Multi-Criteria TSP: Min and Max Combined

Bodo Manthey

University of Twente, Department of Applied Mathematics
P. O. Box 217, 7500 AE Enschede, The Netherlands
b.mantheyQutwente.nl

Abstract. We present randomized approximation algorithms for multi-
criteria traveling salesman problems (TSP), where some objective func-
tions should be minimized while others should be maximized. For the
symmetric multi-criteria TSP (STSP), we present an algorithm that com-
putes (2/3—¢,4+¢) approximate Pareto curves. Here, the first parameter
is the approximation ratio for the objectives that should be maximized,
and the second parameter is the ratio for the objectives that should be
minimized. For the asymmetric multi-criteria TSP (ATSP), we present
an algorithm that computes (1/2 — ¢,log,n + €) approximate Pareto
curves. In order to obtain these results, we simplify the existing approxi-
mation algorithms for multi-criteria Max-STSP and Max-ATSP. Finally,
we give algorithms with improved ratios for some special cases.

1 Multi-Criteria TSP

1.1 Traveling Salesman Problems

The traveling salesman problem (TSP) is a basic problem in combinatorial op-
timization. An instance of Maz-TSP is a complete graph G = (V, E) with edge
weights w : E — Q.. The goal is to find a Hamiltonian cycle (also called a tour)
of maximum weight, where the weight of a Hamiltonian cycle is the sum of its
edge weights. (The weight of an arbitrary set of edges is analogously defined.)
If G is undirected, then we speak of Maz-STSP (symmetric TSP). If G is di-
rected, we have Maz-ATSP (asymmetric TSP). Min-TSP is similarly defined,
but now the edge weights d : E — Q4 are required to fulfil the triangle inequal-
ity: d(u,v) < d(u,x)+d(z,v) for all u,v,x € V (without the triangle inequality,
approximating the problem is impossible). The aim is to find a Hamiltonian cycle
of minimum weight. Min-STSP is the symmetric variant, where G is undirected,
while Min-ATSP is the asymmetric variant.

All four variants of TSP are NP-hard and APX-hard. Thus, we are in need
of approximation algorithms. Christofides’ algorithm [14] achieves a ratio of 3/2
for Min-STSP. Min-ATSP can be approximated with a factor of % -logy n, where
n is the number of vertices of the instance [8]. The currently best approximation
algorithm for Max-STSP achieves an approximation ratio of 7/9 [12], and the
currently best algorithm for Max-ATSP achieves a ratio of 2/3 [9].

Cycle covers are one of the main tools for designing approximation algorithms
for the TSP [3,8,9,12]. A cycle cover of a graph is a set of vertex-disjoint
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cycles such that every vertex is part of exactly one cycle. Hamiltonian cycles
are special cases of cycle covers that consist just of a single cycle. The general
idea is to compute an initial cycle cover, and then we join the cycles to obtain a
Hamiltonian cycle.

1.2 Multi-Criteria Optimization

In many optimization problems, there is more than one objective function. This
is also the case for the TSP: We might want to minimize travel time, expenses,
number of flight changes, etc., while a taxi driver might want to maximize his
profit, or we want to maximize, for instance, our profit along the way. This gives
rise to multi-criteria TSP, where Hamiltonian cycles are sought that optimize
several objectives simultaneously. However, as far as we are aware, multi-criteria
TSP has only been considered in a restricted setting, where either all objectives
should be minimized or all objectives should be maximized. In this paper, we
consider the general setting with both types of objectives at the same time.

If k objectives are to be maximized and ¢ objectives are to be minimized,
then we have k-Maz-¢-Min-ATSP and k-Maz-¢-Min-STSP. If the number of
criteria does not matter, we will also speak of MC-ATSP and MC-STSP. If
¢ =0 or k =0, then we obtain the special cases k-Max-ATSP and k-Max-STSP
as well as £-Min-ATSP and ¢-Min-STSP. Analogously, if the number of criteria
is unimportant, we have MC-Max-ATSP and so on.

