
Approximability of Minimum AND-Circuits?

Jan Arpe1,?? and Bodo Manthey2,? ? ?

1 Universität zu Lübeck, Institut für Theoretische Informatik
Ratzeburger Allee 160, 23538 Lübeck, Germany

arpe@tcs.uni-luebeck.de
2 Universität des Saarlandes, Informatik

Postfach 151150, 66041 Saarbrücken, Germany
manthey@cs.uni-sb.de

Abstract. Given a set of monomials, the Minimum-AND-Circuit prob-
lem asks for a circuit that computes these monomials using AND-gates
of fan-in two and being of minimum size. We prove that the problem
is not polynomial time approximable within a factor of less than 1.0051
unless P = NP, even if the monomials are restricted to be of degree at
most three. For the latter case, we devise several efficient approximation
algorithms, yielding an approximation ratio of 1.278. For the general
problem, we achieve an approximation ratio of d − 3/2, where d is the
degree of the largest monomial. In addition, we prove that the problem
is fixed parameter tractable with the number of monomials as parame-
ter. Finally, we reveal connections between the Minimum AND-Circuit
problem and several problems from different areas.

1 Introduction

Given a set of Boolean monomials, the Minimum-AND-Circuit problem asks for
a circuit that consists solely of logical AND-gates with fan-in two and that
computes these monomials. The monomials may for example arise in the DNF-
representation of a Boolean function or in some decomposed or factored form.
Thus, the Minimum-AND-Circuit problem is of fundamental interest for auto-
mated circuit design, see Charikar et al. [3, Sect. VII.B] and references therein.
In this paper, we assume that all variables always occur positively; no negations
are permitted. The investigation of minimum AND-circuits from a complexity
theoretic standpoint was proposed by Charikar et al. [3]. According to them, no
approximation guarantees have been proved at all yet.

We give the first positive and negative approximability results for the Mini-
mum-AND-Circuit problem. Specifically, we show that the problem is not approx-
imable within a factor of less than 983

978 unless P = NP, even if the monomials are

? A full version of this work with all proofs is available as Report 06-045 of the Elec-
tronic Colloquium on Computational Complexity (ECCC).

?? Supported by DFG research grant RE 672/4.
? ? ? Work done as a member of the Institut für Theoretische Informatik of the Universität

zu Lübeck and supported by DFG research grant RE 672/3.

10th Scandinavian Workshop on Algorithm Theory (SWAT 2006) c© Springer

restricted to be of maximum degree three (Sect. 3). For the latter variant, we
present several algorithms and prove an upper bound of 1.278 on its approxima-
tion ratio (Sect. 4). If the number of occurrences of each submonomial of size
two in the input instance, called the multiplicity, is bounded from above by a
constant µ ≥ 3, similar hardness results are achieved (Sect. 3) and the upper
bounds are slightly improved (Sect. 4.4). For µ = 2, the problem is even in P
(Sect. 4.2). However, if we allow the monomials to be of degree four, it remains
open whether the case µ = 2 is solvable in polynomial time. We prove that the
general problem with multiplicity bounded by µ is approximable within a factor
of µ (Sect. 6.2).

In general, restricting the monomials to be of degree at most d admits a
straightforward approximation within a factor of d−1, which we improve to d−
3/2 (Sect. 6.1). If the degrees are required to be exactly d and in addition, the
multiplicity is bounded by µ, we prove an upper bound on the approximation
ratio of µ(d− 1)/(µ + d− 2) (Sect. 6.2).

Besides from fixing the maximum degree or the multiplicity of the input
monomials, we consider fixing the number of monomials (Sect. 5). We show
that Minimum-AND-Circuit instances have small problem kernels, yielding a fixed
parameter tractable algorithm (for terminology, see Downey and Fellows [6]). In
other words, the Minimum-AND-Circuit problem restricted to instances with a
fixed number of monomials is in P.

There are two evident generalizations of AND-circuits. The first one is to
ask for a minimum Boolean circuit (with AND-, OR-, and NOT-gates) that
computes a given function. This problem has, for example, been investigated by
Kabanets and Cai [7]; its complexity is still open. Even if the functions to be
computed consist solely of positive monomials, allowing the circuit to contain
AND- and OR-gates can reduce the circuit size, as has been shown by Tarjan [11]
(see also Wegener [13]).

