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Abstract. The 2-opt heuristic is a very simple local search heuristic for
the traveling salesman problem. While it usually converges quickly in
practice, its running-time can be exponential in the worst case.
In order to explain the performance of 2-opt, Englert, Röglin, and Vö-
cking (Algorithmica, to appear) provided a smoothed analysis in the
so-called one-step model on d-dimensional Euclidean instances. How-
ever, translating their results to the classical model of smoothed analysis,
where points are perturbed by Gaussian distributions with standard de-
viation σ, yields a bound that is only polynomial in n and 1/σd.
We prove bounds that are polynomial in n and 1/σ for the smoothed
running-time with Gaussian perturbations. In particular our analysis for
Euclidean distances is much simpler than the existing smoothed analysis.

1 2-Opt and Smoothed Analysis

The traveling salesman problem (TSP) is one of the classical combinatorial
optimization problems. Euclidean TSP is the following variant: given points
X ⊆ [0, 1]d, find the shortest Hamiltonian cycle that visits all points in X (also
called a tour). Even this restricted variant is NP-hard for d ≥ 2 [16]. We consider
Euclidean TSP with Manhattan and Euclidean distances as well as squared Eu-
clidean distances to measure the distances between points. For the former two,
there exist polynomial-time approximation schemes (PTAS) [1, 14]. The latter,
which has applications in power assignment problems for wireless networks [8],
admits a PTAS for d = 2 and is APX-hard for d ≥ 3 [15].

As it is unlikely that there are efficient algorithms for solving Euclidean TSP
optimally, heuristics have been developed in order to find near-optimal solutions
quickly. One very simple and popular heuristic is 2-opt: starting from an initial
tour, we iteratively replace two edges by two other edges to obtain a shorter tour
until we have found a local optimum. Experiments indicate that 2-opt converges
to near-optimal solutions quite quickly [9, 10], but its worst-case performance
is bad: the worst-case running-time is exponential even for d = 2 [7] and the
approximation ratio can be Ω(log n/ log log n) for Euclidean instances [5].

An alternative to worst-case analysis is average-case analysis, where the ex-
pected performance with respect to some probability distribution is measured.
The average-case running-time for Euclidean instances and the average-case ap-
proximation ratio for non-metric instances of 2-opt were analyzed [4–6,11]. How-
ever, while worst-case analysis is often too pessimistic because it is dominated by
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artificial instances that are rarely encountered in practice, average-case analysis
is dominated by random instances, which have often very special properties with
high probability that they do not share with typical instances.

In order to overcome the drawbacks of both worst-case and average-case
analysis and to explain the performance of the simplex method, Spielman and
Teng invented smoothed analysis [17]: an adversary specifies an instance, and
then this instance is slightly randomly perturbed. The smoothed performance
is the expected performance, where the expected value is taken over the ran-
dom perturbation. The underlying assumption is that real-world instances are
often subjected to a small amount of random noise, which can, e.g., come from
measurement or rounding errors. Smoothed analysis often allows more realis-
tic conclusions about the performance than worst-case or average-case analysis.
Since its invention, it has been applied successfully to explain the performance
of a variety of algorithms [12,18].

Englert, Röglin, and Vöcking [7] provided a smoothed analysis of 2-opt in or-
der to explain its performance. They used the one-step model : an adversary spec-
ifies n density functions f1, . . . , fn : [0, 1]d → [0, φ]. Then the n points x1, . . . , xn
are drawn independently according to the densities f1, . . . , fn, respectively. Here,
φ is the perturbation parameter. If φ = 1, then the only possibility is the uni-
form distribution on [0, 1]d, and we obtain an average-case analysis. The larger
φ, the more powerful the adversary. Englert et al. [7] proved that the expected

running-time of 2-opt is O(n4φ log n) and O(n4+
1
3φ

8
3 log2(nφ)) for Manhattan

and Euclidean distances, respectively. These bounds can be improved slightly
by choosing the initial tour with an insertion heuristic. However, if we transfer
these bounds to the classical model of points perturbed by Gaussian distribu-
tions of standard deviation σ, we obtain bounds that are polynomial in n and
1/σd. This is because the maximum density of a d-dimensional Gaussian with
standard deviation σ is Θ(σ−d). While this is polynomial for any fixed d, it is
unsatisfactory that the degree of the polynomial depends on d.