With respect to a single objective function, the notion of an optimal solution
is well-defined. But if we have more than one objective function, there is no nat-
ural notion of a best choice. Instead, we have to content ourselves with trade-off
solutions. The goal of multi-criteria optimization is to deal with this dilemma.
In order to transfer the notion of an optimal solutions to multi-criteria optimiza-
tion problems, Pareto curves (also known as Pareto sets or efficient sets) were
introduced introduced (cf. Ehrgott [6]). A Pareto curve is a set of solutions that
are potential optimal choices.

An instance of k-Max-¢-Min-ATSP is a directed complete graph G = (V, E)
with edge weights wy,...,wg : E — Q4 and dy,...,dy : E — Q4. The functions

w1, ..., w, should be maximized while d,...,d, should be minimized. We call
wi, . .., wy the maz objectives and dy, . . ., dy the min objectives. For convenience,
let w = (wy,...,wg) and d = (dy,...,ds). Inequalities of vectors are meant

component-wise.

A Hamiltonian cycle H dominates another Hamiltonian cycle H' if w(H) >
w(H') and d(H) < d(H’) and at least one of these inequalities is strict. This
means that H is strictly preferable to H'. A Pareto curve of solutions contains
all solutions that are not dominated by another solution. For other optimization
problems, multi-criteria variants are defined analogously.

Unfortunately, Pareto curves cannot be computed efficiently in many cases:
First, they are often of exponential size. Second, they are NP-hard to compute
even for otherwise easy optimization problems. Third, TSP is NP-hard already
with a single objective function, and optimization problems do not become easier



with more objectives involved. Therefore, we have to be satisfied with approxi-
mate Pareto curves.

A set P of Hamiltonian cycles is called an («, 8) approzimate Pareto curve
for the instance (G, w, d) if the following holds: For every Hamiltonian cycle H’,
there exists an H € P with w(H) > aw(H') and d(H) < Bd(H'). We have
a<1,p>1,and a (1,1) approximate Pareto curve is a Pareto curve.

An algorithm is called an («, 8) approzimation algorithm if, given G and w,
it computes an («, 8) approximate Pareto curve. It is called a randomized («, )
approzimation if its success probability is at least 1/2. This success probability
can be amplified to 1 — 27™ by executing the algorithm m times and taking
the union of all sets of solutions. A fully polynomial time approximation scheme
(FPTAS) for a multi-criteria optimization problem computes (1 —e,1 4+ €) ap-
proximate Pareto curves in time polynomial in the size of the instance and 1/¢
for all € > 0. Multi-criteria matching admits a randomized FPTAS [13], i.e., the
algorithm succeeds in computing a (1 —e,1+ ¢) approximate Pareto curve with
a probability of at least 1/2. This randomized FPTAS yields also a randomized
FPTAS for the multi-criteria cycle cover problem [11].

1.3 Previous Work

Most research on multi-criteria TSP is about heuristics for finding approx-
imate solutions without any worst-case guarantee. We refer to Ehrgott and
Gandibleux [6,7] for a comprehensive survey.

The first result concerning computing approximate Pareto curves for the TSP
is due to Angel et al. [1,2], who considered Min-STSP restricted to edge weights
1 and 2. Ehrgott [5] considered a variant of MC-Min-STSP, where all objec-
tives are encoded into a single objective by using some norm. MC-Min-STSP
allows for a (2+¢) approximation [11]. Bléser et al. [4] devised the first random-
ized approximations for MC-Max-STSP and MC-Max-ATSP. Their algorithms
achieve ratios of % — ¢ for k-Max-STSP and k%_l — ¢ for k-Max-ATSP. This has
been improved to 2/3 — e and 1/2 — ¢, respectively [10]. MC-Min-ATSP can be
approximated with a factor of logyn + € [10].

All approximation algorithms mentioned above deal with the special cases
where we have either only min objectives or only max objectives. As far as we
are aware, nothing is known so far about the approximability of multi-criteria
TSP with both min and max objectives.

