On Approximating Restricted Cycle Covers*

Bodo Manthey**

Universitiat zu Liibeck, Institut fiir Theoretische Informatik
Ratzeburger Allee 160, 23538 Liibeck, Germany
manthey@tcs.uni-luebeck.de

Abstract. A cycle cover of a graph is a set of cycles such that every
vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in
which the length of every cycle is in the set L. A special case of L-cycle
covers are k-cycle covers for £ € N, where the length of each cycle must
be at least k. The weight of a cycle cover of an edge-weighted graph is
the sum of the weights of its edges.

We come close to settling the complexity and approximability of com-
puting L-cycle covers. On the one hand, we show that for almost all L,
computing L-cycle covers of maximum weight in directed and undirected
graphs is APX-hard and NP-hard. Most of our hardness results hold even
if the edge weights are restricted to zero and one. On the other hand, we
show that the problem of computing L-cycle covers of maximum weight
can be approximated with factor 2.5 for undirected graphs and with fac-
tor 3 in the case of directed graphs. Finally, we show that 4-cycle covers
of maximum weight in graphs with edge weights zero and one can be
computed in polynomial time.

As a by-product, we show that the problem of computing minimum ver-
tex covers in A-regular graphs is APX-complete for every A > 3.

1 Introduction

The travelling salesman problem (TSP) is perhaps the best-known combinatorial
optimisation problem. An instance of the TSP is a complete graph with edge
weights, and the aim is to find a minimum or maximum weight cycle that visits
every vertex exactly once. Such a cycle is called a Hamiltonian cycle. Since the
TSP is NP-hard [10, ND224-23], we cannot hope to always find an optimal cycle
efficiently. For practical purposes, however, it is often sufficient to obtain a cycle
that is close to optimal. In such cases, we require approximation algorithms, i.e.
polynomial-time algorithms that compute such near-optimal cycles.

The problem of computing cycle covers is a relaxation of the TSP: A cycle
cover of a graph is a spanning subgraph such that every vertex is part of exactly
one simple cycle. Thus, a solution to the TSP is a cycle cover consisting of a single
cycle. In analogy to the TSP, the weight of a cycle cover in an edge-weighted
graph is the sum of the weights of its edges.

* A full version of this work is available at http://arxiv.org/abs/cs/0504038.
** Supported by DFG research grant RE 672/3.

3rd Workshop on Approximation and Online Algo. (WAOA 2005) (© Springer

In contrast to the TSP, cycle covers of maximum weight can be computed
efficiently. This fact is exploited in approximation algorithms for the TSP; the
computation of cycle covers forms the basis for the currently best known ap-
proximation algorithms for many variations of the TSP. These algorithms usu-
ally start by computing an initial cycle cover and then join cycles to obtain a
Hamiltonian cycle.

Short cycles in a cycle cover limit the approximation ratios achieved by such
algorithms. In general, the longer the cycles in the initial cover are, the bet-
ter the approximation ratio. Thus, we are interested in computing cycle covers
without short cycles. Moreover, there are approximation algorithms that behave
particularly well if the cycle covers that are computed do not contain cycles of
odd length [6]. Finally, some so-called vehicle routing problems (cf. e.g. Hassin
and Rubinstein [12]) require covering vertices with cycles of bounded length.

Therefore, we consider restricted cycle covers, where cycles of certain lengths
are ruled out a priori: Let L C N; then an L-cycle cover is a cycle cover in which
the length of each cycle is in L. To fathom the possibility of designing approxi-
mation algorithms based on computing cycle covers, we aim to characterise the
sets L for which L-cycle covers of maximum weight can be computed efficiently.

1.1 Preliminaries

A cycle cover of a graph G = (V, E) is a subgraph of G that consists solely of
cycles such that all vertices in V' are part of exactly one cycle. The length of a
cycle is the number of edges it consists of. We are concerned with simple graphs,
i.e. the graphs do not contain multiple edges or loops. Thus, the shortest cycles
of undirected and directed graphs have length three and two, respectively.

An L-cycle cover is a cycle cover in which the length of every cycle is in the
set L C N. For undirected graphs, we have L CU = {3,4,5,...}, while L CD =
{2,3,4,...} in case of directed graphs. A k-cycle cover is a {k,k+1,...}-cycle
cover. Let L = U \ L in the case of undirected graphs and L = D\ L in the case
of directed graphs (this will be clear from the context).