Our Contribution. We provide a smoothed analysis of the running-time of 2-
opt in the classical model, where points in [0, 1]d are perturbed by independent
Gaussian distributions of standard deviation σ. The bounds that we prove for
Gaussian perturbations are polynomial in n and 1/σ, and the degree of the
polynomial is independent of d. As distance measures, we consider Manhattan
(Section 3), Euclidean (Section 5), and squared Euclidean distances (Section 4).

The analysis for Manhattan distances is a straightforward adaptation of the
existing analysis by Englert et al. However, while the degree of the polynomial
in n is independent of d in our bound, we still have a factor in the bound that
is exponential in d.

Our analysis for Euclidean distances is considerably simpler than the one by
Englert et al., which is rather technical and takes more than 20 pages [7].

The analysis for squared Euclidean distances is, to our knowledge, not pre-
ceded by a smoothed analysis in the one-step model. Because of the nice proper-
ties of squared Euclidean distances and Gaussian perturbations, this smoothed
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analysis is relatively compact and elegant: the only concept needed for Theo-
rem 4.3 is pairs of linked 2-changes (Section 2.1), and we can even get rid of
this at the price of a slightly worse bound (Remark 4.4). This might be of inde-
pendent interest, as smoothed analysis of local search heuristics is often rather
technical [2, 3, 7, 13].

We did not try to optimize our bounds, but rather tried to keep the analysis
simple. We believe that much stronger bounds hold for Euclidean and squared
Euclidean distances (see also Section 6).

2 Notation, Preliminaries and Outline

Throughout the rest of this paper, X denotes a set of n points in Rd, where each
point is drawn according to an independent d-dimensional Gaussian distribution
with mean in [0, 1]d and standard deviation σ. The dimension d is considered to
be constant. We discuss the dependence of our bounds on d in Section 6.

We assume that σ ≤ 1. This is justified by two reasons. First, small σ are
actually the interesting case, i.e., when the order of magnitude of the perturba-
tion is relatively small. Second, the smoothed number of iterations that 2-opt
needs is a monotonically decreasing function of σ: if we have σ > 1, then this is
equivalent to adversarial instances in [0, 1/σ]d that are perturbed with standard
deviation 1. This in turn is dominated by adversarial instances in [0, 1]d that are
perturbed with standard deviation 1, as [0, 1/σ]d ⊆ [0, 1]d. Thus, any bound for
σ = 1 holds also for larger σ. Sometimes we even assume σ = O(1/

√
n log n) to

simplify the analysis.

2.1 2-Opt State Graph and Linked 2-Changes

Given a tour H that visits all points in X, a 2-change replaces two edges
{x1, x2} and {x3, x4} of H by two new edges {x1, x3} and {x2, x4}, provided
that this yields again a tour (this is the case if x1, x2, x3, x4 appear in this or-
der in the tour) and that this decreases the length of the tour, i.e., d(x1, x2) +
d(x3, x4) − d(x1, x3) − d(x2, x4) > 0, where d(a, b) = ‖a − b‖2 (Euclidean dis-
tances), d(a, b) = ‖a− b‖1 (Manhattan distances), or d(a, b) = ‖a− b‖22 (squared
Euclidean distances). The 2-opt heuristic iteratively improves an initial tour by
applying 2-changes until it reaches a local optimum.

The number of iterations that 2-opt needs depends of course heavily on the
initial tour and on which 2-change is chosen in each iteration. We do not make
any assumptions about the initial tour and about which 2-change is chosen.
Following Englert et al. [7], we consider the 2-opt state graph: we have a node
for every tour and a directed edge from tour H to tour H ′ if H ′ can be obtained
by one 2-change. The 2-opt state graph is a directed acyclic graph, and the
length of the longest path in the 2-opt state graph is an upper bound for the
number of iterations that 2-opt needs.

