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Abstract. Finding a d-regular spanning subgraph (or d-factor) of a
graph is easy by Tutte’s reduction to the matching problem. By the
same reduction, it is easy to find a minimal or maximal d-factor of a
graph. However, if we require that the d-factor is connected, these prob-
lems become NP-hard – finding a minimal connected 2-factor is just the
traveling salesman problem (TSP).
Given a complete graph with edge weights that satisfy the triangle in-
equality, we consider the problem of finding a minimal connected d-
factor. We give a 3-approximation for all d and improve this to an (r+1)-
approximation for even d, where r is the approximation ratio of the TSP.
This yields a 2.5-approximation for even d. The same algorithm yields
an (r + 1)-approximation for the directed version of the problem, where
r is the approximation ratio of the asymmetric TSP. We also show that
none of these minimization problems can be approximated better than
the corresponding TSP.
Finally, for the decision problem of deciding whether a given graph con-
tains a connected d-factor, we extend known hardness results.

1 Introduction

The traveling salesman problem (Min-TSP) is one of the basic combinatorial
optimization problems: given a complete graph G = (V,E) with edge weights
that satisfy the triangle inequality, the goal is to find a Hamiltonian cycle of
minimum total weight. Phrased differently, we are looking for a subgraph of G
of minimum weight that is 2-regular, connected, and spanning. While Min-TSP
is NP-hard [11, ND22], omitting the requirement that the subgraph must be
connected makes the problem polynomial-time solvable [18, 24]. In general, d-
regular, spanning subgraphs (also called d-factors) of minimum weight can be
found in polynomial time using Tutte’s reduction [18,24] to the matching prob-
lem. Cheah and Corneil [6] have shown that deciding whether a given graph
G = (V,E) has a d-regular connected spanning subgraph is NP-complete for
every d ≥ 2, where d = 2 is just the Hamiltonian cycle problem [11, GT37].
Thus, finding a connected d-factor of minimum weight is also NP-hard for all
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d. While one might think at first glance that the problem cannot become easier
for larger d, finding (minimum-weight) connected d-factors is easy for d ≥ n/2,
where n = |V |, as in this case any d-factor is already connected. This poses the
question for which values of d (as a function of n) the problem becomes tractable.
In this paper, we analyze the complexity and approximability of the problem of
finding a d-factor of minimum weight.

1.1 Problem Definitions and Preliminaries

In the following, n is always the number of vertices. To which graph n refers will
be clear from the context.

All problems defined below deal with undirected graphs, unless stated oth-
erwise. For any d, d-RCS is the following decision problem: Given an arbitrary
undirected graph G, does G have a connected d-factor? Here, d can be a con-
stant, but also a function of the number n of vertices of the input graph G.
2-RCS is just the Hamiltonian cycle problem.

Just as Min-TSP is the optimization variant of 2-RCS, we consider the op-
timization variant of d-RCS, which we call Min-d-RCS: As an instance, we are
given an undirected complete graph G = (V,E) and non-negative edge weights
w that satisfy the triangle inequality, i.e., w({x, z}) ≤ w({x, y}) + w({y, z}) for
every x, y, z ∈ V . The goal of Min-d-RCS is to find a connected d-factor of G of
minimum weight. Min-2-RCS is just Min-TSP.

A bridge edge of a graph is an edge whose removal increases the number of
components of the graph. A graph G is called 2-edge connected if G is connected
and does not contain bridge edges. For even d, any connected d-factor is also
2-edge-connected, i.e., does not contain bridge edges. This is not true for odd
d. If we require 2-edge-connectedness also for odd d, we obtain the problem
Min-d-R2CS, which is defined as Min-d-RCS, but asks for a 2-edge-connected d-
factor. For consistency, Min-d-R2CS is also defined for even d, although it is then
exactly the same problem as Min-d-RCS.

Finally, we also consider the asymmetric variant of the problem: given a
directed complete graph G = (V,E), find a spanning connected subgraph of G
that is d-regular. Here, d-regular means that every vertex has indegree d and out-
degree d. We denote the corresponding minimization problem by Min-d-ARCS.
Min-1-ARCS is just the asymmetric TSP (Min-ATSP).