1.4 New Results

We present randomized approximation algorithms for k-Max-¢-Min-TSP for any
k,? € N. As far as we are aware, this is the first paper that deals with approx-
imation algorithms for multi-criteria TSP with both min and max objectives
simultaneously. Our approximation algorithm for k-Max-¢-Min-ATSP computes
(1/2 —¢€,logy n + €) approximate Pareto curves for any ¢ and & (Section 3). Our
approximation algorithm for k-Max-¢-Min-STSP computes (2/3 — ¢,4 + ) ap-
proximate Pareto curves for any ¢ and k (Section 4). The running-times of our



algorithms are polynomial in the input size for any fixed k, ¢, and . But, since
even the sizes of approximate Pareto curves are exponential in the number of
objectives, it is unavoidable that the running-time is exponential in k& and /.

The main difficulty is that min and max objectives are different in nature:
For max objectives, we have to collect as much weight as possible. If we have
a substructure, i.e., a collection of paths that can be extended to a Hamilto-
nian cycle, then we can add any edges to actually get a Hamiltonian cycle. For
min objectives, we have to be careful since adding any single heavy edge can
deteriorate the approximation ratio.

The idea to deal with this difficulty is to first detect a collection of paths that
have sufficient weight with respect to the max objectives. (In fact, we compute a
set of collections of paths since a single collection does not suffice.) We will take
care that these collections of paths are not too heavy with respect to the min
objectives. After that, we connect our collections of paths to get Hamiltonian
cycles. In this second step, we only pay attention to the min objectives; we
already have enough weight with respect to the max objectives, and adding
further edges does not decrease the weight.

In the next section, we introduce decompositions, which have already been
used to approximate MC-Max-TSP [4,10]. Then we present our algorithms and
their analyses in the subsequent sections. As a byproduct, our algorithms are
simplified 1/2 — ¢ and 2/3 — ¢ approximation algorithms for MC-Max-ATSP
and MC-Max-STSP, respectively. In particular, they avoid the recursion from
k to k — 1 objectives that was used in the earlier approximation algorithms
for MC-Max-TSP [4,10]. Finally, we consider some variants of the problem like
combining asymmetric and symmetric objective functions (Section 5).

Due to space constraints, most proofs are omitted due to space constraints.

2 Decompositions

From now on, let ny . = % < 1 for e > 0. We assume € < zl—ik throughout the
paper. This is no restriction since the number k of max objectives is considered
to be fixed. For n € N, let [n] = {1,2,...,n}.

We call a Hamiltonian cycle H a &-heavy-weight Hamiltonian cycle if there
exists an 4 € [k] and an edge e € H such that w;(e) > w(H). In this case, e is
called a &-heavy-weight edge of H. If € is clear from the context, we also speak
simply of a heavy-weight Hamiltonian cycle and a heavy-weight edge. Vice versa,
H is a &-light-weight Hamiltonian cycle if it is not £-heavy-weight. Light-weight
and heavy-weight cycle covers as well as heavy-weight edges of cycle covers are
defined analogously.

A decomposition of a cycle cover C is a set P C C of edges that consists
solely of paths. The collection P of paths is obtained by removing a single edge
of every cycle of C. The set P is called a v decomposition if w(P) > yw(C).
Decompositions play a crucial role in approximating MC-Max-TSP: We can add
edges to a collection P of paths to get a Hamiltonian cycle. Thus, if C' allows for
an v decomposition P, then we can find a Hamiltonian cycle H O P with w(H) >



w(P) > vw(C). For our algorithms, we exploit that (1/2 — ¢) decompositions of
directed ny, .-light-weight cycle covers and (2/3—¢) decompositions of undirected
Nk,e-light-weight cycle covers exist and can be found in polynomial time [10].

We call the procedure that finds decompositions DECOMPOSE with parame-
ters C, w, and e: C is a cycle cover (directed or undirected), w = (wy,...,w)
are k edge weights, and € > 0. Then DECOMPOSE(C,w, ¢) returns a (1/2 — ¢)-
or (2/3 — e)-decomposition P C C, depending on whether C' is directed or undi-
rected, provided that C' is an n; -light-weight cycle cover.

