
Smoothed Complexity Theory?

Markus Bläser1 and Bodo Manthey2

1 Saarland University, mblaeser@cs.uni-saarland.de
2 University of Twente, b.manthey@utwente.nl

Abstract. Smoothed analysis is a new way of analyzing algorithms
introduced by Spielman and Teng (J. ACM, 2004). Classical methods
like worst-case or average-case analysis have accompanying complexity
classes, like P and Avg-P, respectively. While worst-case or average-case
analysis give us a means to talk about the running time of a particu-
lar algorithm, complexity classes allows us to talk about the inherent
difficulty of problems.

Smoothed analysis is a hybrid of worst-case and average-case analysis
and compensates some of their drawbacks. Despite its success for the
analysis of single algorithms and problems, there is no embedding of
smoothed analysis into computational complexity theory, which is nec-
essary to classify problems according to their intrinsic difficulty.

We propose a framework for smoothed complexity theory, define the
relevant classes, and prove some first results.

1 Introduction

The goal of computational complexity theory is to classify computational prob-
lems according to their intrinsic difficulty. While the analysis of algorithms is
concerned with analyzing, say, the running time of a particular algorithm, com-
plexity theory rather analyses the amount of resources that all algorithms need
at least to solve a given problem.

Classical complexity classes, like P, reflect worst-case analysis of algorithms.
Worst-case analysis has been a success story: The bounds obtained are valid for
every input of a given size, and, thus, we do not have to think about typical
instances of our problem. If an algorithm has a good worst-case upper bound,
then this is a very strong statement: The algorithm will perform well in practice.

However, some algorithms work well in practice despite having a provably
high worst-case running time. The reason for this is that the worst-case running
time can be dominated by a few pathological instances that rarely or never occur
in practice. An alternative to worst-case analysis is average-case analysis. Many
of the algorithms with poor worst-case but good practical performance have a
good average running time. This means that the expected running time with
instances drawn according to some fixed probability distribution is low.

? Supported by DFG research grant BL 511/7-1. A full version of this paper is available
at http://arxiv.org/abs/1202.1936.

c© Springer-Verlag — MFCS 2012

In complexity-theoretic terms, P is the class of all problems that can be solved
with polynomial worst-case running time. In the same way, the class Avg-P
is the class of all problems that have polynomial average-case running time.
Average-case complexity theory studies the structural properties of average-case
running time. Bogdanov and Trevisan give a comprehensive survey of average-
case complexity [7].

While worst-case complexity has the drawback of being often pessimistic,
the drawback of average-case analysis is that random instances have often very
special properties with high probability. These properties of random instances
distinguish them from typical instances. Since a random and a typical instance
is not the same, a good average-case running time does not necessarily explain
a good performance in practice. In order to get a more realistic performance
measure, (and, in particular, to explain the speed of the simplex method), Spiel-
man and Teng have proposed a new way to analyze algorithms called smoothed
analysis [27]. In smoothed analysis, an adversary chooses an instance, and then
this instance is subjected to a slight random perturbation. We can think of this
perturbation as modeling measurement errors or random noise or the random-
ness introduced by taking, say, a random poll. The perturbation is controlled by
some parameter φ, called the perturbation parameter. Spielman and Teng have
proved that the simplex method has a running time that is polynomial in the size
of the instance and the perturbation parameter [27]. Since then, the framework
of smoothed analysis has been applied successfully to a variety of algorithms
that have a good behavior in practice (and are therefore widely used) but whose
worst-case running time indicates poor performance [1, 2, 5, 12, 13, 16, 23, 26, 29].
We refer to two recent surveys for a broader picture of smoothed analysis [22,28].
However, with only few exceptions [3, 25], smoothed analysis has only been ap-
plied yet to single algorithms or single problems. Up to our knowledge, there is
currently no attempt to formulate a smoothed complexity theory and, thus, to
embed smoothed analysis into computational complexity.