Max-d-RCS and Max-d-ARCS are the maximization variants of Min-d-RCS and
Min-d-ARCS, respectively. For Max-d-RCS and Max-d-ARCS we do not require
that the edge weights satisfy the triangle inequality. In the same way as for
the minimization variants, Max-2-RCS is the maximum TSP (Max-TSP) and
Max-1-ARCS is the maximum ATSP (Max-ATSP).

If the graph and its edge weights are clear from the context, we abuse notation
by also denoting by d-RCS a minimum-weight connected d-factor, by d-R2CS a
minimum-weight 2-edge-connected d-factor, and by d-ARCS a minimum-weight
connected d-regular subgraph of a directed graph.

In the same way, let d-F denote a minimum-weight d-factor (no connectedness
required) of a graph and let d-AF denote a minimum-weight d-factor of a directed
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graph. Let MST denote a minimum-weight spanning tree, and let TSP and ATSP
denote minimum-weight (asymmetric) TSP tours. We have 2-RCS = TSP and
1-ARCS = ATSP. Furthermore, 2-F is the undirected cycle cover problem and
1-AF is the directed cycle cover problem.

We note that d-factors do not exist for all combinations of d and n. If both
n and d are odd, then no n-vertex graph possesses a d-factor. For all other
combinations of n and d with d ≤ n−1, there exist d-factors in n-vertex graphs,
at least in the complete graph.

In the following, Kn denotes the undirected complete graph on n vertices. A
vertex v of a graph G is called a cut vertex if removing v increases the number
of components of G.

1.2 Previous Results

Requiring connectedness in addition to some other combinatorial property has
already been studied for dominating sets [13] and vertex cover [8]. For problems
such as minimum s-t vertex separator, which are known to be solvable in poly-
nomial time, the connectedness condition makes it NP-hard, and recent results
have studied the parameterized complexity of finding a connected s-t vertex sep-
arator [19]. Also finding connected graphs with given degree sequences that are
allowed to be violated only slightly has been well-studied [5, 23].

As far as we are aware, so far only the maximization variant Max-d-RCS of
the connected factor problem has been considered for d ≥ 3. Baburin, Gimadi,
and Serdyukov proved that Max-d-RCS can be approximated within a factor of
1− 2

d·(d+1) [2,12]. A slightly better approximation ratio can be achieved if the edge

weights are required to satisfy the triangle inequality [3]. Baburin and Gimadi
also considered approximating both Max-d-RCS and Min-d-RCS (both without
triangle inequality) for random instances [3,4]. For d = 2, we inherit the approx-
imation results for Min-TSP of 3/2 [26, Section 2.4] and Max-TSP of 7/9 [20].
For d = 1, we inherit the O(log n/ log log n)-approximation for Min-ATSP [1] and
2/3 for Max-ATSP [14]. As far as we know, no further polynomial-time approx-
imation algorithms with worst-case guarantees are known for Min-d-RCS. Like
for Min-TSP [26, Section 2.4], the triangle inequality is crucial for approximat-
ing Min-d-RCS and Min-d-ARCS – otherwise, no polynomial-time approximation
algorithm is possible, unless P = NP. Baburin and Gimadi [2, 3] claimed that
Max-d-RCS is APX-hard because it generalizes Max-TSP. However, this is only
true if we consider d as part of the input, as then d = 2 corresponds to Max-TSP.

1.3 Our Results

Table 1 shows an overview of previous results and our results. Our main con-
tributions are a 3-approximation algorithm for Min-d-RCS for any d and a 2.5-
approximation algorithm for Min-d-RCS for even d (Section 3). The latter is
in fact an (r + 1)-approximation algorithm for Min-d-RCS, where r is the fac-
tor within which Min-TSP can be approximated. This result can be extended
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problem result reference

d-RCS in P for d ≥ n
2
− 1 trivial for d ≥ n/2, Section 5.2

NP-complete for constant d Cheah and Corneil [6]
and d of any growth rate up to O(n1−ε) Section 4.2

