
Smoothed Analysis of Belief Propagation for
Minimum-Cost Flow and Matching?

Tobias Brunsch1, Kamiel Cornelissen2, Bodo Manthey2, and Heiko Röglin1

1 University of Bonn, brunsch@cs.uni-bonn.de, heiko@roeglin.org
2 University of Twente, k.cornelissen@utwente.nl, b.manthey@utwente.nl

Abstract. Belief propagation (BP) is a message-passing heuristic for
statistical inference in graphical models such as Bayesian networks and
Markov random fields. BP is used to compute marginal distributions
or maximum likelihood assignments and has applications in many ar-
eas, including machine learning, image processing, and computer vision.
However, the theoretical understanding of the performance of BP is un-
satisfactory. Recently, BP has been applied to combinatorial optimization
problems. It has been proved that BP can be used to compute maximum-
weight matchings and minimum-cost flows for instances with a unique
optimum. The number of iterations needed for this is pseudo-polynomial
and hence BP is not efficient in general.
We study belief propagation in the framework of smoothed analysis and
prove that with high probability the number of iterations needed to com-
pute maximum-weight matchings and minimum-cost flows is bounded by
a polynomial if the weights/costs of the edges are randomly perturbed.
To prove our upper bounds, we use an isolation lemma by Beier and
Vöcking (SIAM J. Comput., 2006) for matching and generalize an isola-
tion lemma for min-cost flow by Gamarnik, Shah, and Wei (Oper. Res.,
2012). We also prove almost matching lower tail bounds for the number
of iterations that BP needs to converge.

1 Belief Propagation

Belief propagation (BP) is a message-passing algorithm that is used for solving
probabilistic inference problems on graphical models. It has been introduced by
Pearl in 1988 [8]. Typical graphical models to which BP is applied are Bayesian
networks and Markov random fields. There are two variants of the BP algorithm.
The sum-product variant is used to compute marginal probabilities. The max-
product or min-sum variant is used to compute maximum a posteriori (MAP)
probability estimates.

Recently, BP has experienced great popularity. It has been applied in a large
number of fields, such as machine learning, image processing, computer vision,
and statistics. For an introduction to BP and several applications, we refer to

? This research was supported by ERC Starting Grant 306465 (BeyondWorstCase) and
NWO grant 613.001.023 (Smoothed Analysis of Belief Propagation). A full version
of this paper is available at http://arxiv.org/abs/1211.3299.

WALCOM 2013 — c© Springer-Verlag

Yedidia et al. [14]. There are basically two main reasons for the popularity of BP.
First of all, it is generally applicable and easy to implement because of its simple
and iterative message-passing nature. In addition, it performs well in practice in
numerous applications.

If the graphical model is tree-structured, BP computes exact marginals/MAP
estimates. In case the graphical model contains cycles, convergence and cor-
rectness of BP have been shown only for specific classes of graphical models.
To improve the general understanding of BP and to gain new insights about
it, the performance of BP as either a heuristic or an exact algorithm for sev-
eral combinatorial optimization problems has been studied. Amongst others it
has been applied to the maximum-weight matching (MWM) problem, the min-
imum spanning tree problem [3], the minimum-cost flow (MCF) problem, and
the maximum-weight independent set problem [11].

Bayati et al. [4] have shown that max-product BP correctly computes the
MWM in bipartite graphs in pseudo-polynomial time if it is unique. Gamarnik
et al. [6] have shown that max-product BP computes the MCF in pseudo-
polynomial time if it is unique.

1.1 Belief Propagation for Matching and Flow Problems

Bayati et al. [4] have shown that the max-product BP algorithm correctly com-
putes the maximum-weight matching in bipartite graphs if it is unique. Conver-
gence of BP takes pseudo-polynomial time and depends linearly on the weight
of the heaviest edge and on 1/δ, where δ is the difference in weight between the
best and second-best matching. In Section 2 we describe BP for MWM in detail.

