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Abstract. We present deterministic approximation algorithms for the
multi-criteria traveling salesman problem (TSP). Our algorithms are
faster and simpler than the existing randomized algorithms.
First, we devise algorithms for the symmetric and asymmetric multi-
criteria Max-TSP that achieve ratios of 1/2k − ε and 1/(4k − 2) − ε,
respectively, where k is the number of objective functions. For two ob-
jective functions, we obtain ratios of 3/8−ε and 1/4−ε for the symmetric
and asymmetric TSP, respectively. Our algorithms are self-contained and
do not use existing approximation schemes as black boxes.
Second, we adapt the generic cycle cover algorithm for Min-TSP. It

achieves ratios of 3/2 + ε, 1
2

+ γ3

1−3γ2
+ ε, and 1

2
+ γ2

1−γ + ε for multi-
criteria Min-ATSP with distances 1 and 2, Min-ATSP with γ-triangle
inequality and Min-STSP with γ-triangle inequality, respectively.

1 Multi-Criteria TSP

The traveling salesman problem (TSP) is perhaps the best-studied combinatorial
optimization problem. An instance of Min-TSP is a complete graph G = (V,E)
with edge weights d : E → Q+ that satisfy the triangle inequality. The goal is
to find a Hamiltonian cycle (also called a tour) of minimum weight, where the
weight of a tour is the sum of its edge weights. (The weight of an arbitrary set of
edges is defined analogously.) If G is undirected, we have Min-STSP (symmetric
TSP). If G is directed, we have Min-ATSP (asymmetric TSP). If we restrict the
problem to instances that fulfill the γ-triangle inequality for γ ∈ [1/2, 1) (this
means d(u, v) ≤ γ · (d(u, x) + d(x, v)) for all distinct u, v, x ∈ V ), then we get
Min-γ-STSP and Min-γ-ATSP. If we restrict the edge weights to 1 and 2, we
get Min-1/2-STSP and Min-1/2-ATSP. For Max-STSP and Max-ATSP, we have
edge weights w : E → Q+, and the goal is to find a tour of maximum weight.

All these variants of TSP are NP-hard and APX-hard [5]. Thus, we are in
need of approximation algorithms. Min-STSP can be approximated with a ratio
of 3/2 [5, Sect. 3.1.3]. Min-ATSP allows for a randomized O(log n/ log log n)
approximation [4] and for a deterministic 2

3 log2 n approximation [13], where n
is the number of vertices. Max-STSP and Max-ATSP can be approximated with
ratios of 7/9 [22] and 2/3 [17], respectively. Min-γ-STSP and Min-γ-ATSP can
be approximated with constant ratios depending on γ [9–11,25]. Min-1/2-STSP
and Min-1/2-ATSP admit factor 8/7 [6] and 5/4 [7] approximations, respectively.

In many scenarios, however, there is more than one objective function to
optimize. In case of the TSP, we might want to minimize travel time, expenses,
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number of flight changes, etc., while we want to maximize, e.g., our profit along
the route. This gives rise to multi-criteria TSP, where Hamiltonian cycles are
sought that optimize several objectives simultaneously. In order to transfer the
notion of an optimal solutions to multi-criteria optimization problems, Pareto
curves have been introduced (cf. Ehrgott [12]). A Pareto curve is a set of all
optimal trade-offs between the different objective functions.

In the following, k always denotes the number of objective functions. We
assume throughout the paper that k ≥ 2 is an arbitrary constant. Let [k] =
{1, 2, . . . , k}. The k-criteria variants of the TSP that we consider are denoted
by k-Min-STSP, k-Min-ATSP, k-Min-γ-STSP, k-Min-γ-ATSP, k-Min-1/2-STSP,
k-Min-1/2-ATSP as well as k-Max-STSP and k-Max-ATSP.

We define the following terms for Min-TSP only. After that, we briefly point
out the differences for Max-TSP. For a k-criteria variant of Min-TSP, we have
edge weights d1, . . . , dk : E → Q+. For convenience, let d = (d1, . . . , dk). Inequal-
ities of vectors are meant component-wise. A tour H dominates another tour H̃
if d(H) ≤ d(H̃) and at least one of these k inequalities is strict. This means that
H is strictly preferable to H̃. A Pareto curve is a set of all solutions that are
not dominated by another solution. Since Pareto curves for the TSP cannot be
computed efficiently, we have to be satisfied with approximate Pareto curves. A
set P of tours is called an α approximate Pareto curve for the instance (G, d) if
the following holds: For every tour H̃ of G, there exists a tour H ∈ P of G with
d(H) ≤ αd(H̃). We have α ≥ 1, and a 1 approximate Pareto curve is a Pareto
curve. An algorithm is called an α approximation algorithm if it computes an α
approximate Pareto curve.