The second one is to consider monomials over other structures such as the ad-
ditive group of integers or the monoid of finite words over some alphabet (see also
Sect. 6.3). While the former structure leads to addition chains [9, Sect. 4.6.3],
the latter yields the smallest grammar problem which has attracted much atten-
tion in the past few years; a summary of recent results has been provided by
Charikar et al. [3, Sect. I and II]. In fact, Charikar et al.’s suggestion to inves-
tigate minimum AND-circuits was motivated by the lack of understanding the
hierarchical structure of grammar-based compression. In particular, there is a
bunch of so-called global algorithms for the smallest grammar problem which are
believed to achieve quite good approximation ratios, but no one has yet managed
to prove this.

2 Preliminaries

2.1 Monomials and Circuits

We study the design of small circuits that simultaneously compute given mono-
mials M1, . . . ,Mk over a set of Boolean variables X = {x1, . . . , xn}. More

precisely, a (Boolean) monomial is an AND-product of variables of a subset
of X, and by an AND-circuit, we mean a circuit consisting solely of AND-gates
with fan-in two. We identify a monomial M = xi1 ∧ . . . ∧ xid

with the subset
{xi1 , . . . , xid

}, which we denote by M again. Since we only use one type of op-
eration, we often omit the ∧ signs and simply write xi1 . . . xid

. The degree of M
is |M |.

An (AND-)circuit C over X is a directed acyclic graph with node set G(C)
(gates) and edge set W (C) (wires) satisfying the following properties:

1. To each input variable x ∈ X is associated exactly one input gate gx ∈ G(C)
that has indegree zero and arbitrary outdegree.

2. All nodes that are not input nodes have indegree exactly two and arbitrary
outdegree. These nodes are called computation gates.

We denote the set of computation gates of C by G∗(C), i.e., G∗(C) = G(C)\{gx |
x ∈ X}. The circuit size of C is equal to the number of computation gates of C,
i.e., size(C) = |G∗(C)|. A gate g computes the monomial val(g), which is defined
as follows:

1. val(gx) = x.
2. For a computation gate g with predecessors g1 and g2, val(g) = val(g1) ∧

val(g2).

The circuit C computes a Boolean monomial M if some gate in C computes M .
It computes a set M of monomials if it computes all monomials in M. Such a
circuit is called a circuit for M. The gates that compute the monomials inM are
referred to as the output gates. Output gates, unless they are input gates at the
same time, are computation gates, too, and hence contribute to the circuit size.
This makes sense since in a physical realization of the circuit, such gates have
to perform an AND-operation—in the same way as all non-output computation
gates.

A subcircuit C′ of a circuit C is a subgraph of C that is again a circuit. In
particular, C′ contains all “induced” input gates. For g ∈ G(C), let Cg be the
minimal subcircuit of C containing g. Since Cg is a circuit, it contains all input
gates gx with x ∈ val(g). Moreover, Cg contains at least | val(g)|−1 computation
gates. Let M be a set of monomials and C be a circuit for M. For each M ∈M,
denote the gate that computes M by gM and write CM for CgM

.
A gate is called strict if its predecessors compute disjoint monomials. A

circuit is called strict if all of its gates are strict. Any non-strict circuit for a
Min-AC instance M of maximum degree at most four can be turned into a strict
circuit for M of the same size. This is not true if the monomials are allowed to
be of degree five or more (Sect. 6.1).

Let S ⊆ X. The multiplicity of S in M is the number of occurrences of S in
M as a submonomial, i.e.,

multM(S) = |{M ∈M | S ⊆ M}| .

The maximum multiplicity of M is defined by

mult(M) = max
|S|≥2

multM(S) .

It is equal to the number of occurrences of the most frequent pair of variables
in M.

2.2 Optimization Problems

For an introduction to the approximation theory of combinatorial optimization
problems, we refer to Ausiello et al. [2]. For an optimization problem P and an
instance I for P , we write optP (I) for the measure of an optimum solution for I.