Min-d-RCS (r + 1)-approximation for even d Section 3.2
3-approximation for odd d Section 3.1
2-approximation for d ≥ n/3 Section 5.1
no better approximable than Min-TSP Section 4.1

Min-d-R2CS 3-approximation Section 3.1
no better approximable than Min-TSP Section 4.1

Min-d-ARCS (r + 1)-approximation Section 3.2
no better approximable than Min-ATSP Section 4.1

Max-d-RCS (1− 2
d·(d+1)

)-approximation Baburin and Gimadi [2]

Max-d-ARCS (1− 1
d·(d+1)

)-approximation Section 5.3

Table 1. Overview of the complexity and approximability of finding (optimal) con-
nected d-factors. We left out that all optimization variants are polynomial-time solvable
for d ≥ n/2 and APX-hard according to Sections 4.1 and 4.2. Here, r is the approxi-
mation ratio of Min-TSP or Min-ATSP.

to Min-d-ARCS, where r is now the approximation ratio of Min-ATSP. Our ap-
proximation algorithms, in particular for the maximization variants, are in the
spirit of the classical approximation algorithm of Fisher et al. [10] for Max-TSP:
compute a non-connected structure, and then remove and add edges to make it
connected.

As lower bounds, we prove that Min-d-RCS and Min-d-ARCS cannot be ap-
proximated better than Min-TSP and Min-ATSP, respectively (Section 4). In
particular, this implies the APX-hardness of the problems.

We prove some structural properties of connected d-factors and their relation
to TSP, MST, and d-factors without connectedness requirement (Section 2).
Some of these properties are needed for the approximation algorithms and some
might be interesting in their own right or were initially counterintuitive to us.

Our algorithms work for all values of d, even when d is part of the input. The
hardness results are extended to the case where d grows with n. In Section 5, we
improve our approximation guarantee for d ≥ n/3, prove that (n

2 − 1)-RCS ∈ P,
and generalize Baburin and Gimadi’s algorithm [2] to directed instances.

2 Structural Properties

In the following two lemmas, we make statements about the relationship between
the weights of optimal solutions of the different minimization problems. We call
an inequality A ≤ c · B tight if, for every ε > 0, replacing c by c − ε does not
yield a valid statement for all instances.
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Lemma 2.1 (undirected comparison).

1. w(MST) ≤ w(d-RCS) ≤ w(d-R2CS) for all d and all undirected instances,
and this is tight.

2. w(d-F) ≤ w(d-RCS) for all d and all undirected instances, and this is tight.
3. w(d-R2CS) ≤ 3 · w(d-RCS) for all odd d and all undirected instances, and

this is tight for all odd d.
4. w(TSP) ≤ w(d-RCS) for all even d and all undirected instances, and this is

tight.
5. w(TSP) ≤ 2 · w(d-RCS) for all odd d and all undirected instances, and this

is tight for all odd d.
6. w(TSP) ≤ 4

3 · w(3-R2CS) for all undirected instances, and this is tight.
7. For all odd d, there are instances with w(TSP) ≥ ( 4

3 − o(1)) · w(d-R2CS).

8. w((d− 2)-F) ≤ d−2
d · w(d-F) and w((d− 2)-RCS) ≤ w(d-RCS) for all even

d ≥ 4 and all undirected instances, and both inequalities are tight.
9. Monotonicity does not hold for odd d: for every odd d ≥ 5, there exist in-

stances with w((d− 2)-RCS) ≥ d+2
d · w(d-RCS).

Lemma 2.2 (directed comparison).

1. w(d-AF) ≤ w(d-ARCS) for all d and all directed instances, and this is tight.
2. w(ATSP) ≤ w(d-ARCS) for all d and all directed instances, and this is tight.
3. w((d− 1)-AF) ≤ d−1

d · w(d-AF) and w((d− 1)-ARCS) ≤ w(d-ARCS) for all
d ≥ 2 and all directed instances, and both inequalities are tight.

