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Abstract. A fundamental problem for wireless ad hoc networks is the
assignment of suitable transmission powers to the wireless devices such
that the resulting communication graph is connected. The goal is to
minimize the total transmit power in order to maximize the life-time of
the network. Our aim is a probabilistic analysis of this power assignment
problem. We prove complete convergence for arbitrary combinations of
the dimension d and the distance-power gradient p. Furthermore, we
prove that the expected approximation ratio of the simple spanning tree
heuristic is strictly less than its worst-case ratio of 2.

Our main technical novelties are two-fold: First, we find a way to deal
with the unbounded degree that the communication network induced
by the optimal power assignment can have. Minimum spanning trees
and traveling salesman tours, for which strong concentration results are
known in Euclidean space, have bounded degree, which is heavily ex-
ploited in their analysis. Second, we apply a recent generalization of
Azuma-Hoeffding’s inequality to prove complete convergence for the case
p ≥ d for both power assignments and minimum spanning trees (MSTs).
As far as we are aware, complete convergence for p > d has not been
proved yet for any Euclidean functional.

1 Introduction

Wireless ad hoc networks have received significant attention due to their many
applications in, for instance, environmental monitoring or emergency disaster
relief, where wiring is difficult. Unlike wired networks, wireless ad hoc networks
lack a backbone infrastructure. Communication takes place either through single-
hop transmission or by relaying through intermediate nodes. We consider the
case that each node can adjust its transmit power for the purpose of power
conservation. In the assignment of transmit powers, two conflicting effects have
to be taken into account: if the transmit powers are too low, the resulting network
may be disconnected. If the transmit powers are too high, the nodes run out of
energy quickly. The goal of the power assignment problem is to assign transmit
powers to the transceivers such that the resulting network is connected and the
sum of transmit powers is minimized [12].
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1.1 Problem Statement and Previous Results

We consider a set of vertices X ⊆ [0, 1]d, which represent the sensors, |X| = n,
and assume that ‖u − v‖p, for some p ∈ R (called the distance-power gradient
or path loss exponent), is the power required to successfully transmit a signal
from u to v. This is called the power-attenuation model, where the strength of
the signal decreases with 1/rp for distance r, and is a simple yet very common
model for power assignments in wireless networks [14]. In practice, we typically
have 1 ≤ p ≤ 6 [13].

A power assignment pa : X → [0,∞) is an assignment of transmit powers
to the nodes in X. Given pa, we have an edge between two nodes u and v if
both pa(x), pa(y) ≥ ‖x − y‖p. If the resulting graph is connected, we call it a
PA graph. Our goal is to find a PA graph and a corresponding power assignment
pa that minimizes

∑
v∈X pa(v). Note that any PA graph G = (X,E) induces a

power assignment by pa(v) = maxu∈X:{u,v}∈E ‖u− v‖p.
PA graphs can in many aspects be regarded as a tree as we are only interested

in connectedness, but it can contain more edges in general. However, we can
simply ignore edges and restrict ourselves to a spanning tree of the PA graph.

The minimal connected power assignment problem is NP-hard for d ≥ 2 and
APX-hard for d ≥ 3 [4]. For d = 1, i.e., when the sensors are located on a
line, the problem can be solved by dynamic programming [11]. A simple approx-
imation algorithm for minimum power assignments is the minimum spanning
tree heuristic (MST heuristic), which achieves a tight worst-case approximation
ratio of 2 [11]. This has been improved by Althaus et al. [1], who devised an
approximation algorithm that achieves an approximation ratio of 5/3. A first
average-case analysis of the MST heuristic was presented by de Graaf et al. [6]:
First, they analyzed the expected approximation ratio of the MST heuristic for
the (non-geometric, non-metric) case of independent edge lengths. Second, they
proved convergence of the total power consumption of the assignment computed
by the MST heuristic for the special case of p = d, but not of the optimal power
assignment. They left as open problems, first, an average-case analysis of the
MST heuristic for random geometric instances and, second, the convergence of
the value of the optimal power assignment.

