Smoothed Analysis of Binary Search Trees and
Quicksort Under Additive Noise

Bodo Manthey'* and Till Tantau?

1 Saarland University, Computer Science
Postfach 151150, 66041 Saarbriicken, Germany
manthey@cs.uni-sb.de
2 Universitét zu Liibeck, Institut fiir Theoretische Informatik
Ratzeburger Allee 160, 23538 Liibeck, Germany
tantau@tcs.uni-luebeck.de

Abstract. Binary search trees are a fundamental data structure and
their height plays a key role in the analysis of divide-and-conquer algo-
rithms like quicksort. We analyze their smoothed height under additive
uniform noise: An adversary chooses a sequence of n real numbers in
the range [0, 1], each number is individually perturbed by adding a value
drawn uniformly at random from an interval of size d, and the resulting
numbers are inserted into a search tree. An analysis of the smoothed tree
height subject to n and d lies at the heart of our paper: We prove that the
smoothed height of binary search trees is ©(y/n/d+logn), whered > 1/n
may depend on n. Our analysis starts with the simpler problem of de-
termining the smoothed number of left-to-right maxima in a sequence.
We establish matching bounds, namely once more ©(1/n/d +logn). We
also apply our findings to the performance of the quicksort algorithm
and prove that the smoothed number of comparisons made by quicksort

is O(747v/n/d+nlogn).

1 Introduction

To explain the discrepancy between average-case and worst-case behavior of the
simplex algorithm, Spielman and Teng introduced the notion of smoothed anal-
ysis [14]. Smoothed analysis interpolates between average-case and worst-case
analysis: Instead of taking a worst-case instance or, as in average-case analy-
sis, choosing an instance completely at random, we analyze the complexity of
(possibly worst-case) objects subject to slight random perturbations. On the one
hand, perturbations model that nature is not (or not always) adversarial. On the
other hand, perturbations reflect the fact that data is often subject to measure-
ment or rounding errors; even if the instance at hand was initially a worst-case
instance, due to such errors we would probably get a less difficult instance in
practice. Spielman and Teng [15] give a comprehensive survey on results and
open problems in smoothed analysis.

* Work done at the Department of Computer Science at Yale University, supported
by the Postdoc-Program of the German Academic Exchange Service (DAAD).

33rd Symp. on Math. Foundations of Comput. Sci. (MFCS 2008) (© Springer

Binary search trees are one of the most fundamental data structures in com-
puter science and they are the building blocks for a large variety of data struc-
tures. One of the most important parameter of binary search trees is their height.
The worst-case height of a binary tree for n numbers is n. The average-case
behavior has been the subject of a considerable amount of research, culminat-
ing in the result that the average-case height is alnn — Slnlnn + O(1), where
a =~ 4.311 is the larger root of aIn(2e/a) = 1 and 8 = 3/(21n(e/2)) ~ 1.953 [12].
Furthermore, the variance of the height is bounded by a constant, as was proved
independently by Drmota [6] and Reed [12], and also all higher moments are
bounded by constants [6]. Drmota [7] gives a recent survey.

Beyond being an important data structure, binary search trees play a cen-
tral role in the analysis of divide-and-conquer algorithms like quicksort [9, Sec-
tion 5.2.2]. While quicksort needs ©(n?) comparisons in the worst case, the
average number of comparisons is 2nlogn — ©(n) with a variance of (7 — 27?) -
n? —2nlogn + O(n) as mentioned by Fill and Janson [8]. Quicksort and binary
search trees are closely related: The height of the tree T(o) obtained from a
sequence o is equal to the number of levels of recursion required by quicksort to
sort o. The number of comparisons, which corresponds to the total path length
of T(o), is at most n times the height of T'(o).

