

}
.

If an optimum L-cycle cover has much of its weight in cycles of length at least
three, then we compute an approximate 3-cycle cover using an approximation
algorithm by Bläser et al. [6]. This 3-cycle cover is then decomposed according
to the decomposition lemma. A problem with this approach is that an optimum
L-cycle cover may contain 2-cycles if 2 ∈ L. But a collection of τ cycles of length
two can be rejoined to form two τ -cycles for some τ ∈ L. In this way, we lose at
most two thirds of their weight. We still might have to cope with ξ < τ cycles
of length two. Since L is fixed, τ is a constant. Thus, we can simply try all
subsets of vertices of even cardinality 2ξ ≤ 2τ − 2, join them to form ξ cycles of
length two, and remove them to proceed with the approximation algorithm on
the remaining graph.

Theorem 2. Algorithm 2 is a factor 20/7 approximation algorithm for Max-L-
DCC for all L ⊆ D.

Proof. First, we consider the case that 2 /∈ L. The algorithm starts by computing
a 4/3-approximation C init

3 to an optimal 3-cycle cover by using an algorithm
of Bläser et al. [6]. This cycle cover, which does not contain 2-cycles, is then
decomposed into singles and doubles according to the decomposition lemma.
The resulting set D of edges has a weight of at least 3/8 of an optimal L-cycle
cover. By joining the singles and doubles of D to an L-cycle cover, we obtain a
factor 8/3 approximation. Note that 8/3 < 20/7.

If L = {2}, then we can solve the problem optimally in polynomial time.
What remains to be considered is the case that 2 ∈ L and L 6= {2}. The main

idea in this case is that we balance two approaches for computing L-cycle covers:
One is that we form an L-cycle cover from a (not necessarily perfect) matching,
which works particularly well if much of the weight of an optimum L-cycle cover

Input: directed complete graph G = (V, E), |V | = n; edge weights w : E → N
Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: if 2 /∈ L then
4: compute a 4/3-approximation C init

3 to an optimal 3-cycle cover
5: decompose C init

3 into a set D ⊆ C init
3 of edges according to Lemma 1

6: join the singles and doubles in D to obtain an L-cycle Capx

7: else if L = {2} then
8: compute a {2}-cycle cover Capx of maximum weight
9: else

10: compute a matching M of cardinality at most D(n, L) that has maximum
weight among all such matchings

11: construct an L-cycle cover Capx
match ⊇M

12: τ ← min{L \ {2}}
13: for all ξ ← 0, 2, 4, . . . , 2τ − 2 do
14: for all V ′ ⊆ V of cardinality ξ do
15: compute a maximum weight {2}-cycle cover C2,V ′ on V ′

16: remove V ′ from G to obtain G′

17: compute a 4/3-approximation C init
3 to an optimal 3-cycle cover of G′

18: decompose C init
3 into a set D ⊆ C init

3 of edges according to Lemma 1
19: join the singles and doubles in D to obtain an L-cycle cover Capx

V ′

20: add C2,V ′ to Capx
V ′

21: let Capx
3 be the cycle cover of maximum weight among all Capx

V ′

22: let Capx be the heavier cycle cover of Capx
match and Capx

3

23: return Capx

Algorithm 2: A 20/7-approximation algorithm for Max-L-DCC.

is contained in even cycles. The other approach is using the 4/3-approximation
algorithm by Bläser et al. [6] and the decomposition lemma. This works well
if an optimum L-cycle cover does not contain too much weight in 2-cycles. We
omit the details of the proof due to space constraints. ut

4 Limits for Decomposition-Based Algorithms

The aim of this section is to fathom the possibilities of designing approximation
algorithms for L-cycle covers that base on cycle decompositions as described in
Section 2.

An approximation ratio of 2 is the best possible for undirected L-cycle covers.
Hence, the algorithm presented in Section 3.1 is an optimal decomposition-based
algorithm. For further improvements of the approximation ratio, we thus need
more sophisticated techniques that in particular take the set L into account.

For directed L-cycle covers, already the previously known factor 3 approxima-
tion algorithm [19] can be viewed as a decomposition algorithm: Every directed
cycle cover on n vertices can be decomposed into dn/3e singles such that at least
one third of the weight of the cycle cover is preserved.

We have presented an algorithm for directed cycle covers that exploits prop-
erties of the set L: The bottleneck for the decomposition-based approach are
cycles of length two since they can only be decomposed into paths of length one.
By taking special care of 2-cycles, and by applying an approximation algorithm
for 3-cycle covers, we were able to achieve the improved approximation ratio
of 20/7.

Overall, every approximation algorithm for Max-L-UCC that works for arbi-
trary sets L and is purely decomposition-based achieves at best an approximation
ratio of 2. For Max-L-DCC, such algorithms achieve achieve at best a ratio of 3.

5 Conclusions

One way to get better approximation algorithms is balancing several approxi-
mation algorithms as we did to achieve the ratio of 20/7 for directed L-cycle
covers. One option to do this for undirected graphs might be to start with a
4-cycle cover instead of 3-cycle cover. This is possible for approximating Max-
L-UCC restricted to edge weights zero and one since the corresponding 4-cycle
cover problem can be solved in polynomial time [13, 19]. Another option is to
use approximation algorithms for 4-cycle covers. In either case, we need a de-
composition lemma that preserves more than half of the weight of the cycle
cover.