1.2 Our Contribution

In this paper, we conduct an average-case analysis of the optimal power assign-
ment problem for Euclidean instances. The points are drawn independently and
uniformly from the d-dimensional unit hypercube [0, 1]d. We believe that prob-
abilistic analysis is better-suited for performance evaluation in wireless ad hoc
networks than worst-case analysis, as the positions of the sensors – in particular
if deployed in areas that are difficult to access – are subjected to randomness.

Roughly speaking, our contributions are as follows:

1. We show that the power assignment functional has sufficiently nice properties
in order to apply Yukich’s general framework for Euclidean functionals [16]
to obtain concentration results (Section 3).
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2. Combining these insights with a recent generalization of the Azuma-Hoeff-
ding bound [15], we obtain concentration of measure and complete conver-
gence for all combinations of d and p ≥ 1, even for the case p ≥ d (Section 4).
In addition, we obtain complete convergence for p ≥ d for minimum-weight
spanning trees. As far as we are aware, complete convergence for p ≥ d has
not been proved yet for such functionals. The only exception we are aware
of are minimum spanning trees for the case p = d [16, Sect. 6.4].

3. We provide a probabilistic analysis of the MST heuristic for the geometric
case. We show that its expected approximation ratio is strictly smaller than
its worst-case approximation ratio of 2 [11] for any d and p (Section 5).

Our main technical contributions are two-fold: First, we introduce a transmit
power redistribution argument to deal with the unbounded degree that graphs
induced by the optimal transmit power assignment can have. The unbounded-
ness of the degree makes the analysis of the power assignment functional PA
challenging. The reason is that removing a vertex can cause the graph to fall
into a large number of components and it might be costly to connect these com-
ponents without the removed vertex. In contrast, the degree of any minimum
spanning tree, for which strong concentration results are known in Euclidean
space for p ≤ d, is bounded for every fixed d, and this is heavily exploited in the
analysis. (The concentration result by de Graaf et al. [6] for the power assign-
ment obtained from the MST heuristic also exploits that MSTs have bounded
degree.)

Second, we apply a recent generalization of Azuma-Hoeffding’s inequality by
Warnke [15] to prove complete convergence for the case p ≥ d for both power
assignments and minimum spanning trees. We introduce the notion of typically
smooth Euclidean functionals, prove convergence of such functionals, and show
that minimum spanning trees and power assignments are typically smooth. In
this sense, our proof of complete convergence provides an alternative and generic
way to prove complete convergence, whereas Yukich’s proof for minimum span-
ning trees is tailored to the case p = d. In order to prove complete convergence
with our approach, one only needs to prove convergence in mean, which is often
much simpler than complete convergence, and typically smoothness. Thus, we
provide a simple method to prove complete convergence of Euclidean function-
als along the lines of Yukich’s result that, in the presence of concentration of
measure, convergence in mean implies complete convergence [16, Cor. 6.4].

2 Definitions and Notation

Throughout the paper, d (the dimension) and p (the distance-power gradient)
are fixed constants. For three points x, y, v, we by xv the line through x and v,
and we denote by ∠(x, v, y) the angle between xv and yv.

A Euclidean functional is a function Fp for p > 0 that maps finite sets of
points from the unit hypercube [0, 1]d to some non-negative real number and is
translation invariant and homogeneous of order p [16, page 18]. From now on,
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we omit the superscript p of Euclidean functionals, as p is always fixed and clear
from the context.

PAB is the canonical boundary functional of PA (we refer to Yukich [16] for
boundary functionals of other optimization problems): given a hyperrectangle
R ⊆ Rd with X ⊆ R, this means that a solution is an assignment pa(x) of power
to the nodes x ∈ X such that

– x and y are connected if pa(x), pa(y) ≥ ‖x− y‖p,
– x is connected to the boundary of R if the distance of x to the boundary of
R is at most pa(x)1/p, and

– the resulting graph, called a boundary PA graph, is either connected or con-
sists of connected components that are all connected to the boundary.

Then PAB(X,R) is the minimum value for
∑
x∈X pa(x) that can be achieved

by a boundary PA graph. Note that in the boundary functional, no power is
assigned to the boundary. It is straight-forward to see that PA and PAB are
Euclidean functionals for all p > 0 according to Yukich [16, page 18].