In addition to DECOMPOSE, we use the following existing algorithms for our
algorithms: CYCo0-APPROX denotes the randomized FPTAS for cycle covers: on
input (G,w,d,e,p), CYCo-APPROX returns a (1 —e,1+ ¢) approximate Pareto
curves of cycle covers with respect to (G, w,d) with a success probability of at
least 1 — p. We use CYCo-APPROX for computing both undirected and directed
cycle covers. If either d or w is missing, CYCo-APPROX computes a (1 —€) or
(14 ¢) approximate Pareto curve with respect to w or d, respectively.

MST-APPROX denotes the deterministic FPTAS for multi-criteria spanning
trees of minimum weight [13]: MST-APPROX(G, d, €) computes a (1+¢) approx-
imate Pareto curve of spanning trees of the instance (G, d).

By MINATSP-APPROX, we denote the (logy n+¢) approximation algorithm
for MC-Min-ATSP [10]: On input (G,d,e,p), MINATSP-APPROX computes a
(logy n + ¢) approximate Pareto curve for MC-Min-ATSP for the instance (G, d)
with a success probability of at least 1 — p.

3 Asymmetric Multi-Criteria TSP

3.1 Preparation for MC-ATSP

In this section, we focus our attention on the max objectives w. For a graph
G = (V,E) and a subset K C E of G’s edges, we obtain G_g by contracting
all edges of K. Contracting a single edge (u,v) means removing all outgoing
edges of u, removing all incoming edges of v, and identifying u and v. (The set
K will always be such that no conflicts arise during contraction. In particular,
the order in which the edges are contracted does not matter.) Analogously, for a
Hamiltonian cycle H and edges K, we obtain a Hamiltonian cycle H_g of G_k
by contracting the edges in K. We will usually have K C H in this case.

If (G, w,d) is an instance for a multi-criteria TSP problem, then (G_k,w, d)
denotes the instance with w and d modified according to the edge contractions.

For any Hamiltonian cycle H, let ¢; = max{w;(e) | e € H} be the weight of
the heaviest edge with respect to the i-th objective. Let ( = ((H) = ((1,---,Ck)-
We will distinguish between H being a light-weight cycle cover, i.e., all compo-
nents of ( = ((H) are small, and H being a heavy-weight cycle cover, i.e., there
is some ¢ such that (; is large. From the edge weights w and (, we obtain new
edge weights w¢ by setting the weight of all edges that are heavier than any edge
in H to O:

wS(e) = {w(e) if w(e) < ¢ and

0 if w;(e) > ¢; for some 7.



This does not affect the weight of H since all edges e € H fulfil w(e) < (.
The reason for this definition is the following: Assume that H is a light-weight
cycle cover, and assume that we have a (1 — €) approximate Pareto curve cstH)
of cycle covers with respect to w¢(). Then C¢(1) contains a light-weight cycle
cover whose weight is close to H’s weight. This is stated more precisely in the
following lemma.

Lemma 1 (Manthey [10]). Let ¢ > 0 be sufficiently small. Let H be an
(M,es2 — (5)%)-light-weight Hamiltonian cycle. Let ( = ((H), and let C¢ be a
(1- %) approzimate Pareto curve of cycle covers with respect to wS.

Then C¢ contains a cycle cover C' with w*(C) > (1 —£)-w(H) and w'(e) <
Mi,e/2 * w¢(C) for all e € C. This cycle cover C yields a decomposition P C C
with w(P) > (1/2 —¢) - w(H).

This is all we need so far for dealing with light-weight Hamiltonian cycles.
Next, we deal with heavy-weight Hamiltonian cycles H. Of course it can happen
that we somehow get a light-weight cycle cover C' that approximates H, ie.,
w(C) > (1 — e)w(H). In this case, we can apply decomposition and are done.