This paper is an attempt to define a smoothed complexity theory, includ-
ing notions of intractability, reducibility, and completeness. We define the class
Smoothed-P (Section 2), which corresponds to problems that can be solved
smoothed efficiently, we provide a notion of reducibility (Section 3), and define
the class Dist-NPpara, which is a smoothed analogue of NP, and prove that it con-
tains complete problems (Section 4). We continue with some basic observations
(Section 5). We also add examples of problems in Smoothed-P (Sections 6 and 7)
and discuss the relationship of smoothed complexity to semi-random models
(Section 8). Finally, we conclude with a discussion of extension, shortcomings,
and difficulties of our definitions (Section 9).

2 Smoothed Polynomial Time and Smoothed-P

2.1 Basic Definitions

In the first application of smoothed analysis to the simplex method [27], the
strength of the perturbation has been controlled in terms of the standard de-

2

viation σ of the Gaussian perturbation. While this makes sense for numerical
problems, this model cannot be used for general (discrete problems). A more gen-
eral form of perturbation models has been introduced by Beier and Vöcking [2]:
Instead of specifying an instance that is afterwards perturbed (which can also
be viewed as the adversary specifying the mean of the probability distribution
according to which the instances are drawn), the adversary specifies the whole
probability distribution. Now the role of the standard deviation σ is taken over
by the parameter φ, which is an upper bound for the maximum density of the
probability distributions. For Gaussian perturbation, we have σ = Θ(1/φ). Be-
cause we do not want to restrict our theory to numerical problems, we have
decided to use the latter model.

Let us now define our model formally. Our perturbation models are families
of distributions D = (Dn,x,φ). The length of x is n (so we could omit the index
n but we keep it for clarity). Note that length does not necessarily mean bit
length, but depends on the problem. For instance, it can be the number of
vertices of the graph encoded by x. For every n, x, and φ, the support of the
distribution Dn,x,φ should be contained in the set {0, 1}≤poly(n). Let Sn,x =

{
y |

Dn,x,φ(y) > 0 for some φ
}

, and let Nn,x = |Sn,x|.
For all n, x, φ, and y, we demand Dn,x,φ(y) ≤ φ. This controls the strength

of the perturbation and restricts the adversary. We allow φ ∈ [1/Nn,x, 1]. Fur-
thermore, the values of φ are discretized, so that they can be described by at
most poly(n) bits. The case φ = 1 corresponds to the worst-case complexity; we
can put all the mass on one string. The case φ = 1/Nn,x models the average case;
here we usually have to put probability on an exponentially large set of strings.
In general, the larger φ, the more powerful the adversary. We call such families
(Dn,x,φ)n,x,φ of probability distributions parameterized families of distributions.

Now we can specify what it means that an algorithm has smoothed polyno-
mial running-time. The following definition can also be viewed as a discretized
version of Beier and Vöcking’s definition [3]. Note that we do not speak about
expected running-time, but about expected running-time to some power ε. This
is because the notion of expected running-time is not robust with respect to, e.g.,
quadratic slowdown. The corresponding definition for average-case complexity
is due to Levin [20]. We refer to Bogdanov and Trevisan [7] for a thorough
discussion of this issue.

Definition 2.1. An algorithm A has smoothed polynomial running time with
respect to the family D if there exists an ε > 0 such that, for all n, x, and φ, we
have Ey∼Dn,x,φ

(
tA(y;n, φ)ε

)
= O

(
n ·Nn,x · φ

)
.

This definition implies that (average-)polynomial time is only required if we
have φ = O(poly(n)/Nn,x). This seems to be quite generous at first glance,
but it is in accordance with, e.g., Spielman and Teng’s analysis of the simplex
method [27] or Beier and Vöcking’s analysis of integer programs [3]; they achieve
polynomial time running time only if they perturb all but at most O(log n)
digits: If we perturb a number with, say, a Gaussian of standard deviation
σ = 1/ poly(n), then we expect that the O(log n) most significant bits remain
untouched, but the less significant bits are random.

3

In average-case complexity, one considers not decision problems alone, but
decision problems together with a probability distribution. The smoothed ana-
logue of this is that we consider tuples (L,D), where L ⊆ {0, 1}∗ is a decision
problem and D is a parameterized family of distributions. We call such prob-
lems parameterized distributional problems. The notion of smoothed polynomial
running-time (Definition 2.1) allows us to define what it means for a parameter-
ized distributional problem to have polynomial smoothed complexity.

