
The Intractability of Computing the Hamming
Distance

Bodo Manthey? and Rüdiger Reischuk

Universität zu Lübeck, Institut für Theoretische Informatik
Wallstraße 40, 23560 Lübeck, Germany
manthey/reischuk@tcs.uni-luebeck.de

Abstract. Given a string x and a language L, the Hamming distance
of x to L is the minimum Hamming distance of x to any string in L. The
edit distance of a string to a language is analogously defined.
First, we prove that there is a language in AC0 such that both Hamming
and edit distance to this language are hard to approximate; they cannot

be approximated with a factor O(n
1
3−ε), for any ε > 0, unless P = NP

(n denotes the length of the input string).
Second, we show the parameterized intractability of computing the Ham-
ming distance. We prove that for every t ∈ N there exists a language in
AC0 for which computing the Hamming distance is W[t]-hard. Moreover,
there is a language in P for which computing the Hamming distance is
W[P]-hard.
Finally, we show that the problems of computing the Hamming distance
and of computing the edit distance are in some sense equivalent by pre-
senting reductions from the former to the latter and vice versa.

1 Introduction

Given a language L and a string x, one can ask whether there is a string in
L in the “neighbourhood” of x and how to find such a string. On the other
hand, one can ask for the minimum distance of any string in L to x. Ham-
ming and edit distance are widely used for measuring the distance. One topic
in which these problems arise is for example the field of error-correcting codes
(see e.g. Spielman [15]). Another field is parsing theory. A main problem when
designing a parser is recovery from syntax errors. This problem has been solved
for context-free languages [1, 8, 11]. Furthermore, the problem of computing dis-
tances between strings has gained popularity in computational biology [5, 9, 13].
From the computational complexity point of view, it is interesting whether there
are properties other than membership that can efficiently be computed for ap-
propriate classes of languages [7].

Computing the Hamming distance of two strings is easy. Computing the edit
distance of two strings can be done via dynamic programming. Pighizzini [14]
presented a language in co-NTime(log) (a subclass of AC0) for which computing

? Supported by DFG research grant Re 672/3.

14th Int. Symp. on Algorithms and Computation (ISAAC 2003) c© Springer

the edit distance is NP-hard. On the other hand, he showed that computing
the edit distance to languages in 1NAuxPDAp can be done in polynomial time
and even in AC1. 1NAuxPDAp denotes the class of all languages that can be
recognized by logarithmic space and polynomial time bounded nondeterministic
Turing machines equipped a one-way input tape and an auxiliary pushdown
store.

Intuitively, computing the edit distance seems to be harder than comput-
ing the Hamming distance. Thus, one might hope that Pighizzini’s hardness
result for computing the edit distance does not hold for computing the Ham-
ming distance. However, we show that this is not the case and even improve the
intractability bound. This will be done by showing that the problem is hard to
approximate and intractable in the sense of parameterized complexity.

To be more precise, we present a language in AC0 with the property that the
Hamming distance of strings of length n to this language cannot be approximated
in polynomial time with a factor O(n

1
3−ε) unless P = NP. Furthermore, for a

language L we consider the parameterized language where on input x we ask
whether there is a string y ∈ L within distance k. We prove that for every t ∈ N
there is a language in AC0 for which this is W[t]-hard. Moreover, we present a
language in P for which this is W[P]-hard. Thus, it turns out that computing the
Hamming distance is hard even for languages in small complexity classes. Finally,
we reduce the problem of computing the Hamming distance to the problem of
computing the edit distance and vice versa. Hence, both problems are in some
sense equivalent with respect to their approximability.

2 Preliminaries

Let Σ be a finite alphabet. The length of a string x over Σ will be denoted by
|x|. For two strings x and y of equal length, let h(x, y) be the Hamming distance
of x and y, i.e. the number of positions where x and y differ. The Hamming
distance of a language L over Σ to a string x ∈ Σ? is the minimum Hamming
distance of x to an element of L, i.e.

h(x, L) = min{h(x, y) | y ∈ L and |y| = |x|} .