Let A be an approximation algorithm for P , i.e., an algorithm, that on an
instance I of P , outputs an admissible solution A(I). The approximation ratio
ρA(I) of A at I is the ratio between the measure m(A(I)) of a solution A(I)
output by A and the size of an optimal solution, i.e., ρA(I) = m(A(I))

optP (I) . The
approximation ratio ρA of A is the worst-case ratio of all ratios ρA(I), i.e.,
ρA = maxI ρA(I).

The Minimum-AND-Circuit problem, abbreviated Min-AC, is defined as fol-
lows: Given a set of monomials M = {M1, . . . ,Mk} over a set of Boolean input
variables X = {x1, . . . , xn}, find a circuit C of minimum size that computes M.

Throughout the paper, k denotes the number of monomials, n denotes the
number of input variables, and N =

∑
M∈M |M | denotes the total input size. In

addition, we always assume that X =
⋃

M∈M M .
We denote by Min-d-AC the Minimum-AND-Circuit problem with instances

restricted to monomials of degree at most d. The problem where the degrees are
required to be exactly d is denoted by Min-Ed-AC.

A vertex cover of a graph G is a subset Ṽ ⊆ V such that every edge has
at least one endpoint in Ṽ . This definition also applies to hypergraphs. Aside
from Min-AC, we will encounter the following optimization problems: The vertex
cover problem, denoted by Min-VC, is defined as follows: Given an undirected
graph G, find a vertex cover of G of minimum size.

The restriction of Min-VC to graphs of maximum degree d is denoted by
Min-d-VC. A hypergraph is called r-uniform if all of its edges have size exactly r.
The vertex cover problem for r-uniform hypergraphs, denoted by Min-r-UVC, is:
Given an r-uniform hypergraph G, find a vertex cover of G of minimum size.

Finally, Maximum-Coverage is the following optimization problem: Given a
hypergraph G and a number r ∈ N, find r edges e1, . . . , er ∈ E such that

⋃r
i=1 ei

is of maximum cardinality.

3 Hardness

We show that Minimum-AND-Circuit is NP-complete and that there is no poly-
nomial-time approximation algorithm that achieves an approximation ratio of
less than 983

978 unless P = NP. To do this, we reduce Min-VC to Min-AC.

1 2

3 4

a

b c d

(a) Graph with vertex
cover {2, 3}.

x0 x1 x2 x3 x4

x0x2 x0x3

x0x1x2 x0x1x3 x0x2x3 x0x2x4

(b) Circuit for the Min-3-AC instance {Ma, Mb, Mc, Md}
with Ma = x0x1x2, Mb = x0x1x3, Mc = x0x2x3, and
Md = x0x2x4.

Fig. 1. A graph with a vertex cover and the corresponding circuit as constructed in
Section 3.

Let G = (V,E) be an undirected graph with n = |V | vertices and m = |E|
edges. We construct an instance of Min-AC as follows. For each node v ∈ V ,
we have a variable xv. In addition, there is an extra variable x0. For each edge
e = {v, w} ∈ E, we construct the monomial Me = x0xvxw. Our instance of Min-
AC is then MG = {Me | e ∈ E}. Note that |M | = 3 for all M ∈MG. Moreover,
if G has maximum degree ∆, then MG has maximum multiplicity ∆. Clearly,
MG can be constructed in polynomial time. An example is shown in Figure 1.

There is a one-to-one correspondence between the sizes of the vertex cover
and the circuit: We have optMin-AC(MG) = |E| + `, where ` = optMin-VC(G).
Furthermore, given a circuit C of size |E| + `′ for MG, we can compute a ver-
tex cover Ṽ of G with |Ṽ | ≤ `′ in polynomial time. This together with recent
inapproximability results by Chleb́ık and Chleb́ıková [4] yields the following the-
orems.

Theorem 1. Min-AC is NP-complete, APX-hard and cannot be approximated in
polynomial time within a factor of less than 983

978 > 1.0051 unless P = NP. This
holds even for Min-3-AC restricted to instances with maximum multiplicity six.