For a hyperrectangle R ⊆ Rd, let diamR = maxx,y∈R ‖x − y‖ denote the
diameter of R. For a Euclidean functional F, let F(n) = F({U1, . . . , Un}), where

U1, . . . , Un are drawn uniformly and independently from [0, 1]d. Let γd,pF =

limn→∞
E
(
F(n)
)

n
d−p
d

. (In principle, γd,pF need not exist, but it does exist for all func-

tionals considered in this paper.)
A sequence (Rn)n∈N of random variables converges in mean to a constant

γ if limn→∞ E(|Rn − γ|) = 0. The sequence (Rn)n∈N converges completely to a
constant γ if we have

∑∞
n=1 P

(
|Rn − γ| > ε

)
<∞ for all ε > 0 [16, page 33].

Besides PA, we consider two other Euclidean functions: MST(X) denotes
the length of the minimum spanning tree with lengths raised to the power p.
PT(X) denotes the total power consumption of the assignment obtained from
the MST heuristic, again with lengths raised to the power p. The MST heuristic
proceeds as follows: First, we compute a minimum spanning tree of X. Then let
pa(x) = max{‖x − y‖p | {x, y} is an edge of the MST}. By construction and a
simple analysis, we have MST(X) ≤ PA(X) ≤ PT(X) ≤ 2 ·MST(X) [11].

For n ∈ N, let [n] = {1, . . . , n}.

3 Properties of the Power Assignment Functional

After showing that optimal PA graphs can have unbounded degree and providing
a lemma that helps solving this problem, we show that the power assignment
functional fits into Yukich’s framework for Euclidean functionals [16].

3.1 Degrees and Cones

As opposed to minimum spanning trees, whose maximum degree is bounded from
above by a constant that depends only on the dimension d, a technical challenge
is that the maximum degree in an optimal PA graph cannot be bounded by a
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constant in the dimension. This holds even for the simplest case of d = 1 and
p > 1. We conjecture that the same holds also for p = 1, but proving this seems
to be more difficult and not to add much.

Lemma 3.1. For all p > 1, all integers d ≥ 1, and for infinitely many n, there
exist instances of n points in [0, 1]d such that the unique optimal PA graph is a
tree with a maximum degree of n− 1.

The unboundedness of the degree of PA graphs make the analysis of the
functional PA challenging. The technical reason is that removing a vertex can
cause the PA graph to fall into a non-constant number of components. The
following lemma is the crucial ingredient to get over this “degree hurdle”.

Lemma 3.2. Let x, y ∈ X, let v ∈ [0, 1]d, and assume that x and y have power
pa(x) ≥ ‖x− v‖p and pa(y) ≥ ‖y − v‖p, respectively. Assume further that ‖x−
v‖ ≤ ‖y − v‖ and that ∠(x, v, y) ≤ α with α ≤ π/3. Then the following holds:

(a) pa(y) ≥ ‖x− y‖p, i.e., y has sufficient power to reach x.
(b) If x and y are not connected (i.e., pa(x) < ‖x − y‖p), then ‖y − v‖ >

sin(2α)
sin(α) · ‖x− v‖.

For instance, α = π/6 results in a factor of
√

3 = sin(π/3)/ sin(π/6). In the
following, we invoke this lemma always with α = π/6, but this choice is arbitrary
as long as α < π/3, which causes sin(2α)/ sin(α) to be strictly larger than 1.

3.2 Deterministic Properties

In this section, we state properties of the power assignment functional. Subad-
ditivity (Lemma 3.3), superadditivity (Lemma 3.4), and growth bound (Lem-
ma 3.5) are straightforward.

Lemma 3.3 (subadditivity). PA is subadditive [16, (2.2)] for all p > 0 and
all d ≥ 1, i.e., for any point sets X and Y and any hyperrectangle R ⊆ Rd with
X,Y ⊆ R, we have PA(X ∪ Y ) ≤ PA(X) + PA(Y ) +O

(
(diamR)p

)
.

Lemma 3.4 (superadditivity). PAB is superadditive for all p ≥ 1 and d ≥
1 [16, (3.3)], i.e., for any X, hyperrectangle R ⊆ Rd with X ⊆ R and partition
of R into hyperrectangles R1 and R2, we have PApB(X,R) ≥ PApB(X ∩R1, R1) +
PApB(X ∩R2, R2).