Binary search trees are also related to the number of left-to-right maxima of
a sequence, which is the number of new maxima seen while scanning a sequence
from left to right. The number of left-to-right maxima of o is equal to the
length of the rightmost path of the tree T'(¢), which means that left-to-right
maxima provide an easy-to-analyze lower bound for the height of binary search
trees. In the worst-case, the number of left-to-right maxima is n, while it is
Yo, 1/i € O(logn) on average. The study of left-to-right maxima is also of
independent interest. For instance, the number of times a data structure for
keeping track of a bounding box of moving object needs to be updated is closely
related to the number of left-to-right maxima (and minima) of the coordinate
components of the objects. (See Basch et al. [2] for an introduction to data
structures for mobile data.) Left-to-right maxima also play a role in the analysis
of quicksort [13].

Given the discrepancies between average-case and worst-case behavior of bi-
nary search trees, quicksort, and the number of left-to-right maxima, the question
arises of what happens in between when the randomness is limited.

Our results. We continue the smoothed analysis of binary search trees and quick-
sort begun by Banderier et al. [1] and Manthey and Reischuk [10]. However,
we return to the original idea of smoothed analysis that input numbers are
perturbed by adding random numbers. The perturbation model introduced by
Spielman and Teng for the smoothed analysis of continuous problems like lin-
ear programming is appropriate for algorithms that process real numbers. In
their model, each of the real numbers in the adversarial input is perturbed by
adding a small Gaussian noise. This model of perturbation favors instances in
the neighborhood of the adversarial input for a fairly natural and realistic notion
of “neighborhood.”

In our model the adversarial input sequence consists of n real numbers in the
interval [0, 1]. Then, each of the real numbers is individually perturbed by adding
a random number drawn uniformly from an interval of size d, where d = d(n)
may depend on n. If d < 1/n, then the sorted sequence (1/n,2/n,3/n,...,n/n)
stays a sorted sequence and the smoothed height of binary search trees (as well
as the performance of quicksort and the number of left-to-right maxima) is the
same as in the worst-case. We always assume d > 1/n in the following,.

We study the smoothed height of binary search trees, the smoothed number of
comparisons made by quicksort, and the smoothed number of left-to-right max-
ima under additive noise. In each case we prove tight upper and lower bounds:

1. The smoothed number of left-to-right maxima is ©(1/n/d+ logn) as shown
in Section 3. This result will be exploited in the subsequent sections.

2. The smoothed height of binary search trees is @(y/n/d + logn) as shown in
Section 4.

3. The smoothed number of comparisons made by quicksort is (37 +/n/d +
nlogn) as shown in Section 5. Thus, the perturbation effect of d € w(1) is
stronger than for d € o(1).

Already for d € w(1/n), we obtain bounds that are asymptotically better than
the worst-case bounds. For constant values of d, which correspond to a pertur-
bation by a constant percentage like 1%, the height of binary search trees drops
from the worst-case height of n to O(y/n), and quicksort needs only O(n?/?)
comparisons.

It is tempting to assume that results such as the above will hold in the same
way for other distributions, such as the Gaussian distribution, with d replaced
by the standard deviation. We contribute a surprising result in Section 6: We
present a well-behaved probability distribution (symmetric, monotone on the
positive reals, smooth) for which sorting sequences can decrease the expected
number of left-to-right maxima. This effect is quite counter-intuitive and the
literature contains the claim that one can restrict attention to sorted sequences
since they are the worst-case sequences also in the smoothed setting [4, 3]. Our
distribution refutes this claim.

Related work. The first smoothed analysis of quicksort, due to Banderier, Beier,
and Mehlhorn [1], uses a perturbation model different from the one used in the
present paper, namely a discrete perturbation model. Such models take discrete
objects like permutations as input and again yield discrete objects like another
permutation. Banderier et al. used p-partial permutations, which work as follows:
An adversary chooses a permutation of the numbers {1,...,n} as sequence, ev-
ery element of the sequence is marked independently with a probability of p, and
then the marked elements are randomly permuted. Banderier et al. showed that
the number of comparisons subject to p-partial permutations is O(2 -logn). Fur-
thermore, they proved bounds on the smoothed number of left-to-right maxima
subject to this model.

