
Approximation Algorithms for
k-Connected Graph Factors

Bodo Manthey and Marten Waanders

University of Twente, Enschede, The Netherlands, b.manthey@utwente.nl

Abstract. Finding low-cost spanning subgraphs with given degree and
connectivity requirements is a fundamental problem in the area of net-
work design. We consider the problem of finding d-regular spanning sub-
graphs (or d-factors) of minimum weight with connectivity requirements.
For the case of k-edge-connectedness, we present approximation algo-
rithms that achieve constant approximation ratios for all d ≥ 2 · dk/2e.
For the case of k-vertex-connectedness, we achieve constant approxima-
tion ratios for d ≥ 2k − 1. Our algorithms also work for arbitrary de-
gree sequences if the minimum degree is at least 2 · dk/2e (for k-edge-
connectivity) or 2k − 1 (for k-vertex-connectivity).

1 Introduction

Finding low-cost spanning subgraphs with given degree and connectivity require-
ments is a fundamental problem in the area of network design. The usual setting
is that there are connectivity and degree requirements. Then the goal is to find a
cheap subgraph that meets the connectivity requirements and the degree bounds.
Beyond simple connectedness, higher connectivity, such as k-vertex-connectivity
or k-edge-connectivity, has been considered in order to increase the reliability
of the network. Most variants of such problems are NP-hard. Because of this,
finding good approximation algorithms for such network design problems has
been the topic of a significant amount of research [1, 4–10,14,16–20].

In this paper, we study the problem of finding low-cost spanning subgraphs
with given degrees that meet connectivity requirements (they should be k-edge-
connected or k-vertex-connected for a given k). Violation of the degree constraint
is not allowed. While d-regular, spanning subgraphs of minimum weight can be
found efficiently using Tutte’s reduction to the matching problem [21, 23], even
asking for simple connectedness makes the problem NP-hard [2]. For instance,
asking for a 2-regular, connected graph of minimum weight is the NP-hard trav-
eling salesman problem (TSP) [11, ND22].

1.1 Problem Definitions and Preliminaries

Graphs and Connectivity. All graphs in this paper are undirected and simple.
Let G = (V,E) a graph. In the following, n = |V | is the number of vertices.

For a subset X ⊆ V of the vertices, let cutG(X) be the number of edges in G
with one endpoint in X and the other endpoint in X = V \X. For two disjoint

c© Springer – WAOA 2015

sets X,Y ⊆ V of vertices, let cutG(X,Y) be the number of edges in G with one
endpoint in X and the other endpoint in Y .

Two vertices u, v ∈ V are locally k-edge-connected in G if there are at least
k edge-disjoint paths from u to v in G. Equivalently, u and v are locally k-edge-
connected in G if cutG(X) ≥ k for all X ⊆ V with u ∈ X and v /∈ X. Local
k-edge-connectedness is an equivalence relation as it is symmetric, reflexive, and
transitive. A graph G is k-edge-connected if all pairs of vertices are locally k-
edge-connected in G.

Let X ⊆ V . We call X a k-edge-connected component of G if the graph
induced by X is k-edge-connected. We call X a locally k-edge-connected com-
ponent of G if all u, v ∈ X are locally k-edge-connected in G. Note that every
k-edge-connected component of G is also a locally k-edge-connected component,
but the reverse is not true.

A graph G is k-vertex-connected, if the graph induced by the vertices V \K
is connected for all sets K ⊆ V with |K| ≤ k− 1. Equivalently, for any two non-
adjacent vertices u, v ∈ V , there exist at least k vertex-disjoint paths connecting
u to v in G.

For an overview of connectivity and algorithms for computing connectivity
and connected components, we refer to two surveys [13,15].

For a vertex v ∈ V , let NG(v) = N(v) = {u ∈ V | {u, v} ∈ E} be the
neighbors of v in G. The graph G is d-regular if |N(v)| = d for all v ∈ V . A
d-regular spanning subgraph of a graph is called a d-factor.

By abusing notation, we identify a set X ⊆ V of vertices with the subgraph
induced by X. Similarly, if the set V of vertices is clear from the context, we
identify a set F of edges with the graph (V, F).