Given an edge weight function w : E — N, the weight w(C) of a subset
C C E of the edges of G is w(C) = > .- w(e). This particularly defines the
weight of a cycle cover since we view cycle covers as sets of edges. Let U C V
be any subset of the vertices of G. The internal edges of U are all edges of G
that have both vertices in U. We denote by wy (C') the sum of the weights of
all internal edges of U in C. The external edges at U are all edges of G with
exactly one vertex in U.

For L C U, the set L-UCC contains all undirected graphs that have an
L-cycle cover as spanning subgraph.

Max-L-UCC is the following optimisation problem: Given a complete undi-
rected graph with edge weights zero and one, find an L-cycle cover of maximum
weight. We can also consider the graph as being not complete and without edge
weights. Then we try to find an L-cycle cover with a minimum number of “non-
edges” (“non-edges” correspond to weight zero edges, edges to weight one edges).
Thus, Max-L-UCC can be viewed as a generalisation of L-UCC.

Max-W-L-UCC is the problem of finding maximum-weight L-cycle covers
in graphs with arbitrary non-negative edge weights.

For k > 3, k-UCC, Max-k-UCC, and Max-W-k-UCC are defined like
L-UCC, Max-L-UCC and Max-W-L-UCC except that k-cycle covers instead of
L-cycle covers are sought.

L-DCC, Max-L-DCC, Max-W-L-DCC, k-DCC, Max-k-DCC, and
Max-W-k-DCC are defined for directed graphs like L-UCC, Max-L-UCC,
Max-W-L-UCC, k-UCC, Max-k-UCC, and Max-W-k-UCC for undirected graphs
except that L C D and k > 2.

An instance of Min-Vertex-Cover is an undirected graph H = (X, F). A
vertex cover of H is a subset X C X such that at least one vertex of every
edge in F' is in X. The aim is to find a vertex cover of minimum cardinality.
Min-Vertex-Cover(A) is Min-Vertex-Cover restricted to A-regular graphs, i.e.
to simple graphs in which every vertex is incident to exactly A\ edges. Already
Min-Vertex-Cover(3) is APX-complete [2].

We refer to Ausiello et al. [3] for a survey on NP optimisation problems.

1.2 Existing Results

Undirected Graphs. U-UCC, Max-U-UCC, and Max-W-U-UCC can be solved
in polynomial time via reduction to the classical perfect matching problem,
which can be solved in polynomial time [1, Chap. 12]. Hartvigsen presented
a polynomial-time algorithm for computing a maximum-cardinality triangle-free
two-matching [11] (see also Sect. 5). His algorithm can be used to decide 4-UCC
in polynomial time. Furthermore, it can be used to approximate Max-4-UCC
within an additive error of one according to Bléser [4].

Max-W-k-UCC admits a simple factor 3/2 approximation for all k: Compute
a maximum weight cycle cover, break the lightest edge of each cycle, and join
the cycles to obtain a Hamiltonian cycle, which is sufficiently long if the graph
contains at least k vertices. Unfortunately, this algorithm cannot be generalised
to work for Max-W-L-UCC with arbitrary L. For the problem of computing k-
cycle covers of minimum weight in graphs with edge weights one and two, there
exists a factor 7/6 approximation algorithm for all k [8].

Cornuéjols and Pulleyblank presented a proof due to Papadimitriou that 6-
UCC is NP-complete [9]. Vornberger showed that Max-W-5-UCC is NP-hard [14].
For k > 7, Max-k-UCC and Max-W-k-UCC are APX-complete [5]. Hell et al. [13]
proved that L-UCC is NP-hard for L Z {3,4}.

For most L, L-UCC, Max-L-UCC, and Max-W-L-UCC are not even recursive
since there are uncountably many L. Thus for most L, L-UCC is not in NP and
Max-L-UCC and Max-W-L-UCC are not in NPO. This does not matter for hard-
ness results but may cause problems when one wants to design approximation
algorithms that base on computing L-cycle covers. However, our approximation
algorithms work for arbitrary L, independently of the complexity of L.

Directed Graphs. D-DCC, Max-D-DCC, and Max-W-D-DCC can be solved in
polynomial time by reduction to the maximum weight perfect matching problem

| [Z-UCC|Max-L-UCC|[Max-W-L-UCC]

L=0 in P in PO in PO
L={3} in P in PO

L={4}VvL={34} APX-complete
else NP-hard|APX-hard APX-hard

(a) Undirected cycle covers.

| [Z-DCC[Max-L-DCC[Max-W-L-DCC|

L={2}vL=D|inP in PO in PO

else NP-hard|APX-hard APX-hard
(b) Directed cycle covers.