Manthey and Reischuk [10] analyzed the height of binary search trees under
p-partial permutations. They proved a lower bound of 0.8 (1 —p)-+/n/p and an

asymptotically matching upper bound of 6.7 - (1 — p) - y/n/p for the smoothed
tree height. For the number of left-to-right maxima, they showed a lower bound
of 0.6 - (1 —p)-+/n/p and an upper bound of 3.6 - (1 — p) - v/n/p.

Special care must be taken when defining perturbation models for discrete
inputs: The perturbation should favor instances in the neighborhood of the ad-
versarial instance, which requires a suitable definition of neighborhood in the
first place, and the perturbation should preserve the global structure of the ad-
versarial instance. Partial permutations have the first feature [10, Lemma 3.2],
but destroy much of the global order of the adversarial sequence.

The smoothed number of left-to-right maxima for the additive noise model
of the present paper was already considered by Damerow et al. [4,5,3]. They
considered so-called kinetic data structures, which keep track of properties of a
set of moving points like a bounding box for them or a convex hull, and they
introduced the notion of smoothed motion complexity. They also considered left-
to-right maxima since left-to-right maxima provide upper and lower bounds on
the number of times a bounding box needs to be updated for moving points. For
left-to-right maxima, Damerow et al. show an upper bound of O(y/nlogn/d +
logn) and a lower bound of 2(y/n/d). In the present paper, we show that the

exact bound is ©(y/n/d + logn).

2 Preliminaries

Intervals are denoted by [a,b] = {x € R | a < z < b}. To denote an interval that
does not include an endpoint, we replace the square bracket next to the endpoint
by a parenthesis. We denote sequences of real numbers by o = (01,...,04),
where o; € R. For U = {i1,...,i} C {l,...,n} with 41 < iy < -+ < g let
ou = (0iy, iy, - - -, 04,) denote the subsequence of o of the elements at positions
in U. We denote probabilities by P and expected values by E.

Throughout the paper, we will assume for the sake of clarity that numbers like
\V/d are integers and we do not write down the tedious floor and ceiling functions
that are actually necessary. Since we are interested in asymptotic bounds, this
does not affect the validity of the proofs.

Due to lack of space, some proofs are omitted. For complete proofs, we refer
to the full version of this paper [11].

2.1 Binary Search Trees, Left-To-Right Maxima, and Quicksort

Let o be a sequence of length n consisting of pairwise distinct elements. For the
following definitions, let G = {i € {1,...,n} | 0; > 01} be the set of positions
of elements greater than o1, and let S = {i € {1,...,n} | 0; < 01} be the set of
positions of elements smaller than o;.

From o, we obtain a binary search tree T'(o) by iteratively inserting the
elements o1, ...,0, into the initially empty tree as follows: The root of T'(o) is
o1. The left subtree of the root o7 is T'(0g), and the right subtree of o7 is T(o¢).
The height of T(o) is the maximum number of nodes on any root-to-leaf path of

T(0): Let height(o) = 1 + max{height(og), height(cg)}, and let height(c) = 0
when o is the empty sequence.

The number of left-to-right mazima of o is the number of maxima seen when
scanning o from left to right: let ltrm(o) = 1 + ltrm(og), and let ltrm(c) = 0
when o is the empty sequence. The number of left-to-right maxima of ¢ is equal
to the length of the rightmost path of T'(¢), so ltrm(o) < height(o).

Quicksort is the following sorting algorithm: Given o, we construct og and
og. To do this, all elements of (o9,...,0,) have to be compared to o1, which
is called the pivot element. Then we sort og and og recursively to obtain 7g
and 7¢, respectively. Finally, we output 7 = (75,01, 7¢). The number qs(o) of
comparisons needed to sort o is thus qs(o) = (n — 1) + gs(os) + gs(o¢) if o has
a length of n > 1, and gs(c) = 0 when o is the empty sequence.