In order to improve the bounds (for Manhattan distances) or to allow bounds
on the expected number of iterations in the first place (for Euclidean and squared
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Euclidean distances), we also consider pairs of linked 2-changes [7]. Two 2-
changes form a pair of linked 2-changes if there is one edge added in one 2-change
and removed in the other 2-change. Formally, one 2-change replaces {x1, x2}
and {x3, x4} by {x1, x3} and {x2, x4} and the other 2-change replaces {x1, x3}
and {x5, x6} by {x1, x5} and {x2, x6}. It can be that {x2, x4} and {x5, x6}
intersect. Englert et al. [7] called a pair of linked 2-changes a type i pair if
|{x2, x4} ∩ {x5, x6}| = i. As type 2 pairs, which involve in fact only four nodes,
are difficult to analyze because of dependencies, we ignore them. Fortunately, the
following lemma states that we will find enough disjoint pairs of linked 2-changes
of type 0 and 1 in any sufficiently long sequence of 2-changes.

Lemma 2.1 (Englert et al. [7]). Every sequence of t consecutive 2-changes
contains at least t/6− 7n(n− 1)/24 disjoint pairs of linked 2-changes of type 0
or type 1.

2.2 Technical Lemmas

In order to get an upper bound for the length of the initial tour, we need an upper
bound for the diameter of the point set X. Such an upper bound is also necessary
for the analysis of 2-changes with Euclidean distances (Section 5). We choose
Dmax such that X ⊆ [−Dmax, Dmax]d with a probability of at least 1− 1/n!. For
fixed d and σ ≤ 1, we can choose Dmax = Θ(1 + σ

√
n log n) according to the

following lemma. For σ = O(1/
√
n log n), we have Dmax = Θ(1).

Lemma 2.2. Let c > 0 be a sufficiently large constant, and let Dmax = c ·
(σ
√
n log n+ 1). Then P(X 6⊆ [−Dmax, Dmax]d) ≤ 1/n!.

We need the following simple fact a few times.

Lemma 2.3 (Arthur et al. [2, Fact 2.1]). Let p ∈ [0, 1] be a probability, and
let a, c, b, d, and e be non-negative real numbers with c ≥ 1 and e ≥ d. If
p ≤ a+ c · be, then p ≤ a+ c · bd.

For x, y ∈ Rd with x 6= y, let L(x, y) = {ξ · (y − x) + x | ξ ∈ R} denote the
straight line through x and y.

Lemma 2.4. Let a, b ∈ Rd be arbitrary with a 6= b. Let c ∈ Rd be drawn accord-
ing to a d-dimensional Gaussian distribution with standard deviation σ. Then
the probability that c is ε-close to L(a, b), i.e., minc?∈L(a,b) ‖c − c?‖2 ≤ ε, is

bounded from above by (ε/σ)d−1.

Let δclose = mina,b∈X,a 6=b ‖a− b‖2 be the minimum distance of points in X.

Lemma 2.5. For any ε > 0, we have P(δclose ≤ ε) ≤ n2 · (ε/σ)d.

We need the following lemma in Section 5.

Lemma 2.6. Let f : R → R be a differentiable function whose derivative is
bounded from above by B, let c be distributed according to Gaussian distribution
with standard deviation σ. Let I be an interval of size ε, and let f(I) = {f(x) |
x ∈ I} be the image of I. Then P(c ∈ f(I)) = O(Bε/σ).
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2.3 Outline

The main idea in the proofs by Englert et al. [7] and in our proofs is to bound
the minimal improvement of any 2-change or, for pairs of linked 2-changes, the
minimal improvement of any pair of linked 2-changes. We denote the smallest
improvement of any linked 2-change by ∆min and the smallest improvement of
any pair of linked 2-changes by ∆link

min. It will be clear from the context which
distance measure is used for ∆min and ∆link

min. Suppose that the initial tour has a
length of at most L, then 2-opt cannot run for more than L/∆min iterations and
not for more than Θ(L/∆link

min) iterations. The following lemma formalizes this.

Lemma 2.7. Suppose that, with a probability of at least 1− 1/n!, any tour has
a length of at most L. Let γ > 1. Then

1. If P(∆min ≤ ε) = O(Pε), then the expected length of the longest path in the
2-opt state graph is bounded from above by O(PLn log n).