Definition 2.2. Smoothed-P is the class of all (L,D) such that there is a de-
terministic algorithm A with smoothed polynomial running time that decides L.

We start with an alternative characterization of smoothed polynomial time as
it is known for the average case: an algorithm has smoothed polynomial running-
time if and only if its running-time has polynomially decreasing tail bounds.

Theorem 2.3. An algorithm A has smoothed polynomial running time if and
only if there is an ε > 0 and a polynomial p such that for all n, x, φ, and t,

Pry∼Dn,x,φ [tA(y;n, φ) ≥ t] ≤ p(n)
tε ·Nn,x · φ.

2.2 Heuristic Schemes

A different way to think about efficiency in the smoothed setting is via so-called
heuristic schemes. This notion comes from average-case complexity [7], but can
be adapted to our smoothed setting. The notion of a heuristic scheme comes from
the observation that, in practice, we might only be able to run our algorithm
for a polynomial number of steps. If the algorithms does not succeed within this
time bound, then it “fails”, i.e., it does not solve the given instance. The failure
probability decreases polynomially with the running time that we allow. The
following definition captures this.

Definition 2.4. Let (L,D) be a smoothed distributional problem. An algorithm
A is an errorless heuristic scheme for (L,D) if there is a polynomial q such that

1. For every n, every x, every φ, every δ > 0, and every y ∈ suppDn,x,φ, we
have A(y;n, φ, δ) outputs either L(y) or ⊥.

2. For every n, every x, every φ, every δ > 0, and every y ∈ suppDn,x,φ, we
have tA(y;n, δ) ≤ q(n,Nn,xφ, 1/δ).

3. For every n, x, φ, δ > 0, and y ∈ suppDn,x,φ, Pry∼Dn,x,φ [A(y;n, φ, δ) =
⊥] ≤ δ.

Theorem 2.5. (L,D) ∈ Smoothed-P if and only if (L,D) has an errorless
heuristic scheme.

2.3 Alternative Definition: Bounded Moments

At first glance, one might be tempted to use “expected running time” for the
definition of Avg-P and Smoothed-P. However, as mentioned above, simply using

4

the expected running time does not yield a robust measure. This is the reason
why the expected value of the running time raised to some (small) constant
power is used. Röglin and Teng [24, Theorem 6.2] have shown that for integer
programming (more precisely, for binary integer programs with a linear objec-
tive function), the expected value indeed provides a robust measure. They have
proved that a binary optimization problem can be solved in expected polynomial
time if and only if it can be solved in worst-case pseudo-polynomial time. The
reason for this is that all finite moments of the Pareto curve are polynomially
bounded. Thus, a polynomial slowdown does not cause the expected running
time to jump from polynomial to exponential.

As far as we are aware, this phenomenon, i.e., the case that all finite moments
have to be bounded by a polynomial, has not been studied yet in average-case
complexity. Thus, for completeness, we define the corresponding average-case
and smoothed complexity classes as an alternative to Avg-P and Smoothed-P.

Definition 2.6. 1. An algorithm has robust smoothed polynomial running
time with respect to D if, for all fixed ε > 0 and for every n, x, and φ, we
have Ey∼Dn,x,φ

(
tA(y;n, φ)ε

)
= O

(
n · Nn,x · φ

)
. Smoothed-PBM is the class

of all (L,D) for which there exists a deterministic algorithm with robust
smoothed polynomial running time. (The “PBM” stands for “polynomially
bounded moments”.)

2. An algorithm A has robust average polynomial running time with respect
to D if, for all fixed ε > 0 and for all n, we have Ey∼Dn

(
tA(y)ε

)
= O(n).

Avg-PBM contains all (L,D) for which there exists a deterministic algorithm
with robust smoothed polynomial running time.

From the definition, we immediately get Smoothed-PBM ⊆ Smoothed-P and
Avg-PBM ⊆ Avg-P. Moreover, if L ∈ P, then L together with any family of dis-
tributions is also in Smoothed-P and Avg-P and also in Smoothed-PBM and
Avg-PBM. From Röglin and Teng’s result [24], one might suspect Avg-P =
Avg-PBM and Smoothed-P = Smoothed-PBM, but this does not hold.