2.2 Perturbation Model

The perturbation model of additive noise is defined as follows: Let d = d(n) > 0
be the perturbation parameter (d may depend on n). Given a sequence o of
n numbers chosen by an adversary from the interval [0, 1], we draw a noise v;
for each i € {1,...,n} uniformly and independently from each other at random
from the interval [0, d]. Then we obtain the perturbed sequence T = (71, ...,7,)
by adding v; to o;, that is, o; = o; + v;. Note that &; need no longer be an
element of [0, 1], but 7; € [0,d+ 1]. For d > 0 all elements of & are distinct with
a probability of 1.

For this model, we define the random variables height (o), gs, (o), as well as
ltrmg (o), which denote the smoothed search tree height, smoothed number of
quicksort comparisons, and smoothed number of left-to-right maxima, respec-
tively, when the sequence o is perturbed by d-noise. Since the adversary chooses
o, our goal are bounds for max,¢(o,1]» E(heighty(0)), max,cpo,1j» E(qsy(0)), and
max,eo,1)» E(ltrmg(c)). In the following, we will sometimes write height(7) in-
stead of height,(o) if d is clear from the context. Since & is random, height(7)
is also a random variable. Similarly, we will use ltrm(s) and qs(7).

The choice of the interval sizes is arbitrary since the model is invariant under
scaling if we scale the perturbation parameter accordingly. This is summarized
in the following lemma, which we will exploit a couple of times in the following.

Lemma 1. Letb > a and d > 0 be arbitrary real numbers, and let d' = d/(b—a).
Then max,c[q 5~ E(height (o)) = max,efo,1j» E(height, (0)). For quicksort and
the number of left-to-right maxima, we have analogous equalities.

As argued earlier, if d < 1/n, the adversary can specify o = (1/n,...,n/n)
and adding the noise terms does not affect the order of the elements. This means
that we get the worst-case height, number of comparisons, and number of left-
to-right maxima. Because of this observation we will restrict our attention to
d>1/n.

If d is large, the noise will swamp out the original instance, and the order of
the elements of & will depend only on the noise rather than the original instance.
For intermediate d, additive noise interpolates between average and worst case.

3 Smoothed Number of Left-To-Right Maxima

We start our analyses with the smoothed number of left-to-right maxima, which
provides us with a lower bound on the height of binary search trees as well. Our
aim for the present section is to prove the following theorem.

Theorem 1. For d > 1/n, we have

max E(ltrmg(0)) € O(y/n/d+logn).

o€[0,1]n

The lower bound of 2(y/n/d +logn) is already stated without proof in [4]
and a proof can be found in [3], so we prove only the upper bound. The following
notations will be helpful: For j < 0, let 0; = v; = 0. This allows us to define
di=0i—0,_ sforallie{1,...,n}. Wedefine I; = {j € {1,...,n} | i—Vnd <
j < i} to be the set of the |I;| = min{i — 1,v/nd} positions that precede i.

To prove the upper bound for the smoothed number of left-to-right maxima,
we proceed in two steps: First, a “bubble-sorting argument” is used to show that
the adversary should choose a sorted sequence. Note that this is not as obvious
as it may seem since in Section 6 we show that this bubble-sorting argument
does not apply to all distributions. Second, we prove that the expected number
of left-to-right maxima of sorted sequences is O(1/n/d + logn), which improves

the bound of O(y/nlogn/d+ logn) [3,4].

Lemma 2. For every o and its sorted version 7, E(ltrmg(c)) < E(ltrmg(7)).

Lemma 3. For all o of length n and all d > 1/n, we have E(ltrmg(0)) €
O(y/n/d+logn).