However, we cannot guarantee that we find such a cycle cover, not even that
such a cycle cover exists. Thus, heavy-weight Hamiltonian cycles need special
treatment. The idea how to deal with them is to collect a few number of heavy-
weight edges. This should be done such that the following properties are met:
The collection should contain a 1/2—e¢ fraction of the weight of H with respect to
some objective functions. And the rest of H, after all edges of the collection have

been contracted, should be a light-weight Hamiltonian cycle. This would allow

log(3+e)
o= /2 (3T |
Our goal is now to prove that for every Hamiltonian cycle H, there exists a set
K C H of cardinality at most f(k,e) such that H_f is a (ngc/2 — (5)?)-light-
weight Hamiltonian cycle.

us to use decomposition for the rest of H. Let f(k,e) = k - [

Lemma 2. For every H and every € > 0, there exists a subset K C H such
that |K| < f(k,e) and, for every i € [k], we have

1. wi(K) > (1)2 — e)w

i(H) or
2. wi(e) < (Mgejo— (5)3

)wi(H,K) foralle e H k.

3.2 Approximation Algorithm for MC-ATSP

From the results of the previous section, we know that ¢ and K exist such that,
for every H, we will find an appropriate light-weight cycle cover that eventually
yields a tour H whose weight approximates H’s weight. To actually obtain an
algorithm, we have to find K and (. But there is only a polynomial number
of possibilities for ¢ and K: For all ¢ and for all ¢ € [k], we can assume that
there is an edge with w;(e) = ¢;. Thus, there are at most O(n?) choices for
¢, hence at most O(n2*) in total. The cardinality of K is bounded in terms of
f(k,e) as we have shown in the lemma above. For fixed k and ¢, there is only



Prsp < ATSP-ApPrROX(G,w, d, €)
input: directed complete graph G = (V,E), w: F = Q%,d: E - Q%, >0
output: (1/2 — ¢,log, n + €) approximate Pareto curve Prgp for k-Max-¢-Min-ATSP
with a success probability of at least 1/2
for all path covers K C E with \K\ < f(k: €) and bounds ¢ do
Ck.¢ + CYCo-APPROX(G_k,w",d, £
for allIC[ | andCECKC do
if ws(e) < 2 -w§(C) for all e € C then
P «+ DecoMPOSE (C, w§, £)

12

1:

2 )2 W
3

4

5:

6: let V' be the start-points of paths of P
7

8

9

0

1

Prsp  MINATSP-Approx (V', d

for all H' € Prgp do
A+« H UC
obtain a tour H” from the Eulerian set A of edges with H” D P
combine H” and K to a tour H; add H to Prsp

) 27 2k4n2k+f(k 5)‘61( (‘)

10:
11:

Algorithm 1: ATSP-ApPPROX: Approximation algorithm for MC-ATSP.

a polynomial number of subsets of cardinality at most f(k,e). We can restrict
K to be a path cover, which is an acyclic set of edges such that both indegree
and outdegree of each vertex is at most one. Of course, the running-time of
our algorithm is exponential in the number k& of max objectives. But this is
unavoidable since the sizes of approximate Pareto curves can be exponential in
the number of objectives. In the following, w; for a set I C [k] denotes the vector
of edge weights restricted to the components in I. Instead of taking edges one-
by-one as in the proof of Lemma 2, we take all edges at once. This means that
we take a subset of the edges of cardinality at most f(k,e). Furthermore, we
do not distinguish between light-weight and heavy-weight Hamiltonian cycles:
light-weight Hamiltonian cycles are simply those for which K = ) works.

The min objectives remain to be taken into account. The main idea be-
hind the algorithm is first to collect enough weight with respect to the max
objectives. This gives us a collection of paths that fulfil the weight require-
ments for the max objectives. We have to be careful not to get too much
weight with respect to the min objectives. After that we connect the paths using
MINATSP-APPROX, which is the approximation algorithm for MC-Min-ATSP.
Overall, we get ATSP-APPROX (Algorithm 1) and the following theorem.

Theorem 1. For every € > 0, ATSP-APPROX (Algorithm 1) is a randomized
(1/2 — e,logyn + &) approximation algorithm for k-Max-€-Min-ATSP for any
k,¢ € N. For fized €, k, and £, its running-time is polynomial in the input size.