3 Approximation Algorithms

3.1 3-Approximation for Min-d-RCS and Min-d-R2CS

The 3-approximation that we present in this section works for all d, odd or
even. It also works for d growing as a function of n. An interesting feature of
this algorithm, and possibly an indication that a better approximation ratio is
possible for Min-d-RCS, is that the same algorithm provides an approximation
ratio of 3 for both Min-d-RCS and Min-d-R2CS. In fact, we compute a 2-edge-
connected d-regular graph that weighs at most three times the weight of the
optimal connected d-regular graph.

First we make some preparatory observations on 2-edge-connectedness. Given
a connected graph G = (V,E), we can create a tree T (G) as follows: We have a
vertex for every maximal subgraph ofG that is 2-edge-connected (called a 2-edge-
connected component), and two such vertices are connected if the corresponding
components are connected in G. In this case, they are connected by a bridge
edge. Now consider a leaf of tree T (G) and its corresponding 2-edge-connected
component C. Since C is a leaf in T (G), it is only incident to a single bridge edge
e in G. Now assume that G is d-regular with d ≥ 3 odd (for d = 2, any connected
graph is also 2-edge-connected). Let u be the vertex of C that is incident to e.
Then u must be incident to d − 1 other vertices in C. Thus, C has at least d
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input : undirected complete graph G = (V,E), edge weights w, d ≥ 2
output: 2-edge-connected d-factor R of G

1 compute a minimum-weight d-factor d-F of G;
2 k ← k(d-F)
3 Q← {e1, . . . , ek} with ei = ei(d-F) = {ui, vi}
4 compute MST of G;
5 duplicate each edge of MST and take shortcuts to obtain a Hamiltonian cycle H
6 take shortcuts to obtain from H a Hamiltonian cycle H ′ through {u1, . . . , uk},

assume w.l.o.g. that H ′ traverses the vertices in the order u1, . . . , uk, u1

7 obtain R from d-F by adding the edges {ui, vi+1} (with k + 1 = 1) and
removing Q

Algorithm 1: 3-approximation for Min-d-RCS and Min-d-R2CS.

vertices. Since the d − 1 neighbors of u are not incident to bridge edges, they
must be adjacent to other vertices in C. Since G is d-regular, C has at least d+1
vertices and more than d2/2 > d edges. Therefore, there exists an edge e′ in C
that is not incident to u, i.e., e′ does not share an endpoint with a bridge edge.

If G is not connected, we have exactly the same properties with “tree” re-
placed by “forest”.

To simplify notation in the algorithm, let k = k(G) denote the number of
2-edge-connected components of G that are leaves in the forest described above,
and let L1(G), . . . , Lk(G) denote the 2-edge-connected components of a graph
G that correspond to leaves in the tree described above. For such an Li(G), let
ei(G) denote an edge that is not adjacent to a bridge edge in G. The choice of
ei(G) is arbitrary.

We prove that Algorithm 1 is a 3-approximation for both Min-d-RCS and
Min-d-R2CS by a series of lemmas. Since the set of vertices is fixed, we sometimes
identify graphs with their edge set. In particular, R denotes both the connected
d-factor that we compute and its edge set.

Lemma 3.1. Assume that R is computed as in Algorithm 1. Then R is a d-
regular spanning subgraph of G.

Lemma 3.2. Assume that R is computed as in Algorithm 1. Then R is 2-edge-
connected.

Lemma 3.3. Assume that R is computed as in Algorithm 1. Then w(R) ≤
3 · w(d-RCS) ≤ 3 · w(d-R2CS).

The following theorem is an immediate consequence of the lemmas above.

Theorem 3.4. For all d, Algorithm 1 is a polynomial-time 3-approximation for
Min-d-RCS and Min-d-R2CS. This includes the case that d is a function of n.

Remark 3.5. If we are only interested in a 3-approximation for Min-d-RCS and
not for Min-d-R2CS, then we can simplify Algorithm 1 a bit: we only pick one non-
bridge edge for each component and not for every 2-edge-connected component.
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The rest of the algorithm and its analysis remain the same. However, this does
not seem to improve the worst-case approximation ratio.