Proof. By Lemma 2 we can restrict ourselves to proving the lemma for sorted
sequences 0. We estimate the probability that a given 7; for i € {1,...,n} is a
left-to-right maximum. Then the bound follows by the linearity of expectation.
To bound the probability that ; is a left-to-right maximum (ltrm), consider the
following computation:

IN
~

]P’(Ei is an ltrm) <]P’(Vj €liiv; <o; — ai_m)
(

[VARVAN
S ale>

ko3
+f0dIP’(Vj€IZ-: v; <m)~ dz
+P(VJEIZ Vj <l/i) =

ol -
+
—

(1)
d<v,—0,)+ [T P(Vje v <oi+x—0,) Lde (2)
(3)
(4)

[1;]+1°

To see that (1) holds, assume that 7; is a left-to-right maximum. Then &; —
0;_ma must be larger than the noises of all the elements in the index range
I;, for if the noise v; of some element o; were larger than &; — o, ,—, then
0; = o0j + v; would be larger than o; +7; — 0,_, ;7. Since the sequence is
sorted, we would get o; +0; — 0, _ Vnd 2 Tis and @; would not be a left-to-right
maximum.

For (2), first observe that v; < @; — 0, /mq is surely the case for all j € I;
if d < @; —0,_ /7 So, consider the case d > 7; — 0,_ 57 = §; + v;. Then
v; € [0,d — §;] and we can rewrite P(Vj € I;: v; < §; + ;) as Od_(si P(Vj €
Ii: v; < 0; + x) - & dx, where 1/d is the density of v;. For (3) observe that
d <7 —0,_ /7 is equivalent to d — ¢; < v; and the probability of this is d;/d.
Furthermore, we performed an index shift in the integral. In (4), we replaced the
integral by a probability once more and get the final result.

We have Z?:l 57, = Z?:l(ai — Ui*\/m) = Z?:nim+1 ag; S m The
second equality holds since most o; cancel themselves out and o; = 0 for ¢ < 0.
The inequality holds since there are v/nd summands. We bound 1/(|I;] 4+ 1) =
1/min{i, vnd+1} by 1/i+1/v/nd and sum over all i: E(ltrmg(0)) < 30 (% +

mirn) S VB4 H X P € O(/n/d +logn). 0

4 Smoothed Height of Binary Search Trees

In this section we prove our first main result, an exact bound on the smoothed
height of binary search trees under additive noise. The bound is the same as for
left-to-right maxima, as stated in the following theorem.

Theorem 2. For d > 1/n, we have

max,eo,1)» E(heighty(c)) € ©(y/n/d+logn).

In the rest of this section, we prove this theorem. We have to prove an upper
and a lower bound, but the lower bound follows directly from the lower bound of
2(/n/d+logn) for the smoothed number of left-to-right maxima (the number
of left-to-right maxima in a sequence is the length of the rightmost path of the
sequence’s search tree). Thus, we only need to focus on the upper bound. To
prove the upper bound of O(y/n/d + logn) on the smoothed height of binary
search trees, we need some preparations. In the next subsection we introduce
the concept of increasing and decreasing runs and show how they are related
to binary search tree height. As we will see, bounding the length of these runs
implicitly bounds the height of binary search trees. This allows us to prove the
upper bound on the smoothed height of binary search trees in the main part of
this section.

4.1 Increasing and Decreasing Runs

In order to analyze the smoothed height of binary search trees, we introduce a
related measure for which an upper bound is easier to obtain. Given a sequence o,
consider a root-to-leaf path of the tree T'(c). We extract two subsequences a =
(a1,...,ar) and 8 = (B1,...,0¢) from this path according to the following
algorithm: We start at the root. When we are at an element o; of the path, we
look at the direction in which the path continues from o;. If it continues with
the right child of o;, we append o; to «; if it continues with the left child, we

Fig. 1. The tree T'(0) obtained from the sequence o = (7,8,13,3,2,10,9,6,4,12,14,1,
5,11). We have height(o) = 6. The root-to-leaf path ending at 11 yields the increasing
run o = (7,8,10,11) and the decreasing run 8 = (13,12,11).

append o; to 8; and if o; is a leaf (has no children), then we append o; to both «
and (. This construction ensures a; < -+ < o = f¢ < --+ < (1 and the length
of 0 is k4 ¢ — 1. Figure 1 shows an example of how a and (are constructed.