Table 1. The complexity of computing L-cycle covers.

in bipartite graphs [1, Chap. 12]. But already 3-DCC is NP-complete [10, GT13].
Max-k-DCC and Max-W-k-DCC are APX-complete for all k£ > 3 [5].

Similar to the factor 3/2 approximation algorithm for undirected cycle covers,
Max-W-k-DCC has a simple factor 2 approximation algorithm for all k: Com-
pute a maximum weight cycle cover, break the lightest edge of every cycle, and
join the cycles to obtain a Hamiltonian cycle. Again, this algorithm cannot be
generalised to work for Max-W-L-DCC with arbitrary L. There are a factor 4/3
approximation algorithm for Max-W-3-DCC [7] and a factor 3/2 approximation
algorithm for Max-k-DCC for k > 3 [5].

As in the case of cycle covers in undirected graphs, for most L, L-DCC,
Max-L-DCC, and Max-W-L-DCC are not recursive.

1.3 New Results

We come close to settling the complexity and approximability of restricted cycle
covers. Only the complexity of the five problems 5-UCC, {4}-UCC Max-5-UCC,
Max—m—UCC, and Max-W-4-UCC remains open. Table 1 shows an overview on
the complexity of computing restricted cycle covers.

Hardness Results. We prove that Max-L-UCC is APX-hard for all L with L ¢
{3,4} (Sect. 3). We also prove that Max-W-L-UCC is APX-hard if L Z {3} (this
follows from the results of Sect. 3 and the APX-completeness of Max-W-5-UCC
and Max-W-{4}-UCC shown in Sect. 2). The hardness results for Max-W-L-
UCC hold even if we allow only the edge weights zero, one, and two.

We show a dichotomy for cycle covers of directed graphs: For all L with
L # {2} and L # D, L-DCC is NP-hard (Theorem 6) and Max-L-DCC and
Max-W-L-DCC are APX-hard (Theorem 5), while it is known that all three
problems are solvable in polynomial time if L = {2} or L = D.

To show the hardness of directed cycle covers, we show that certain kinds
of graphs, called L-clamps, exist for non-empty L C D if and only if L # D
(Theorem 4). This graph-theoretical result might be of independent interest.

As a by-product, we prove that Min-Vertex-Cover(\) is APX-complete for all
A > 3 (Sect. 6). We need this result for the APX-hardness proofs in Sect. 3.

Algorithms. We present a polynomial-time factor 2.5 approximation algorithm
Max-W-L-UCC and a factor 3 approximation algorithm for Max-W-L-DCC
(Sect. 4). Both algorithms work for arbitrary L.

Finally, we prove that Max-4-UCC is solvable in polynomial time (Sect. 5).

2 A Generic Reduction for L-Cycle Covers

In this section, we present a generic reduction from Min-Vertex-Cover(3) to Max-
L-UCC or Max-W-L-UCC. To instantiate the reduction for a certain L, we use a
small graph, which we call gadget, the specific structure of which depends on L.
Such a gadget together with the generic reduction is an L-reduction from Min-
Vertex-Cover(3) to Max-L-UCC or Max-W-L-UCC. The mere aim is to prove
the APX-hardness of Max-W-{4}-UCC and Max-W-5-UCC.

2.1 The Generic Reduction

Let H = (X, F) be a cubic graph with vertex set X and edge set F' as an instance
of Min-Vertex-Cover(3). Let n = |X| and m = |F| = 3n/2. We construct an
undirected complete graph G with edge weight function w as a generic instance
of Max-L-UCC or Max-W-L-UCC.

For each edge a = {z,y} € F, we construct a subgraph F, of G called the
gadget of a. We define F), as set of vertices, thus wg, (C) for a subset C' of the
edges of G is well defined. This gadget contains four distinguished vertices x",
2oy and yout. These four vertices are used to connect F, to the rest of the
graph. What such a gadget looks like depends on L. If all edges in such a gadget
have weight zero or one, we obtain an instance of Max-L-UCC since all edges
between different gadgets will have weight zero or one. Otherwise, we have an
instance of Max-W-L-UCC. Figure 2 shows an example of such a gadget.

Let a,b,c € F be the three edges incident to vertex € X (the order is
arbitrary). Then we assign weight one to the edges connecting z2" to zi" and
9" to ' and weight zero to the edge connecting 22" to xi*. We call the
three edges {z9", zi"}, {29, 20}, and {29", 2"} the junctions of z. We say
that {29, 2"} and {20%, 2"} are the junctions of z at F,. Figure 1 shows an
example.