Let us point out the differences for Max-TSP. We have edge weights w =
(w1, . . . , wk) (the triangle inequality is not required). Now a tour H dominates
H̃ if w(H) ≥ w(H̃) and at least one inequality is strict. A set P of tours is
an α approximate Pareto curve if, for every tour H̃, we have an H ∈ P with
w(H) ≥ αw(H̃). Note that α ≤ 1 for maximization problems.

1.1 Previous Work

Table 1 shows the current approximation ratios for the different variants of
multi-criteria TSP. Many of these approximation algorithms can be extended
to the case where some objectives should be minimized and others should be
maximized [19]. Unfortunately, no deterministic algorithms are known except for
k-Min-STSP and 2-Max-STSP. The reason for this is that most approximation
algorithms for multi-criteria TSP use cycle covers. A cycle cover of a graph
is a set of vertex-disjoint cycles such that every vertex is part of exactly one
cycle. Hamiltonian cycles are special cases of cycle covers that consist of just
one cycle. In contrast to Hamiltonian cycles, cycle covers of optimal weight
can be computed in polynomial time. Cycle covers are one of the main tools
for designing approximation algorithms for the TSP [7, 8, 13, 17, 22]. However,
only a randomized fully polynomial-time approximation scheme (FPTAS) for
multi-criteria cycle covers is known [24]. This randomized FPTAS builds on a
reduction to a specific unweighted matching problem [23], which is then solved



variant randomized deterministic reference new

2-Min-STSP 2 [15]
k-Min-STSP 2 + ε [20]

k-Min-γ-STSP 2γ3+2γ2

3γ2−2γ+1
+ε, 1+γ

1+3γ−4γ2 +ε 1+γ+ε, 2γ2

2γ2−2γ+1 +ε [20] 1
2

+ γ2

1−γ +ε

2-Min-1/2-STSP 4/3 3/2 [1, 20]
k-Min-1/2-STSP 4/3 2k

k+1
[2, 20] 3/2 + ε

k-Min-ATSP logn+ ε [18]

k-Min-γ-ATSP 1
1−γ + ε [18] 1

2
+ γ3

1−3γ2 +ε

k-Min-1/2-ATSP 3/2 [20] 3/2 + ε

2-Max-STSP 2/3− ε 7/27 [18,22] 3/8− ε
k-Max-STSP 2/3− ε [18] 1

2k
− ε

2-Max-ATSP 1/2 [14] 1/4− ε
k-Max-ATSP 1/2 [14] 1

4k−2
− ε

Table 1. Approximation ratios for multi-criteria TSP. The new deterministic ratio for
k-Min-γ-STSP is an improvement for γ ≤ 0.58. The new ratio for k-Min-γ-ATSP is
achieved for γ < 1/

√
3. The result for k-Min-1/2-STSP is an improvement for k ≥ 3.

using the RNC algorithm by Mulmuley et al. [21]. Derandomizing this algorithm
is assumed to be difficult [3], and these nested reductions make the algorithm
quite slow. Hence, it is natural to ask whether there exist deterministic, faster
approximation algorithms for multi-criteria TSP.

1.2 New Results

We present deterministic approximation algorithms for several variants of multi-
criteria TSP. Our algorithms are considerably simpler and faster than the exist-
ing randomized approximation algorithms. Table 1 shows an overview.

First, we devise deterministic and self-contained algorithms for Max-TSP
(Sect. 2 and 3). They do not use other algorithms as black boxes except for
maximum-weight matching with a single objective function. Furthermore, they
do not make any assumption about the representation of the edge weights. The
existing algorithms require the (admittedly weak and natural) assumption that
the edge weights are encoded in binary. For k-Max-ATSP, we get a ratio of 1

4k−2−
ε for any ε > 0 (Sect. 2). For k-Max-STSP, we achieve a ratio of 1

2k −ε (Sect. 3).
For the special case of two objective functions, we can improve this to 1/4−ε for
2-Max-ATSP and 3/8 − ε for 2-Max-STSP. The latter is an improvement over
the existing deterministic 7/27 approximation for 2-Max-STSP [18,22].