Theorem 2. Min-3-AC restricted to instances of maximum multiplicity three
is NP-complete, APX-complete, and cannot be approximated in polynomial time
within a factor of less than 269

268 > 1.0037 unless P = NP.

4 Approximation Algorithms for Min-3-AC

In this section, we provide several polynomial-time approximation algorithms
for Min-3-AC, the problem of computing minimum AND-circuits for monomials
of degree at most three. Note that the lower bounds proved in Section 3 hold
already for Min-E3-AC.

Without loss of generality, we may assume that all monomials have degree
exactly three for the following reasons. Firstly, we do not need any computation
gates to compute monomials of degree one, so we can delete such monomials

from the input. Secondly, for each input monomial of size two, we are forced to
construct an output gate. On the other hand, we should use this gate wherever
we can for other input monomials, so we can delete all monomials of degree two
from the input and substitute all occurrences of such monomials in the other
monomials by extra variables. We repeat this process until no more monomials
of size two are in the input. As we have already mentioned in Section 2, we
can assume without loss of generality that circuits for Min-3-AC instances are
strict. Moreover, if all monomials are of degree exactly three, then a circuit can
be assumed to consist of two layers of computation gates. The gates of the first
layer compute monomials of size two, and the gates of the second layer are the
output gates.

Since each monomial M of degree at most three can be computed by a circuit
of size two, we can construct a trivial circuit Ctriv for a Min-3-AC instance M of
size 2k, where k is the number of monomials. On the other hand, the computation
of k monomials obviously requires at least k gates. Thus, we obtain an upper
bound of 2 on the polynomial-time approximation ratio for Min-3-AC. In the
following, we show how to improve this bound.

4.1 Algorithm “Cover”

We first reduce Min-3-AC to Min-3-UVC, the problem of finding a vertex cover
in three-uniform hypergraphs. Subsequently, we will present our algorithms.

Let M be a Min-3-AC instance. We introduce some notation that will be used
throughout this paper. For M ∈M, let

pairs(M) = {S ⊆ X | |S| = 2 ∧ S ⊆ M}

be the set of pairs contained in M . Note that |pairs(M)| = 3. Furthermore, let
pairs(M) =

⋃
M∈M pairs(M) be the set of all pairs of variables appearing in M.

Let C be a circuit for M. Then C consists of two layers, the second one
containing the k = |M| output gates. In the first layer, certain monomials of
size two are computed: for each monomial M ∈M, one of the pairs S ∈ pairs(M)
has to be computed at the first level of C. The task is thus to find a minimum
set of pairs S ∈ pairs(M) such that each monomial M ∈ M contains one
such pair. This corresponds to finding a minimum vertex cover of the three-
uniform hypergraph H(M) = (V,E) described in the following. The node set
is the set of pairs appearing in M, i.e., V = pairs(M), and for each monomial
M ∈ M, there is a hyperedge containing the pairs that appear in M , i.e.,
E = {pairs(M) | M ∈ M}. A circuit C for M with gates computing the pairs
S1, . . . , S` at its first level corresponds to the vertex cover of H(M) given by
{Si | 1 ≤ i ≤ `} and vice versa. We denote the circuit corresponding to a vertex
cover Ṽ by CṼ .

Our first polynomial-time approximation algorithm for Min-3-AC is based on
the reduction we have just presented (Algorithm 1). The set Ṽ consists of all
nodes that are incident with the matching Ẽ. Thus the size of Ṽ equals 3 · |Ẽ|. Ṽ
is a vertex cover since Ẽ cannot be enlarged. On the other hand, any vertex cover

x1x3

x0x1 x0x3

x1x2 x0x2 x2x3

x0x4 x2x4

Fig. 2. The hypergraph H(M) associated with the Min-AC instanceM introduced in
Figure 1. Each triangle represents a hyperedge. The two bold monomials constitute a
vertex cover.

Algorithm 1 Algorithm Cover for Min-3-AC.
InputM = {M1, . . . , Mk}.

1: Compute the hypergraph H = H(M).
2: Compute greedily an inclusion-maximal matching Ẽ in H, i.e., a collection of dis-

joint hyperedges that cannot be enlarged.
3: Let Ṽ =

S
e∈Ẽ e.