If Σ|x|∩L = ∅, i.e. if there is no string of length |x| in L, we define h(x, L) = ∞.
Let ∆ /∈ Σ denote the gap symbol and define Σ′ = Σ∪{∆}. An alignment of

two strings x and y over Σ is a pair of strings x̃ and ỹ over Σ′ such that |x̃| = |ỹ|
and x̃ and ỹ are obtained from x and y, respectively, by inserting gap symbols.
We assume that at neither position both x̃ and ỹ have a gap. We define the edit
distance d(x, y) of two strings x and y as

d(x, y) = min{h(x̃, ỹ) | (x̃, ỹ) is an alignment of (x, y)} .

The edit distance of two strings x and y is the minimum number of insertions,
deletions, and substitutions of characters in x necessary to obtain y. In contrast
to the Hamming distance, x and y do not have to be of the same length. In

general, we can allow an arbitrary function that yields some penalty for each
operation depending on the participating characters. See for example Gusfield [5]
or Navarro [12] for a survey on computing edit distances between two or more
sequences. To obtain the hardness results, it suffices to restrict ourselves to the
simplest case where all insertions, deletions and substitutions have unit costs.

The edit distance of a string x to a language L is defined as

d(x, L) = min{d(x, y) | y ∈ L} .

We consider the problem of computing the Hamming distance or the edit dis-
tance of a language and a string in two different ways, namely as an optimization
problem and as a parameterized language.

Definition 1 (Optimization Problems). Let L ⊆ {0, 1}? be a language.
Then OPTH(L) is the following optimization problem:

1. An instance of OPTH(L) is a string x ∈ {0, 1}?.
2. A solution to an instance x is a string y ∈ L with |y| = |x|.
3. The measure is the Hamming distance between x and y, i.e. h(x, y).
4. The goal is to find a string in L with minimum Hamming distance to x.

OPTE(L) is similarly defined: We omit the length constraint, i.e. all y ∈ L are
feasible solutions, and we use the edit distance as measure.

Definition 2 (Hamming/Edit Closure). Let L ⊆ {0, 1}? be a language.
Then LH = {(x, k) | ∃y ∈ L : |x| = |y| ∧ h(x, y) ≤ k}. LE is similarly de-
fined: We replace h by d and omit the constraint |x| = |y|. LH and LE are called
the Hamming and edit closure of L, respectively.

If L ∈ NP, then both LH and LE are in NP as well. Throughout this work,
we consider Hamming and edit closures as parameterized languages with k as
parameter. Next, we define classes of Hamming and edit closures corresponding
to classical complexity classes.

Definition 3 (Complexity Classes of Hamming/Edit Closures). Let C
be a class of languages. Then the class CH of Hamming closures of languages in
C is defined as CH = {LH | L ∈ C}. Analogously, the class CE of edit closures of
languages in C is defined as CE = {LE | L ∈ C}.

The paper is organized as follows. In the next section we prove that the
Hamming distance is hard to approximate. In Section 4 we focus our attention
on Hamming closures. We show the intractability of Hamming closures in the
sense of parameterized complexity. In Section 5 we present reductions from the
problem of computing the Hamming distance to the one of computing the edit
distance and vice versa. Finally, we raise some open problems in Section 6.

3 The Hamming Distance is Hard to Approximate

In this section, we prove that there is a language L ∈ AC0 such that the Hamming
distance to L cannot be approximated with a factor O(n

1
3−ε), for any ε > 0, for

strings of length n unless P = NP.

We consider the optimization problem Minimum Independent Dominating
Set (MIDS). An instance of MIDS is an undirected graph G = (V,E). A solution
is a subset Ṽ ⊆ V of vertices that is both an independent set and a dominating
set. Ṽ is an independent set of G, if for every edge {u, v} ∈ E at most one of
the vertices u and v is in Ṽ . Ṽ is a dominating set of G, if for every vertex
u ∈ V \ Ṽ there exists a node v ∈ Ṽ with {u, v} ∈ E. The goal is to minimize the
size of Ṽ . The problem MIDS is also known as Minimum Maximal Independent
Set, since an independent dominating set is an independent set that cannot be
extended. Halldórsson [6] showed that MIDS cannot be approximated with a
factor O(|V |1−ε), for any ε > 0, unless P = NP.