Belief propagation has also been applied to finding maximum-weight per-
fect matchings in arbitrary graphs and to finding maximum-weight perfect b-
matchings [2, 10], where a perfect b-matching is a set of edges such that every
vertex is incident to exactly b edges in the set. For arbitrary graphs the BP al-
gorithm for MWM does not necessarily converge [10]. However, Bayati et al. [2]
and Sanghavi et al. [10] have shown that the BP algorithm converges to the
optimal matching if the relaxation of the corresponding linear program has an
optimal solution that is unique and integral. The number of iterations needed
until convergence depends again linearly on the reciprocal of the parameter δ.
Bayati et al. [2] have also shown that the same result holds for the problem of
finding maximum-weight b-matchings that do not need to be perfect.

It turns out that BP can, to some extent, solve the relaxation of the cor-
responding linear program for matching, even if it has a non-integral optimal
solution. Bayati et al. [2] have shown that it is possible to solve the LP relax-
ation by considering so-called graph covers, in which they compute a bipartite
matching. In case of an optimum that is unique and integral, the optimal solu-
tion in the graph cover corresponds to the optimal solution. In case of a unique
but fractional optimal solution, the average of the estimates of two consecutive
iterations (both of which are perfect matchings in the graph cover) yield a value
of 0, 1/2, or 1 for any edge, which then equals its value in the optimal solution of
the relaxed LP. Sanghavi et al. [10] have shown that BP remains uninformative

2

for some edges (and outputs “?” for those), but computes the correct values for
all edges that have a fixed integral value in all optimal solutions.

Gamarnik et al. [6] have shown that BP can be used to find a minimum-cost
flow, provided that the instance has a unique optimal solution. The number of
iterations until convergence is pseudo-polynomial and depends again linearly on
the reciprocal of the difference in cost between the best and second-best integer
flow. In addition, they have proved a discrete isolation lemma [6, Theorem 8.1]
that shows that the edge costs can be slightly randomly perturbed to ensure
that, with probability at least 1/2, the perturbed MCF instance has a unique
optimal solution. Using this result, they have constructed an FPRAS for MCF
using BP.

1.2 Smoothed Analysis

Smoothed analysis has been introduced by Spielman and Teng [12] in order to
explain the performance of the simplex method for linear programming. It is
a hybrid of worst-case and average-case analysis and an alternative to both:
An adversary specifies an instance, and this instance is then slightly randomly
perturbed. The perturbation can, for instance, model noise from measurement.
Since its invention in 2001, smoothed analysis has been applied in a variety of
contexts. We refer to two recent surveys [7, 13] for a broader picture.

We apply smoothed analysis to BP for min-cost flow and maximum-weight
matching. To do this, we consider the following general probabilistic model.

– The adversary specifies the graph G = (V,E) and, in case of min-cost flow,
the integer capacities of the edges and the integer budgets (both are not
required to be polynomially bounded). Additionally the adversary specifies
a probability density function fe : [0, 1]→ [0, φ] for every edge e.

– The costs (for min-cost flow) or weights (for matching) of the edges are then
drawn independently according to their respective density function.

The parameter φ controls the adversary’s power: If φ = 1, then we have the
average case. The larger φ, the more powerful the adversary. The role of φ is the
same as the role of 1/σ in the classic model of smoothed analysis, where instances
are perturbed by independent Gaussian noise with standard deviation σ. In that
model the maximum density φ is proportional to 1/σ.

1.3 Our Results

We prove upper and lower tail bounds for the number of iterations that BP needs
to solve maximum-weight matching problems and min-cost flow problems. Our
bounds match up to a small polynomial factor.

In Sections 3 and 4 we prove that the probability that BP needs more
than t iterations is bounded by O(n2mφ/t) for the min-cost flow problem and
O(nmφ/t) for various matching problems, where n and m are the number of
nodes and edges of the input graph, respectively. The upper bound for match-
ing problems holds for the variants of BP for the maximum-weight matching

3

problem in bipartite graphs [4] as well as for the maximum-weight (perfect) b-
matching problem in general graphs [2,10]. For the latter it is required that the
polytope corresponding to the relaxation of the matching LP is integral. If this is
not the case, we can still solve the relaxation of the matching LP with a slightly
modified BP algorithm [2] using graph covers (see the comments at the end of
Section 4.1). To prove the upper tail bound for BP for MCF we use a continuous
isolation lemma that is similar to the discrete isolation lemma by Gamarnik et
al. [6, Theorem 8.1]. We need the continuous version since we do not only want
to have a unique optimal solution, but we also need to quantify the gap between
the best and the second-best solution.