Theorem 2.7. Avg-PBM (Avg-P and Smoothed-PBM (Smoothed-P.

3 Disjoint Supports and Reducibility

The same given input y can appear with very high and with very low probability
at the same time. What sounds like a contradiction has an easy explanation:
Dn,x,φ(y) can be large whereas Dn,x′,φ(y) for some x′ 6= x is small. But if we
only see y, we do not know whether x or x′ was perturbed. This causes some
problems when one wants to develop a notion of reduction and completeness.

For a parameterized distributional problem (L,D), let

Lds = {〈x, y〉 | y ∈ L and |y| ≤ poly(|x|)}.

The length of |y| is bounded by the same polynomial that bounds the length of
the strings in any suppDn,x,φ. We will interpret a pair 〈x, y〉 as “y was drawn

5

according to Dn,x,φ”. With the notion of Lds, we can now define a reducibility
between parameterized distributional problems. We stress that, although the
definition below involves Lds and L′ds, the reduction is defined for pairs L and L′

and neither of the two is required to be a disjoint-support language. This means
that, for (L,D), the supports of Dn,x,φ for different x may intersect. And the
same is allowed for (L′,D′).

Definition 3.1. Let (L,D) and (L′,D) be two parameterized distributional prob-
lems. (L,D) reduces to (L′,D′) (denoted by “(L,D) ≤smoothed (L′,D′)”) if there
is a polynomial time computable function f such that for every n, every x, every
φ and every y ∈ suppDn,x,φ the following holds:

1. 〈x, y〉 ∈ Lds if and only if f(〈x, y〉;n, φ) ∈ L′ds.
2. There exist polynomials p and m such that, for every n, x, and φ and every

y′ ∈ suppD′m(n),f1(〈x,y〉;n,φ),φ, we have∑
y:f2(〈x,y〉;n,φ)=y′ Dn,x,φ(y) ≤ p(n)Dm(n),f1(〈x,y〉;n,φ),φ(y′),

where f(〈x, y〉;n, φ) = 〈f1(〈x, y〉;n, φ), f2(〈x, y〉;n, φ)〉.

Remark 3.2. We could also allow that φ on the right-hand side is polynomially
transformed. However, we currently do not see how to benefit from this.

It is easy to see that ≤smoothed is transitive. Ideally, Smoothed-P should be
closed under this type of reductions. However, we can only show this for the
related class of problems with disjoint support.

Definition 3.3. Smoothed-Pds is the set of all distributional problems with dis-
joint supports such that there is an algorithm A for Lds with smoothed polynomial
running time. (Here, the running time on 〈x, y〉 is defined in the same way as
in Definition 2.1. Since |y| ≤ poly(|x|) for a pair 〈x, y〉 ∈ Lds, we can as well
measure the running time in |x|.)

Theorem 3.4. If (L,D) ≤smoothed (L′,D′) and (L′ds,D′) ∈ Smoothed-Pds, then
(Lds,D) ∈ Smoothed-Pds.

With the definition of disjoint support problems, a begging question is how
the complexity of L and Lds are related. It is obvious that (L,D) ∈ Smoothed-P
implies (Lds,D) ∈ Smoothed-Pds. However, the converse is not so obvious. The
difference between L and Lds is that for Lds, we get the x from which the input
y was drawn. While this extra information does not seem to be helpful at a first
glance, we can potentially use it to extract randomness from it. So this question
is closely related to the problem of derandomization.

But there is an important subclass of problems in Smoothed-Pds whose coun-
terparts are in Smoothed-P, namely those which have an oblivious algorithm with
smoothed polynomial running time. We call an algorithm (or heuristic scheme)
for some problem with disjoint supports oblivious if the running time on 〈x, y〉
does not depend on x (up to constant factors). Let Smoothed-Pobl

ds be the result-
ing subset of problems in Smoothed-Pds that have such an oblivious algorithm
with smoothed polynomial running time.

6

Theorem 3.5. For any parameterized problem (L,D), (L,D) ∈ Smoothed-P if
and only if (Lds,D) ∈ Smoothed-Pobl

ds .