We call an edge illegal if it connects two different gadgets but is not a
junction. Thus, an illegal edge is an external edge at two different gadgets. All
illegal edges have weight zero, i.e. there are no edges of weight one that connect
two different gadgets except for the junctions. The weights of the internal edges
of the gadgets depend on the gadget, which in turn depends on L.

The following terms are defined for arbitrary subsets C of the edges of G,
and so in particular for L-cycle covers. We say that C legally connects F, if

— C contains no illegal edges incident to F,

--e o———o© o———o ®--

out

T e @ e g
g = —in —out
va vat T WY e e
° ° ° ° ° °
F a F b F c
(a) Vertex z and its (b) The gadgets F,, Fp, and F, and their connections via
edges. the three junctions of x. The dashed edge has weight zero.

Other weight zero edges and the junctions of y, 7, and ¥
are not shown.

Fig. 1. The construction for a vertex x € X incident to a,b,c € F.

— (' contains exactly two or four junctions at F,, and
— if C contains exactly two junctions at F,, then these belong to the same
vertex = € a.

We call C legal if C' legally connects all gadgets. If C is legal, then for all z € X
either all junctions of x are in C or no junction of x is in C. Furthermore, from
a legal set C' we obtain a vertex cover X = {z | the junctions of z are in C'}.

Let us now define the requirements the gadgets must fulfil. In the following,
let C be an arbitrary L-cycle cover of G and a = {z,y} € F be an arbitrary
edge of H.

RO: There exists a fixed number s € N, which we call the gadget parameter,
that depends only on the gadget. The role of the gadget parameter will
become clear in the subsequent requirements.

Rl: wp, (C) <s—1.

R2: If C contains 2« external edges at Fy, then wp, (C) < s— a.

R3: If C contains exactly one junction of z at F}, and exactly one junction of y
at F,, then wg (C) < s — 2. (In this case, C does not legally connect Fy,.)

R4: Let C’ be an arbitrary subset of the edges of G that legally connects F,.
Assume that there are 2 junctions (« € {1,2}) at F, in C".

Then there exists a C” with the following properties:
— (" differs from C’ only in F,’s internal edges and
— wr, (C") =5 —a.

Thus, given C’, C” can be obtained by locally modifying C’ within F,. We
call the process of obtaining C” from C’ rearranging C’ in F,. _
R5: Let C’ be a legal subset of the edges of G. Then there exists a subset C' of
edges obtained by rearranging all gadgets as described in R4 such that C is

an L-cycle cover.

The requirements assert that connecting the gadgets legally is never worse
than connecting them illegally. This yields the main result of this section.

Lemma 1. Assume that a gadget as described exists for L CU. Then the reduc-
tion presented is an L-reduction from Min-Vertex-Cover(3) to Max-W-L-UCC.
If the gadget contains only edges of weight zero or one, then the reduction is an
L-reduction from Min-Vertex-Cover(3) to Max-L-UCC.

in
Lo Ya
out out
Lq ya

Fig. 2. The edge gadget F, for an edge a = {x,y} that is used to prove the APX-
completeness of Max-W-5-UCC. Bold edges are internal edges of weight two, solid
edges are internal edges of weight one, internal edges of weight zero are not shown.
The dashed and dotted edges are the junctions of x and y, respectively, at Fj.

Pl
[e

(a) 7 € X. (b) y e X. () zyeX.

Fig. 3. Traversals of the gadget for Max-W-5-UCC that achieve maximum weight.

2.2 Max-W-5-UCC and Max-W-{4}-UCC

The gadget for Max-W-5-UCC is shown in Fig. 2. Let G be the graph constructed
via the reduction presented in Sect. 2.1 with the gadget of this section. Let C'
be an arbitrary L-cycle cover of G and a = {x,y} € F. By proving that it fulfils
all requirements, we obtain the following result.

Theorem 1. Max-W-5-UCC is APX-hard, even if the edge weights are restricted
to be zero, one, or two.

Although the status of Max-5-UCC is still open, allowing only one additional
edge weight of two already yields an APX-complete problem.

The generic reduction together with the gadget used for Max-W-5-UCC
works also for Max-W-{4}-UCC. The gadget only requires that cycles of length
four are forbidden since otherwise R1 is not satisfied. Thus, all requirements are
fulfilled for Max—W—m—UCC in exactly the same way as for Max-W-5-UCC.

Theorem 2. Max-W-{4}-UCC is APX-hard, even if the edge weights are re-
stricted to be zero, one, or two.

3 A Uniform Reduction for L-Cycle Covers

3.1 Clamps

We now define so-called clamps, which were introduced by Hell et al. [13]. Clamps
are crucial for the hardness proof presented in this section.