These upper tail bounds are not strong enough to yield any bound on the
expected number of iterations. Indeed, in Section 5 we show that this expectation
is not finite by providing a lower tail bound of Ω(nφ/t) for the probability that t
iterations do not suffice to find a maximum-weight matching in bipartite graphs.
This lower bound even holds in the average case, i.e., if φ = 1, and it carries over
to the variants of BP for the min-cost flow problem and the minimum/maximum-
weight (perfect) b-matching problem in general graphs mentioned above [2, 4, 6,
10]. The lower bound matches the upper bound up to a factor of O(m) for
matching and up to a factor of O(nm) for min-cost flow. The smoothed lower
bound even holds for complete (i.e., non-adversarial) bipartite graphs.

Finally, let us remark that, for the min-cost flow problem, we bound only the
number of iterations that BP needs until convergence. The messages might be
super-polynomially long. For all matching problems, however, the size of each
message is polynomial in the input size and linear in the number of iterations.

2 Definitions and Problem Statement

2.1 Maximum-Weight Matching and Minimum-Cost Flow

First we define the maximum-weight matching problem on bipartite graphs.
Consider an undirected weighted bipartite graph G = (U ∪ V,E) with U =
{u1, . . . , un}, V = {v1, . . . , vn}, and E ⊆ {(ui, vj) = eij , 1 ≤ i, j ≤ n}. Each
edge eij has weight wij ∈ R+. A collection of edges M ⊆ E is called a matching
if each node of G is incident to at most one edge in M . We define the weight
of a matching M by w(M) =

∑
eij∈M wij . The maximum-weight matching M?

of G is defined as M? = argmax{w(M) |M is a matching of G}.
A b-matching M ⊆ E in an arbitrary graph G = (V,E) is a set of edges such

that every node from V is incident to at most b edges from M . A b-matching is
called perfect if every node from V is incident to exactly b edges from M . Also
for these problems we assume that each edge e ∈ E has a certain weight we and
we define the weight of a b-matching M accordingly.

In the min-cost flow problem (MCF), the goal is to find a cheapest flow that
satisfies all capacity and budget constraints. We are given a graph G = (V,E)
with V = {v1, . . . , vn}. In principle we allow multiple edges between a pair of
nodes, but for ease of notation we consider simple directed graphs. Each node v

4

has a budget bv ∈ Z. Each directed edge e = eij from vi to vj has capacity
ue ∈ N0 and cost ce ∈ R+. For each node v ∈ V , we define Ev as the set of edges
incident to v. For each edge e ∈ Ev we define ∆(v, e) = 1 if e is an out-going
edge of v and ∆(v, e) = −1 if e is an in-going edge of v. In the MCF one needs to
assign a flow fe to each edge e such that the total cost

∑
e∈E cefe is minimized

and the flow constraints 0 ≤ fe ≤ ue for all e ∈ E, and budget constraints∑
e∈Ev

∆(v, e)fe = bv for all v ∈ V are satisfied. We refer to Ahuja et al. [1]
for more details.

Let us remark that we could have allowed also rational values for the budgets
and capacities. As our results do not depend on these values, they are not affected
by scaling all capacities and budgets by the smallest common denominator.

Note that finding a perfect minimum-weight matching in a bipartite graph
G = (U ∪ V,E) is a special case of the min-cost flow problem [1].

2.2 Belief Propagation

For convenience, we describe the BP algorithm used by Bayati et al. [4]. For the
details of the other versions of BP for the (perfect) maximum-weight b-matching
problem and the min-cost flow problem we refer to the original works [2, 6, 10].
When necessary, we discuss the differences between the different versions of BP
in Sections 4 and 5.