Note that almost all algorithms, for which a smoothed analysis has been
carried out, do not know the x from which y was drawn; in particular, there
is an oblivious algorithm for them. Thus, a begging questions is if there is a
problem (L,D) /∈ Smoothed-P but (Lds,D) ∈ Smoothed-Pds.

Note that in Lds, each y is paired with every x, so there is no possibility
to encode information by omitting some pairs. This prohibits attempts for con-
structing such a problem like considering pairs 〈x, f(x)〉 where f is some one-way
function. However, a pair 〈x, y〉 contains randomness that one could extract. On
the other hand, for the classes Smoothed-BPP or Smoothed-P/poly, which can
be defined in the obvious way, it seems plausible that knowing x does not seem
to help.

4 Parameterized Distributional NP

In this section, we define the smoothed analogue of the worst-case class NP
and the average-case class DistNP [18, 20]. First, we have to restrict ourself to
“natural” distributions. This rules out, for instance, probability distributions
based on Kolmogorov complexity that (the universal distribution), under which
worst-case complexity equals average-case complexity for all problems [21]. We
transfer the notion of computable ensembles to smoothed complexity, which
allows us to define the smoothed analogue of NP and DistNP.

Definition 4.1. A parameterized family of distributions is in PComppara if the
cumulative probability FDn,x,φ =

∑
z≤xDn,x,φ can be computed in polynomial

time (given n, x and φ in binary).

Definition 4.2. Dist-NPpara = {(L,D) | L ∈ NP and D ∈ PComppara}.

Bounded halting – given a Turing machine, an input, and a running-time
bound, does the Turing machine halt on this input within the given time bound
– is complete for Dist-NPpara. Bounded halting is the canonical NP-complete
language, and it has been the first problem that has been shown to be Avg-P-
complete [20]. Formally, let

BH = {〈g, x, 1t〉 | NTM with Gödel number g accepts x within t steps}.

For a specific parameterized family UBH of distributions, we can prove the fol-
lowing theorem.

Theorem 4.3. (BH, UBH) is Dist-NPpara-complete for some UBH ∈ PComppara.

The original DistNP-complete problem by Levin [20] was Tiling: An instance
of the problem consists of a finite set T of square tiles, a positive integer t, and
a sequence s = (s1, . . . , sn) for some n ≤ t such that si matches si+1 (the right
side of si equals the left side of si+1). The question is whether S can be extended
to tile an n×n square using tiles from T . Again, we need a special family UTiling

of distributions.

7

Theorem 4.4. (Tiling, UTiling) is Dist-NPpara-complete for some UTiling ∈
PComppara under polynomial-time smoothed reductions.

5 Basic Relations to Worst-Case Complexity

In this section, we collect some simple facts about Smoothed-P and Dist-NPpara

and their relationship to their worst-case and average-case counterparts.

Theorem 5.1. If L ∈ P, then (L,D) ∈ Smoothed-P for any D. If (L,D) ∈
Smoothed-P with D = (Dn,x,φ)n,x,φ, then (L, (Dn,xn,φ)n) ∈ Avg-P for φ =
O(poly(n)/Nn,x) and every sequence (xn)n of strings with |xn| ≤ poly(n).

It is known that DistNP ⊆ Avg-P implies NE = E [4]. This can be transferred
to smoothed complexity.

Theorem 5.2. If Dist-NPpara ⊆ Smoothed-P, then NE = E.

6 Tractability 1: Integer Programming

Now we deal with tractable – in the sense of smoothed complexity – optimiza-
tion problems: We show that if a binary integer linear program can be solved
in pseudo-polynomial time, then the corresponding decision problem belongs to
Smoothed-P. This result is similar to Beier and Vöckings characterization [3]:
Binary optimization problems have smoothed polynomial complexity (with re-
spect to continuous distributions) if and only if they can be solved in randomized
pseudo-polynomial time.