Let K = (V, E) be an undirected graph, let u,v € V be two vertices of K, and
let L CU. We denote by K_,, and K_, the graphs obtained from K by deleting
u and v, respectively, and their incident edges. Moreover, K_,_, denotes the

A —3 vertices

Fig.4. An L-clamp for finite L with max(L) = A.

graph obtained from K by deleting both u and v. Finally, for k& € N, K* is

the following graph: Let y1,...,yx be vertices with y; ¢ V, add edges {u,y1},

{Yi,yig1} for 1 <i <k —1, and {yg,v}. For k = 0, we directly connect u to v.
The graph K is called an L-clamp if the following properties hold:

— Both K_, and K_, contain an L-cycle cover.
— Neither K nor K_,_, nor K* for any k € N contains an L-cycle cover.

We call v and v the connectors of the L-clamp K.

Lemma 2 (Hell et al. [13]). Let L C U be non-empty. Then there exists an
L-clamp if and only if L {3,4}.

Figure 4 shows an example of an L-clamp for finite L.

If there exists an L-clamp for some L, then we can assume that the connectors
u and v both have degree two since we can remove all edges that are not used
in the L-cycle covers of K_,, and K_,,.

For our purpose, consider any non-empty set L C {3,4,5,...} with L ¢
{3,4}. We fix one L-clamp K with connectors u,v € V arbitrarily and refer to it
in the following as the L-clamp, although there exists more than one L-clamp.
Let o be the number of vertices of K.

We are concerned with edge-weighted graphs. Therefore, we transfer the no-
tion of clamps to graphs with edge weights zero and one in the obvious way: Let
G be an undirected complete graph with vertex set V' and edge weights zero and
one and let K be an L-clamp. Let U C V. We say that U is an L-clamp with
connectors u,v € U if the subgraph of G induced by U restricted to the edges
of weight one is isomorphic to K with v and v mapped to connectors of K.

3.2 The Reduction

Let L C U be non-empty with L ¢ {3,4}. Thus, L-clamps exist and we fix
one as in the previous section. Let o be the number of vertices in the L-clamp.
Let A = min(L). (This choice is arbitrary. We could choose any number in L.)
We will reduce Min-Vertex-Cover(A) to Max-L-UCC. Min-Vertex-Cover(\) is
APX-complete since A > 3 (see Sect. 6).

Let H = (X, F) be an instance of Min-Vertex-Cover(\) with n = | X| vertices
and m = |F| = An/2 edges. Our instance G for Max-L-UCC consists of A
subgraphs G, ..., Gy, each containing 20m vertices. We start by describing G .

Fig. 5. The edge gadget for a = {z,y} consisting of two L-clamps. The vertex 2k is
the only vertex that belongs to both clamps X! and Y;}.

Then we state the differences between G and G, ..., G and say to which edges
between these graphs we assign weight one.

Let a = {z,y} € F be any edge of H. We construct an edge gadget F, for a
that consists of two L-clamps X! and Y,! and one additional vertex t! as shown
in Fig. 5. The connectors of X! are ! and z! while the connectors of Y,! are
yl and 2z}, i.e. X! and Y;! share the connector z!. Let p! and ¢! be the two
unique vertices in Y;! that share a weight one edge with z!. (The choice of Y,! is
arbitrary, we could choose the corresponding vertices in X! as well.) We assign
weight one to both {pl tL} and {¢},tL}. Thus, the vertex t! can also serve as a
connector for Y,!.

Now let x € X be any vertex of H and let a1,...,ay € F be the A edges
that are incident to x. We connect the vertices %1117-“’%1“ to form a path by
assigning weight one to the edges {z} ,x; .} forn € {1,..., A —1}. Together

}M,x}ll}, these edges form a cycle of length A € L, but note that
w({x} ,x} }) = 0. These A edges are called the junctions of . The junctions
at F, for some a = {z,y} € F are the junctions of x and y that are incident
to F,. Overall, the graph G consists of 20m vertices since every edge gadget
consists of 20 vertices.

The graphs G, ...,G are almost exact copies of G1. The graph G¢, £ €
{2,..., A} has clamps X§ and Y and vertices x§, 4§, 25,15, %, ¢§ for each edge
a = {z,y} € F, just as above. The edge weights are also identical with the
single exception that the edge {gcgA , xgl} also has weight one. Note that we only
use the term “gadget” for the subgraphs of G defined above although almost
the same subgraphs occur in G, ..., G, as well. Similarly, the term “junction”
refers only to an edge in GG1 as defined above.