The BP algorithm used by Bayati et al. [4] is an iterative message-passing
algorithm for computing maximum-weight matchings (MWM). Bayati et al. de-
fine their algorithm for complete bipartite graphs G = (U ∪ V,E) with |U | =

|V | = n. In each iteration t, each node ui sends a message vector ~M t
ij =

[~mt
ij(1), ~mt

ij(2), . . . , ~mt
ij(n)] to each of its neighbors vj . The messages can be

interpreted as how ‘likely’ the sending node thinks it is that the receiving node
should be matched to a particular node in the MWM. The greater the value of
the message ~mt

ij(r), the more likely it is according to node ui in iteration t that
node vj should be matched to node ur. Similarly, each node vj sends a message

vector ~M
t

ji to each of its neighbors ui. The messages are initialized as

~m0
ij(r) =

{
wij if r = i,

0 otherwise
and ~m0

ji(r) =

{
wij if r = j,

0 otherwise.

The messages in iterations t ≥ 1 are computed from the messages in the
previous iteration as follows:

~mt
ij(r) =

{
wij +

∑
k 6=j ~mt−1

ki (j) if r = i,

maxq 6=j

[
wiq +

∑
k 6=j ~mt−1

ki (q)
]

otherwise, and

~mt
ji(r) =

{
wij +

∑
k 6=i ~m

t−1
kj (i) if r = j,

maxq 6=i

[
wqj +

∑
k 6=i ~m

t−1
kj (q)

]
otherwise.

The beliefs of nodes ui and vj in iteration t are defined as btui
(r) = wir +∑

k ~mt
ki(r) and btvj (r) = wrj +

∑
k ~m

t
kj(r). The beliefs can be interpreted as

5

the ‘likelihood’ that a node should be matched to a particular neighbor. The
greater the value of btui

(j), the more likely it is that node ui should be matched

to node vj . We denote the estimated MWM in iteration t by M̃ t. The estimated

matching M̃ t matches each node ui to node vj , where j = argmax1≤r≤n{btui
(r)}.

Note that M̃ t does not always define a matching, since multiple nodes may be
matched to the same node. However, Bayati et al. [4] have shown that if the
MWM is unique, then for t large enough, M̃ t is a matching and equal to the
MWM.

3 Isolation Lemma

3.1 Maximum-Weight Matchings

Beier and Vöcking [5] have considered a general scenario in which an arbitrary
set S ⊆ {0, 1}m of feasible solutions is given and to every x = (x1, . . . , xm) ∈ S
a weight w · x = w1x1 + . . . + wmxm is assigned by a linear objective func-
tion. As in our model they assume that every coefficient wi is drawn indepen-
dently according to an adversarial density function fi : [0, 1] → [0, φ] and they
define δ as the difference in weight between the best and the second-best fea-
sible solution from S, i.e., δ = w · x? − w · x̂ where x? = argmaxx∈S w · x
and x̂ = argmaxx∈S\{x?} w ·x. They prove a strong isolation lemma that, regard-
less of the adversarial choices of S and the density functions fi, the probability
of the event δ ≤ ε is bounded from above by 2εφm for any ε ≥ 0.

If we choose S as the set of incidence vectors of all matchings or (perfect)
b-matchings in a given graph, Beier and Vöcking’s results yield for every ε ≥ 0
an upper bound on the probability that the difference in weight δ between the
best and second-best matching or the best and second-best (perfect) b-matching
is at most ε. Combined with the results in Section 1 on the number of iterations
needed by BP in terms of δ, this can immediately be used to obtain an upper
tail bound on the number of iterations of the BP algorithm for these problems.