Second, we consider the cycle cover algorithm for Min-TSP (Sect. 4). We
use a deterministic matching algorithm of Grandoni et al. [16]. The difficulty is
that their algorithm does not produce perfect matchings. For k-Min-γ-ATSP, k-
Min-γ-STSP, and k-Min-1/2-ATSP, we nevertheless get ratios of 1

2 + γ3

1−3γ2 + ε,
1
2 + γ2

1−γ + ε, and 3/2 + ε, respectively. The ratio for k-Min-γ-STSP is an im-
provement over existing algorithms for γ ≤ 0.58. The result for k-Min-γ-ATSP



holds for γ < 1/
√

3. The result for k-Min-1/2-ATSP holds of course also for
k-Min-1/2-STSP, and it is an improvement for k ≥ 3.

Due to space limitations, many proofs are omitted from this extended ab-
stract.

2 Max-ATSP

The rough idea behind our algorithm for k-Max-ATSP is as follows: First, we
“guess” a few edges that we contract to get a slightly smaller instance. The
number of edges that we have to contract depends only on k and ε. Second, we
compute k maximum-weight matchings in the smaller instance, each with re-
spect to one of the k objective functions. Third, we compute another matching
that uses only edges of the k matchings and that contains as much weight as pos-
sible with respect to each objective function. One note is here in order: Usually,
cycle covers instead of matchings are used for Max-ATSP. However, although
the weight of a cycle cover can be (roughly) twice as large as the weight of a
maximum-weight matching, we do not get a better approximation ratio by using
cycle covers. The reason is that we lose a factor of roughly 1/2 if we compute a
collection of paths from k initial cycle covers compared to k initial matchings.

The following lemma is a key ingredient of our algorithm. It shows how to
get a matching from k different matchings such that a significant fraction of
the weight with respect to each matching is preserved. This works as long as
no single edge contributes too much weight. The lemma immediately gives a
polynomial-time algorithm for this task.

Lemma 1. Let G = (V,E) be a directed graph, and let w = (w1, . . . , wk) be
edge weights. Let M1, . . . ,Mk ⊆ E be matchings. Let η ∈ (0, 1) be arbitrary such
that wi(e) ≤ η

2k−2 · wi(Mi) for all e ∈ Mi and all i ∈ [k]. Then there exists a

matching P ⊆
⋃k
i=1Mi such that wi(P ) ≥ 1−η

2k−1 · wi(Mi) for all i ∈ [k]. Such a
matching P can be computed in polynomial time.

Proof. We construct the matching as follows: We add one heaviest edge e ∈
M1 with respect to w1 to P and remove e and all edges adjacent to e from
M2, . . . ,Mk. Then we put one heaviest remaining edge from M2 into P and
remove it and all adjacent edges. We proceed with M3, . . . ,Mk and repeat the
process until no edges remain.

Let us analyze wi(P ). In each step, at most two edges of any Mi are removed.
Thus, we have removed at most 2i − 2 edges from Mi until we added the first
edge from Mi to P . The weight of these edges is at most (2i−2) · η

2k−2wi(Mi) ≤
ηwi(Mi). Now let e be an edge of Mi that we added to P , and let e1, . . . , et
be the t ≤ 2k − 2 edges that are removed from Mi in the subsequent rounds
of the procedure until again an edge of Mi is added. By construction, we have
wi(e) ≥ wi(ej) for all j ∈ [t]. Thus, wi(e) ≥ 1

2k−1 · (wi(e)+
∑t
j=1 wi(ej)). Taking

the initial loss of ηwi(Mi) into account, we observe that we can put a 1
2k−1

fraction of (1− η)wi(Mi) into P for each i ∈ [k]. ut



Now we have to make sure that, for a tour H̃, we can find appropriate
matchings M1, . . . ,Mk. For a directed complete graph G = (V,E) and a set
K ⊆ E that forms a subset of a tour, we obtain G−K by contracting all edges
of K. Contracting an edge (u, v) means that we remove all outgoing edges of u
and all incoming edges of v, and then identify u and v. Analogously, for a tour
H̃ ⊇ K, we obtain a tour H̃−K by contracting the edges in K.