Lemma 3.5 (growth bound). For any X ⊆ [0, 1]d and 0 < p and d ≥ 1, we

have PAB(X) ≤ PA(X) ≤ O
(

max
{
n

d−p
d , 1

})
.

The following lemma shows that PA is smooth, which roughly means that
adding or removing a few points does not have a huge impact on the function
value. Its proof requires Lemma 3.2 to deal with the fact that optimal PA graphs
can have unbounded degree.
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Lemma 3.6. The power assignment functional PA is smooth for all 0 < p ≤
d [16, (3.8)], i.e.,

∣∣PAp(X ∪ Y ) − PAp(X)
∣∣ = O

(
|Y |

d−p
d

)
for all point sets

X,Y ⊆ [0, 1]d.

Proof. One direction is straightforward: PA(X ∪ Y ) − PA(X) is bounded by

Ψ = O
(
|Y |

d−p
d

)
, because the optimal PA graph for Y has a value of at most Ψ

by Lemma 3.5. Then we can take the PA graph for Y and connect it to the tree
for X with a single edge, which costs at most O(1) ≤ Ψ because p ≤ d.

For the other direction, consider the optimal PA graph T for X∪Y . The prob-
lem is that the degrees degT (v) of vertices v ∈ Y can be unbounded (Lemma 3.1).
(If the maximum degree were bounded, then we could argue in the same way as
for the MST functional.) The idea is to exploit the fact that removing v ∈ Y
also frees some power. Roughly speaking, we proceed as follows: Let v ∈ Y be a
vertex of possibly large degree. We add the power of v to some vertices close to
v. The graph obtained from removing v and distributing its energy has only a
constant number of components.

To prove this, Lemma 3.2 is crucial. We consider cones rooted at v with the
following properties:

– The cones have a small angle α, meaning that for every cone C and every
x, y ∈ C, we have ∠(x, v, y) ≤ α. We choose α = π/6.

– Every point in [0, 1]d is covered by some cone.
– There is a finite number of cones. (This can be achieved because d is a

constant.)

Let C1, . . . , Cm be these cones. By abusing notation, let Ci also denote all
points x ∈ Ci ∩ (X ∪ Y \ {v}) that are adjacent to v in T . For Ci, let xi be the
point in Ci that is closest to v and adjacent to v (breaking ties arbitrarily), and
let yi be the point in Ci that is farthest from v and adjacent to v (again breaking
ties arbitrarily). (For completeness, we remark that then Ci can be ignored if
Ci ∩X = ∅.) Let `i = ‖yi − v‖ be the maximum distance of any point in Ci to
v, and let ` = maxi `i.

We increase the power of xi by `p/m. Since the power of v is at least `p and
we have m cones, we can account for this with v’s power because we remove v.
Because α = π/6 and xi is closest to v, any point in Ci is closer to xi than to
v. According to Lemma 3.2(a), every point in Ci has sufficient power to reach
xi. Thus, if xi can reach a point z ∈ Ci, then there is an established connection
between them.

From this and increasing xi’s power to at least `p/m, there is an edge between
xi and every point z ∈ Ci that has a distance of at most `/ p

√
m from v. We recall

that m and p are constants.
Now let z1, . . . , zk ∈ Ci be the vertices in Ci that are not connected to xi

because xi has too little power. We assume that they are sorted by increasing
distance from v. Thus, zk = yi. We can assume that no two zj and zj′ are in the
same component after removal of v. Otherwise, we can simply ignore one of the
edges {v, zj} and {v, zj′} without changing the components.
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Since zj and zj+1 were connected to v and they are not connected to each
other, we can apply Lemma 3.2(b), which implies that ‖zj+1−v‖ ≥

√
3 ·‖zj−v‖.

Furthermore, ‖z1 − v‖ ≥ `/ p
√
m by assumption. Iterating this argument yields

` = ‖zk−v‖ ≥
√

3
k−1‖z1−v‖ ≥

√
3
k−1 ·`/ p

√
m. This implies k ≤ log√3( p

√
m)+1.