Problem Definitions. Let G = (V,E) be an undirected, complete graph with
non-negative edge weights w. The edge weights are assumed to satisfy the trian-
gle inequality, i.e., w({u, v}) ≤ w({u, x}) + w({x, v}) for all distinct u, v, x ∈ V .
For some set F ⊆ E of edges, we denote by w(F) =

∑
e∈F w(e) the sum of its

edge weights. The weight of a subgraph is the weight of its edge set.
The problems considered in this paper are the following: as input, we are given

G and w as above. Then Min-dReg-kEdge denotes the problem of finding a k-
edge-connected d-factor of G of minimum weight. Similarly, Min-dReg-kVertex
denotes the problem of finding a k-vertex-connected d-factor of G of minimum
weight.

Some of these problems coincide:

– Min-dReg-1Edge and Min-dReg-1Vertex are identical for all d since 1-edge-
connectedness and 1-vertex-connectedness are simple connectedness.

– For k ∈ {1, 2}, the problems Min-2Reg-kEdge and Min-2Reg-kVertex are iden-
tical to the traveling salesman problem (TSP) because of the following: 2-
regular graphs consist solely of simple cycles. If they are connected, they are
2-vertex-connected and form Hamiltonian cycles.

– For even d and k, the problems Min-dReg-(k − 1)Edge and Min-dReg-kEdge
are identical. For even d, every d-factor can be decomposed into d/2 2-factors.

2

Thus, the size of every cut is even. Therefore, every d-regular (k − 1)-edge-
connected graph is automatically k-edge-connected for even k.

– For k ∈ {1, 2, 3}, the two problems Min-3Reg-kEdge and Min-3Reg-kVertex
are identical since edge- and vertex-connectivity are equal in cubic graphs [24,
Theorem 4.1.11].

We also consider the generalizations of the problems Min-dReg-kEdge and
Min-dReg-kVertex to arbitrary degree sequences: for Min-dGen-kEdge, we are
given as additional input a degree requirement dv ∈ N for every vertex v. The
parameter d is a lower bound for the degree requirements, i.e., we have dv ≥ d
for all vertices v. The goal is to compute a k-edge-connected spanning subgraph
in which every vertex v is incident to exactly dv vertices. Min-dGen-kVertex
is analogously defined for k-vertex-connectivity. For the sake of readability, we
restrict the presentation of our algorithms in Sections 2 and 3 to Min-dReg-kEdge
and Min-dReg-kVertex, respectively, and we state the generalized results for
Min-dGen-kEdge and Min-dGen-kVertex only in Section 4.

We use the following notation: OptEk denotes a k-edge-connected spanning
subgraph of minimum weight. OptVk denotes a k-vertex-connected spanning
subgraph of minimum weight. For both, no degree requirements have to be sat-
isfied. OptFd denotes a (not necessarily connected) d-factor of minimum weight.
OptEFk

d and OptVFk
d denote minimum-weight k-edge-connected and k-vertex-

connected d-factors, respectively.

We have w(OptFd) ≤ w(OptEFk
d) ≤ w(OptVFk

d) since every k-vertex-con-
nected graph is also k-edge-connected. Both w(OptEFk

d) and w(OptVFk
d) are

monotonically increasing in k. Furthermore, w(OptEk) ≤ w(OptEFk
d) for every

d and w(OptVk) ≤ w(OptVFk
d) for every d.

We denote by MST a minimum-weight spanning tree of G.

1.2 Previous and Related Results

Without the triangle inequality, the problem of computing minimum-weight
k-vertex-connected spanning subgraphs can be approximated with a factor of
O(log k) [3], and the problem of computing minimum-weight k-edge-connected
spanning subgraphs can be approximated with a factor of 2 [16]. However, no
approximation at all seems to be possible without the triangle inequality if we
ask for specific degrees. This follows from the inapproximability of non-metric
TSP [25, Section 2.4].

With the triangle inequality, we obtain the same factor of 2 for k-edge-
connected subgraphs of minimum weight without degree requirements [16]. For
k-vertex-connected spanning subgraphs of minimum weight without degree con-
straints, Kortsarz and Nutov [17] gave a

(
2 + k−1

n

)
-approximation algorithm.