A crucial property of the sequence « is the following: Let a; = o, for all
i€ {l,...,k} with j; < jo < --- < ji. Then none of o1, ..., 0j,_1 lies in the
interval (v, @;11), for otherwise a; and ;41 cannot be on the same root-to-leaf
path. A similar property holds for the sequence (3: No element of ¢ prior to §;
lies in the interval (8;411,8;). We introduce a special name for sequences with
this property.

Definition 1. An increasing run of a sequence o is a subsequence (oy,,...,04,)
with the following property: For every j € {1,...,k — 1}, no element of o prior
to oy, lies in the interval (0;,,04,.,). Analogously, a decreasing run of o is a
subsequence (04, ...,04,) With o;; > -+ > 0;, such no element prior to o, lies
in the interval (oy, ., 0,).

Let inc(o) and dec(o) denote the length of the longest increasing and de-
creasing run of o, respectively. Furthermore, let decy(o) and incy(o) denote the
length of the longest runs under d-noise. In Figure 1, we have inc(o) = 4 because
of (7,8,10,12) or (7,8,13,14) and dec(o) = 4 because of (7,3,2,1).

Since every root-to-leaf path can be divided into an increasing and a decreas-
ing run, we immediately obtain the following lemma.

Lemma 4. For every sequence o and all d we have
height(o) < dec(o) + inc(o),
E (height (o)) < E(decq(o) + incq(0)).

In terms of upper bounds, dec(c) and inc(o) as well as decg(o) and incy(o)
behave equally. The reason is that given a sequence o, the sequence 7 with
7i = 1 — 0; has the properties dec(o) = inc(7) and E(decq(c)) = E(incq(7)).
This observation together with Lemma 4 proves the next lemma.

Lemma 5. For all d, we have

E (height <2- E(i .
s, Blbeighty()) < 2 mavg, Binca (7))

The lemma states that in order to bound the smoothed height of search
trees from above we can instead bound the smoothed length of increasing or
decreasing runs. To simplify the analysis even further, we show that we can once
more restrict our attention to sorted sequences.

Lemma 6. For every o and its sorted version 7, E(incq(0)) < E(incq(7)).

4.2 Upper Bound on the Smoothed Height of Binary Search Trees

We are now ready to prove the upper bound for binary search trees by proving an
upper bound on the smoothed length of increasing runs of sorted sequences. For
this, we prove four lemmas, the last of which claims exactly the desired upper
bound. Lemma 7 deals with d = 1 and states that E(height,(c)) € O(y/n)
for every sequence o. Lemma 8 states that in order to bound tree heights, we
can divide sequences into (possibly overlapping) parts and consider the height
of the trees induced by the subsequences individually. A less general form of
the lemma has already been shown by Manthey and Reischuk [10, Lemma 4.1].
Lemma 9 establishes that if d = n/log?n, a perturbed sequence behaves the
same way as a completely random sequence with respect to the smoothed length
of its longest increasing run. The core idea is to partition the sequence into a
set of “completely random” elements, which behave as expected, and two sets
of more bothersome elements lying in a small range. As we will see, the number
of bothersome elements is roughly log? n and since the range of values of these
elements is small, we can use the result E(height,(c)) € O(y/n) to show that
their contribution to the length on an increasing run is just O(logn). Finally, in
Lemma 10 we allow general d > 1/n. This case turns out to be reducible to the
case d = n/log?n by scaling the numbers according to Lemma 1.

For the proofs of the lemmas, two technical terms will be helpful: For a
given real interval I = [a,b], we say that a position i of o is eligible for I if 7;
can assume any value in I. In other words, ¢ is eligible for [a,b] if o; < a and
o; +d > b. Furthermore, we say that i is reqular if &; actually lies inside I.

Lemma 7. For all o, we have E(inci(0)) € O(y/n).

Lemma 8. For every sequence o, all d, and every covering Uy,Us, ... Uy of
{1,...,n} (which means Ule U, ={1,...,n}), we have

height(o) < Zle height(oy,),

E(heighty(0)) < 325, E(height,(or,)).

Lemma 9. For all sequences o, and d = n/log?n, we have E(heightd(a)) €
O(logn).