The following lemma says that, for any tour H̃, there is always a small set K
of edges such that, if we contract these edges, the resulting tour H̃−K consists
solely of edges that do not contribute too much to the weight of H̃−K with
respect to any objective function. The proof is identical to the proof of the
corresponding lemma for the (1/2− ε) approximation for k-Max-ATSP [18,19].
In the algorithm, we will “guess” good sets K, compute Hamiltonian cycles on
G−K , and add the edges of K to get a Hamiltonian cycle of G.

Small set means that |K| ≤ f(k, ε) for some function f that does not depend
on the number n of vertices. We can choose f(k, ε) ∈ O(k/ log(1/(1 − ε))) =
O(k/ log(1 + ε)) = O(k/ε) [18, 19] (we have log(1 + ε) = O(1/ε) by Taylor
expansion). Moreover, we can choose K such that V−K contains an even number
of vertices.

Lemma 2. Let G = (V,E) be a directed complete graph with edge weights w =
(w1, . . . , wk), and let ε > 0. Let H ⊆ E be any tour of G. Then there is a subset
K ⊆ H such that |K| ≤ f(k, ε), |V−K | is even, and, for all i ∈ [k], we have

1. wi(K) ≥ 1
4 · wi(H) or

2. wi(e) ≤ ε · wi(H−K) for all e ∈ H−K .

We have to make sure that any edge weighs at most an ε fraction of w(H),
provided that w(e) ≤ εw(H) for all e ∈ H: Let βi = max{wi(e) | e ∈ H} be the
weight of the heaviest edge with respect to wi. Let β = (β1, . . . , βk). We define
new edge weights wβ by setting the weight of edges that are too heavy to 0:

wβ(e) =

{
w(e) if w(e) ≤ β and

0 if wi(e) > βi for some i.

Since w(e) ≤ β for every e ∈ H by definition, we have w(H) = wβ(H). The
number of vectors β that result in different weight functions wβ is bounded by
n2k: Since the number of edges is less than n2, there are less than n2 different
edge weights for each objective function. Now we can state and analyze our
approximation algorithm for k-Max-ATSP (Algorithm 1).

Theorem 3. For every ε > 0 and k ≥ 2, Algorithm 1 is a deterministic ap-
proximation algorithm for k-Max-ATSP that achieves an approximation ratio of

1
4k−2 − ε. Its running-time is nO(k/ε).

Proof. We have to show that, for every tour H̃, there exists a tour H ∈ PTSP

with w(H) ≥ ( 1
4k−2 − ε) · w(H̃). By Lemma 2, there exists a subset K ⊆ H̃ of

edges and an I ⊆ [k] such that |K| ≤ f(k, ε), |V−K | is even, wi(K) ≥ wi(H̃)/4



PTSP ←MaxATSP-Approx(G,w, ε)
input: directed complete graph G = (V,E), w : E → Qk+, ε > 0
output: 1

4k−2
− ε approximate Pareto curve PTSP for k-Max-ATSP

1: for all K ⊆ E that form a subset of a tour with |K| ≤ f(k, ε) and |V−K | even do
2: for all I ⊆ [k] and β do
3: compute maximum-weight matchings Mi in G−K w.r.t. wβi for i ∈ I = [k]\I
4: compute a matching P ⊆

⋃
i∈IMi according to Lemma 1

5: add edges to K ∪ P to obtain a Hamiltonian cycle H; add H to PTSP

Algorithm 1: Approximation algorithm for k-Max-ATSP.

for all i ∈ I, and wi(e) ≤ εwi(H̃−K) for all e ∈ H̃−K and i ∈ [k] \ I. Let
i ∈ [k] \ I, and let Mi be a maximum-weight matching in G−K with respect

to wβi . Then wβi (Mi) ≥ wβi (H̃−K)/2 and wβi (e) ≤ 2εwi(H̃−K). Using Lemma 1
with η = (2k − 2)2ε, we can compute a matching P ⊆

⋃
i∈[k]\IMi such that

wβi (P ) ≥ 1−η
2k−1 · w

β
i (Mi) = 1−(2k−2)2ε

2k−1 · wβi (Mi) ≥ ( 1
2k−1 − 2ε) · wβi (Mi). Now

P ∪K is a collection of paths in G. What remains to be done is to estimate the
weight of w(P ∪K). For every i ∈ I, we have wi(P ∪K) ≥ wi(K) ≥ wi(H̃)/4 ≥(

1
4k−2 − ε

)
· wi(H̃). For every i /∈ I, we note that wi(H̃) = wi(K) + wi(H̃−K).