A binary optimization problem is an optimization problem of the form “max-
imize cTx subject to wTi x ≤ ti for i ∈ [k] and x ∈ S ⊆ {0, 1}n. The set S should
be viewed as containing the “structure” of the problem. The simplest case is
k = 1 and S = {0, 1}n; then the binary program above represents the knapsack
problem. We assume that S is adversarial (i.e., non-random). Since we deal with
decision problems in this paper rather than with optimization problems, we use
the standard approach and introduce a threshold for the objective function. This
means that the optimization problem becomes the question whether there is an
x ∈ S that fulfills cTx ≥ b as well as wTi x ≤ ti for all i ∈ {1, . . . , k}. In the fol-
lowing, we treat the budget constraint cTx ≥ b as an additional linear constraint
for simplicity. We call this type of problems binary decision problems.

Let us now describe the perturbation model. For ease of presentation, we
assume that we have just one linear constraint (whose coefficients will be per-
turbed) and everything else is encoded in the set S. The coefficients of the
left-hand sides of the constraints are n-bit binary numbers. We do not make any
assumption about the probability distribution of any single coefficient. Instead,
our result holds for any family of probability distribution that fulfills the fol-
lowing properties: w1, . . . , wn are drawn according to independent distributions.
The set S and the threshold t are part of the input and not subject to ran-
domness. Thus, Nn,(S,w,t) = 2n

2

for any instance (S,w, t) of size n. We assume

8

that S can be encoded by a polynomially long string. Since Nn,(S,w) = 2n
2

, the

perturbation parameter φ can vary between 2−n
2

(for the average case) and 1
(for the worst case).

Theorem 6.1. If a binary decision problem can be solved in pseudo-polynomial
time, then it is in Smoothed-P.

Beier and Vöcking [3] have proved that (randomized) pseudo-polynomiality
and smoothed polynomiality are equivalent. The reason why we do not get a
similar result is as follows: Our “joint density” for all coefficients is bounded by
φ, and the density of a single coefficient is bounded by φ1/n. In contrast, in the
continuous version, the joint density is bounded by φn while a single coefficient
has a density bounded by φ. However, our goal is to devise a general theory for
arbitrary decision problems. This theory should include integer optimization,
but it should not be restricted to integer optimization. The problem is that
generalizing the concept of one distribution bounded by φ for each coefficient to
arbitrary problems involves knowledge about the instances and the structure of
the specific problems. This knowledge, however, is not available if we want to
speak about classes of decision problems as in classical complexity theory.

7 Tractability 2: Graphs and Formulas

7.1 Graph Coloring and Smoothed Extension of Gn,p

The perturbation model that we choose is the smoothed extension of Gn,p [28]:
Given an adversarial graph G = (V,E) and an ε ∈ (0, 1/2], we obtain a new
graph G′ = (V,E′) on the same set of vertices by “flipping” each (non-)edge of
G independently with a probability of ε. This means the following: If e = {u, v} ∈
E, then e is contained in E′ with a probability of 1− ε. If e = {u, v} /∈ E, then
Pr(e ∈ E′) = ε. Transferred to our framework, this means the following: We
represent a graph G on n vertices as a binary string of length

(
n
2

)
, and we have

Nn,G = 2(n2). The flip probability ε depends on φ: We choose ε ≤ 1/2 such that

(1 − ε)(
n
2) = φ. (For φ = 2−(n2) = 1/Nn,G, we have a fully random graph with

edge probabilities of 1/2. For φ = 1, we have ε = 0, thus the worst case.)
k-Coloring is the decision problem whether the vertices of a graph can be

colored with k colors such that no pair of adjacent vertices get the same color.
k-Coloring is NP-complete for any k ≥ 3 [17, GT 4].

Theorem 7.1. For any k ∈ N, k-Coloring ∈ Smoothed-P.

Remark 7.2. Bohman et al. [8] and Krivelevich et al. [19] consider a slightly dif-
ferent model for perturbing graphs: Given an adversarial graph, we add random
edges to the graph to obtain our actual instance. No edges are removed.

They analyze the probability that the random graph thus obtained is guaran-
teed to contain a given subgraph H. By choosing H to be a clique of size k+1 and
using a proof similar to Theorem 7.1’s, we obtain that k-Coloring ∈ Smoothed-P
also with respect to this perturbation model.