Thus, removing v and redistributing its energy as described causes the PA graph
to fall into at most a constant number of components. Removing |Y | points
causes the PA graph to fall into at most O(|Y |) components. These components

can be connected with costs O(|Y |
d−p
d ) by choosing one point per component

and applying Lemma 3.5. ut
Lemma 3.7. PAB is smooth for all 1 ≤ p ≤ d [16, (3.8)].

Crucial for convergence of PA is that PA, which is subadditive, and PAB ,
which is superadditive, are close to each other. Then both are approximately
both subadditive and superadditive. The following lemma states that indeed PA
and PAB do not differ too much for 1 ≤ p < d.

Lemma 3.8. PA is point-wise close to PAB for 1 ≤ p < d [16, (3.10)], i.e.,∣∣PAp(X)− PApB(X, [0, 1]d)
∣∣ = o

(
n

d−p
d

)
for every set X ⊆ [0, 1]d of n points.

3.3 Probabilistic Properties

For p > d, smoothness is not guaranteed to hold, and for p ≥ d, point-wise
closeness is not guaranteed to hold. But similar properties typically hold for
random point sets, namely smoothness in mean (Definition 3.10) and closeness
in mean (Definition 3.12). In the following, let X = {U1, . . . , Un}. Recall that
U1, . . . , Un are drawn uniformly and independently from [0, 1]d. We need the
following bound on the longest edge of an optimal PA graph.

Lemma 3.9 (longest edge). For every constant β > 0, there exists a constant
cedge = cedge(β) such that, with a probability of at least 1−n−β, every edge of an
optimal PA graph and an optimal boundary PA graph PAB is of length at most
redge = cedge · (log n/n)1/d.

Yukich gave two different notions of smoothness in mean [16, (4.13) and
(4.20) & (4.21)]. We use the stronger notion, which implies the other.

Definition 3.10 (smooth in mean [16, (4.20), (4.21)]). A Euclidean func-
tional F is called smooth in mean if, for every constant β > 0, there exists a
constant c = c(β) such that the following holds with a probability of at least
1− n−β:∣∣F(n)− F(n± k)

∣∣ ≤ ck · ( lognn )p/d
and

∣∣FB(n)− FB(n± k)
∣∣ = ck ·

(
logn
n

)p/d
.

for all 0 ≤ k ≤ n/2.

Lemma 3.11. PAB and PA are smooth in mean for all p > 0 and all d.

Definition 3.12 (close in mean [16, (4.11)]). A Euclidean functional F is

close in mean to its boundary functional FB if E (|F(n)− FB(n)|) = o(n
d−p
d ).

Lemma 3.13. PA is close in mean to PAB for all d and p ≥ 1.
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4 Convergence

4.1 Standard Convergence

Our findings of Sections 3.2 yield complete convergence of PA for p < d (The-
orem 4.1). Together with the probabilistic properties of Section 3.3, we obtain
convergence in mean in a straightforward way for all combinations of d and p
(Theorem 4.2). In Sections 4.2 and 4.3, we prove complete convergence for p ≥ d.

Theorem 4.1. For all d and p with 1 ≤ p < d, there exists a constant γd,pPA such

that PAp(n)

n
d−p
d

converges completely to γd,pPA .

Theorem 4.2. For all p ≥ 1 and d ≥ 1, there exists a constant γd,pPA such that

limn→∞
E(PAp(n))

n
d−p
d

= limn→∞
E(PAp

B(n))

n
d−p
d

= γd,pPA .

4.2 Concentration with Warnke’s Inequality

McDiarmid’s or Azuma-Hoeffding’s inequality are powerful tools to prove con-
centration of measure for a function that depends on many independent random
variables, all of which have only a bounded influence on the function value. If we
consider smoothness in mean (see Lemma 3.11), then we have the situation that
the influence of a single variable is typically very small (namely O((log n/n)p/d)),
but can be quite large in the worst case (namely O(1)). Unfortunately, this sit-
uation is not covered by McDiarmid’s or Azuma-Hoeffding’s inequality. Fortu-
nately, Warnke [15] proved a generalization specifically for the case that the
influence of single variables is typically bounded and fulfills a weaker bound in
the worst case.

The following theorem is a simplified version (personal communication with
Lutz Warnke) of Warnke’s concentration inequality [15, Theorem 2], tailored to
our needs.