This gives us

wi(P ∪K) ≥ wβi (P ) + wi(K) ≥
(

1
2k−1 − 2ε

)
· wβi (Mi) + wi(K)

≥
(

1
4k−2 − ε

)
· wβi (H̃−K) + wi(K) ≥

(
1

4k−2 − ε
)
wi(H̃).

The running-time is at most nO(1)+2k+f(k,ε) = nO(k/ε). ut

If we have only two objective functions, we can improve the approximation
ratio to 1/4− ε. The key ingredient for this is the following lemma, which is the
improved counterpart of Lemma 1 for k = 2. The lemma can be proved using a
cake-cutting argument with one player for each of the two objective functions.

Lemma 4. Let G = (V,E) be a directed graph with edge weights w = (w1, w2)
and an even number of vertices. Let M1,M2 ⊆ E be two perfect matchings, and
let η ∈ (0, 1/4). Suppose that wi(e) ≤ η

2 · wi(Mi) for all e ∈ Mi and i ∈ {1, 2}.
Then there is a matching P ⊆ M1 ∪ M2 with wi(P ) ≥ ( 1

2 −
√
η)wi(Mi) for

i ∈ {1, 2}. The matching P can be found in polynomial time.

Proof. Without loss of generality, we assume M1 ∩M2 = ∅. Otherwise, we can
simply remove M1 ∩M2 from both matchings and add it to P . We scale the
edge weights such that wi(Mi) = 1 for i ∈ {1, 2}. If we ignore the directions of
the edges, the graph with edges M1 ∪M2 is a collection of disjoint cycles. Every
cycle has even length and edges from M1 and M2 alternate.

Let c ⊆ M1 ∪M2 be a cycle. We say that c is a light cycle if w1(c) ≤ √η.
Otherwise, i.e., if w1(c) >

√
η, we call c a heavy cycle. Note that M1 ∪M2 has

at most 1/
√
η heavy cycles.

We show the lemma by a cake-cutting argument: Player 1 puts cycles (or
parts of cycles) into two sets S1 and S2, and then Player 2 can choose which set



PTSP ←MaxATSP-Approx-2(G,w, ε)
input: directed complete graph G = (V,E), w : E → Q2

+, ε > 0
output: 1

4
− ε approximate Pareto curve PTSP for k-Max-ATSP

1: for all K ⊆ E with |K| ≤ f(2, ε2) that are a subset of a tour and |V−K | even do
2: for all I ⊆ {1, 2} and β do
3: compute maximum-weight matchings Mi in G−K w.r.t. wβi for i ∈ I
4: compute a matching P ⊆

⋃
i∈IMi according to Lemma 4

5: add edges to K ∪ P to obtain a Hamiltonian cycle H; add H to PTSP

Algorithm 2: Improved approximation algorithm for 2-Max-ATSP.

to take. Player i wants to maximize wi. Player 1 puts light cycles as a whole
into S1 or S2. Heavy cycles are split into two parts as follows: Player 1 decides
to remove one edge of M1 and one edge of M2 (these edges are lost also for
Player 2). In this way, we get two paths (again disregarding the directions of
the edges). Player 1 puts one path into S1 and the other path into S2. (It can
happen that one of the paths is empty: If we have a cycle of length four, the
two edges removed are necessarily adjacent. This, however, does not cause any
problem. In particular, cycles of length four are always light cycles.) Finally,
Player 2 chooses the set Si that maximizes w2. Player 1 has to take S3−i. This
yields the matching P = (Si ∩M2) ∪ (S3−i ∩M1).

Let us estimate the weight that the players are guaranteed to get. Since we
have at most 1/

√
η heavy cycles, at most 1/

√
η edges from M2 are removed. The

total weight of the edges removed is hence at most
√
η/2. Thus, w2((S1 ∪ S2) ∩

M2) ≥ w2(M2)−√η/2 = 1−√η/2. Hence, Player 2 can always get a weight of
at least 1

2 · (1−
√
η/2) ≥ 1

2 −
√
η.