Finally, we describe how to connect G1,...,G, with each other. For every
edge a € I, there are \ vertices t,...,t}. These are connected to form a cy-
cle consisting solely of weight one edges, i.e. we assign weight one to all edges
{8,451 for € € {1,...,\ — 1} and to {t},tL}. Figure 6 shows an example of
the whole construction from the viewpoint of a single vertex.

As in the previous section, we call edges that are not junctions but connect
two different gadgets illegal. Edges with both vertices in the same gadget are
again called internal edges. In addition to junctions, illegal edges, and internal
edges, we have a fourth kind of edges: The t-edges of F, for a € F are the two
edges {t! 2} and {t!,#}}. The t-edges are not illegal. All other edges connecting

a’”a a’”a

G1 to G¢ for £ # 1 are illegal.

with edge {x

3 e
ai | Y Y
E . 30 3 . —_3@ ﬂ 3 . =30

Lq tz Ya Ly ti Yp Le t3 Ye

Fig. 6. The construction for a vertex € X incident to edges a,b,c € F for A = 3
(Fig. 1(a) on page 6 shows the corresponding graph). The dark grey areas are the edge
gadgets Fy, Fy, and F... Their copies in G2 and G5 are light grey. The cycles connecting
the t-vertices are dotted. The cycles connecting the z-vertices are solid, except for the
edge {xl,zL}, which has weight zero and is dashed. The vertices z%,..., 23 are not

shown for legibility.

Let C be any subset of the edges of the graph G thus constructed, and let
a = {z,y} € F be an arbitrary edge of H. We say that C legally connects F,
if the following properties are fulfilled:

— (' contains no illegal edges incident to F, and exactly two or four junctions
at Fy.

— If C contains exactly two junctions at F,, then these belong to the same
vertex and there are two t-edges at F, in C.

— If C contains four junctions at F,, then these are the only external edges in
C incident to Fy. In particular, C' does not contain t-edges at Fj,.

We call C legal if C' legally connects all gadgets.
We can prove that the construction described above is an L-reduction from
Min-Vertex-Cover(A) to Max-L-UCC for all L with L ¢ {3,4}.

Theorem 3. For all L CU with L € {3,4}, Max-L-UCC is APX-hard.

3.3 Clamps in Directed Graphs

The aim of this section is to introduce directed L-clamps. Let K = (V, E)
be a directed graph and u,v € V. Again, K_,, K_,, and K_,_, denote the
graphs obtained by deleting u, v, and both u and v, respectively. For k € N,
KPF denotes the following graph: Let y1,...,yx ¢ V be new vertices and add
edges (u,y1), (Y1,Y2),- -, (Yk,v). For k = 0, we add the edge (u,v). The graph
KF is similarly defined, except that we now start at v, i.e. we add the edges
(v,91), (W1,92), - -+ (Yg, u). KO is K with the additional edge (v, u).

Now we can define clamps for directed graphs: Let L C D. A directed graph
K = (V,E) with u,v € V is a directed L-clamp with connectors u and v if

the following properties hold:

— Both K_,, and K_, contain an L-cycle cover.
— Neither K nor K_,_, nor K¥ nor K¥ for any k € N contains an L-cycle
cover.

Theorem 4. Let L C D be non-empty. Then there exists a directed L-clamp if
and only if L # D.

3.4 L-Cycle Covers in Directed Graphs

From the hardness results in the previous sections and the work by Hell et
al. [13], we obtain the NP-hardness and APX-hardness of L-DCC and Max-
L-DCC, respectively, for all L with 2 ¢ L and L Z {2,3,4}: We use the same
reduction as for undirected cycle covers and replace every undirected edge {u, v}
by a pair of directed edges (u,v) and (v, u). However, this does not work if 2 € L
and also leaves open the cases when L C {2,3,4}. We will show that L = {2}
and L = D are the only cases in which directed L-cycle covers can be computed
efficiently by proving the NP-hardness of L-DCC and the APX-hardness of Max-
L-DCC for all other L. Thus, we settle the complexity for directed graphs.

The APX-hardness of the directed cycle cover problem is obtained by a proof
similar to the proof for undirected cycle covers. All we need is a A € L with
A > 3 and the existence of an L-clamp.

Theorem 5. Let L C D be a non-empty set. If L # {2} and L # D, then
Max-L-DCC and Max-W-L-DCC are APX-hard.

We can also prove that for all L ¢ {{2}, D}, L-DCC is NP-hard.

Theorem 6. Let L C D be a non-empty set. If L # {2} and L # D, then
L-DCC is NP-hard.