Proof. For want of space, we only analyze the approximation ratio. To do this, we
assume that all randomized computations are successful. We have to show that
for every Hamiltonian cycle H, there exists a Hamiltonian cycle H € Prgp with
w(H) > (1/2—e)w(H) and d(H) < (logy n+e)d(H). Thus, let H be an arbitrary
Hamiltonian cycle. By Lemma 2, there exists a set K C H of cardinality at most
f(k,e) and a set I C [k] with the following properties:




— For every i € [k] \ I, we have w;(K) > (1/2 — &)w;(H).
— For every i € I and for every edge e € H_g, we have w;(e) < (7]k7€/2 -

(5)*)wi(H-k).

Let ¢ = ((H_k). According to Lemma 1, the set Cx ¢ contains a cycle cover
C with the following properties:

— Cis a ny ¢ /2-light-weight cycle cover with respect to wy.
- w;(C) > (1 - %)wz(ﬁ) for every i € I.
— d(C) < (1+ §)d(_x).

This means that there exists a decomposition P C C such that w;(P) >
(1/2 — e)w;(H_g) and P consists of at most n/2 paths. The former follows
from Lemma 1. The latter holds since H_k has at most n vertices and every
cycle of C consists of at least two vertices, which implies that every connected
component of P consists of at least two vertices.

Thus, V' has at most n/2 vertices. This implies that Ppgp contains a Hamil-
tonian cycle H' with d(H') < (logy(2) + 5)d(H_k).

We obtain the Hamiltonian cycle H” of V' \ K as follows: Assume that P
contains a path from u to v and H’ contains an edge from u to z. Then we add
the path from w to v plus the edge (v,x) to H”. We do this for all paths of P.
The triangle inequality guarantees d(v,z) < d(v,u) + d(u,x). This yields

d(H") < d(C) +d(H') < d(C) + (log, (5) + 5) - d(H-x)
< (145 +1logy () +5) d(H-k) = (logyn+e¢)-dH_k).

We observe that d(H) = d(K)+d(H_g) since K C H. Furthermore, d(H) =
d(H") +d(K). Thus, d(H) < (logyn +¢)-d(H_g) +d(K) < (logyn + ¢) - d(H).
In addition, we have wl( ) > wi(K) > (3 -¢) ~w(H) for every i € I and
wi(H) > w;(P)+w;(K) > (3 —¢) w( (H_g)+w;(K) > (3-¢) w;(H) for every
i € [k] \ I. This proves the approximation ratio. O

4 Symmetric Multi-Criteria TSP

Of course, ATSP-APPROX works also for MC-STSP. However, this ignores d and
w being symmetric. In this section, we present a (2/3 — &,4 + €) approximation
algorithm for MC-STSP.

4.1 Preparation for MC-STSP

As we did for ATSP, we first focus our attention on the max objectives w.
For our approximation algorithm, we need counterparts of Lemmas 1 and 2.

The following function g plays a similar role as f in the directed case: g(k,e) =
1 1lie .

k- {m] For bounds ¢ = (¢1,.-.,Ck) € Qi, we define w¢ in the

same way as for directed graphs. We have the following counterpart of Lemma 1.



Lemma 3 (Manthey [10]). Let ¢ > 0 be arbitrary. Let EI be an undirected
Hamiltonian cycle that is (ng.c/3 — (5)%)-light. Let ¢ = ((H), and let C¢ be a
(1 — %) approzimate Pareto curve of cycle covers with respect to wC.

Then C¢ contains a cycle cover C with w(C) > (1 — %)w(ﬁ) and ws(e) <
nk,e/ng(C’) for all e € C. This cycle cover C yields a decomposition P C C

with w(P) > (3 — %£)w(H).

However, the main difficulty when dealing with STSP is that contractions
are no longer possible. If we contract an edge in the straight-forward way, we
obtain a directed instance. Since we aim at better approximation ratios for STSP
than we have for ATSP, something more sophisticated has to be done. Instead of
taking only single edges, we take longer paths. We do not contract these paths,
but set the weights of all edges incident to vertices on the path to 0. In this way,
we can later remove the edges of a cycle that traverse these vertices, and then
we can add the edges of the path. The problem is that we might lose the two
edges at the ends of the paths; we cannot force them to be in a cycle cover in the
same way. However, as the following lemma shows, we can choose the two edges
at the end such that they contribute only little to the weight of the Hamiltonian
cycle. Thus, we do not lose too much weight and are still able to achieve a good
approximation ratio. The following lemma shows that any sufficiently long path
contains an edge that is light with respect to all objectives wy, ..., wg.