Let us now focus on Player 1. As for Player 2, we have w1((S1 ∪S2)∩M1) ≥
1 − √η/2. For any heavy weight cycle c, Player 1 can choose to remove edges
such that the resulting paths differ by at most η/2 with respect to w1. Since light
cycles are put as a whole in either S1 or S2 and have a weight of at most

√
η

with respect to w1, Player 1 can make sure that w1(S1 ∩M1) and w1(S2 ∩M1)

differ by at most
√
η. Thus, w1(Si ∩M1) ≥ 1

2 ·
(
1−

√
η

2

)
−
√
η

2 ≥
1
2 −
√
η for both

i ∈ {1, 2}. Thus, for any choice of Player 2, Player 1 still gets enough weight
with respect to w1. The proof immediately gives a polynomial-time algorithm
for computing P . ut

Theorem 5. For every ε > 0, Algorithm 2 is a deterministic approximation
algorithm for 2-Max-ATSP with an approximation ratio of 1/4− ε. Its running-
time is nO(1/ε2).

Proof. We have to prove that, for every tour H̃, there is an H ∈ PTSP with
w(H) ≥ ( 1

4 − ε) ·w(H̃). According to Lemma 2, there is a subset K ⊆ H̃ and an

I ⊆ {1, 2} such that |K| ≤ f(2, ε2), |V−K | is even, wi(K) ≥ wi(H̃)/4 for i ∈ I,
and wi(e) ≤ ε2wi(H−K) for all e ∈ H−K and i ∈ {1, 2}\I = I. Thus, there exists

a β such that, first, wβi (H̃−K) = wi(H̃−K) for all i ∈ I and, second, for each i ∈ I,



there exists a matchingMi with wβi (e) ≤ 2ε2wβi (Mi) and wβ(Mi) ≥ 1
2 ·w

β(H̃−K).
Using Lemma 4 with η = 4ε2, we can compute a matching P ⊆

⋃
i∈IMi such

that wβi (P ) ≥ ( 1
2 − 2ε)wβi (Mi) for each i ∈ I. Again, P ∪ K is a collection of

paths. For any i ∈ I, we have wi(P ∪K) ≥ wi(K) ≥ wi(H̃)/4, which is sufficient.
For any i ∈ I, we have

wi(P ∪K) ≥ wβi (P ) + wi(K) ≥
(
1
2 − 2ε

)
· wβi (Mi) + wi(K)

≥
(
1
4 − ε

)
· wβi (H̃−K) + wi(K) ≥

(
1
4 − ε

)
· wi(H̃).

The running-time is bounded by nO(1)+f(2,2ε2) = nO(1/ε2). ut

3 Max-STSP

One key ingredient for our algorithm for k-Max-STSP is the following lemma,
which is the undirected counterpart to Lemma 1. In contrast to k-Max-ATSP,
we now start with k cycle covers rather than k matchings.

Lemma 6. Let G = (V,E) be an undirected graph with edge weights w =
(w1, . . . , wk), and let C1, . . . , Ck ⊆ E be cycle covers. Assume that, for some
η > 0, we have wi(e) ≤ η

2k−1wi(Ci) for all e ∈ Ci and all i ∈ [k]. Then there

exists a collection P ⊆
⋃k
i=1 Ci of paths such that wi(P ) ≥ 1−η

2k wi(Ci) for all i.
Such a collection P can be computed in polynomial time.

As in Sect. 2, we would like to keep a set K ⊆ E of heavy edges. Un-
fortunately, it is impossible to contract edges in the same way as in directed
graphs [18]. As already done for the randomized algorithms, we circumvent this
by setting the weight along paths of sufficient length to 0 [18, 19]. To do this
formally, we need the following notation: Let H̃ be a Hamiltonian cycle, and let
K ⊆ H̃. Let L = L(K) = {v | ∃e ∈ K : v ∈ e} be the set of vertices that are adja-
cent to edges of K. Let T = T (K) = {e ∈ H̃ | e is adjacent to K but not in K}.
As for the directed case, let β = (β1, . . . , βk). Now we define

w−L,β(e) =

{
w(e) if e ∩ L = ∅ and w(e) ≤ β and

0 if e ∩ L 6= ∅ or there is an i with wi(e) > βi.