Cornelissen et al. [5] gave a 2.5 approximation for Min-dReg-2Edge for even
d and a 3-approximation for Min-dReg-1Edge and Min-dReg-2Edge for all odd d.
Also Min-kReg-kVertex and Min-kReg-kEdge admit constant factor approxima-
tions for all k ≥ 1 [1]. We refer to Tables 1 and 2 for an overview.

3

k d ratio reference

= 2 = 2 1.5 same problem as TSP [25, Section 2.4]
= 1 odd 3 Cornelissen et al. [5]
≥ 3 = k 2 + 1

k
Chan et al. [1]

≥ 2 ≥ k, even 2.5 Theorem 2.13 (k = 2 by Cornelissen et al. [5])
≥ 2 ≥ k + 1, odd 4− 3

k
Theorem 2.13

Table 1. Overview of approximation ratios for Min-dReg-kEdge. Cases of odd k and
even d are omitted as discussed in Section 1.1.

k d ratio reference

∈ {1, 2} = 2 1.5 same as problem as TSP [25, Section 2.4]
∈ {1, 2, 3} = 3 same as Min-dReg-kEdge
≥ 2 = k 2 + k−1

n
+ 1

k
Chan et al. [1]

≥ 2 = 2k − 1 5 + 2k−2
n

+ 2
k

Theorem 3.2
≥ 2 ≥ 2k 5 + 2k−2

n
Corollary 3.3

Table 2. Overview of approximation ratios for Min-dReg-kVertex.

Fukunaga and Nagamochi [8] considered the problem of finding a minimum-
weight k-edge-connected spanning subgraph with given degree requirements. Dif-
ferent from the problem that we consider, they allow multiple edges between
vertices. This considerably simplifies the problem as one does not have to take
care to avoid multiple edges when constructing the approximate solution. For
this relaxed variant of the problem, they obtain approximation ratios of 2.5 for
even k and 2.5 + 1.5

k for odd k if the minimum degree requirement is at least
2. We remark that, although an optimal solution with multiple edges cannot
be heavier than an optimal solution without multiple edges, an approximation
algorithm for the variant with multiple edges does not imply an approximation
algorithm for the variant without multiple edges and vice versa.

In many cases of algorithms for network design with degree constraints, only
bounds on the degrees are given or some violation of the degree requirements
is allowed to simplify the problem. Fekete et al. [7] devised an approximation
algorithm for the bounded-degree spanning tree problem. Given lower and upper
bounds for the degree of every vertex, spanning trees can be computed that
violate every degree constraint by at most 1 and whose weight is no more than the
weight of an optimal solution [22]. Often, network design problems are considered
as bicriteria problems, where the goal is to simultaneously minimize the total
costs and the violation of the degree requirements [9,10,18–20]. In contrast, our
goal is to meet the degree requirements exactly.

1.3 Our Contribution

We devise polynomial-time approximation algorithms for Min-dReg-kEdge (Sec-
tion 2) and for Min-dReg-kVertex (Section 3). This answers an open question

4

raised by Cornelissen et al. [5]. Our algorithms can be generalized to arbitrary
degree sequences, as long as the minimum degree requirement is at least 2dk/2e
for edge connectivity or at least 2k − 1 for vertex connectivity (Section 4).

We obtain an approximation ratio of 4− 3
k for Min-dReg-kEdge for odd d ≥

k + 1, a ratio of 2.5 for Min-dReg-kEdge for even d ≥ k, and an approximation
ratio of about 5 for Min-dReg-kVertex for d ≥ 2k− 1. The precise approximation
ratios are summarized in Tables 1 and 2.

As far as we are aware, there do not exist any approximation results for
the problem of finding subgraphs with exact degree requirements besides simple
connectivity and 2-edge-connectivity [5]. The only exception that we are aware of
is the work by Fukunaga and Nagamochi [8]. However, they allow multiple edges
in their solutions, which seems to make the problem simpler to approximate.