Lemma 4 (Manthey [10]). Let H be a Hamiltonian cycle on n vertices, and
let e1,...,em be any m distinct edges of H. Then there evists a z € [m] such
that w(e.) < £ . w(H).

Now let H be a Hamiltonian cycle, and let K C H. Let L = L(K) = {v €
V | Je € K : v € e} be the set of vertices incident to edges in K. Let w= be
defined by w=%(e) = w(e) if en L = 0 and w=L(e) = 0 if eN L # (). This means
that the weight of edges incident to L is set to 0, which includes the edges in K.
But there are more edges whose weight is affected by w=’: Let

T=T(K)={ec H|ed¢ K,enL(K) # 0}

be the set of edges that have exactly one endpoint in L. The weights of these
edges are set to 0 in w™%, but we cannot force them to be in any cycle cover
as mentioned above. (They are the edges at the ends of the paths in K.) The
following lemma is the undirected counterpart of Lemma 2. In particular, it
takes care of the set T'. This set T' is only needed for the analysis and not for
the algorithm.

Lemma 5. For every Hamiltonian cycle H and every € > 0, there exists a
subset K C H of at most g(k,e) paths, each of length at most %g(kz,e) with the
following properties: Let L = L(K) and T = T(K). For every i € [k], we have
1. wi(K) > (2/3 —¢e)w;(H) or
2. w; b (e) < (s — (5)°)w; “(H) for alle € H.

Furthermore, we have w(T) < Zw(H).



Prsp < STSP-ArPROX(G, w, d, €)
input: undirected complete graph G = (V, E), w: E — Qi, d: E— Qﬁ, e>0
output: (2/3 —¢,4+ ¢) approximate Pareto curve Prgp for k-Max-£-Min-ATSP with
a success probability of at least 1/2

1: for all K C E consisting of < g(k,e) paths of length < 6kg(k,e) and all ¢ do
2 L+ L(K)

3 Cr.c + CyCo-ApPPROX (G, w "¢, £, m)

4 for all I C [k] and C € Cr ¢ do

5: if w;¢(e) < Mk,e/3 ~w; B4(C) for all e € C' then

6: P « DECOMPOSE(C, w; “¢, £)

7 remove edges of weight 0 from P

8: choose one end-point of each path of P and K to obtain V'

9: let G’ be the corresponding graph
10: T «+ MST-Approx (G, d, 5)
11: for all T € T do
12: combine T, P, and K to a spanning tree T’ of G
13: duplicate each edge of T” to get an Eulerian graph T"
14: traverse T”, take shortcuts to get a tour H O PUK; add H to Prsp

Algorithm 2: STSP-ApPrROX: Approximation algorithm for MC-STSP.

4.2 Approximation Algorithm for MC-STSP

The main difficulty in getting approximation ratios for MC-STSP is threefold:
First, we have to be more careful than for MC-ATSP since contractions are im-
possible. When inserting the edges of the set K, we have to take into account two
points: First, we need all edges of K since we need the weight for the max ob-
jectives. Second, we cannot afford to add arbitrary edges to build a Hamiltonian
cycle since this might add too much weight with respect to the min objectives.
Third, concerning the approximation ratio, we will construct Eulerian graphs
from which we obtain the Hamiltonian cycles by taking shortcuts. However, on
the one hand, we have to make sure that none of the edges of K is removed
by taking shortcuts. On the other hand, this gives us another factor of 2 in the
approximation ratio. (The problem is that Christofides’ algorithm for MC-Min-
STSP gives us only a ratio of 2+ ¢ instead of 3/2 as it does for Min-STSP with a
single objective.) We deal with these issues in the proof of the main theorem of
this section. Overall, we obtain Algorithm 2 (STSP-APPROX) and the following
result.