3.2 Min-Cost Flows

The situation for the min-cost flow problem is significantly more difficult because
the set S of feasible integer flows cannot naturally be expressed with binary
variables. If one introduces a variable for each edge corresponding to the flow
on that edge, then S ⊆ {0, 1, 2, . . . , umax}m where umax = maxe∈E ue. Röglin
and Vöcking [9] have extended the isolation lemma to the setting of integer,
instead of binary, vectors. However, their result is not strong enough for our
purposes as it bounds the probability of the event δ ≤ ε by εφm(umax + 1)2

from above for any ε ≥ 0. As this bound depends on umax it would only lead
to a pseudo-polynomial upper tail bound on the number of iterations of the BP
algorithm when combined with the results of [6]. Our goal is, however, to obtain
a polynomial tail bound that does not depend on the capacities. In the remainder
of this section, we prove that the isolation lemma for integer programs [9] can

6

be significantly strengthened when structural properties of the min-cost flow
problem are exploited.

In the following we consider the residual network for a flow f [1]. For each
edge eij in the original network that has less flow than its capacity uij , we include
an edge eij with capacity uij − fij in the residual network. Similarly, for each
edge eij that has flow greater than zero, we include the backwards edge eji with
capacity fij in the residual network.

As all capacities and budgets are integers, there is always a min-cost flow
that is integral. An additional property of our probabilistic model is that with
probability one there do not exist two different integer flows with exactly the
same costs. This follows directly from the fact that all costs are continuous
random variables. Hence, without loss of generality we restrict our presentation
in the following to the situation that the min-cost flow is unique.

In fact, Gamarnik et al. [6] have not used δ, the difference in cost between
the best and second-best integer flow, to bound the number of iterations needed
for BP to find the unique optimal solution of MCF, but they have used another
quantity ∆. They have defined ∆ as the length of the cheapest cycle in the
residual network of the min-cost flow f?. Note that ∆ is always non-negative.
Otherwise, we could send one unit of flow along a cheapest cycle. This would
result in a feasible integral flow with lower cost. With the same argument we
can argue that ∆ must be at least as large as δ because sending one unit of flow
along a cheapest cycle results in a feasible integral flow different from f? whose
costs exceed the costs of f? by exactly ∆. Hence any lower bound for δ is also a
lower bound for ∆ and so it suffices for our purposes to bound the probability
of the event δ ≤ ε from above.

The isolation lemma we prove is based on ideas that Gamarnik et al. [6,
Theorem 8.1] have developed to prove that the optimal solution of a min-cost
flow problem is unique with high probability if the costs are randomly drawn
integers from a sufficiently large set. We provide a continuous counterpart of
this lemma, where we bound the probability that the second-best integer flow is
close in cost to the optimal integer flow.

Lemma 1. The probability that the cost of the optimal and the second-best in-
teger flow differs by at most ε ≥ 0 is bounded from above by 2εφm.

The isolation lemma (Lemma 1) together with the discussion about the rela-
tion between δ, the difference in cost between the best and second-best integer
flow, and ∆, the length of the cheapest cycle in the residual network of the
min-cost flow f?, immediately imply the following result.

Corollary 2. For any ε > 0, we have P(∆ ≤ ε) ≤ 2εφm.

4 Upper Tail Bounds

4.1 Maximum-Weight Matching

We first consider the BP algorithm of Bayati et al. [4], which computes maxi-
mum-weight matchings in complete bipartite graphs G in O(nw?/δ) iterations

7

on all instances with a unique optimum. Here w? denotes the weight of the
heaviest edge and δ denotes the difference in weight between the best and the
second-best matching. Even though it is assumed that G is a complete bipartite
graph, this is not strictly necessary. If a non-complete graph is given, missing
edges can just be interpreted as edges of weight 0.

With Beier and Vöcking’s isolation lemma (see Section 3) we obtain the
following tail bound for the number of iterations needed until convergence when
computing maximum-weight perfect matchings in bipartite graphs using BP.

Theorem 3. Let τ be the number of iterations until Bayati et al.’s BP [4]
for maximum-weight perfect bipartite matching converges. Then P(τ ≥ t) =
O(nmφ/t).

This tail bound is not strong enough to yield any bound on the expected
running-time of BP for bipartite matchings. But it is strong enough to show
that BP has smoothed polynomial running-time with respect to the relaxed
definition adapted from average-case complexity [5], where it is required that
the expectation of the running-time to some power α > 0 is at most linear.
However, a bound on the expected number of iterations is impossible, and the
tail bound proved above is tight up to a factor of O(m) (see Section 5).