2. If P(∆min ≤ ε) = O(Pεγ), then the expected length of the longest path in the
2-opt state graph is bounded from above by O(P 1/γL).

3. The same bounds hold if we replace ∆min by ∆link
min, provided that PL = Ω(n2)

for Case 1 and P 1/γL = Ω(n2) for Case 2.

For Euclidean and squared Euclidean distances, it turns out to be useful to
study ∆a,b(c) = d(c, a) − d(c, b) for points a, b, c ∈ X. By abusing notation,
we sometimes write ∆i,j(k) instead of ∆xi,xj (xk) for short. A 2-change that
replaces {x1, x2} and {x3, x4} by {x1, x3} and {x2, x4} improves the tour length
by ∆1,4(2)−∆1,4(3) = ∆2,3(1)−∆2,3(4).

3 Manhattan Distances

The analysis for Manhattan distances is a straightforward adaptation of the
analysis in the one-step model. We obtain a bound of O(n4Dmax/σ). The term
Dmax in the bound comes from the bound of the initial tour.

Lemma 3.1. P(∆link
min ≤ ε) = O(n6ε2/σ2).

Theorem 3.2. The expected length of the longest path in the 2-opt state graph
corresponding to d-dimensional instances with Manhattan distances is at most
O(n4Dmax/σ).

4 Squared Euclidean Distances

In this section, we have ∆a,b(c) = ‖c− a‖22 − ‖c− b‖22 for a, b, c ∈ Rd.

Lemma 4.1. Let a, b ∈ Rd, a 6= b, and let c be drawn according to a Gaussian
distribution with standard deviation σ. Let I ⊆ R be an interval of length ε.
Then P

(
∆a,b(c) ∈ I

)
≤ ε

4σ·‖a−b‖2 .
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Proof. Since Gaussian distributions are rotationally symmetric, we can assume
without loss of generality that a = (0, . . . , 0) and b = (δ, 0, . . . , 0). We have
δ = ‖a − b‖2. Let c = (c1, . . . , cd). Then ∆a,b(c) = c21 − (c1 − δ)2 = 2c1δ + δ2.
Thus, ∆a,b(c) falls into I if and only if c1 falls into an interval of length ε

2δ . Since
c1 is a 1-dimensional Gaussian random variable with a standard deviation of σ,
the probability for this is bounded from above by ε

4δσ . ut

We analyze ∆link
min since it seems to be difficult to obtain bounds for the

expected value using ∆min.

Lemma 4.2. For d ≥ 2, we have P(∆link
min ≤ ε) = O(n6εσ−2).

Proof. Consider a pair of linked 2-changes where {x1, x2} and {x3, x4} are re-
placed by {x1, x3} and {x2, x4} and then {x1, x3} and {x5, x6} by {x1, x5} and
{x3, x6}. We assume that x2 /∈ {x5, x6} and x5 /∈ {x2, x4}. The other cases are
identical.

If the pair yields an improvement of at most ε then ∆1,3(2) falls into some
interval of length at most ε and ∆1,6(5) falls into some interval of length at most
ε. We have ‖x1 − x3‖2 ≤

√
ε or ‖x1 − x6‖2 ≤

√
ε only if δclose ≤

√
ε, which

happens with a probability of at most n2(
√
ε/σ)d ≤ n2εσ−2 by Lemmas 2.5

and 2.3 since d ≥ 2. From now on, we assume that ‖x1−x3‖2, ‖x1−x6‖2 ≥
√
ε.

By independence of x2 and x5 and Lemma 4.1, the probability that both ∆1,3(2)
and ∆1,6(5) fall into their “bad” interval of length ε is thus bounded from above

by
(√ε
4σ

)2
= O(εσ−2).

The lemma follows now by a union bound over all O(n6) pairs of linked
2-changes and the fact that we do not have to apply the union bound to the
probability that δclose is small. ut

Theorem 4.3. For d ≥ 2, the expected length of the longest path in the 2-
opt state graph corresponding to d-dimensional instances with squared Euclidean
distances is at most O(n8 log n ·D2

max/σ
2).