The high-level ideas of our algorithms are as follows. For edge-connectivity,
our initial idea was to iteratively increase the connectivity from k − 1 to k by
considering the k-edge-connected components of the current solution and adding
edges carefully. However, this does not work as k-edge-connected components are
not guaranteed to exist in (k− 1)-edge-connected graphs. Instead, we introduce
k-special components (Definition 2.1). By connecting the k-special components
carefully, we can increase the edge-connectivity of the graph (Lemma 2.8). Every
increase of the edge-connectivity costs at most O(1/k) times the weight of the
optimal solution (Lemma 2.10), yielding constant factor approximations for all k.
Our algorithm for Min-dReg-kEdge generalizes the algorithm of Cornelissen et
al. [5] to arbitrary k. A more careful analysis yields that already their algorithm
achieves an approximation ratio of 2.5 for Min-dReg-2Edge also for odd d.

For vertex-connectivity, the idea is to compute a k-vertex-connected k-regular
graph and a (possibly not connected) d-factor. We iteratively add edges from the
k-vertex-connected graph to the d-factor while maintaining the degrees until we
obtain a k-vertex-connected d-factor. This works for d ≥ 2k − 1 (Lemma 3.1).

2 Edge-Connectivity

In this section, we present an approximation algorithm for Min-dReg-kEdge for
all combinations of d and k, provided that d ≥ 2dk/2e. This means that the
algorithm works for all d ≥ k with the only exception being the case of odd
d = k.

The main idea of our algorithm is as follows: We start by computing a d-
factor. Then we iteratively increase the connectivity as follows: First, we identify
edges that we can safely remove without decreasing the connectivity. Second, we
find edges that we can add in order to increase the connectivity while repairing
the d-regularity that we have destroyed in the first step.

One might be tempted to use the k-edge-connected components of the d-
factor in order to increase the edge-connectivity from k−1 to k. The catch is that
there need not be enough k-edge-connected components, and it is in fact possible
to find (k − 1)-edge-connected graphs that are d-regular with d ≥ k without

5

any k-edge-connected component. To circumvent this problem, we introduce the
notion of k-special components, which have the desired properties.

2.1 Graph-Theoretic Preparation

Different from the rest of the paper, the graph G = (V,E) is not necessarily
complete in this section. The following definition of k-special components is
crucial for the whole Section 2.

Definition 2.1. Let k ∈ N, and let G = (V,E) be a graph. We call L ⊆ V a
k-special component in G if cutG(L) ≤ k − 1 and L is locally k-edge connected
in G.

For k = 1, the k-special components are the connected components of G.
The 2-edge-connected components of a graph yield a tree with a vertex for
every 2-edge-connected component and an edge between any 2-edge-connected
components that are connected by an edge. The 2-special components of G
correspond to the leaves of this tree.

Let us collect some facts about k-special components.

Lemma 2.2. Let G have a minimum degree of at least k, and let L be a k-special
component in G. Then |L| ≥ k + 1.

Lemma 2.3. Let G be a graph. If L is a k-special component, then L is a
maximal locally k-edge-connected component. If L and L′ are k-special, then
either L = L′ or L ∩ L′ = ∅.

The following crucial lemma shows the existence of k-special components.

Lemma 2.4. Let k ≥ 1. Let G = (V,E) be a (k − 1)-edge-connected graph.
Then every non-empty vertex set X (V either contains a k-special component
or satisfies cutG(X) ≥ k.

The purpose of the next few lemmas is to show that we can always remove
an edge from a k-special component without decreasing the connectedness of
the whole graph. In the following, let m = dk/2e + 1. It turns out that the
graph induced by a k-special component contains a locally m-edge-connected
component.

Lemma 2.5. Let k ≥ 1. Let G = (V,E) be a (k − 1)-edge-connected graph of
minimum degree at least 2dk/2e, and let L be a k-special component of G. Then
there exists an X ⊆ L such that X is a locally m-edge-connected component in L
and |X| ≥ k + 1.

The edges {ui, vi} mentioned in the next lemma are the edges that we can
safely remove. The resulting graph will remain (k−1)-edge-connected according
to Lemma 2.7. The vertices ui and vi in the next lemma will be chosen from Xi ⊆
Li, where Xi is a locally m-edge-connected component in Li as in Lemma 2.5.