As discussed in Section 1, BP has also been applied to finding maximum-
weight (perfect) b-matchings in arbitrary graphs [2, 10]. The result is basically
that BP converges to the optimal matching if the optimal solution of the relax-
ation of the corresponding linear program is unique and integral. The number
of iterations needed until convergence depends again on “how unique” the op-
timal solution is. For Bayati et al.’s variant [2], the number of iterations until
convergence depends on 1/δ, where δ is again the difference in weight between
the best and the second-best matching. For Sanghavi et al.’s variant [10], the
number of iterations until convergence depends on 1/c, where c is the smallest
rate by which the objective value will decrease if we move away from the optimal
solution.

However, the technical problem in transferring the upper bound for bipartite
graphs to arbitrary graphs is that the adversary can achieve that, with high
probability or even with a probability of 1 (for larger φ), the optimal solution
of the LP relaxation is not integral. Already in the average-case, i.e., for φ = 1,
where the adversary has no power at all, the optimal solution of the LP relaxation
has some fractional variables with high probability.

Still, we can transfer the results for bipartite matching to both algorithms
for arbitrary matching if we restrict the input graphs to be bipartite, since in
this case the constraint matrix of the associated LP is totally unimodular.

Theorem 4. Let τ be the number of iterations until Bayati et al.’s [2] or Sang-
havi et al.’s [10] BP for general matching, restricted to bipartite graphs as input,
converges. Then P(τ ≥ t) = O(nmφ/t).

Bayati et al. [2] and Sanghavi et al. [10] have also shown how to compute
b-matchings with BP. If b is even, then the unique optimum to the LP relaxation

8

is integral. Thus, we circumvent the problem that the optimal solution might be
fractional. Hence, following the same reasoning as above, the probability that
BP for b-matching for even b runs for more than t iterations until convergence
is also bounded by O(mnφ/t).

Furthermore, Bayati et al. [2, Section 4] have shown how to compute the
optimal solution of the relaxation of the matching LP with graph covers. They
obtain the same O(n/δ) bound for the number of iterations until convergence
as for ordinary matching. However, since we are no longer talking about integer
solutions, we cannot directly apply the isolation lemma of Beier and Vöcking [5].
To see that δ is still unlikely to be small in the same way (with a slightly worse
constant), we can apply the isolation lemma of Röglin and Vöcking [9] since the
matching polytope is half-integral. Thus, if we scale the right-hand side with a
factor of 2, then we obtain a 0/1/2 integer program. Because of this, we obtain
the same O(mnφ/t) tail bound for the probability that the number of iterations
until convergence exceeds t.

4.2 Min-Cost Flow

The bound for the probability that ∆ is small (Corollary 2) together with the
pseudo-polynomial bound of Gamarnik [6] yield a tail bound for the number of
iterations that BP needs until convergence.

Theorem 5. Let τ be the number of iterations until BP for min-cost flow [6]
converges. Then P(τ ≥ t) = O(n2mφ/t).

5 Lower Tail Bounds

We show that the expected number of iterations necessary for convergence of BP
for maximum-weight matching (MWM) is unbounded. To do this, we prove a
lower tail bound on the number of iterations that matches the upper tail bound
from Section 4 with respect to t. The lower bound holds even for a two by two
complete bipartite graph with edge weights drawn independently and uniformly
from the interval [0, 1]. In the following analysis, we consider the BP variant
introduced by Bayati et al [4]. Our results can be extended to other versions of
BP for matching and min-cost flow [2,6,10] in a straightforward way. We discuss
these extensions at the end of this section.

5.1 Computation Tree

For proving the lower bounds, we need the notion of a computation tree, which
we define analogously to Bayati et al. [4].