Theorem 2. For every ¢ > 0, STSP-APPROX (Algorithm 2) is a randomized
(2/3—¢,44¢) approzimation algorithm for k-Max-¢-Min-STSP for any k,¢ € N.
For fized ¢, k, and ¢, its running-time is polynomial in the input size.

5 Variants

Since k and ¢ are usually quite small, a natural question is if the approximation
ratios can be improved for particular values of k£ and /.




Our first observation is that k-Max-1-Min-STSP allows for a (2/3—¢,3.5+¢)
approximation: Instead of using the spanning tree heuristic in lines 10 to 13, we
use Christofides’ algorithm [14]. More general and along the same lines: If £-Min-
STSP can be approximated with a ratio of s, then this yields a (2/3—¢, s;+2+¢)
approximation algorithm for k-Max-¢-Min-STSP.

Our second observation concerns ATSP: If /-Min-ATSP can be approximated
with a ratio of sg(n) on graphs with n vertices, then this yields a (1/2 —¢,1+
se(n/2) 4 €) approximation algorithm for k-Max-¢-Min-ATSP. This follows im-
mediately from the analysis in Section 3. In particular, for £ = 1, we obtain a
(1/2—¢, 2logy n+ § +¢) approximation using the algorithm of Feige and Singh
for Min-ATSP [8].

Finally, an obvious variant of multi-criteria TSP that has not been analyzed
yet is a combination of ATSP and STSP: Some objectives are asymmetric, while
others are symmetric. The difficulty with this variant is that, for asymmetric ob-
jectives, only cycle covers with a minimum cycle length of two can be computed
efficiently. Thus, if also the symmetric objectives require cycle cover compu-
tations, which is the case for symmetric max objectives, it seems hard to get
approximation ratios better than the trivial ratios that we obtain by using the
ATSP algorithms for both symmetric and asymmetric objectives.

One setting, however, allows for better ratios: If the max objectives are asym-
metric and the min objectives are symmetric, then a straightforward combination
of ATSP-APPROX (Algorithm 1) and STSP-APPROX (Algorithm 2) gives a ra-
tio of (1/2—¢,4+¢): We run ATSP-APPROX until we have enough weight with
respect to the max objectives w. Then we switch to STSP-APPROX to connect
the components. We do not lose any weight with respect to w by connecting the
components, although the max objectives w are asymmetric.

6 Concluding Remarks

We have presented approximation algorithms for multi-criteria traveling sales-
man problems that have min and max objectives simultaneously. Our algorithms
work for any fixed number of minimization and maximization objectives. They
are randomized and have polynomial running-time. The approximation ratios
obtained, (1/2 — ¢,log, n + €) for MC-ATSP and (2/3 —¢,4 + ¢) for MC-STSP,
match the approximation ratios for multi-criteria TSP with only maximization
or only minimization problems, except for the Min-STSP part of MC-STSP. For
this, the ratio is only 4 + ¢, compared to 2+ ¢ for MC-Min-STSP. This raises the
questions whether this 4+¢ can be improved. More precisely: If there exists an ry
approximation algorithm for ¢-Min-STSP, does this yield a (2/3 — &, r) approx-
imation algorithm for k-Max-¢-Min-STSP? So far, we only get a performance
ratio of (2/3 —e,7¢ + 2 + ¢) according to Section 5.

To simplify the analysis of the approximability of multi-criteria TSP, it would
be nice if any improvement for k-Max-STSP also yields an improvement for k-
Max-¢-Min-STSP: Assume that k-Max-STSP can be approximated with a ratio
of s and ¢-Min-STSP can be approximated with a ratio of 7. Does this yield



a (rk, s¢) approximation for k-Max-¢-Min-STSP? Or at least a (fx,g¢) approxi-
mation for some non-trivial functions f; and g, that depend on r; and s,? The
same question arises for k-Max-ATSP, £-Min-ATSP, and k-Max-¢-Min-ATSP.

Finally, we ask whether there are also faster and deterministic algorithms for

multi-criteria TSP. The algorithms presented here use randomness only because
no deterministic FPTAS for multi-criteria cycle covers is known. Maybe either
the randomized FPTAS can be derandomized or cycle covers as an intermediate
step can be avoided at all.
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