Finally, from a more abstract point of view, we are interested in structural
properties of restricted cycle covers: Let uL and dL denote the best approxi-
mation ratios for undirected and directed L-cycle covers, respectively, that can
be achieved by polynomial-time algorithms. What is the minimum number u?

such that all L-cycle cover problems can be approximated with a ratio of u?, i.e.
what is supL⊆U,L6=∅ uL? Analogously, what is the minimum number d? such that
all L-cycle cover problems can be approximated with a ratio of d?, i.e. what is
supL⊆D,L6=∅ dL? For the moment, we know u? ≤ 2 and d? ≤ 20/7. On the other
hand, does there exist an r > 1 as a general lower bound for the approximability
of L-cycle cover problems? What we mean by a general lower bound r is the fol-
lowing: If an L-cycle cover problem is NP-hard, then it cannot be approximated
with a ratio of less than r unless P = NP. The reductions known so far do not
yield such a general lower bound.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, 1993.

2. Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Mar-
chetti-Spaccamela, Marco Protasi. Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Springer, 1999.

3. Markus Bläser. A 3/4-approximation algorithm for maximum ATSP with weights
zero and one. In Proc. of the 7th Int. Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), vol. 3122 of Lecture Notes in
Comput. Sci., pp. 61–71. Springer, 2004.

4. Markus Bläser, Bodo Manthey. Approximating maximum weight cycle covers in
directed graphs with weights zero and one. Algorithmica, 42(2):121–139, 2005.

5. Markus Bläser, Bodo Manthey, Jǐŕı Sgall. An improved approximation algorithm
for the asymmetric TSP with strengthened triangle inequality. J. Discrete Algo-
rithms, to appear.

6. Markus Bläser, L. Shankar Ram, Maxim I. Sviridenko. Improved approximation
algorithms for metric maximum ATSP and maximum 3-cycle cover problems. In
Proc. of the 9th Workshop on Algorithms and Data Structures (WADS), vol. 3608
of Lecture Notes in Comput. Sci., pp. 350–359. Springer, 2005.

7. Markus Bläser, Bodo Siebert. Computing cycle covers without short cycles. In
Proc. of the 9th Ann. European Symp. on Algorithms (ESA), vol. 2161 of Lecture
Notes in Comput. Sci., pp. 368–379. Springer, 2001. Bodo Siebert is the birth
name of Bodo Manthey.

8. Avrim L. Blum, Tao Jiang, Ming Li, John Tromp, Mihalis Yannakakis. Linear
approximation of shortest superstrings. J. ACM, 41(4):630–647, 1994.

9. Hans-Joachim Böckenhauer, Juraj Hromkovič, Ralf Klasing, Sebastian Seibert,
Walter Unger. Approximation algorithms for the TSP with sharpened triangle
inequality. Inform. Process. Lett., 75(3):133–138, 2000.

10. L. Sunil Chandran, L. Shankar Ram. Approximations for ATSP with parameter-
ized triangle inequality. In Proc. of the 19th Int. Symp. on Theoretical Aspects
of Computer Science (STACS), vol. 2285 of Lecture Notes in Comput. Sci., pp.
227–237. Springer, 2002.

11. Zhi-Zhong Chen, Takayuki Nagoya. Improved approximation algorithms for metric
Max TSP. In Proc. of the 13th Ann. European Symp. on Algorithms (ESA), vol.
3669 of Lecture Notes in Comput. Sci., pp. 179–190. Springer, 2005.

12. Zhi-Zhong Chen, Yuusuke Okamoto, Lusheng Wang. Improved deterministic ap-
proximation algorithms for Max TSP. Inform. Process. Lett., 95(2):333–342, 2005.

13. David Hartvigsen. An Extension of Matching Theory. PhD thesis, Carnegie Mellon
University, Pittsburgh, USA, 1984.

14. Refael Hassin, Shlomi Rubinstein. On the complexity of the k-customer vehicle
routing problem. Oper. Res. Lett., 33(1):71–76, 2005.

15. Refael Hassin, Shlomi Rubinstein. An approximation algorithm for maximum
triangle packing. Discrete Appl. Math., 154(6):971–979, 2006.

16. Pavol Hell, David G. Kirkpatrick, Jan Kratochv́ıl, Igor Kŕız. On restricted two-
factors. SIAM J. Discrete Math., 1(4):472–484, 1988.

17. Haim Kaplan, Moshe Lewenstein, Nira Shafrir, Maxim Sviridenko. Approximation
algorithms for asymmetric TSP by decomposing directed regular multigraphs. J.
ACM, 52(4):602–626, 2005.

18. László Lovász, Michael D. Plummer. Matching Theory, vol. 121 of North-Holland
Mathematics Studies. Elsevier, 1986.

19. Bodo Manthey. On approximating restricted cycle covers. In Proc. of the 3rd
Workshop on Approximation and Online Algorithms (WAOA 2005), vol. 3879 of
Lecture Notes in Comput. Sci., pp. 282–295. Springer, 2006.

20. Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, vol. 24
of Algorithms and Combinatorics. Springer, 2003.

21. Z. Sweedyk. A 2 1
2
-approximation algorithm for shortest superstring. SIAM J.

Comput., 29(3):954–986, 1999.
22. Oliver Vornberger. Easy and hard cycle covers. Technical report, Universi-

tät/Gesamthochschule Paderborn, 1980.