Let G = (U ∪ V,E) be a bipartite graph with U = {u1, . . . , un} and V =
{v1, . . . , vn}. We denote the level-k computation tree with the root labeled x ∈
U ∪ V by T k(x). The tree T k(x) is a weighted rooted tree of height k + 1. The
root node in T 0(x) has label x, its degree is the degree of x in G, and its children

9

are labeled with the adjacent nodes of x in G. T k+1(x) is obtained recursively
from T k(x) by attaching children to every leaf node in T k(x). Each child of a
former leaf node labeled y is assigned one vertex adjacent to y in G as a label,
but the label of the former leaf node’s parent is not used. (Thus, the number
of children is the degree of y minus 1.) Edges between nodes with label ui and
label vj in the computation tree have a weight of wij .

We call a collection Λ of edges in the computation tree T k(x) a T -matching
if no two edges of Λ are adjacent in T k(x) and each non-leaf node of T k(x) is the
endpoint of exactly one edge from Λ. Leaves can be the endpoint of either one or
zero edges from Λ. Let tk(ui; r) be the weight of a maximum weight T -matching
in T k(ui) that uses the edge (ui, vr) at the root.

5.2 Average-Case Analysis

Consider the undirected weighted complete bipartite graph K2,2 = (U ∪ V,E),
where U = {u1, u2}, V = {v1, v2}, and (ui, vj) ∈ E for 1 ≤ i, j ≤ 2. Each edge
(ui, vj) = eij has weight wij drawn independently and uniformly from [0, 1]. We
define the event Eε for 0 < ε ≤ 1

8 as the event that w11 ∈
[
7
8 , 1
]
, w12 ∈

(
1
2 ,

5
8

]
,

w21 ∈
(
5
8 ,

3
4

]
, and w22 ∈ [w12 + w21 − w11 − ε, w12 + w21 − w11). Consider the

two possible matchings M1 = {e11, e22} and M2 = {e12, e21}. If event Eε occurs,
then the weight of M2 is greater than the weight of M1 and the weight differs
by at most ε. In addition, w11 is greater than w12 and the weight differs by at
least 1/4. See Figure 1 for a graphical illustration.

u1

u2

v1

v2

w11 ∈
[
7
8
, 1
]

w12 ∈
(
1
2
, 5
8

]
w21 ∈

(
5
8
, 3
4

]

w22 ∈ [w12 + w21 − w11 − ε, w12 + w21 − w11)

Fig. 1. If Eε occurs, then the weight of the dashed matching M2 = {e12, e21} is greater
than the weight of the solid matching M1 = {e11, e22} and the weight difference is at
most ε. In addition w11 is greater than w12 and the weight difference is at least 1

4
.

Lemma 6. The probability of event Eε is ε/83.

Lemma 7. If event Eε occurs, then the belief of node u1 of K2,2 at the end of
the 4k-th iteration is incorrect for all integers k ≤ 1

8ε − 1.

By Lemma 6 and Lemma 7, we have a lower tail bound for the number of
iterations that BP for MWM needs to converge for K2,2.

10

Theorem 8. The probability that BP for MWM needs at least t iterations to
converge for K2,2 with edge weights drawn independently and uniformly from
[0, 1] is at least 1

ct for some constant c > 0.

By using copies of K2,2 we can extend the result of Theorem 8 to larger
graphs.

Corollary 9. There exist bipartite graphs on n ≥ 4 nodes, where n is a multiple
of 4, with edge weights drawn independently and uniformly from [0, 1], for which
the probability that BP for MWM needs at least t iterations to converge is Ω

(
n
t

)
for t ≥ n/c′ for some constant c′ > 0.

5.3 Smoothed Analysis

In this section, we consider complete bipartite graphs Kn,n in the smoothed
setting. We denote by X ∼ U [a, b] that the random variable X is uniformly
distributed on interval [a, b]. In the following we assume that φ ≥ 26 and n ≥ 2
and even. Similarly to the average case, we define the event Eφε for K2,2 and
for 0 < ε ≤ 1/φ as the event that w11 ∈

[
1 − 1

φ , 1
]
, w12 ∈

(
23
26 ,

23
26 + 1

φ

]
, w21 ∈(

23
26 ,

23
26 + 1

φ

]
, and w22 ∈ [w12 +w21−w11− ε, w12 +w21−w11). Consider the two

possible matchings M1 = {e11, e22} and M2 = {e12, e21}. If event Eφε occurs,
then the weight of M2 is greater than the weight of M1 and the weight difference
is at most ε. In addition w11 is greater than w12 and the weight difference is
at least 3

26 −
2
φ . On this K2,2, BP needs at least t rounds with a probability of

Ω(φ/t).
By taking n/2 copies of this K2,2 and connecting all nodes in different parts of

the bipartite graph by edges whose weights are drawn independently according
to U [0, 1

φ], we obtain a Kn,n on which BP requires at least t rounds with a

probability of Ω(φn/t).