This means that under w−K,β , all edges of K or adjacent to K have weight 0.
Furthermore, all edges that exceed β for some objective are also set to 0.

Now we are prepared to state the undirected counterpart of Lemma 2. As
Lemma 2, its proof is identical to the proof of the corresponding lemma for the
( 2
3 − ε) approximation for k-Max-STSP [18, 19]. We can choose the function g

in the lemma such that g(k, η) ∈ O
(

k3

η·(log(1−η))2
)

= O(k3/η3). We can easily

require that |V−K | is even. The necessary change of the function g is negligible.

Lemma 7. Let G = (V,E) be an undirected complete graph with edge weights
w = (w1, . . . , wk). Let η > 0. Let H ⊆ E be any Hamiltonian cycle of G. Then



P ←MaxSTSP-Approx(G,w, ε)
input: undirected complete graph G = (V,E), w : E → Qk+, ε > 0
output: 1

2k
− ε approximate Pareto curve PTSP for k-Max-STSP

1: for all K ⊆ E with |K| ≤ g(k, ε/2) that form a subset of a tour do
2: for all I ⊆ [k], and β do
3: compute maximum-weight cycle covers Ci in G w.r.t. w−K,βi for i ∈ I
4: compute a collection P ⊆

⋃
i∈[k]\I Ci of paths according to Lemma 6

5: remove edges incident to L(K) from P to obtain P ′

6: add edges to K ∪ P ′ to obtain a Hamiltonian cycle H; add H to PTSP

Algorithm 3: 1
2k − ε approximation for k-Max-STSP.

PTSP ←MaxSTSP-Approx-2(G,w, ε)
input: undirected complete graph G = (V,E), w : E → Q2

+, ε > 0
output: 3

8
− ε approximate Pareto curve PTSP for k-Max-STSP

1: for all K ⊆ E with |K| ≤ g(2, ε/2) that form a subset of a tour do
2: for all I ⊆ {1, 2} and β do
3: compute maximum-weight matchings Mi in G w.r.t. w−K,βi for i ∈ I
4: compute a collection P ⊆

⋃
i∈[k]\IMi of paths according to Lemma 6

5: remove edges incident to L(K) from P to obtain P ′

6: add edges to K ∪ P ′ to obtain a Hamiltonian cycle H; add H to PTSP

Algorithm 4: Improved approximation for 2-Max-STSP.

there exists a collection K ⊆ H of paths such that |K| ≤ g(k, η) and |V−K | is
even and the following properties hold: Let L = L(K) and T = T (K). For all
i ∈ [k], we have

1. wi(K) ≥ 1
2 · wi(H) or

2. wi(e) ≤ η · w−Li (H) for all e ∈ H \K and wi(T ) ≤ η · wi(H).

Now we are prepared to state and analyze our approximation algorithm for
k-Max-STSP (Algorithm 3), and we obtain the following theorem.

Theorem 8. For every k ≥ 2 and ε > 0, Algorithm 3 is a deterministic ap-
proximation algorithm for k-Max-STSP that achieves an approximation ratio of
1
2k − ε and has a running-time of nO(k3/ε3).

As for 2-Max-ATSP, we can achieve a better approximation ratio of 3/8−ε for
k = 2. This improves over the known deterministic 7/27 approximation [18,22].

Lemma 9. Let G = (V,E) be an undirected graph with edge weights w =
(w1, w2), and let M1,M2 ⊆ E be two matchings. Assume that wi(e) ≤ ηwi(Mi)
for i ∈ {1, 2} and all edges e ∈Mi. Then there exists a collection P ⊆M1 ∪M2

of paths such that wi(P ) ≥ ( 3
4 − η) · wi(Mi) for i ∈ {1, 2}. Such a collection P

can be found in polynomial time.

Theorem 10. For any ε > 0, Algorithm 4 is a deterministic algorithm for 2-
Max-STSP with an approximation ratio of 3

8 − ε. Its running-time is nO(1/ε3).



PTSP ← GenericATSP(G, d, ε)
input: directed complete graph G = (V,E), d : E → Qk+, ε > 0
output: approximate Pareto curve PTSP for k-Min-ATSP
1: we ← 1 for all e ∈ E
2: compute an ε

2β
-approximate Pareto curve C of ε

2β
-partial cycle covers

3: for all C ∈ C do
4: break one edge of every cycle of C to obtain a collection P of paths
5: join the paths with edges to obtain a Hamiltonian cycle H; put H into PTSP

Algorithm 5: Generic Approximation for k-Min-TSP.