9

7.2 Unsatisfiability and Smoothed-RP

Feige [14] and Coja-Oghlan et al. [11] have considered the following model: We
are given a (relatively dense) adversarial Boolean k-CNF formula. Then we ob-
tain our instance by negating each literal with a small probability. It is proved
that such smoothed formulas are likely to be unsatisfiable, and that their unsatis-
fiability can be proved efficiently. However, their algorithms are randomized, thus
we do not get a result that kUNSAT (this means that unsatisfiability problem for
k-CNF formulas) for dense instances belongs to Smoothed-P. However, it shows
that kUNSAT for dense instance belongs to Smoothed-RP, where Smoothed-RP
is the smoothed analogue of RP: A pair (L,D) is in Smoothed-RP if there is a
randomized polynomial algorithm A with the following properties:

1. For all x /∈ L, A outputs “no”. (This property is independent of the pertur-
bation.)

2. For all x ∈ L, A outputs “yes” with a probability of at least 1/2. (This
property is also independent of the perturbation.)

3. A has smoothed polynomial running time with respect to D. (This property
is independent of the internal randomness of A.)

Now, let kUNSATβ be kUNSAT restricted to instances with at least βn
clauses, where n denotes the number of variables. Let ε be the probability that
a particular literal is negated. Feige [14] has presented a polynomial-time algo-
rithm with the following property: If β = Ω(

√
n log log n/ε2) and the perturbed

instance of kUNSATβ is unsatisfiable, which it is with high probability, then his
algorithm proves that the formula is unsatisfiable with a probability of at least
1− 2Ω(−n). The following result is a straightforward consequence.

Theorem 7.3. kUNSATβ ∈ Smoothed-RP for β = Ω(
√
n log log n).

8 Smoothed Analysis vs. Semi-Random Models

Semi-random models for graphs and formulas exist even longer than smoothed
analysis and can be considered as precursors to smoothed analysis. The basic
concept is as follows: Some instance is created randomly that possesses a partic-
ular property. This property can, for instance, be that the graph is k-colorable.
After that, the adversary is allowed to modify the instance without destroying
the property. For instance, the adversary can be allowed to add arbitrary edges
between the different color classes. Problems that have been considered in this
model or variants thereof are independent set [15], graph coloring [6, 9, 15], or
finding sparse induced subgraphs [10]. However, we remark that these results
do not easily fit into a theory of smoothed analysis. The reason is that in these
semi-random models, we first have the random instance, which is then altered
by the adversary. This is in contrast to smoothed analysis in general and our
smoothed complexity theory in particular, where we the adversarial decisions
come before the randomness is applied.

10

9 Discussion

Our framework has many of the characteristics that one would expect. We have
reductions and complete problems and they work in the way one expects them
to work. To define reductions, we have to use the concept of disjoint supports.
It seems to be essential that we know the original instance x that the actual
instance y was drawn from to obtain proper domination. Although this is some-
what unconventional, we believe that this is the right way to define reductions in
the smoothed setting. The reason is that otherwise, we do not know the probabil-
ities of the instances, which we need in order to apply the compression function.
The compression function, in turn, seems to be crucial to prove hardness results.
Still, an open question is whether a notion of reducibility can be defined that cir-
cumvents these problems. Moreover, many of the positive results from smoothed
analysis can be cast in our framework, like it is done in Sections 6 and 7.

Many positive results in the literature state their bounds in the number of
“entities” (like number of nodes, number of coefficients) of the instance. However,
in complexity theory, we measure bounds in the length (number of symbols) of
the input in order to get a theory for arbitrary problems, not only for problems of
a specific type. To state bounds in terms of bit length makes things less tight, for
instance the reverse direction of integer programming does not work. But still,
we think it is more important and useful to use the usual notion of input length
such that smoothed complexity fits with average-case and worst-case complexity.

We hope that the present work will stimulate further research in smoothed
complexity theory in order to get a deeper understanding of the theory behind
smoothed analysis.

References

1. David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means
method. J. ACM, 58(5), 2011.

2. René Beier and Berthold Vöcking. Random knapsack in expected polynomial time.
J. Comput. System Sci., 69(3):306–329, 2004.

3. René Beier and Berthold Vöcking. Typical properties of winners and losers in
discrete optimization. SIAM J. Comput., 35(4):855–881, 2006.

4. Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory
of average case complexity. J. Comput. System Sci., 44(2):193–219, 1992.

5. Markus Bläser, Bodo Manthey, and B. V. Raghavendra Rao. Smoothed analysis
of partitioning algorithms for Euclidean functionals. Algorithmica, to appear.

6. Avrim L. Blum and Joel Spencer. Coloring random and semi-random k-colorable
graphs. J. Algorithms, 19(2):204–234, 1995.

7. Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and
Trends in Theoret. Comput. Sci., 2(1):1–106, 2006.

8. Tom Bohman, Alan M. Frieze, Michael Krivelevich, and Ryan Martin. Adding
random edges to dense graphs. Random Struct. Algorithms, 24(2):105–117, 2004.

9. Amin Coja-Oghlan. Colouring semirandom graphs. Combin. Probab. Comput.,
16(4):515–552, 2007.

11

10. Amin Coja-Oghlan. Solving NP-hard semirandom graph problems in polynomial
expected time. J. Algorithms, 62(1):19–46, 2007.

11. Amin Coja-Oghlan, Uriel Feige, Alan M. Frieze, Michael Krivelevich, and Dan
Vilenchik. On smoothed k-CNF formulas and the Walksat algorithm. Proc. 20th
Ann. Symp. on Discrete Algorithms (SODA), pp. 451–460. SIAM, 2009.

12. Valentina Damerow, Bodo Manthey, Friedhelm Meyer auf der Heide, Harald Räcke,
Christian Scheideler, Christian Sohler, and Till Tantau. Smoothed analysis of left-
to-right maxima with applications. ACM Trans. Algorithms, to appear.

13. Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and proba-
bilistic analysis of the 2-Opt algorithm for the TSP. Proc. 18th Ann. Symp. on
Discrete Algorithms (SODA), pp. 1295–1304. SIAM, 2007.

14. Uriel Feige. Refuting smoothed 3CNF formulas. Proc. 48th Ann. Symp. on Foun-
dations of Computer Science (FOCS), pp. 407–417. IEEE, 2007.

15. Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Comput.
System Sci., 63(4):639–671, 2001.

16. Mahmoud Fouz, Manfred Kufleitner, Bodo Manthey, and Nima Zeini Jahromi. On
smoothed analysis of quicksort and Hoare’s find. Algorithmica, 62(3–4):879–905,
2012.

17. Michael R. Garey and David S. Johnson. Computers and Intractability. W. H.
Freeman and Company, 1979.

18. Yuri Gurevich. Average case completeness. J. Comput. System Sci., 42(3):346–398,
1991.

19. Michael Krivelevich, Benny Sudakov, and Prasad Tetali. On smoothed analysis in
dense graphs and formulas. Random Struct. Algorithms, 29(2):180–193, 2006.

20. Leonid A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285–
286, 1986.

21. Ming Li and Paul M. B. Vitányi. Average case complexity under the universal
distribution equals worst-case complexity. Inform. Process. Lett., 42(3):145–149,
1992.

22. Bodo Manthey and Heiko Röglin. Smoothed analysis: Analysis of algorithms be-
yond worst case. it – Information Technology, 53(6), 2011.

23. Ankur Moitra and Ryan O’Donnell. Pareto optimal solutions for smoothed ana-
lysts. In Proc. 43rd Ann. Symp. on Theory of Computing (STOC), pp. 225–234.
ACM, 2011.

24. Heiko Röglin and Shang-Hua Teng. Smoothed analysis of multiobjective optimiza-
tion. Proc. 50th Ann. Symp. on Foundations of Computer Science (FOCS), pp.
681–690. IEEE, 2009.

25. Heiko Röglin and Berthold Vöcking. Smoothed analysis of integer programming.
Math. Prog., 110(1):21–56, 2007.

26. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of termination of
linear programming algorithms. Math. Prog., 97(1–2):375–404, 2003.

27. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463,
2004.

28. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: An attempt to
explain the behavior of algorithms in practice. Commun. ACM, 52(10):76–84,
2009.

29. Roman Vershynin. Beyond Hirsch conjecture: Walks on random polytopes and
smoothed complexity of the simplex method. SIAM J. Comput., 39(2):646–678,
2009.

12