Consider the following language over the alphabet {0, 1,#}:

LMIDS = { G1# . . .#Gm+1#Ṽ | G` ∈ {0, 1}(
m
2) , Ṽ ∈ {0, 1}m for some m ∈ N,

G1 = . . . = Gm+1, each G` is an encoding of the same m-vertex
graph G, and Ṽ encodes an independent dominating set of G}

An encoding G` (1 ≤ ` ≤ m+1) consists of
(
m
2

)
bits (e`

i,j)1≤i<j≤m. (For simplic-
ity, e`

i,j = e`
j,i for i > j.) We have e`

i,j = 1 iff {vi, vj} ∈ E. The set Ṽ is encoded
with m bits zi (1 ≤ i ≤ m) with zi = 1 iff vi ∈ Ṽ .

Let us first show that LMIDS ∈ AC0. We build the following circuit:

DOM =
∧m

i=1

(
zi ∨

∨m
j=1(zj ∧ e1

i,j)
)

,

IND =
∧m

i=1

∧m
j=1

(
(zi ∧ zj) → ¬e1

i,j

)
,

EQU =
∧m

i=1

∧m
j=i+1

(∧m+1
`=1 e`

i,j ∨
∧m+1

`=1 ¬e`
i,j

)
, and

OUTPUT = DOM ∧ IND ∧ EQU .

We have DOM = 1 iff Ṽ is a dominating set and IND = 1 iff Ṽ is an independent
set of G. Furthermore, EQU = 1 iff the matrices (e`

i,j)1≤i<j≤m encode the same
graph G for any 1 ≤ ` ≤ m + 1. Hence, OUTPUT = 1 iff the input is in LMIDS.
The circuit implementing the above formulas has constant depth and the circuit
family is logarithmic space uniform. Thus, LMIDS ∈ AC0. Let n = m3+3m+2

2 be
the length of an input string encoding a graph with m vertices.

Theorem 1. For any ε > 0, OPTH(LMIDS) cannot be approximated in polyno-
mial time with a factor O(n

1
3−ε) for strings of length n unless P = NP.

Proof. Let a graph G = (V,E) with |V | = m be given as an instance for MIDS.
We create an input string x as an instance for OPTH(LMIDS) by encoding the
graph G by (e`

i,j)1≤i<j≤m for 1 ≤ ` ≤ m+1 and setting zi = 0 for all 1 ≤ i ≤ m.
Since every graph has an independent dominating set, we have h(x, LMIDS) ≤

m. Thus, there exists a string y ∈ LMIDS with |x| = |y| and h(x, y) ≤ m. Since the
encoding of the graph G consists of m+1 identical copies, all differences between
x and such a y are within the encoding of Ṽ . Thus, y yields an independent
dominating set of size h(x, y) for G.

A factor O(m1−ε) approximation algorithm for OPTH(LMIDS) would yield an
O(m1−ε) approximation for MIDS. From m ∈ Θ(n

1
3), the theorem follows. ut

Theorem 2. For any ε > 0, OPTE(LMIDS) cannot be approximated in polyno-
mial time with a factor O(n

1
3−ε) for strings of length n unless P = NP.

Proof. Consider the input string x created in the proof of Theorem 1. Any string
y ∈ LMIDS with |y| 6= |x| fulfils d(x, y) > m. Thus, any string in LMIDS with
minimum edit distance to x has length n. A change within the graph encoding
again causes at least a difference of m + 1. Hence, if y ∈ LMIDS has minimum
edit distance to x, then x and y differ only within the encoding of Ṽ . Let zy be
the encoding of Ṽ in y. The edit distance of x and y is at least the number of
1’s in zy — the theorem is proved. ut

Thus, even in the small class AC0 there exists a language such that both
Hamming and edit distance to this language are hard to approximate.

4 Parameterized Intractability of Hamming Closures

4.1 Parameterized Intractability of PH

The aim of this section is to analyze the complexity of Hamming closures of lan-
guages in P. On the one hand, we prove that the Hamming closures of languages
in P are in W[P]. On the other hand, there is a language in P the Hamming
closure of which is W[P]-hard.