Theorem 4.3 (Warnke). Let U1, . . . , Un be a family of independent random
variables with Ui ∈ [0, 1]d for each i. Suppose that there are numbers cgood ≤ cbad
and an event Γ such that the function F : ([0, 1]d)n → R satisfies

max
i∈[n]

max
x∈[0,1]d

|F(U1, . . . , Un)− F(U1, . . . , Ui−1, x, Ui+1, . . . , Uk)|

≤

{
cgood if Γ holds and

cbad otherwise.
(1)

Then, for any t ≥ 0 and γ ∈ (0, 1] and η = γ(cbad − cgood), we have

P
(
|F(n)− E(F(n))| ≥ t

)
≤ 2 exp

(
− t2

2n(cgood+η)2

)
+ n

γ · P(¬Γ ). (2)
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Next, we introduce typical smoothness, which means that, with high prob-
ability, a single point does not have a significant influence on the value of F,
and we apply Theorem 4.3 for typically smooth functionals F. The bound of
c · (log n/n)p/d in Definition 4.4 below for the typical influence of a single point
is somewhat arbitrary, but works for PA and MST. This bound is also essentially
the smallest possible, as there can be regions of diameter c′ · (log n/n)1/d for
some small constant c′ > 0 that contain no or only a single point. It might be
possible to obtain convergence results for other functionals for weaker notions of
typical smoothness.

Definition 4.4 (typically smooth). A Euclidean functional F is typically
smooth if, for every β > 0, there exists a constant c = c(β) such that

maxx∈[0,1]d,i∈[n]
∣∣F(U1, . . . , Un)−F(U1, . . . , Ui−1, x, Ui+1, . . . , Un)

∣∣ ≤ c ·( logn
n

)p/d
with a probability of at least 1− n−β.

Theorem 4.5 (concentration of typically smooth functionals). Let p, d ≥
1. Assume that F is typically smooth. Then

P
(
|F(n)− E(F(n))| ≥ t

)
≤ O(n−β) + exp

(
− t2n

2p
d
−1

C(logn)2p/d

)
for an arbitrarily large constant β > 0 and another constant C > 0 that depends
on β.

Choosing t = n
d−p
d / log n yields a nontrivial concentration result that suffices

to prove complete convergence of typically smooth Euclidean functionals.

Corollary 4.6. Let p, d ≥ 1. Assume that F is typically smooth. Then

P
(
|F(n)− E(F(n))| > n

d−p
d / log n

)
≤ O

(
n−β + exp

(
− n

C(logn)2+
2p
d

))
(3)

for any constant β and C depending on β as in Theorem 4.5.

4.3 Complete Convergence for p ≥ d

In this section, we show that typical smoothness (Definition 4.4) suffices for
complete convergence. This implies complete convergence of MST and PA by
Lemma 4.8 below.

Theorem 4.7. Let p, d ≥ 1. Assume that F is typically smooth and F(n)/n
d−p
d

converges in mean to γd,pF . Then F(n)/n
d−p
d converges completely to γd,pF .

Although similar in flavor, smoothness in mean does not immediately imply
typical smoothness or vice versa: the latter makes only a statement about sin-
gle points at worst-case positions. The former only makes a statement about
adding and removing several points at random positions. However, the proofs
of smoothness in mean for MST and PA do not exploit this, and we can adapt
them to yield typical smoothness.
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Lemma 4.8. PA and MST are typically smooth.

Corollary 4.9. For all d and p with p ≥ 1, MST(n)/n
d−p
d and PA(n)/n

d−p
d

converge completely to constants γd,pMST and γd,pPA , respectively.

5 Average-Case Ratio of the MST Heuristic

In this section, we show that the average-case approximation ratio of the MST
heuristic for power assignments is strictly better than its worst-case ratio of 2.
First, we prove that the average-case bound is strictly (albeit marginally) better
than 2 for any combination of d and p. Second, we show a simple improved
bound for the 1-dimensional case.

5.1 The General Case

The idea behind showing that the MST heuristic performs better on average
than in the worst case is as follows: the weight of the PA graph obtained from
the MST heuristic can not only be upper-bounded by twice the weight of an
MST, but it is in fact easy to prove that it can be upper-bounded by twice the
weight of the heavier half of the edges of the MST [6]. Thus, we only have to

show that the lighter half of the edges of the MST contributes Ω(n
d−p
d ) to the

value of the MST in expectation.
For simplicity, we assume that the number n = 2m + 1 of points is odd.