6

Lemma 2.6. Let k ≥ 1. Let G = (V,E) be a (k − 1)-edge-connected graph of
minimum degree at least 2dk/2e. Let L1, . . . , Ls be the k-special components of G.
Then there exist vertices ui, vi ∈ Li for all i ∈ {1, . . . , s} such that the following
properties are met:

– {ui, vi} ∈ E for all i.
– {ui, vj} /∈ E for all i 6= j.
– There exist at least m edge-disjoint paths from ui to vi in the graph induced

by Li for every i.

Lemma 2.7. Let G = (V,E) be a (k − 1)-edge-connected graph of minimum
degree at least 2dk/2e with k-special components L1, . . . , Ls, and let u1, . . . , us

and v1, . . . , vs be chosen as in Lemma 2.6. Let Q =
{
{ui, vi} | 1 ≤ i ≤ s

}
. Then

G−Q is (k − 1)-edge-connected.

By removing the edges {ui, vi} ∈ Q and adding the edges {ui, vi+1} ∈ S, we
construct a k-edge-connected graph from the (k − 1)-edge-connected graph G
according to the following lemma.

Lemma 2.8. Let G = (V,E) be a (k − 1)-edge-connected graph of minimum
degree at least 2dk/2e with k-special components L1, . . . , Ls, and let u1, . . . , us

and v1, . . . , vs be chosen as in Lemma 2.6. Let Q =
{
{ui, vi} | 1 ≤ i ≤ s

}
, and

let S =
{
{ui, vi+1} | 1 ≤ i ≤ s

}
, where arithmetic is modulo s.

Then the graph G̃ = G−Q + S is k-edge-connected.

To conclude this section, we remark that the k-special components of a graph
can be found in polynomial-time: local k-edge-connectedness can be tested in
polynomial time. Thus, we can find locally k-edge-connected components in poly-
nomial time. Since k-special components are maximal locally k-edge-connected
components, we just have to compute a partition of the graph into locally k-
edge-connected components and check whether less than k edges leave such a
component. Therefore, the sets Li and Xi ⊆ Li as well as the vertices ui and vi
with the properties as in Lemmas 2.5 and 2.6 can be computed in polynomial
time.

2.2 Algorithm and Analysis

Our approximation algorithm for Min-dReg-kEdge (Algorithm 1) starts with an
`-edge-connected d-factor F`. How we choose ` and compute F` depends on the
parity of k, but it is possible that improved approximation algorithms for certain
small k lead to other initializations. (If k is even, we use ` = 0 and F0 = OptFd.
If k is odd, we use ` = 2 and approximate a 2-edge-connected d-factor F2 using
the algorithm of Cornelissen et al. [5].)

Then it uses a subroutine (Algorithm 2) that increases the connectivity iter-
atively. To increase the connectivity, we compute a TSP tour (line 3). We do this
using Christofides’ algorithm [25, Section 2.4], which achieves an approximation
ratio of 1.5.

We analyze correctness and approximation ratio using a series of lemmas.

7

input : undirected complete graph G = (V,E), edge weights w, integers k ≥ 3,
d ≥ 2dk/2e

output: k-edge-connected d-factor R of G
1 compute a minimum-weight `-edge-connected d-factor F` (or an approximation)
2 for p← ` + 1, . . . , k do
3 if Fp−1 is not p-edge-connected then
4 apply Algorithm 2 to obtain Fp

5 else
6 Fp ← Fp−1

7 end

8 end
9 R← Fk

Algorithm 1: Approximation algorithm for Min-dReg-kEdge.

input : undirected complete graph G = (V,E), edge weights w, integer p ≥ 1,
(p− 1)-edge-connected subgraph Fp−1 of G with minimum degree at
least p + 1

output: p-edge-connected subgraph Fp of G with the same degree at every
vertex as Fp−1

1 find the p-special components of Fp−1; let L1, . . . , Ls be these p-special
components

2 find vertices ui, vi ∈ Li for all i ∈ {1, . . . , s} with the properties stated in
Lemma 2.6; Q←

{
{ui, vi} | 1 ≤ i ≤ s

}
3 compute a TSP tour T on V using Christofides’ algorithm
4 take shortcuts to obtain a tour T ′ on u1, . . . , us (without loss of generality in

this order)
5 S ←

{
{ui, vi+1} | 1 ≤ i ≤ s

}
(arithmetic modulo s)

6 Fp ← Fp−1 −Q + S

Algorithm 2: Increasing the edge-connectivity of a graph by 1 while main-
taining d-regularity.