Let L ¢ {{2},D}. L-DCC is in NP and therefore NP-complete if and only if
the language {1* | A € L} is in NP.

4 Approximation Algorithms

The goal of this section is to devise approximation algorithms for Max-W-L-
UCC and Max-W-L-DCC that work for arbitrary L. The catch is that for most
L it is impossible to decide whether some cycle length is in L or not. One
possibility would be to restrict ourselves to sets L such that {1* | A € L} is in P.
For such L, Max-W-L-UCC and Max-W-L-DCC are NP optimisation problems.
Another possibility for circumventing the problem is to include the permitted
cycle lengths in the input. However, it turns out that such restrictions are not
necessary since we can restrict ourselves to finite sets L.

A necessary and sufficient condition for a complete graph with n vertices
to have an L-cycle cover is that there exist (not necessarily distinct) lengths
A,y..., A\, € L for some k£ € N with Zle Ai = n. We call such an n L-
admissible and define (L) = {n | n is L-admissible}.

Input: an undirected graph G = (V,U(V)) with |V| = n;
an edge weight function w : U(V) — N
Output: an L-cycle cover C*P* of G if n is L-admissible, 1 otherwise

1. If n ¢ (L), then return L.

2. Compute a cycle cover C™* of maximum weight.

3. Compute a subset P C C™* of maximum weight such that (V, P) consists
of [n/5] paths of length two and n — 3 - [n/5] isolated vertices.

4. Join the paths to obtain an L-cycle cover C'*"* return C*P*.

Fig. 7. A factor 2.5 approximation algorithm for Max-W-L-UCC.

Lemma 3. For all L C N, there exists a finite set L' C L with (L') = (L).

Instead of computing L’-cycle covers in the following, we assume without loss
of generality that L is already a finite set.

The main idea of the two approximation algorithms is as follows: We start
by computing a cycle cover C'™* of maximum weight. Then we take a subset
S of the edges of C™* that weighs as much as possible under the restriction
that there exists an L-cycle cover that includes all edges of S. We add edges
to obtain an L-cycle cover C?P* O S. Let C* be an L-cycle cover of maximum
weight, and assume that we can guarantee p - w(S) > w(C™) for some p > 1.
Then w(C*) < w(C™MY) < p-w(S) < p-w(C?X). Thus, we have computed a
factor p approximation to an L-cycle cover of maximum weight.

4.1 Approximating Undirected Cycle Covers

The input of our algorithm for undirected graphs is an undirected complete
graph G = (V,U(V)) with |V| = n and an edge weight function w : U(V) — N.

The main idea of the approximation algorithm is as follows: Every cycle
cover can be decomposed into [n/5] vertex-disjoint paths of length two and
n — 3 - [n/5] isolated vertices. Conversely, every collection P of [n/5] paths of
length two together with n — 3 - [n/5] isolated vertices can be extended to form
an L-cycle cover, provided that n is L-admissible.

Theorem 7. For every fized L, the algorithm shown in Fig. 7 is a factor 2.5
approzimation algorithm for Max-W-L-UCC with running time O(n?).

4.2 Approximating Directed Cycle Covers

Now we present an approximation algorithm for Max-W-L-DCC that achieves
an approximation ratio of 3. The input consists of a directed complete graph
G = (V,D(V)) with |V]| = n and an edge weight function w : D(V) — N.
Given a cycle cover C, we can obtain a matching M C C consisting of
[n/3] edges such that w(M) > w(C)/3. Conversely, if n is L-admissible, then
every matching of cardinality [n/3] can be extended to form an L-cycle cover.

Input: a directed graph G = (V, D(V)) with |V| = n;
an edge weight function w : D(V) — N
Output: an L-cycle cover C*P* of G if n is L-admissible, | otherwise

1. If n ¢ (L), then return L.
2. Compute a maximum weight matching M™"* of G of cardinality [n/3].
3. Join the edges in M™" to obtain an L-cycle cover C*P*, return C*P*,

Fig. 8. A factor 3 approximation algorithm for Max-W-L-DCC.

Instead of computing an initial cycle cover, the algorithm shown in Fig. 8 directly
computes a matching of cardinality [n/3].

Theorem 8. For every fized L, the algorithm shown in Fig. 8 is a factor 3
approzimation algorithm for Max-W-L-UCC with running time O(n?3).

5 Solving Max-4-UCC in Polynomial Time

The aim of this section is to show that Max-4-UCC can be solved determin-
istically in polynomial time. To do this, we exploit Hartvigsen’s algorithm for
computing a maximum-cardinality triangle-free two-matching.