Theorem 10. There exist probability distributions on [0, 1] for the weights of
the edges, whose densities are bounded by φ, such that the probability that BP
for MWM needs at least t iterations to converge for Kn,n is Ω(nφ/t) for t ≥ nφ/c
for some constant c > 0.

5.4 Other versions of BP

The results of this section also hold for other versions of belief propagation for
minimum/maximum-weight (perfect) b-matching and min-cost flow [2,6,10] ap-
plied to the matching problem on bipartite graphs. The difference in the number
of iterations until convergence differs no more than a constant factor. We omit
the technical details but provide some comments on how the proofs need to be
adjusted.

Some of the versions of BP consider minimum-weight perfect matching [2] or
min-cost flow [6] instead of maximum-weight perfect matching. For these versions
we get the same results if we have edge weights w̃e = 1− we for all edges e.

11

For some of the versions of BP [6,10] the root of the computation tree is an
edge instead of a node . If we choose the root of this tree suitably, then we have
that the difference in weight between the two matchings M1 and M2 of at most ε
not only has to ‘compensate’ the weight difference ∆w(e1, e2) between an edge
e1 in M1 and an edge e2 in M2, but the entire weight we of an edge e in M1 or
M2. However, the probability distributions for the edge weights in Section 5 are
chosen such that ∆w(e1, e2) and we do not differ more than a constant factor.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms,
and applications. Prentice-Hall, 1993.

2. M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. Belief-propagation for weighted
b-matching on arbitrary graphs and its relation to linear programs with integer
solutions. SIAM Journal on Discrete Mathematics, 25(2):989–1011, 2011.

3. M. Bayati, A. Braunstein, and R. Zecchina. A rigorous analysis of the cav-
ity equations for the minimum spanning tree. Journal of Mathematical Physics,
49(12):125206, 2008.

4. M. Bayati, D. Shah, and M. Sharma. Max-product for maximum weight matching:
Convergence, correctness, and LP duality. IEEE Transactions on Information
Theory, 54(3):1241–1251, 2008.

5. R. Beier and B. Vöcking. Typical properties of winners and losers in discrete
optimization. SIAM Journal in Computing, 35(4):855–881, 2006.

6. D. Gamarnik, D. Shah, and Y. Wei. Belief propagation for min-cost network flow:
Convergence & correctness. Operations Research, 60(2):410–428, 2012.

7. B. Manthey and H. Röglin. Smoothed analysis: Analysis of algorithms beyond
worst case. it – Information Technology, 53(6):280–286, 2011.

8. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

9. H. Röglin and B. Vöcking. Smoothed analysis of integer programming. Mathemat-
ical Programming, 110(1):21–56, 2007.

10. S. Sanghavi, D. M. Malioutov, and A. S. Willsky. Belief propagation and LP relax-
ation for weighted matching in general graphs. IEEE Transactions on Information
Theory, 57(4):2203–2212, 2011.

11. S. Sanghavi, D. Shah, and A. S. Willsky. Message passing for maximum weight
independent set. IEEE Transactions on Information Theory, 55(11):4822 –4834,
2009.

12. D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

13. D. A. Spielman and S.-H. Teng. Smoothed analysis: An attempt to explain the
behavior of algorithms in practice. Communications of the ACM, 52(10):76–84,
2009.

14. J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation
and its generalizations. In G. Lakemeyer and B. Nebel, editors, Exploring Artificial
Intelligence in the New Millennium, chapter 8, pages 239–269. Morgan Kaufmann,
2003.

12