Lemma 2.9. Let k ≥ 1 be arbitrary, and let p ∈ {`, ` + 1, . . . , k}. Let Fp be
computed by Algorithm 1. Then Fp is d-regular and p-edge-connected.

In order to analyze the approximation ratio and to achieve a constant ap-
proximation for all k, we exploit a result that Fukunaga and Nagamochi [8]
attributed to Goemans and Bertsimas [12] and Wolsey [26].

Lemma 2.10 (Fukunaga, Nagamochi [8, Theorem 2]). Let T be the TSP
tour obtained from Christofides’ algorithm. Then w(T) ≤ 3

k · w(OptEk).

A consequence of Lemma 2.10 are the following two statements, which we need
to analyze the approximation ratio.

Lemma 2.11. If, in Algorithm 1, we enter line 4 and call Algorithm 2, then

w(Fp) ≤ 3

k
· w(OptEFk

d) + w(Fp−1).

8

Lemma 2.12. If Algorithm 1 calls Algorithm 2 q times, then

w(Fk) ≤ 3q

k
· w(OptEFk

d) + w(F`).

Theorem 2.13. For k ≥ 2 and d ≥ 2dk/2e, Algorithm 1 is a polynomial-time
approximation algorithm for Min-dReg-kEdge. It achieves an approximation ratio
of 2.5 for even d and an approximation ratio of 4− 3

k for odd d.

Algorithm 1 works also for the case of even d = k, but there exists already
an approximation algorithm with a ratio of 2 + 1

k for this special case [1]. Note
that the proof of Theorem 2.13 does not cover the case of odd d and k = 1, but
it is already known that this case can be approximated with a factor of 3 [5].

3 Vertex Connectivity

In this section, we consider Min-dReg-kVertex for d ≥ 2k − 1. The basis of the
algorithm (Algorithm 3) is the following: Assume that we have a k-vertex con-
nected k-factor H and a d-factor F that lacks k-vertex-connectedness. Then we
iteratively add edges from H to F to make F k-vertex-connected as well. More
precisely, we try to add an edge e ∈ H \ F to increase the connectivity of F .
To maintain that F is d-regular, we have to add another edge and remove two
edges of F . If, in the course of this process, we never have to remove an edge of
H from F , then the algorithm terminates with a k-vertex-connected d-regular
graph.

In Algorithm 3, the initial d-factor OptFd can be computed in polyno-
mial time (line 1). Kortsarz and Nutov showed that we can compute a k-
vertex-connected spanning subgraph K whose total weight is at most a factor of
2+ k−1

n larger than the weight of a k-vertex-connected graph of minimum weight
(line 2). Chan et al. [1] devised an algorithm that turns k-vertex-connected
graphs K into k-regular k-vertex-connected graphs H at the expense of an ad-
ditive w(OptVk)/k.

With this initialization, we iteratively add edges from H to F while main-
taining d-regularity of F . This works as long as d is sufficiently large according
to the following lemma. We parametrize the maximum degree by ` in order to
be able to get a slight improvement for larger d (Corollary 3.3).

Lemma 3.1. Let k, ` ≥ 2 and d ≥ k + ` − 1. Let G = (V,E) be an undirected
complete graph. Let F be a d-factor of G, and let H be a k-vertex-connected
graph subgraph of G that has a maximum degree of at most `. Assume that F is
not k-vertex-connected.

Then there exists an edge e = {u1, u2} ∈ H \ F such that u1 and u2 are
not connected via k vertex-disjoint paths in F . Furthermore, given such an edge
e = {u1, u2}, there exist vertices v1, v2 ∈ V with v1 6= v2 and the following
properties:

1. {u1, v1}, {u2, v2} ∈ F \H.