Lemma 10. For every sequence o and all d > 1/n we have E(height,(0)) €

O(y/n/d+logn).

Proof. 1f d € £2(n/log?n), then E(heighty(c)) € O(logn) by Lemma 9.

To prove the theorem for smaller values of d, we divide the sequence into
subsequences. Let N be the largest real root of the equation N2/log? N = nd.
Then log N € O(log(nd)), and thus N = ¢ - v/nd - log(nd) for some ¢ € O(1).
Let nj be the number of elements of ¢ with o; € [(j —1)- N/n,j- N/n]. Choose
k; € N such that (k; —1) - N < n; < k;N. We divide the n; elements of the
interval [(j — 1) - N/n,j - N/n] into k; subsequences o71,... ¢7**i such that no
subsequence contains more than IV elements. Since

S ky < S N < o),

we obtain at most 2n/N such subsequences. Each subsequence spans at most an
interval of length N, /n and contains at most N elements. Thus, by Lemma 9, we
have E(height,(c7)) € O(log(N)). Finally, Lemma 8 yields

E (heighty(c)) < 7Y S8 | E(heighty(74)) € O (#) -0 (n/d) .

5 Smoothed Number of Quicksort Comparisons

In this section, we apply our results on binary search trees and left-to-right
maxima to the performance of the quicksort algorithm. The following theorem
summarizes the findings.

Theorem 3. For d > 1/n we have

max E(qsy(0)) € O(g45/n/d+nlogn).

o€l0,1]™

In other words, for d € O(1), we have at most O(ny/n/d) comparisons, while
for d € £2(1), we have at most O(%+/n/d) comparisons. This means that d has
a stronger influence for d € 2(1).

To prove the upper bound, we first need a lemma similar to Lemma 8 that
allows us to estimate the number of comparisons of subsequences.

Lemma 11. For every sequence o, all d, and every covering Uy,Us, ..., Uy of
{1,...,n}, we have

as(o) < 8, as(ow,) + Q,
E(as4(0)) = E(as(@) < S5, E(as(@r,)) +E@),

where Q) is the number of comparisons of elements of oy, with elements of
oq1,...ap\u; for any i and the random variable Q) is defined analogously for o.

Lemma 12. For every sequence o and all d > 1/n, we have E(qgsy(c)) €

O(dL_H\/n/d—l—nlogn).

Our upper bound is tight. The standard sorted sequence provides a worst
case, but we use a sequence that is slightly easier to handle technically.

Lemma 13. For o = (1/n,2/n,...,5/n,1,1,...,1) and all d > 1/n, we have

E(qsy(0)) € Q(dilw/n/d—i—nlogn),

6 Sorting Decreases the Number of Left-to-right Maxima

Lemma 2 states that sorting a sequence can never decrease the expected number
of left-to-right maxima — at least when the noise is drawn uniformly from a single
interval. Intuitively, this should not only hold for this kind of noise, but for any
kind of noise — at least if the noise distribution is reasonably well-behaved. We
demonstrate that this intuition is wrong and there exist a simple distribution
and a sequence for which the sorted version has a lower expected number of
left-to-right maxima than the original sequence.

Theorem 4. The exist a sequence o and a symmetric probability distribution
f: R — R that is monotonically decreasing on Ry such that sorting o to obtain
T decreases the expected number of left-to-right mazima after perturbation.

To prove the theorem, we use the sequence ¢ = (0,...,0,1 + %, é) The
probability distribution has most of its mass in the interval [—1,1] with tails
of length 1/e to either side: f(z) = 1 — 2¢ for x € [~1,1] and f(z) = &2 for
|z| € [1,141/e]. This distribution can easily be made smooth without changing
the claim of the theorem.