Downey and Fellows [2] defined W[P] to be the class of parameterized lan-
guages that can be reduced to EW-Circ-SAT. (Here, EW stands for Exactly
Weighted. Downey and Fellows called the problem Weighted Circuit Satisfia-
bility.)

EW-Circ-SAT = {(C, k) | C is a Boolean circuit and has a satisfying
assignment with weight exactly k} .

The weight of an assignment is the number of variables to which the value 1
has been assigned. We also consider the following variant of weighted circuit
satisfiability:

W-Circ-SAT = {(C, k) | C is a Boolean circuit and has a satisfying
assignment with weight at most k} .

Lemma 1. W-Circ-SAT is W[P]-complete.

Proof. First, we reduce W-Circ-SAT to EW-Circ-SAT to prove W-Circ-SAT ∈
W[P]. Let (C, k) be an instance for W-Circ-SAT. Assume that C has n input
bits. We add k new input bits z1, . . . , zk and construct the circuit C ′ as C ∧∨k

i=1(zi ∨ zi). If C has a satisfying assignment with weight k′ ≤ k, then C ′

will be satisfied by the same assignment together with z1 = . . . = zk′ = 0
and zk′+1 = . . . = zk = 1. The assignment obtained has weight k and hence
(C ′, k) ∈ EW-Circ-SAT. On the other hand, any satisfying assignment for C ′

with weight k yields a satisfying assignment for C with weight at most k.

Second, we reduce EW-Circ-SAT to W-Circ-SAT to prove the W[P]-hardness of
W-Circ-SAT. Let (C, k) be an instance for EW-Circ-SAT. We construct another
circuit Cn,k that on input x outputs 1 if the number of ones in x is exactly
k. The circuit Cn,k has size polynomial in n. Then (C, k) ∈ EW-Circ-SAT iff
(C ∧ Cn,k, k) ∈ W-Circ-SAT — we have reduced EW-Circ-SAT to W-Circ-SAT.

ut

Theorem 3. PH ⊆ W[P].

Proof. Consider an arbitrary language L ∈ P. We reduce LH to W-Circ-SAT to
show that LH ∈ W[P]. Assume that L ⊆ Σ? for some finite alphabet Σ =
{α1, α2, . . . , ασ}. Let g : Σ? → {0, 1}? be a homomorphism with g(αi) =
0i−110σ−i. We consider the language g(L) = {g(x) | x ∈ L}. Clearly, g(L) ∈ P.
Furthermore, we have (x, k) ∈ LH iff (g(x), 2k) ∈ g(L)H. Since g(L) ∈ P, there is
a logarithmic space uniform circuit family of polynomial size for deciding g(L)
(see e.g. Greenlaw et al. [4]). Let Cn be the circuit in this family for strings of
length n. Assume that we have an input string y = y1 . . . yn. We modify Cn

slightly as follows to obtain a circuit Cn,y. If yi = 0, then we leave the ith input
bit unchanged. If yi = 1, then we replace the ith input bit by itself followed by
a NOT gate. Now Cn accepts y iff Cn,y accepts 0n. Furthermore, Cn accepts a
string ŷ iff Cn,y accepts z with zi = yi ⊕ ŷi, i.e. Cn,y(z) = 1 iff Cn(ŷ) = 1.

To summarize the above deliberations, we have (x, k) ∈ LH iff (g(x), 2k) ∈
g(L)H iff (C|x|·σ,g(x), 2k) ∈ W-Circ-SAT. Thus, the theorem is proved. ut

Now we prove that there is a language in P the Hamming closure of which is
W[P]-hard. Therefore, we consider the circuit value problem:

CVP = {(C, x) | C is a Boolean circuit that outputs 1 on input x} .

Ladner [10] proved that CVP is P-complete. We consider the following variant
of CVP, which is P-complete as well:

CVP′ = {(C#C# . . .#C︸ ︷︷ ︸
(n + 1) times

, x) | (C, x) ∈ CVP and C has n input bits} .