4: Compute C = CṼ .
5: Output C.

of H(M) must include at least one vertex from each hyperedge of the maximum
matching Ẽ, so any vertex cover of IG(M) must be of size at least |Ẽ|. In
conclusion, we have |Ṽ | ≤ 3 · optMin-3-UVC(H(M)).

Overall, Cover achieves the following approximation performance.

Lemma 1. Let optMin-3-AC(M) = k + `. Then Cover outputs a circuit CCover

for M of size at most k + 3 · `.

In case that ` ≥ 1
3k, Cover outputs a circuit that is larger than the trivial

one. Choosing to output the trivial circuit instead, yields an algorithm with
an approximation ratio of 3/2. Thus, we have already found an algorithm that
achieves a non-trivial approximation ratio. In the course of this paper, we will
improve this ratio to below 1.3.

4.2 Algorithm “Match”

Before we present our next algorithm, we introduce another technical utility.
Associate with M the intersection graph IG(M) defined as follows: the nodes of
IG(M) are the monomials of M, and two monomials M,M ′ ∈M are connected
by an edge iff |M ∩M ′| = 2. An example is shown in Figure 3.

Ma Mb

Mc Md

x0x1

x0x2

x 0
x 2

x
0 x

3

x0x2

Fig. 3. Intersection graph IG(M) associated with the Min-AC instanceM introduced
in Figure 1. The edges are labeled by the pairs that their endpoints have in common.
The bold edges constitute a maximal matching.

Algorithm 2 Algorithm Match for Min-3-AC.
InputM = {M1, . . . , Mk}.

1: Compute G = IG(M).
2: Compute a matching Ẽ of G of maximum cardinality.
3: For each {M, M ′} ∈ Ẽ:
4: Add a gate computing M ∩M ′ to C.
5: Add subcircuits computing M and M ′ to C, using two additional gates.
6: For each M ∈M \

S
e∈Ẽ e (not incident with Ẽ):

7: Add a subcircuit computing M , using |M | − 1 gates.
8: Output C.

Match (Algorithm 2) is a polynomial-time algorithm; in particular, a max-
imum matching in IG(M) can be computed in time O(n2.5) [1]. The approxi-
mation performance of Match is stated in the following

Lemma 2. Let optMin-3-AC(M) = k + `. Then Match outputs a circuit CMatch

for M of size at most 3
2 · k + 1

2 · `.

Although the analysis of Match is not needed for our best upper bound
result for Min-3-AC, the algorithm is the only one for which we can prove a
non-trivial approximation ratio for Min-d-AC in case that d ≥ 4.

For Min-3-AC with instances restricted to a multiplicity of at most two,
Match computes an optimum solution. Thus, Min-3-AC restricted to instances
with a maximum multiplicity of at most two can be solved in polynomial time.

4.3 Algorithm “Greedy”

Our last algorithm Greedy (Algorithm 3) greedily constructs gates for pairs
that occur most frequently in the input instance M until each remaining pair
is shared by at most two monomials. At that point, instead of proceeding in an
arbitrary order, an optimal solution is computed for the remaining monomials.
The latter task is achieved by Match, as we have stated in Section 4.2.

Lemma 3. Let M = {M1,M2, . . . ,Mk} be an instance for Min-3-AC such that
optMin-3-AC(M) = k + `. Then Greedy outputs a circuit CGreedy for M of size

Algorithm 3 Algorithm Greedy for Min-3-AC.
InputM = {M1, . . . , Mk}.

1: While there exists an S ∈
`

X
2

´
such that |{M ∈M | S ⊆M}| ≥ 3:

2: Arbitrarily select S ∈
`

X
2

´
with maximum |{M ∈M | S ⊆M}|.

3: Add a gate computing S to C.
4: For each M ∈M with S ⊆M :
5: Add subcircuit computing M to C, using at most |M | − 2 additional gates.
6: M←M\ {M}.
7: C′ ←Match(M).
8: C ← C ∪ C′.
9: Output C.

at most

min
{

4
3
· k + `,

(
1 +

1
e2

)
k + 2`

}
.