Proof. The theorem follows by using Lemma 2.7 with Lemma 4.2 and the obser-
vation that the initial tour has a length of at most O(D2

maxn) with a probability
of at least 1− 1/n! by Lemma 2.2. ut

Remark 4.4. The proof of Theorem 4.3 can be simplified by getting rid of the
pairs of linked 2-changes (Lemma 2.1) and slightly worsening the bound to
O(n10 log n · D2

max/σ
2): we observe that two consecutive 2-changes involve be-

tween five and eight nodes as they cannot involve the same four points. Thus,
there is always one node that is only involved in the first of the two and one
node that is only involved in the second of the two. This is sufficient but worsens
the bound of Lemma 4.2 as we have to take a union bound over O(n8) choices
for the two 2-changes instead of O(n6) choices for pairs of linked 2-changes.
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5 Euclidean Distances

In this section, we have ∆a,b(c) = ‖c− a‖2 − ‖c− b‖2 for a, b, c ∈ Rd. Analyzing
‖c−a‖2−‖c−b‖2 turns out to be more difficult than analyzing ‖c−a‖22−‖c−b‖22
in the previous section. In particular the case when ‖c− a‖2 − ‖c− b‖2 is close
to the maximal possible value of ‖a− b‖2 requires special attention.

5.1 Difference of Euclidean Distances

As for squared Euclidean distances, we analyze the probability that a pair of
linked 2-changes yields a small improvement. Assume that a, b, and c are already
drawn. Then the 2-change that replaces {z, a} and {b, c} by {z, b} and {a, c}
yields an improvement of at most ε only if η = ‖z − a‖2 − ‖z − b‖2 = ∆a,b(z)
falls in a particular interval of length ε. For this analysis, it does not matter
which of the four points involved in the 2-change is chosen as z.

We observe that η is essentially 2-dimensional: it depends only on the distance
of z from L(a, b) (this is x in the following lemma) and on the position of the
projection z to L(a, b) (this is y in the following lemma). Furthermore, it depends
on the distance ‖a− b‖2 between a and b (this is δ in the following lemma). The
following lemma makes the connection between x and y explicit for a given η.

Lemma 5.1. Let z = (x, y) ∈ R2, x ≥ 0, y ≥ 0. Let a = (0,−δ/2) and b =
(0, δ/2) be two points at a distance of δ. Let η = ‖z − a‖2 − ‖z − b‖2. Then we
have

y2 =
η2δ2 + 4η2x2 − η4

4δ2 − 4η2
=
η2

4
+

η2x2

δ2 − η2
(1)

for 0 ≤ η < δ and

x2 =
y2 ·

(
4δ2 − 4η2) + η4 − η2δ2

4η2
=
y2 ·

(
δ2 − η2)

η2
− δ2 − η2

4
. (2)

for δ ≥ η > 0. Furthermore, η > δ is impossible.

In order to apply Lemma 2.6, we need the following upper bound on the
derivative of y with respect to η, given that x is fixed.

Lemma 5.2. For x, y ≥ 0, let y =
√

η2

4 + η2x2

δ2−η2 . Assume that 0 ≤ η ≤ δ − κ

and κ > 0. Then the derivative of y with respect to η is bounded by O
(
δ2+x2

κ2

)
.

If δ and x are bounded by O(Dmax), then the derivative of y with respect to
η is bounded by O(D2

max/κ
2).

We stress that Lemma 5.2 provides a rather bad upper bound on the deriva-
tive: We use an upper bound of Dmax for x in the numerator, while x ≈ Dmax

would lead to a much larger denominator and, thus, to a better bound. However,
we try to keep the analysis simple, and it seems difficult to get a better compact
upper bound for the derivative without case distinctions.

Using Lemmas 5.2 and 2.6, we can bound the probability that ∆a,b(z) as-
sumes a value in an interval of size ε.
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Lemma 5.3. Let a, b ∈ [−Dmax, Dmax]d be arbitrary, a 6= b, and let z be drawn
according to a Gaussian distribution with standard deviation σ. Let δ = ‖a −
b‖2 = O(Dmax). Let I be an interval of length ε with I ⊆ [0, δ − κ]. Then

P
(
∆a,b(z) ∈ I and z ∈ [−Dmax, Dmax]d

)
= O(εD2

maxκ
−2σ−1).