Theorem 4. CVP′
H is W[P]-hard.

Proof. Let (C, k) be an instance for W-Circ-SAT, such that C has n input bits.
W.l.o.g. we assume k ≤ n. Then X = ((C#C# . . .#C, 0n), k) is an instance
of CVP′

H with (C, k) ∈ W-Circ-SAT iff X ∈ CVP′
H. Hence, we have reduced

W-Circ-SAT to CVP′
H. ut

4.2 Parameterized Intractability of AC0
H

A Boolean formula is called t-normalized, if it has the form “AND-of-ORs-of-
ANDs-of-. . . -of-Literals” with t alternations [2]. For example, CNF formulas are
2-normalized. Consider the parameterized language

W-t-SAT = {(F, k) | F is a t-normalized Boolean formula and has a
satisfying assignment with at most k ones} .

W-t-SAT is W[t]-complete for all t ≥ 2 while W-1-SAT is fixed parameter trac-
table [2]. Let us now encode a t-normalized formula F over n variables into a
binary string. Therefore, we view F as a rooted tree T with vertices arranged in
levels V1 ∪ V2 ∪ . . .∪ Vt. The vertices in level V` (1 ≤ ` ≤ t− 1) are labelled with
AND, if ` is odd, and with OR, if ` is even. Every vertex v ∈ Vt is labelled with
lit(v) which is either a variable or a negated variable. For every vertex v ∈ V`

we have a set Adj(v) ⊆ V`+1 that contains all those vertices in V`+1 that serve
as input bits for v. Thus, we can write F as (assume that t is even, if t is odd,
then we have one more AND gate)

F =
∧

v1∈V1

∨
v2∈Adj(v1)

∧
v3∈Adj(v2)

. . .
∨

vt∈Adj(vt−1)
lit(vt) .

We have |V1| ≤ |V2| ≤ . . . ≤ |Vt|, since T is a tree, and we can assume that
|Vt| ≥ n. Otherwise, there would be unused variables. We call m = |Vt| the size
of F . We can encode every subgraph induced by the vertices of V`+1 ∪ V` by an
m×m-matrix (e`

i,j)1≤i,j≤m. Hence, we can write F as

F =
∧m

i1=1

∨m
i2=1

∧m
i3=1 . . .

∨m
it=1

(
(

∧t−1
`=1 e`

i`+1,i`
) → lit(vt)

)
.

Similar to the reduction presented in Section 4.1, we can create m + 1 copies
of each of these matrices. Thus, each t-normalized formula of size m can be
evaluated by a circuit of depth t+O(1) and polynomial size with t·m2·(m+1)+m
input variables. (W.l.o.g. we assume that we have m input variables. Otherwise
we add m−n variables that are never used.) The circuit family obtained (which
is logarithmic space uniform) characterizes the language

t-VAL = {(M,x) | M is an encoding of a t-normalized formula F as
described above and outputs 1 on input x ∈ {0, 1}m} .

Theorem 5. For every t ≥ 2, t-VALH is W[t]-hard.

Proof. Let (F, k) be an instance for W-t-SAT and m be the size of F . We con-
struct a circuit as described above with t ·m2 · (m+1)+m input bits. The input
X for the circuit is as follows. The first t ·m2 · (m + 1) bits encode the formula
F . The last m bits are set to 0. Assume that (F, k) ∈ W-t-SAT. We derive Y
from X by setting a bit representing an input bit to 1, if the corresponding bit
in the satisfying assignment for F is set to 1. Thus, h(X, Y) ≤ k and the cir-
cuit constructed accepts Y . On the other hand, assume that there is a Y with
h(X, Y) ≤ k ≤ m that is accepted by the circuit. Then X and Y encode the
same formula and Y yields a satisfying assignment for F with weight at most k.
Hence, we have reduced W-t-SAT to t-VALH. ut

Thus, for every t ∈ N there is a language L ∈ AC0 such that LH is W[t]-hard.