It does not make much sense to reiterate the last step of the analysis since this
would give us a circuit of size larger than k + 3`, the size achieved by Cover.

Corollary 1. The approximation ratio achieved by Greedy for Min-3-AC is at
most 5e2−3

4e2−3 ≈ 1.278.

The best lower bound that we are able to show for the approximation ratio
of Greedy is 10/9.

4.4 Summary of Approximation Ratios

In this subsection, we summarize the approximation ratios of the algorithms
presented in the preceding subsections and present some improvements for Min-
3-AC instances with bounded multiplicity. So far, we have found the following
bounds for the approximation ratios of the Min-3-AC algorithms:

ρCover ≤ k+3`
k+` increasing in ` ,

ρGreedy ≤ (1+e−2)k+2`
k+` increasing in ` ,

ρGreedy ≤
4
3 k+`

k+` decreasing in ` ,

ρMatch ≤
3
2 k+ 1

2 `

k+` decreasing in ` .

These approximation ratios are presented in Figure 4. Concerning restricted
multiplicity, we can show the following result.

Theorem 3. The Min-3-AC problem restricted to instances of maximum multi-
plicity µ, µ ∈ {3, 4, 5}, is approximable within a factor of

– 5/4 = 1.25 if µ = 3,
– 19/15 = 1.26 if µ = 4, and
– 23/18 = 1.27 if µ = 5.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

Greedy
Cover
Match

(a) Upper bounds for Greedy, Cover,
and Match.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

(b) Upper bounds for Greedy given by
Lemma 3.

Fig. 4. Approximation ratios of the Min-3-AC algorithms dependent on the ratio `/k.

5 Fixing the Number of Monomials

Min-AC is fixed parameter tractable with respect to the number k of monomials
in the input instance. For more details on fixed parameter tractability, we refer
to Downey and Fellows [6].

Theorem 4. Min-AC, parameterized by the number of input monomials, is fixed
parameter tractable. This means that there are a function f : N → N and a
polynomial p : N → N such that Min-AC can be solved deterministically in time
f(k) + p(N).

6 Concluding Remarks and Future Research

6.1 Approximation Algorithms for Min-d-AC, d ≥ 4

Obviously, the approximation ratio of Min-d-AC is at most d − 1 since on the
one hand, every monomial of degree at most d can be computed by at most
d − 1 separate gates and on the other hand, any circuit contains at least one
gate per monomial of the input instance. It is easy to see that Match achieves
the slightly better approximation ratio d− 3

2 (which is tight).
We are particularly curious about whether Min-d-AC is approximable within

a factor of o(d) or whether it is possible to show an Ω(d) hardness result.
For d ≥ 4, there are several possibilities of generalizing the greedy algorithm,

which coincide for d = 3.
The algorithms Greedy and Match produce strict circuits. Already for

d = 5, we can construct Min-AC instances M of maximum degree d such that
any strict circuit for M is roughly 4/3 times larger than a minimum non-strict
circuit.

Corollary 2. Any approximation algorithm for Min-AC (or even Min-5-AC)
that produces only strict circuits does not achieve an approximation ratio bet-
ter than 4/3.

6.2 Approximation of Instances with Bounded Multiplicity

In Section 4.2, we showed that Min-3-AC instances with maximum multiplic-
ity two are optimally solvable in polynomial time. In contrast, Min-3-AC with
instances restricted to maximum multiplicity three is hard to solve, as we saw
in Section 3. We leave it as an open problem whether Min-d-AC instances with
d ≥ 4 are polynomial time solvable. Nonetheless we can provide a positive ap-
proximability result for general Min-AC instances with bounded multiplicity.

Theorem 5. Min-AC with instances restricted to be of maximum multiplicity µ
is polynomial-time approximable within a factor of µ.

Theorem 5 also follows from a more general result by Wegener [13, Sect. 6.6]
about Boolean sums, which are collections of disjunctions of (positive) Boolean
variables, and thus are dual to collections of monomials. Wegener [13, Def. 6.1]
defines such a collection to be (h, k)-disjoint if h + 1 disjunctions have at most
k common summands. In particular, sets of monomials of multiplicity µ corre-
spond to (µ, 1)-disjoint collections. The claim then follows from [13, Lem. 6.1] by
plugging in h = µ and k = 1. Although the lemma is only stated for collections
in which the number of input variables equals the number of disjunctions, it also
holds if these numbers differ.