The case of even n is similar but slightly more technical. We draw points X =
{U1, . . . , Un} as described above. Let PT(X) denote the power required in the
power assignment obtained from the MST. Furthermore, let H denote the m
heaviest edges of the MST, and let L denote the m lightest edges of the MST.
We omit the parameter X since it is clear from the context. Then we have

H+ L = MST ≤ PA ≤ PT ≤ 2H = 2MST−2 L ≤ 2MST (4)

since the weight of the PA graph obtained from an MST can not only be upper
bounded by twice the weight of a minimum-weight spanning tree, but it is easy
to show that the PA graph obtained from the MST is in fact by twice the weight
of the heavier half of the edges of a minimum-weight spanning tree [6]. We can

show that E(L) = Ω(n
d−p
d ). This yields the following result.

Theorem 5.1. For any d ≥ 1 and any p ≥ 1, we have

γd,pMST ≤ γ
d,p
PA ≤ 2(γd,pMST − C) < 2γd,pMST

for some constant C > 0 that depends only on d and p.

By exploiting that PA converges completely, we can obtain a bound on the
expected approximation ratio from the above result.

Corollary 5.2. For any d ≥ 1 and p ≥ 1 and sufficiently large n, the expected
approximation ratio of the MST heuristic for power assignments is bounded from
above by a constant strictly smaller than 2.
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5.2 An Improved Bound for the One-Dimensional Case

The case d = 1 is much simpler than the general case, because the MST is
just a Hamiltonian path starting at the left-most and ending at the right-most
point. Furthermore, we also know precisely what the MST heuristic does: assume
that a point xi lies between xi−1 and xi+1. The MST heuristic assigns power
PA(xi) = max{|xi − xi−1|, |xi − xi+1|}p to xi. The example that proves that
the MST heuristic is no better than a worst-case 2-approximation shows that it
is bad if xi is very close to either side and good if xi is approximately in the
middle between xi−1 and xi+1. By analyzing γ1,pMST and γ1,pPA carefully, we obtain
the following theorem.

Theorem 5.3. For all p ≥ 1, we have γ1,pMST ≤ γ
1,p
PA ≤ (2− 2−p) · γ1,pMST.

The high probability bounds for the bound of 2− 2−p of the approximation
ratio of the power assignment obtained from the spanning tree together with
the observation that in case of any “failure” event we can use the worst-case
approximation ratio of 2 yields the following corollary.

Corollary 5.4. The expected approximation ratio of the MST heuristic is at
most 2− 2−p + o(1).

6 Conclusions and Open Problems

We have proved complete convergence of Euclidean functionals that are typi-
cally smooth (Definition 4.4) for the case that the distance-power gradient p
is larger than the dimension d. The case p > d appears naturally in the case
of transmission questions for wireless networks. As examples, we have obtained
complete convergence for the MST and the PA functional. To prove this, we have
used a recent concentration of measure result by Warnke [15]. His concentration
inequality might be of independent interest to the algorithms community. As
a technical challenge, we have had to deal with the fact that the degree of an
optimal power assignment graph can be unbounded.

To conclude this paper, let us mention some problems for further research:

1. Is it possible to prove complete convergence of other functionals for p ≥ d?
The most prominent one would be the traveling salesman problem (TSP).

2. Is it possible to prove improved bounds on the approximation ratio of the
MST heuristic?

3. Can our findings about power assignments be generalized to other problems
in wireless communication, such as the k-station network coverage problem
of Funke et al. [5], where transmit powers are assigned to at most k stations
such that X can be reached from at least one sender, or power assignments
in the SINR model [7, 9]? Interestingly, in the SINR model the MST turns
out to be a good solution to schedule all links within a short time [8, 10].
More general, can this framework also be exploited to analyze other ap-
proximation algorithms for geometric optimization problems? As far as we
are aware, besides partitioning heuristics [2, 16], the only other algorithm
analyzed within this framework is Christofides’ algorithm for the TSP [3].
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