Remark 3.6. The analysis is tight in the following sense: By Lemma 2.1(3), a
minimum-weight 2-edge-connected d-factor can be three times as heavy as a
minimum-weight connected d-factor. Thus, any algorithm that outputs a 2-
edge-connected d-factor cannot achieve an approximation ratio better than 3.
Furthermore, since w(MST) ≤ w(d-R2CS) and w(d-F) ≤ w(d-R2CS) are tight
(Lemma 2.1(1) and (2)), the analysis is essentially tight. If we only require con-
nectedness and not 2-edge-connectedness, we see that the analysis cannot be
improved since w(TSP) ≤ 2w(d-RCS) and w(d-F) ≤ w(d-RCS) are tight.

However, it is reasonable to assume that not all these inequalities can be tight
at the same time and, in addition, taking shortcuts in the duplicated MST to
obtain a TSP tour through u1, . . . , uk does not yield any improvement. Therefore,
it might be possible to improve the analysis and show that Algorithm 1 achieves
a better approximation ratio than 3.

Remark 3.7. Lines 4 and 5 of Algorithm 1 are in fact the double-tree heuristic
for Min-TSP [26, Section 2.4]. One might be tempted to construct a better tour
using Christofides’ algorithm [26, Section 2.4], which achieves a ratio of 3/2
instead of only 2. However, in the analysis we compare the optimal solution for
Min-d-RCS to the MST, and we know that w(MST) ≤ w(d-RCS) ≤ w(d-R2CS).
If we use Christofides’ algorithm directly, we have to compare a TSP tour to
the minimum-weight connected d-factor. In particular for odd d, we have that
for some instances w(TSP) ≥ ( 4

3 − o(1)) · w(d-R2CS) ≥ ( 4
3 − o(1)) · w(d-RCS)

(Lemma 2.1(7)). Even if this is the true bound – as it is for d = 3 (Lemma 2.1(6))
–, the TSP tour constructed contributes with a factor 3/2 times 4/3, which equals
2, to the approximation ratio, which is no improvement.

3.2 (r + 1)-Approximation

In this section, we give an (r+1)-approximation for Min-d-RCS for even values of
d and Min-d-ARCS for all values of d. Here, r is the ratio within which Min-TSP
(for Min-d-RCS) or Min-ATSP (for Min-d-ARCS) can be approximated. This
means that we currently have r = 3/2 for the symmetric case by Christofides’
algorithm [26, Section 2.4] and, for the asymmetric case, we have either r =
O(log n/ log log n) if we use the randomized algorithm by Asadpour et al. [1]
or r = 2

3 · log2 n if we use Feige and Singh’s deterministic algorithm [9]. Al-
though the algorithm is a simple modification of Algorithm 1, we summarize it
as Algorithm 2 for completeness.

Theorem 3.8. If Min-TSP can be approximated in polynomial time within a
factor of r, then Algorithm 2 is a polynomial-time (r + 1)-approximation for
Min-d-RCS for all even d.

If Min-ATSP can be approximated in polynomial time within a factor of r,
then Algorithm 2 is a polynomial-time (r+1)-approximation for Min-d-ARCS for
all d.

The results still hold if d is part of the input.
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input : undirected or directed complete graph G = (V,E), edge weights w, d
output: connected d-factor R of G

1 compute a minimum-weight d-factor C of G
2 let C1, . . . , Ck be the connected components of C, and let ei = (ui, vi) be any

edge of Ci

3 compute a TSP tour H using an approximation algorithm with ratio r
4 take shortcuts to obtain from H a TSP tour H ′ through {u1, . . . , uk}, assume

w.l.o.g. that H ′ traverses the vertices in the order u1, . . . , uk, u1

5 obtain R from C by adding the edges (ui, vi+1) (with k + 1 = 1) and removing
e1, . . . , ek

Algorithm 2: (r + 1)-approximation for Min-d-RCS for even d and
Min-d-ARCS.

4 Hardness Results

4.1 TSP-Inapproximability

In this section, we prove that Min-d-RCS cannot be approximated better than
Min-TSP.

Theorem 4.1. For every d ≥ 2, if Min-d-RCS can be approximated in polyno-
mial time within a factor of r, then Min-TSP can be approximated in polynomial
time within a factor of r.