9

input : undirected complete graph G = (V,E), edge weights w, integers k ≥ 2,
d ≥ 2k − 1

output: k-vertex-connected d-factor R of G
1 F ← OptFd

2 approximate a k-vertex connected graph K using the algorithm of Kortsarz and
Nutov [17]

3 compute a k-vertex-connected k-factor H from K using the algorithm of Chan
et al. [1]

4 while F is not k-vertex-connected do
5 select an edge e = {u1, u2} ∈ H \ F such that u1 and u2 are not connected

by k vertex-disjoint paths in F
6 choose vertices v1, v2 with {u1, v1}, {u2, v2} ∈ F \H and {v1, v2} /∈ F
7 F ←

(
F \

{
{u1, v1}, {u2, v2}

})
∪
{
{u1, u2}, {v1, v2}

}
8 end
9 R← F

Algorithm 3: Approximation algorithm for Min-dReg-kVertex for d ≥ 2k−
1.

2. {v1, v2} /∈ F .

With this lemma, we can prove the main result of this section.

Theorem 3.2. For k, d ∈ N with k ≥ 2 and d ≥ 2k − 1, Algorithm 3 is a
polynomial-time approximation algorithm for Min-dReg-kVertex with an approx-
imation ratio of 5 + 2k−2

n + 2
k .

Algorithm 3 also works for k = 1, but there already exist better approxima-
tion algorithms for this case (see Table 2). With the slightly stronger assumption
d ≥ 2k, we can get a slightly better approximation ratio.

Corollary 3.3. For k, d ∈ N with k ≥ 2 and d ≥ 2k, there exists a polynomial-
time approximation algorithm for Min-dReg-kVertex with an approximation ratio
of 5 + 2k−2

n .

4 Generalization to Arbitrary Degree Sequences

Both algorithms of Section 2 and Section 3 do not exploit d-regularity, but
only that the degree of each vertex is at least d. Thus, we immediately get
approximation algorithms for Min-dGen-kEdge and Min-dGen-kVertex, where we
get a degree requirement of at least d for each vertex.

For k-edge-connectedness, we require that the minimum degree requirement
is at least 2dk/2e.

Theorem 4.1. For k ≥ 2, Min-(2dk2 e)Gen-kEdge can be approximated in poly-
nomial time with an approximation ratio of 4− 3

k .

10

For k-vertex-connectivity, we require that the minimum degree requirement
is at least 2k− 1. (For minimum degree at least 2k, we get a small improvement
similarly to Corollary 3.3.)

Theorem 4.2. For k ≥ 2, Min-(2k − 1)Gen-kVertex can be approximated in
polynomial time with an approximation ratio of 5 + 2k−2

n + 2
k .

Min-(2k)Gen-kVertex can be approximated in polynomial time with an approx-
imation ratio of 5 + 2k−2

n .

5 Conclusions and Open Problems

We conclude this paper with two questions for further research.
First, for edge-connectivity, we require d ≥ 2dk/2e. Since there exists an

approximation algorithm for Min-kReg-kEdge (for k ≥ 2) [1], the only case for
which it is unknown if a constant factor approximation algorithm exists is the
generalized problem Min-kGen-kEdge for odd values of k. We are particularly
curious about approximation algorithms for Min-1Gen-1Edge, where we want to
find a cheap connected graph with given vertex degrees. To get such algorithms,
vertices with degree requirement 1 seem to be bothersome. (This seems to be a
more general phenomenon in network design, as, for instance, the approximation
algorithms by Fekete et al. [7] for bounded-degree spanning trees and by Fuku-
naga and Nagamochi [8] for k-edge-connected subgraphs with multiple edges
both require that the minimum degree requirement is at least 2.) Still, we con-
jecture that constant factor approximation algorithms exist for these problems
as well.

Second, we would like to see constant factor approximation algorithms for
Min-dReg-kVertex for the case k + 1 ≤ d ≤ 2k − 2 and for the general prob-
lem Min-dGen-kVertex for k ≤ d ≤ 2k − 2. We conjecture that constant factor
approximation algorithms exist for these problems.