5 Edit Distance versus Hamming Distance

5.1 Reduction from Computing the Hamming Distance to
Computing the Edit Distance

Let L be a language to which we want to compute the Hamming distance. For
every x ∈ {0, 1}n, let x′ = 0n1nx11n0n0n1nx21n0n . . . 0n1nxn1n0n. We construct
a language L′ as

L′ = {x′ | x = x1x2 . . . xn ∈ L} .

Thus, every string x of length n has a counterpart x′ of length (4 · n + 1) · n.
Consider the substring 0n1nxi1n0n of x′. We call the substrings 0n1n and 1n0n

the left and right block, respectively, of xi.

Lemma 2. For every string x with h(x, L) < ∞, we have h(x, L) = h(x′, L′) =
d(x′, L′).

Proof. Obviously, we have h(x, L) = h(x′, L′) and h(x′, L′) ≥ d(x′, L′). Thus, it
remains to show that h(x′, L′) ≤ d(x′, L′).

Let |x| = n. We can assume L ∩ {0, 1}n 6= ∅, since h(x, L) = ∞ other-
wise. Let y′ ∈ L′ be a string with minimum edit distance to x′. Then y′ =
0n′1n′y11n′0n′ . . . 0n′1n′yn′1n′0n′ for some n′ ∈ N. If n′ 6= n, then the difference
of |x′| and |y′| is more than n and therefore d(x′, y′) > n. Thus, we can assume
that n′ = n. Consider now an optimal alignment (x̃′, ỹ′) of (x′, y′). We have
h(x̃′, ỹ′) ≤ n. Thus, we can assume that in the alignment considered, xi is at
most n positions away from yi, because otherwise too many 0’s or 1’s will match
a gap. Assume that xi and yi do not match, but xi is at most n position away
from yi. Then either parts of the left block of xi match parts of the right block
of yi or parts of the right block of xi match parts of the left block of yi. Thus,
either there are a lot of 0’s matching 1’s in the other string or there are a lot
of gaps both in x̃′ and ỹ′. Due to the structure of x′ and y′, we can modify x̃′

and ỹ′ to obtain an alignment with less or equal score. This way, we iteratively
obtain a new alignment (x̃′′, ỹ′′) that contains no gaps. Since x̃′, ỹ′ is an optimal
alignment we have h(x′, L′) = h(x̃′′, ỹ′′) = h(x̃′, ỹ′) = d(x′, y′) = d(x′, L′). ut

Theorem 6. Let L be a language such that OPTH(L) cannot be approximated
with a factor f(n) for strings of length n. Then OPTE(L′) cannot be approximated
with a factor f(n) for strings of length 4 · n2 + n.

Proof. Due to Lemma 2, any algorithm that computes an f(n)-approximation
for OPTE(L′) for strings of length 4 · n2 + n can be used for approximating
OPTH(L) for strings of length n. ut

An immediate consequence of the reduction presented in this section is the
following corollary.

Corollary 1. There is a language L ∈ P such that LE is W[P]-hard. ut

5.2 Reduction from Computing the Edit Distance to Computing
the Hamming Distance

Let L ⊆ {0, 1}? be a language for which we want to compute the edit distance.
We construct another language L′ as follows:

L′ = {y | ∃x ∈ L : y is obtained from x by inserting gaps} .

For a string x of length n we define x′ = ∆nx1∆
n . . .∆nxn∆n.

Lemma 3. For every x ∈ {0, 1}? we have d(x, L) = h(x′, L′).

Proof. We start with d(x, L) ≥ h(x′, L′). Let y ∈ L be a string with d(x, y) =
d(x, L). Let (x̃, ỹ) be an optimal alignment of x and y. We can assume that to the
left of x1, between xi and xi+1 (for 1 ≤ i ≤ n− 1), and to the right of xn there
are always at most n gap symbols in x̃. Thus, in x̃ we can insert gaps to obtain x′

as defined above and in the same places in ỹ to obtain some ŷ. Clearly, d(x, L) =
h(x′, ŷ) ≥ h(x′, L′). It remains to show that d(x, L) ≤ h(x′, L′). Assume that
we have a y′ ∈ L′ with h(x′, y′) = h(x′, L′). Then (x′, y′) is an alignment of
(x, y), where y is obtained from y′ by deleting all gap symbols. Thus, we have
d(x, L) ≤ d(x, y) ≤ h(x′, y′) = h(x′, L′). ut

Theorem 7. Let L be a language such that OPTE(L) cannot be approximated
with a factor f(n) for strings of length n. Then OPTH(L′) cannot be approxi-
mated with a factor f(n) for strings of length n2 + 2 · n.