The same construction as in the proof of Theorem 4.1 yields the same result
for Min-d-R2CS. A similar construction yields the same result for Min-d-ARCS.

Corollary 4.2. For every d ≥ 2, if Min-d-R2CS can be approximated in polyno-
mial time within a factor of r, then Min-TSP can be approximated in polynomial
time within a factor of r.

Corollary 4.3. For every d ≥ 2, if Min-d-ARCS can be approximated in polyno-
mial time within a factor of r, then Min-ATSP can be approximated in polynomial
time within a factor of r.

Min-TSP, Min-ATSP, Max-TSP, and Max-ATSP are APX-hard [22]. Further-
more, the reduction from Min-TSP to Min-d-RCS is in fact an L-reduction [21]
(see also Shmoys and Williamson [26, Section 16.2]). This proves the APX-
hardness of Min-d-RCS for all d. The reductions from Min-TSP to Min-d-R2CS
and from Min-ATSP to Min-d-ARCS work in the same way. Furthermore, by re-
ducing from Max-TSP and Max-ATSP in a similar way (here, the edges between
the copies of a vertex have high weight), we obtain APX-hardness for Max-d-RCS
and Max-d-ARCS as well.

Corollary 4.4. For every fixed d ≥ 2, the problems Min-d-RCS, Min-d-R2CS,
and Max-d-RCS are APX-complete. For every fixed d ≥ 1, Min-d-ARCS and
Max-d-ARCS are APX-complete.
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4.2 Hardness for Growing d

In this section, we generalize the NP-hardness proof for d-RCS by Cheah and
Corneil [6] to the case that d grows with n. Furthermore, we extend Theorem 4.1
and Corollaries 4.2 and 4.3 and the APX-hardness of the minimization variants
(Corollary 4.4) to growing d. The APX-hardness of Max-d-RCS and Max-d-ARCS
does not transfer to growing d – both can be approximated within a factor of
1−O(1/d2), which is 1− o(1) for growing d.

Let us consider Cheah and Corneil’s [6, Section 3.2] reduction from 2-RCS,
i.e., the Hamiltonian cycle problem, to d-RCS. Crucial for their reduction is the
notion of the d-expansion of a vertex v, which is obtained as follows:

1. We construct a gadget Gd+1 by removing a matching of size dd2e − 1 from a
complete graph on d+ 1 vertices.

2. We connect each vertex whose degree has been decreased by one to v.

The reduction itself takes a graph G for which we want to test if G ∈ 2-RCS
and maps it to a graph Rd(G) as follows: For even d, Rd(G) is the graph
obtained by performing a d-expansion for every vertex of G. For odd d, the
graph Rd(G) is obtained by doing the following for each vertex v of G: add
vertices u1, u2, . . . , ud−2; connect v to u1, . . . , ud−2; perform a d-expansion on
u1, . . . , ud−2. We have G ∈ 2-RCS if and only if Rd(G) ∈ d-RCS.

We note that Rd(G) has (d + 2) · n vertices for even d and Θ(d2n) vertices
for odd d and can easily be constructed in polynomial time since d < n.

Theorem 4.5. For every fixed ε > 0, there is a function f = Θ(n1−ε) that
maps to even integers such that f -RCS is NP-hard.

For every fixed ε > 0, there is a function f = Θ(n
1
2−ε) that maps to odd

integers such that f -RCS is NP-hard.

In the same way as the NP-completeness, the inapproximability can be trans-
ferred. The reduction creates graphs of size (d + 1) · n. The construction is the
same as in Section 4.1, and the proof follows the line of the proof of Theorem 4.5.
Here, however, we do not have to distinguish between odd and even d for the
symmetric variant, as the reduction in Section 4.1 is the same for both cases.

Theorem 4.6. For every fixed ε > 0, there is a function f = Θ(n1−ε) such that
Min-f -RCS and Min-f -R2CS are APX-hard and cannot be approximated better
than Min-TSP.

For every fixed ε > 0, there is a function f = Θ(n1−ε) such that Min-f -ARCS
is APX-hard and cannot be approximated better than Min-ATSP.