7 Conclusion

The smoothed height of binary search trees and also the smoothed number of
left-to-right maxima are ©(y/n/d + logn); the smoothed number of quicksort

comparisons is Q(dLH\ /n/d+ nlogn). While we obtain the average-case height

of O(logn) for binary search trees only for d € £2(n/log?n) — which is large
compared to the interval size [0,1] from which the numbers are drawn —, for
the quicksort algorithm d € 2 (\3/ n/log? n) suffices so that the expected num-
ber of comparisons equals the average-case number of @(nlogn). On the other
hand, the recursion depth of quicksort, which is equal to the tree height, can
be as large as Q(n/ d). Thus, although the average number of comparisons is
already reached at d € Q(\S/ n/log? n), the recursion depth remains asymptoti-
cally larger than its average value for d € o(n/(logn)?).

A natural question arising from our results is, what happens when the noise
is drawn according to distributions other than the uniform distribution? As we
have demonstrated, we cannot expect all distributions to behave in the same
way as the uniform distribution. A natural candidate for closer examination
is the normal distribution, for which first results on left-to-right maxima have
already been obtained [4]. We conjecture that if max,cr f(x) = ¢, where f is

the noise distribution, then the expected tree height and the expected number of
left-to-right maxima are O(y/n¢ +logn) while the expected number of quicksort

comparisons is O (%\/ no+nlog n) These bounds would be in compliance with

our bounds for uniformly distributed noise, where ¢ = 1/d.

In our study of the quicksort algorithm we used the first element as the pivot
element. This choice simplifies the analysis but one would often use the median
of the first, middle, and last element. Nevertheless, we conjecture that the same
bounds as for the simple pivot strategy also hold for this pivot strategy.

References

1. Cyril Banderier, René Beier, Kurt Mehlhorn. Smoothed analysis of three com-
binatorial problems. In Proc. 28th Int. Symp. on Math. Found. of Comput. Sci.
(MFCS), vol. 2747 of Lecture Notes in Comput. Sci., pp. 198-207. Springer, 2003.

2. Julien Basch, Leonidas J. Guibas, John Hershberger. Data structures for mobile
data. J. Algorithms, 31(1):1-28, 1999.

3. Valentina Damerow. Average and Smoothed Complexity of Geometric Structures.
PhD thesis, Universitat Paderborn, 2006.

4. Valentina Damerow, Friedhelm Meyer auf der Heide, Harald Raécke, Christian
Scheideler, Christian Sohler. Smoothed motion complexity. In Proc. 11th Ann.
European Symp. on Algorithms (ESA), vol. 2832 of Lecture Notes in Comput. Sci.,
pp- 161-171. Springer, 2003.

5. Valentina Damerow, Christian Sohler. Extreme points under random noise. In
Proc. 12th Ann. European Symp. on Algorithms (ESA), vol. 3221 of Lecture Notes
in Comput. Sci., pp. 264-274. Springer, 2004.

6. Michael Drmota. An analytic approach to the height of binary search trees II. J.
ACM, 50(3):333-374, 2003.

7. Michael Drmota. Profile and height of random binary search trees. J. Iranian
Statistical Society, 3(2):117-138, 2004.

8. James Allen Fill, Svante Janson. Quicksort asymptotics. J. Algorithms, 44(1):4-28,
2002.

9. Donald E. Knuth. Sorting and Searching, vol. 3 of The Art of Computer Program-
ming. Addison-Wesley, 2nd edition, 1998.

10. Bodo Manthey, Riidiger Reischuk. Smoothed analysis of binary search trees. The-
oret. Comput. Sci., 378(3):292-315, 2007.

11. Bodo Manthey and Till Tantau. Smoothed analysis of binary search trees and
quicksort under additive noise. Report 07-039, Electronic Colloquium on Compu-
tational Complexity (ECCC), 2007.

12. Bruce Reed. The height of a random binary search tree. J. ACM, 50(3):306-332,
2003.

13. Robert Sedgewick. The analysis of quicksort programs. Acta Inform., 7(4):327-355,
1977.

14. Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385-463, 2004.

15. Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of algorithms and heuris-
tics: Progress and open questions. In Foundations of Computational Mathematics,
Santander 2005, pp. 274-342. Cambridge University Press, 2006.