We can improve the result of Theorem 5 for Min-Ed-AC restricted to instances
with bounded multiplicity using the fact that for these instances, all output gates
have frequency one.

Theorem 6. The Min-Ed-AC problem with instances restricted to be of maxi-
mum multiplicity µ is polynomial-time approximable within a factor of µ(d−1)

µ+d−2 .

This implies an improved approximation ratio of 3/2 compared to the ratio of
5/2 achieved by Match for general Min-4-AC instances.

6.3 Generalizations and Related Problems

Let us first mention some applications that arise as alternative interpretations
of the problem in this paper. Viewing monomials M over X as subsets of X
(see also Sect. 2), an AND-gate computes the union of the sets computed by
its predecessors. Thus, AND-circuits may be interpreted as compact representa-
tions of set systems. Since each gate has to be evaluated only once, the circuit
may be considered as a straight-line program that generates the set system.
Furthermore, in a Boolean matrix-vector product, each entry of the result is a
disjunction (or a parity, depending on which type of “sum” is considered) of the
vector entries corresponding to the positions of 1s in the matrix rows. Thus, if
many vectors have to be multiplied by the same matrix, it may be useful to
preprocess the matrix by constructing a circuit that computes all disjunctions
(with indeterminates) first.

Beside Boolean variables and monomials, it is natural to consider monomials
over other structures. In general, the variables x ∈ X take values from some semi-
group (S, ◦) (note that we assume the structure to be associative since otherwise

S ◦ k n Description Remark

{0, 1} ∧ arb. arb. Boolean monomials, Min-AC
Z + 1 1 Addition chains [9, 12] complexity unknown
Z + arb. 1 Extended addition chains NP-complete [5]

Σ∗ concat. 1 arb. Grammar-based compression [8] NP-complete for n ≥ 3 [10],
of strings over alphabets of size n complexity unknown for n ≤ 2

Table 1. The circuit problem for several semigroup structures and parameters.

it makes no sense to design small circuits). In case that S is non-commutative,
the predecessors of a gate have to be ordered. Table 1 shows several examples of
semigroups and other parameters with their corresponding circuit problem. As
one can see, many seemingly different problems turn out to be instantiations of
a general semigroup circuit problem.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

2. Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Mar-
chetti-Spaccamela, and Marco Protasi. Complexity and Approximation: Combi-
natorial Optimization Problems and Their Approximability Properties. Springer,
1999.

3. Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran,
Amit Sahai, and Abbi Shelat. The smallest grammar problem. IEEE Transactions
on Information Theory, 51(7):2554–2576, 2005.

4. Miroslav Chleb́ık and Janka Chleb́ıková. Complexity of approximating bounded
variants of optimization problems. Theoretical Computer Science, 354(3):320–338,
2006.

5. Peter J. Downey, Benton L. Leong, and Ravi Sethi. Computing sequences with
addition chains. SIAM Journal on Computing, 10(3):638–646, 1981.

6. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer, 1999.

7. Valentine Kabanets and Jin-Yi Cai. Circuit minimization problems. In Proc. of
the 32nd Ann. ACM Symp. on Theory of Computing (STOC), pages 73–79. ACM
Press, 2000.

8. John C. Kieffer and En-hui Yang. Grammar based codes: A new class of universal
lossless source codes. IEEE Transactions on Information Theory, 46(3):737–754,
2000.

9. Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, 2nd edition, 1981.

10. James A. Storer and Thomas G. Szymanski. The macro model for data compres-
sion. In Proc. of the 10th Ann. ACM Symp. on Theory of Computing (STOC),
pages 30–39. ACM Press, 1978.

11. Robert E. Tarjan. Complexity of monotone networks for computing conjunctions.
Annals of Discrete Mathematics, 2:121–133, 1978.

12. Edward G. Thurber. Efficient generation of minimal length addition chains. SIAM
Journal on Computing, 28(4):1247–1263, 1999.

13. Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