5 Further Algorithms

5.1 2-Approximation for d ≥ n/3

If d ≥ n/3, then we easily get a better approximation algorithm for Min-d-R2CS
and Min-d-RCS. In this case, d-F consists either of a single component – then
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we are done – or of two components C1 and C2 with Ci = (Vi, Ei). In the latter
case, we proceed as follows: first, find the lightest edge e = {u, v} with u ∈ V1
and v ∈ V2. Second, choose any edges {u, u′} ∈ E1 and {v, v′} ∈ E2. Third,
remove {u, u′} and {v, v′} and add {u, v} and {u′, v′}. The increase in weight is
at most 2 · w({u, v}) by the triangle inequality.

The resulting graph is clearly d-regular. It is connected since C1 and C2

are 2-edge-connected: they both consist of at most 2n
3 − 1 vertices and are d-

regular with d ≥ n/3. Thus, they are even Hamiltonian by Dirac’s theorem
[25]. Furthermore, any connected d-regular graph must have at least two edges
connecting V1 and V2: If d is even, then this follows by 2-edge-connectedness. If
d is odd, then |V1| and |V2| are even and, thus, an even number of edges must
leave either of them. Thus, w({u, v}) ≤ 1

2 · w(d-RCS). Since we add at most
2 ·w({u, v}) and also have w(d-F) ≤ w(d-RCS), we obtain the following theorem.

Theorem 5.1. For d ≥ n/3, there is a polynomial-time 2-approximation for
Min-d-RCS.

5.2 Decision Problem for d = dn
2
e − 1

For d ≥ n/2, any d-factor is immediately connected and also the minimization
variant can be solved efficiently. In this section, we slightly extend this to the
case of d ≥ n

2 − 1.
We assume that the input graph G is connected. To show that the case

d = dn2 e − 1 is in P, we compute a d-factor. If none exists or we obtain a
connected d-factor, then we are done. Otherwise, we have a d-factor consisting
of two components C1 and C2 which are both cliques of size n/2. If G contains
a cut vertex, say, u ∈ C1, then this is the only vertex with neighbors in C2. In
this case, G does not contain a connected d-factor. If G does not contain a cut
vertex, there are two disjoint edges e = {u, v}, e′ = {u′, v′} with u, u′ ∈ C1 and
v, v′ ∈ C2. Adding e and e′ and removing {u, u′} and {v, v′} yields a connected
d-factor.

Theorem 5.2. d-RCS is in P for every d with d ≥ n
2 − 1.

5.3 Approximating Max-d-ARCS

The approximation algorithm for Max-d-RCS [2] can easily be adapted to work
for Max-d-ARCS: We compute a directed d-factor of maximum weight. Any com-
ponent consists of at least d + 1 vertices, thus at least d · (d + 1) arcs. We
remove the lightest arc of every component and connect the resulting (still at
least weakly connected) components arbitrarily to obtain a connected d-factor.
Since we have removed at most a 1

d·(d+1) -fraction of the weight, we obtain the

following result.

Theorem 5.3. For every d, Max-d-ARCS can be approximated within a factor
of 1− 1

d·(d+1) . ut
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6 Open Problems

An obvious open problem is to improve the approximation ratios. Apart from
this, let us mention two open problems: First, is it possible to achieve con-
stant factor approximations for minimum-weight k-edge-connected or k-vertex-
connected d-regular graphs? Without the regularity requirement, the problem
of computing minimum-weight k-edge-connected graphs can be approximated
within a factor of 2 [17] and the problem of computing minimum-weight k-
vertex-connected graphs can be approximated within a factor of 2 + 2 · k−1

n
for metric instances [15] and still within a factor of O(log k) if the instances
are not required to satisfy the triangle inequality [7]. We refer to Khuller and
Raghavachari [16] for a concise survey.

Second, we have seen that (dn2 e − 1)-RCS ∈ P, but we do not know if
Min-(dn2 e − 1)-RCS can be solved in polynomial time as well. In addition, we
conjecture that also (dn2 e − k)-RCS is in P for any constant k.
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