Proof. Due to Lemma 3, any algorithm that computes an f(n)-approximation
for OPTH(L′) for strings of length n2 + 2 · n can be used for approximating
OPTE(L) for strings of length n. ut

We can extend the above results to languages over alphabets of size two using
a homomorphism g mapping 0, 1, and ∆ to 001, 010, and 100, respectively. Then
we have 2 · h(x′, L′) = h(g(x′), g(L′)). Thus, if the Hamming distance to g(L′)
cannot be approximated with a factor f(n) for strings of length 3n, then the
Hamming distance to L′ cannot be approximated with a factor f(n) for strings
of length n. Unfortunately, it might happen that g(L′) /∈ AC0 for some L ∈ AC0.
Consider for example L = {x | x ∈ {0, 1}? and |x| is even}. Then L′ and also
g(L′) are essentially parity, which is known to be not in AC0 [3]. Thus, there are
languages L ∈ AC0 such that g(L′) /∈ AC0.

From the reduction presented we immediately obtain the following corollary.

Corollary 2. PE ⊆ W[P].

Proof. If L ∈ P, then L′ ∈ P and, by Theorem 3, L′
H ∈ W[P]. Since we have

reduced LE to L′
H, we have LE ∈ W[P]. ut

6 Open Problems

An obvious open question is to find algorithms for approximating the Hamming
or edit distance. On the other hand, we conjecture that significantly stronger
lower bounds hold for the approximability of these problems.

The reduction from the problem of computing the Hamming distance to the
one of computing the edit distance preserves the size of the alphabet. Further-
more, if the language to which we want to compute the Hamming distance is
in AC0, then so is the one constructed. In the reduction from the latter to the
former, we used a third symbol (which could be avoided by an appropriate encod-
ing), and the language constructed is not necessarily in AC0, even if the original
language is. Another question is whether there is a reduction avoiding this.

References

1. Alfred V. Aho and Thomas G. Petersen. A minimum distance error-correcting
parser for context-free languages. SIAM Journal on Computing, 1(4):305–312,
1972.

2. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer,
1999.

3. Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

4. Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel
Computation: P-Completeness Theory. Oxford University Press, 1995.

5. Daniel M. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

6. Magnús M. Halldórsson. Approximating the minimum maximal independence
number. Information Processing Letters, 46(4):169–172, 1993.

7. Lane A. Hemachandra. Algorithms from complexity theory: Polynomial-time op-
erations for complex sets. In Proc. of the SIGAL Int. Symp. on Algorithms, volume
450 of Lecture Notes in Computer Science, pages 221–231. Springer, 1990.

8. Edgar T. Irons. An error-correcting parse algorithm. Communications of the ACM,
6(11):669–673, 1963.

9. Richard M. Karp. Mapping the genome: Some combinatorial problems arising in
molecular biology. In Proc. of the 25th Ann. ACM Symp. on Theory of Computing
(STOC), pages 278–285, 1993.

10. Richard E. Ladner. The circuit value problem is log space complete for P. SIGACT
News, 7(1):18–20, 1975.

11. Gordon Lyon. Syntax-directed least-errors analysis for context-free languages: A
practical approach. Communications of the ACM, 17(1):3–14, 1974.

12. Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

13. Pavel A. Pevzner. Computational Molecular Biology: An Algorithmic Approach.
MIT Press, 2000.

14. Giovanni Pighizzini. How hard is computing the edit distance? Information and
Computation, 165(1):1–13, 2001.

15. Daniel A. Spielman. The complexity of error-correcting codes. In Proc. of the
11th Int. Symp. on Fundamentals of Computation Theory (FCT), volume 1279 of
Lecture Notes in Computer Science, pages 67–84. Springer, 1997.