4 Cycle Cover Algorithm for Min-TSP

Now we consider multi-criteria Min-TSP. In the following, we need the (natural
and weak) assumption that the edge weights are encoded in binary. The main
idea is to replace the approximation scheme for cycle covers by the bipartite
matching algorithm of Grandoni et al. [16]. Their algorithm does the following:
Let G = (V,E) be a bipartite graph, let ε > 0 and k be fixed, let d = (d1, . . . , dk)
be edge lengths, and let w be edge weights. Let D1, . . . , Dk be budgets. Let Mopt

be a matching that maximizes w(Mopt) subject to di(Mopt) ≤ Di for all i ∈ [k].
Then their algorithm outputs a matching M with w(M) ≥ (1− ε)w(Mopt) and
di(M) ≤ (1 + ε)Di for all i ∈ [k]. We use this algorithm to compute partial
cycle covers. An ε-partial cycle cover of a directed graph is a collection of simple
cycles and simple paths that contains at least (1− ε) ·n edges. (A cycle cover in
an n vertex graph consists of n edges.) In other words, a partial cycle cover is
a subset of a cycle cover. We do this by exploiting that matchings in bipartite
graphs stand in one-to-one correspondence to cycle covers in directed graphs.
Let w(e) = 1 for all edges e ∈ E. Then our goal is simply to maximize the
number of edges subject to the budget constraints. We choose all combinations
of 0 and (1 + ε)` (with ` ∈ {−p, . . . , p} for some polynomial p) for D1, . . . , Dk

and run the matching algorithm using these D1, . . . , Dk for some small enough
ε. This yields (1 + ε) approximate Pareto curves for ε-partial cycle covers [24].

Let βd = maxi∈[k],e,e′∈E
di(e)
di(e′)

be the maximum ratio of heaviest to lightest

edge with respect to any objective function. We remark that it is crucial that
βd is bounded by a constant in order to our algorithm work satisfactory. The
reason is that we have to be content with ε-partial cycle covers. Due to this, we
might incur extra costs proportional to εβd.

Theorem 11. Fix any ε > 0, k ≥ 2, and β ≥ 1. If restricted to instances (G, d)
with βd ≤ β, Algorithm 5 is a 1+β

2 +ε approximation algorithm for k-Min-ATSP.

For k-Min-1/2-ATSP, we have βd ≤ 2. For k-Min-γ-ATSP, we have βd ≤
2γ3

1−3γ2 for γ < 1/
√

3 [11], while for k-Min-γ-STSP, we have βd ≤ 2γ2

1−γ for γ <

1 [10]. Thus, we get the following derandomized algorithms [18,20].

Corollary 12. For every k ≥ 2 and ε > 0, Algorithm 5 is a deterministic
approximation algorithm for multi-criteria Min-TSP. It achieves a ratio of 3/2+



ε for k-Min-1/2-ATSP, a ratio of 1
2 + γ3

1−3γ2 +ε for k-Min-γ-ATSP for γ < 1/
√

3,

and a ratio of 1
2 + γ2

1−γ + ε for k-Min-γ-STSP for γ < 1.

5 Open Problems

An obvious question is whether there exists a deterministic approximation al-
gorithm for k-Min-ATSP with a non-trivial approximation ratio, which means
smaller than 2

3 · k log2 n, which is obtained by adding the k weights of each edge
to get a single objective function. Furthermore, we would like to know if there
are deterministic approximation algorithms for k-Max-ATSP and k-Max-STSP
that achieve a constant approximation ratio (or at least a ratio of ω(1/k)).

A key step towards improving the deterministic algorithms for multi-criteria
Min-TSP would be an approximation scheme for multi-criteria non-bipartite per-
fect matching. Moreover, the algorithms for k-Min-1/2-STSP and k-Min-γ-STSP
would yield a better ratio if initialized with undirected cycle covers. However, a
derandomization of the randomized FPTAS for general matching [24], which is
based on the isolation lemma [21], seems to be difficult [3].

Finally, it is open if there are deterministic algorithms for the case where
some objectives should be minimized while others should be maximized.
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