5.2 Bad Events

Lemma 5.2 and, thus, Lemma 5.3 become quite weak if κ is small. This is the
case if ∆a,b(z) is close to its maximal possible value of ‖a− b‖2. In this case, z
must be very close to L(a, b). The following lemma states that this is unlikely.

Lemma 5.4. For d ≥ 2 and 0 < α < β < 1, let Eε,α,β be the event that at least
one of the following bad events occur:

1. X 6⊆ [−Dmax, Dmax]d.
2. δclose ≤ εα.
3. There exist four different points a, b, c, c′ ∈ X with |∆a,b(c)| ≥ ‖a− b‖2 − εβ

and |∆a,b(c
′)| ≥ ‖a− b‖2 − 2εβ.

Then, for all ε ≤ ε0 for some ε0 that depends on α and β, we have

P(Eε,α,β) ≤ 1

n!
+ n2 ·

(
εα

σ

)d
+ n4 ·

(
8εβ−αD2

max

σ2

)d−1
Proof (sketch). The three terms of the bound correspond to the three parts of
the bad events. The first two are immediate consequences of Lemmas 2.2 and 2.5.

For the last term and Item 3, we observe that, because X ⊆ [−Dmax, Dmax]d,
the event ∆a,b(c) ≥ ‖a−b‖2−εβ can only occur if c is within a distance of at most

2
√
εα−βDmax of L(a, b). The probability that this happens can be bounded using

Lemma 2.4. In the same way, the probability of the event ∆a,b(c
′) ≥ ‖a−b‖2−2εβ

can be bounded from above. ut

5.3 Smallest Improvement of a Pair of Linked 2-Changes

In this section, we analyze the probability that there exists a pair of linked 2-
changes that yields an improvement of at most ε. Simple 2-changes do not seem
sufficient to yield a bound on the expected number of iterations.

Lemma 5.5. Fix α and β, and let ε > 0 be sufficiently small as in Lemma 5.4.
Then

P
(
∆link

min < ε and not Eε,α,β
)

= O
(
n6ε2−4βD4

maxσ
−2) .

Proof. We analyze a fixed pair of linked 2-changes as described in Section 2.1.
Then the lemma follows by a union bound over the O(n6) possible pairs. We
assume that δclose ≥ εα. Otherwise, we would have event Eε,α,β (Lemma 5.4,
Item 2).
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Suppose that |∆1,4(3)| ≥ ‖x1−x3‖−εβ . Then, because we do not have Eε,α,β
(Lemma 5.4, Item 3), we have |∆1,4(2)| ≤ ‖x1 − x3‖− 2εβ . The improvement of
the first 2-change of the linked pair is |∆1,4(2)−∆1,4(3)| ≥ εβ ≥ ε or it is not a 2-
change as there is no improvement. In the same way, if |∆1,4(2)| ≥ ‖x1−x3‖−εβ
or ∆1,6(3) ≥ ‖x1− x6‖− εβ or ∆1,6(5) ≥ ‖x1− x6‖− εβ , at least one of the two
2-changes yields an improvement of at least εβ ≥ ε. Thus, we can ignore these
cases from now on and apply Lemma 5.3 with κ = εβ .

We first draw all but two of the five or six points (depending on which type
of linked pair we have) such that one of the two remaining points (xi with
i ∈ {2, 4}) is only involved in the first 2-change and the other point (xj with
j ∈ {5, 6}) is only involved in the second 2-change. We only consider the case
i = 2 and j = 5, the other cases are identical.

The first 2-change yields an improvement of at most ε only if ∆1,4(2) falls
into an interval of size at most ε. According to Lemma 5.3, the probability for
this is at most O(ε1−2βD2

maxσ
−1), as we have already ruled out the case that

X 6⊆ [−Dmax, Dmax]d. Analogously, the probability that ∆1,6(5) falls into an
interval of length at most ε is at most O(ε1−2βD2

maxσ
−1), and this is necessary

for the second 2-change to yield an improvement of at most ε. By independence of
x2 and x5, the probability that none of the two 2-changes yields an improvement
of at least ε and that we do not have event Eε,α,β is bounded from above by
O(ε2−4βD4

maxσ
−2). ut

The following lemma is an immediate consequence of Lemmas 5.4 and 5.5.