A two-matching of an undirected graph G is a spanning subgraph in which
every vertex of G has degree at most two. Thus, two-matchings consist of disjoint
simple cycles and paths. A two-matching is a relaxation of a cycle cover (or
two-factor): In a cycle cover, every vertex has degree eractly two. A triangle-
free two-matching is a two-matching in which each cycle has a length of at
least four. The paths can have arbitrary lengths. A triangle-free two-matching
of maximum weight in graphs with edge weights zero and one can be computed
deterministically in time O(n?), where n is the number of vertices [11, Chap. 3].

We want to solve Max-4-UCC, i.e. all cycles must have a length of at least
four and no paths are allowed. Therefore, let M be a maximum weight triangle-
free two-matching of a graph G of n vertices. If M does not contain any paths,
then M is already a 4-cycle cover of maximum weight.

Let £ be the number of vertices of G that lie on paths in M. If £ > 4, then
we connect these paths to get a cycle of length £. No weight is lost in this way,
and the result is a maximum weight 4-cycle cover.

We run into trouble if £ € {1,2,3}. Let Y = {y1,...,y¢} be the set of vertices
that lie on paths in M. Let £’ be the number of edges of weight one in M that
connect two vertices of Y. Then 0 < ¢ <{—1land w(M)=n—£0+¢ <n-—1.

An obvious way to obtain a cycle cover from M is to break one edge of one
cycle and connect the vertices of Y to this cycle. Unfortunately, breaking an edge
might cause a loss of weight one. This yields the aforementioned approximation
within an additive error of one. We can prove the following with a more careful
analysis: Either we can avoid the loss of weight one, or indeed a maximum weight
4-cycle cover has only weight w(M) — 1. This yields the following result.

Theorem 9. Max-4-UCC can be solved deterministically in time O(n?).

6

Vertex Cover in Regular Graphs

We can prove that Min-Vertex-Cover(A) is APX-complete for every A > 3. Pre-
viously, this was only known for cubic, i.e. three-regular, graphs [2]. We need the
APX-hardness of Min-Vertex-Cover(A) for all A > 3 in Sect. 3.

Theorem 10. For every A € N, A > 3, Min-Vertex-Cover(\) is APX-complete.

References

1.

10.

11.

12.

13.

14.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs.
Theoret. Comput. Sci., 237(1-2):123-134, 2000.

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Mar-
chetti-Spaccamela, and Marco Protasi. Complezity and Approximation: Combi-
natorial Optimization Problems and Their Approximability Properties. Springer,
1999.

Markus Blaser. Approximationsalgorithmen fiir Graphiiberdeckungsprobleme. Ha-
bilitationsschrift, Institut fiir Theoretische Informatik, Universitdt zu Liibeck,
Liibeck, Germany, 2002.

Markus Blaser and Bodo Manthey. Approximating maximum weight cycle covers
in directed graphs with weights zero and one. Algorithmica, 42(2):121-139, 2005.
Markus Bléser, Bodo Manthey, and Jifi Sgall. An improved approximation algo-
rithm for the asymmetric TSP with strengthened triangle inequality. J. Discrete
Algorithms, to appear.

Markus Bléser, L. Shankar Ram, and Maxim I. Sviridenko. Improved approxima-
tion algorithms for metric maximum ATSP and maximum 3-cycle cover problems.
In Proc. of the 9th Workshop on Algorithms and Data Structures (WADS), vol.
3608 of Lecture Notes in Comput. Sci., pp. 350-359. Springer, 2005.

Markus Blaser and Bodo Siebert. Computing cycle covers without short cycles. In
Proc. of the 9th Ann. European Symp. on Algorithms (ESA), vol. 2161 of Lecture
Notes in Comput. Sci., pp. 368-379. Springer, 2001. Bodo Siebert is the birth
name of Bodo Manthey.

Gérard P. Cornuéjols and William R. Pulleyblank. A matching problem with side
conditions. Discrete Math., 29(2):135-159, 1980.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

David Hartvigsen. An Ezxtension of Matching Theory. PhD thesis, Department of
Mathematics, Carnegie Mellon University, 1984.

Refael Hassin and Shlomi Rubinstein. On the complexity of the k-customer vehicle
routing problem. Oper. Res. Lett., 33:1, 71-76 2005.

Pavol Hell, David G. Kirkpatrick, Jan Kratochvil, and Igor Kriz. On restricted
two-factors. SIAM J. Discrete Math., 1(4):472-484, 1988.

Oliver Vornberger. Easy and hard cycle covers. Technical report, Univer-
sitat /Gesamthochschule Paderborn, 1980.