References

1. Chan, Y.H., Fung, W.S., Lau, L.C., Yung, C.K.: Degree bounded network design
with metric costs. SIAM Journal on Computing 40(4), 953–980 (2011)

2. Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete
Applied Mathematics 27(1-2), 59–68 (1990)

3. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the
minimum-cost k-vertex connected subgraph. SIAM Journal on Computing 32(4),
1050–1055 (2003)

4. Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric
costs. SIAM Journal on Discrete Mathematics 21(3), 612–636 (2007)

5. Cornelissen, K., Hoeksma, R., Manthey, B., Narayanaswamy, N.S., Rahul, C.S.:
Approximability of connected factors. In: Kaklamanis, C., Pruhs, K. (eds.) Proc.
of the 11th Workshop on Approximation and Online Algorithms (WAOA 2013).
Lecture Notes in Computer Science, vol. 8447, pp. 120–131. Springer (2014)

11

6. Czumaj, A., Lingas, A.: Minimum k-connected geometric networks. In: Kao, M.Y.
(ed.) Encyclopedia of Algorithms, pp. 536–539. Springer (2008)

7. Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.E.: A
network-flow technique for finding low-weight bounded-degree spanning trees.
Journal of Algorithms 24(2), 310–324 (1997)

8. Fukunaga, T., Nagamochi, H.: Network design with edge-connectivity and degree
constraints. Theory of Computing Systems 45(3), 512–532 (2009)

9. Fukunaga, T., Nagamochi, H.: Network design with weighted degree constraints.
Discrete Optimization 7(4), 246–255 (2010)

10. Fukunaga, T., Ravi, R.: Iterative rounding approximation algorithms for degree-
bounded node-connectivity network design. In: Proc. of the 53rd Ann. IEEE Symp.
on Foundations of Computer Science (FOCS). pp. 263–272. IEEE Computer Soci-
ety (2012)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company (1979)

12. Goemans, M.X., Bertsimas, D.: Survivable networks, linear programming relax-
ations and the parsimonious property. Mathematical Programming 60, 145–166
(1993)

13. Kammer, F., Täubig, H.: Connectivity. In: Brandes, U., Erlebach, T. (eds.) Net-
work Analysis: Methodological Foundations. Lecture Notes in Computer Science,
vol. 3418, pp. 143–177. Springer (2005)

14. Khandekar, R., Kortsarz, G., Nutov, Z.: On some network design problems with
degree constraints. Journal of Computer and System Sciences 79(5), 725–736 (2013)

15. Khuller, S., Raghavachari, B.: Graph connectivity. In: Kao, M.Y. (ed.) Encyclope-
dia of Algorithms. Springer (2008)

16. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. Jour-
nal of the ACM 41(2), 214–235 (1994)

17. Kortsarz, G., Nutov, Z.: Approximating node connectivity problems via set covers.
Algorithmica 37(2), 75–92 (2003)

18. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with
degree or order constraints. SIAM Journal on Computing 39(3), 1062–1087 (2009)

19. Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable net-
work design. SIAM Journal on Computing 42(6), 2217–2242 (2013)

20. Lau, L.C., Zhou, H.: A unified algorithm for degree bounded survivable network
design. In: Lee, J., Vygen, J. (eds.) Proc. of the 17th Int. Conf. on Integer Pro-
gramming and Combinatorial Optimization (IPCO). Lecture Notes in Computer
Science, vol. 8494, pp. 369–380. Springer (2014)

21. Lovász, L., Plummer, M.D.: Matching Theory, North-Holland Mathematics Stud-
ies, vol. 121. Elsevier (1986)

22. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. Journal of the ACM 62(1), 1:1–1:19 (2015)

23. Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canadian Jour-
nal of Mathematics 6, 347–352 (1954)

24. West, D.B.: Introduction to Graph Theory. Prentice-Hall, 2nd edn. (2001)
25. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-

bridge University Press (2011)
26. Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. In:

Rayward-Smith, V.J. (ed.) Combinatorial Optimization II, Mathematical Pro-
gramming Studies, vol. 13, pp. 121–134. Springer (1980)

12