Lemma 5.6. For any 0 < α < β < 1, we have

P
(
∆link

min ≤ ε and X ⊆ [−Dmax, Dmax]d
)

= O

(
n6 · ε

2−4βD4
max

σ2
+ n2 ·

(
εα

σ

)d
+ n4 ·

(
εβ−αD2

max

σ2

)d−1)
.

Now we choose β = 0.247 and α = 0.12. Then, for d ≥ 9, this yields 2−4β >
1.01, αd > 1.08, and (β − α) · (d − 1) > 1.01. Using Lemma 2.3, this allows
us to remove the d from the exponent, and we obtain the following simplified
version of Lemma 5.6. We assume that σ = O(1/

√
n log n) for simplicity. Thus,

Dmax = O(1).

Lemma 5.7. For d ≥ 9 and σ = O(1/
√
n log n), we have P

(
∆link

min ≤ ε and X ⊆
[−Dmax, Dmax]d

)
= O(ε1.01n4σ−16).

Using this lemma, we can prove the main result of this section.

Theorem 5.8. For d ≥ 9 and σ = O(1/
√
n log n), the expected length of the

longest path in the 2-opt state graph corresponding to d-dimensional instances
with Euclidean distances is at most O(n5/σ16).
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6 Concluding Remarks

Improving the bounds. Our smoothed analysis for Euclidean instances works only
for d ≥ 9 and the dependence of the bound on σ is bad. With the same analysis,
we can get a better bound – in particular with respect to σ – for larger values
of d by adjusting Lemma 5.7. While our goal was to keep the analysis simple,
we believe that a much better bound holds, also for smaller d, by exploiting
techniques of Englert et al. [7] for Euclidean distances.

Similarly, we can obtain an improved bound for squared Euclidean distances
by considering d ≥ 3 and adapting Lemma 4.2.

Polynomial bound for Euclidean distances for all d. For d ≤ 8, the bound proved
by Englert et al. [7] for Euclidean distances is O(n4+

1
3 log(n/σ)σ−21.4). By com-

bining this with our bound, we obtain a smoothed polynomial number of itera-
tions for all d and without d in the exponent.

Initial tour. One reason that we obtain worse bounds is that our upper bound
for the length of the initial tour is worse because we do not truncate the Gaus-
sian distributions. This effect is even stronger for Euclidean distances, where
the maximum distance between points plays a role also in the analysis of the
2-changes (Lemmas 5.3 and 5.4). Only for σ = O(1/

√
n log n), this effect is

negligible, as then Dmax = O(1).

In the same way as Englert et al. [7], we can slightly improve the smoothed
number of iterations by using an insertion heuristic to choose the initial tour.
We save a factor of n1/d for Manhattan and Euclidean distances and a factor
of n2/d for squared Euclidean distances. The reason is that there always exist
tours of length O(Dmaxn

1− 1
d ) for n points in [−Dmax, Dmax]d for Euclidean

and Manhattan distances and of length O(D2
maxn

1− 2
d ) for squared Euclidean

distances for d ≥ 2 [19].

Dependence on d. For Manhattan distances, the term hidden in the O depends
exponentially on d. For Euclidean distances, the dependence is polynomially on
d. For squared Euclidean distances, the term depends only linearly on d.

We conjecture that also for Manhattan distances, a bound that avoids expo-
nential dependence on d can be proved.

Approximation ratio. Using the fact that any local optimum of 2-opt yields a
tour of length at most O(Dmaxn

1− 1
d ) [5] and that the optimal tour has a length

of Ω(n1−
1
dσ) [7], we obtain a smoothed approximation ratio of O(Dmax/σ).

This, however, is worse than the worst-case ratio of O(log n) [5] as Dmax/σ =
Ω(
√
n/ log n). The reason for this bound is that the upper bound for the local

optimum involves Dmax.

We conjecture an approximation ratio of O(1/σ), which is what we would
obtain if plugging σ = Θ(φ−d) into the bound of Englert et al. [7] were allowed.
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