
Improved Approximation Algorithms
for Max-2SAT with Cardinality Constraint

Markus Bläser and Bodo Manthey?

Institut für Theoretische Informatik
Universität zu Lübeck

Wallstraße 40, 23560 Lübeck, Germany
blaeser/manthey@tcs.mu-luebeck.de

Abstract. The optimization problem Max-2SAT-CC is Max-2SAT with
the additional cardinality constraint that the value one may be assigned
to at most K variables. We present an approximation algorithm with
polynomial running time for Max-2SAT-CC. This algorithm achieves,
for any ε > 0, approximation ratio 6+3·e

16+2·e − ε ≈ 0.6603. Furthermore, we
present a greedy algorithm with running time O(N log N) and approxi-
mation ratio 1

2
. The latter algorithm even works for clauses of arbitrary

length.

1 Introduction

The maximum satisfiability problem (Max-SAT) is a central problem in combi-
natorial optimization. An instance of Max-SAT is a set of Boolean clauses over
variables x1, . . . , xn. Our goal is to find an assignment for the variables x1, . . . , xn

that satisfies the maximum number of clauses. We may also associate a nonnega-
tive weight with each clause. In this case, we are looking for an assignment that
maximizes the sum of the weights of the satisfied clauses. If every clause has
length at most `, we obtain the problem Max-`SAT. The currently best approxi-
mation algorithm for Max-SAT is due to Asano and Williamson [3] and achieves
approximation ratio 0.7846. In the case of Max-`SAT, we are particulary inter-
ested in the value ` = 2. The best positive and negative results currently known
for Max-2SAT are 0.931 by Feige and Goemans [7] and 21

22 ≈ 0.954 by H̊astad [9],
respectively.

In this work, we consider Max-SAT and Max-`SAT with cardinality con-
straint. In addition to C, we get an integer K as input. The goal is to find
an assignment that maximizes the number (or sum of weights) of satisfied
clauses among all assignments that give the value one to at most K variables.
We call the resulting problems Max-SAT-CC and Max-`SAT-CC. Note that
lower bounds for the approximability of Max-SAT and Max-`SAT are also lower
bounds for Max-SAT-CC and Max-`SAT-CC, respectively. The corresponding
decision problems are natural complete problems in parameterized complexity,
see e.g. Downey and Fellows [5].
? Birth name: Bodo Siebert. Supported by DFG research grant Re 672/3.

13th Int. Symp. on Algorithms and Computation (ISAAC 2002) c© Springer

An important special case of Max-SAT-CC is the maximum coverage problem
(MCP). An instance of MCP is a collection of subsets S1, . . . , Sn of some universe
U = {u1, . . . , um} and an integer K. We are asked to cover as many elements as
possible from U with (at most) K of the given subsets. MCP can be considered
as a natural dual to the maximum set cover problem. In the weighted version,
each uj also has a nonnegative weight wj . We can convert an instance of MCP
into a corresponding instance of Max-SAT-CC with only positive literals: for
every uj ∈ U we have a clause cj containing all literals xi with uj ∈ Si.

A simple greedy algorithm for MCP achieves approximation ratio 1 − e−1

(see Cornuéjols et al. [4]). On the other hand, Feige [6] showed that no poly-
nomial time algorithm can have a better approximation ratio, unless NP ⊆
DTime(nlog log n). For a restricted version of MCP, where each element occurs in
at most ` sets, Ageev and Sviridenko [1] presented a

(
1−

(
1− 1

`

)`)-approximation
algorithm with polynomial running time. This algorithm yields approximation
ratio 3

4 for ` = 2. By the above reduction, this restricted version of MCP is
equivalent to Max-`SAT-CC with only positive literals.

Sviridenko [10] designed a (1 − e−1)-approximation algorithm for general
Max-SAT-CC with polynomial running time. This is again tight, since even
the version with only positive literals allows no better approximation, unless
NP ⊆ DTime(nlog log n). Sviridenko raised the question whether it is possible to
obtain better approximation algorithms for Max-`SAT for small values of `.

New Results. As our first result, we present an approximation algorithm for
Max-2SAT-CC with polynomial running time. This approximation algorithm
achieves an approximation performance of 6+3·e

16+2·e − ε ≈ 0.6603, for any ε > 0.
Thus, we give a positive answer to Sviridenko’s question for ` = 2. (Note that
1− e−1 ≈ 0.6321.)

Second, we present a simple greedy algorithm for Max-SAT-CC with running
time O(N log N) and prove that its approximation performance is 1

2 . We give
an example to show that this approximation ratio is tight. Thus, in contrast to
MCP, this greedy approach is not optimal for Max-SAT-CC.

2 A 0.6603-Approximation Algorithm for Max-2SAT-CC

Consider a set C = {c1, . . . , cm} of clauses of length at most two over the vari-
ables x1, . . . , xn and assign to each clause cj a nonnegative weight wj . A clause
is called pure, if either all literals in it are positive or all of them are negative.
Let J= be the set of indices of the pure clauses. (Note that clauses of length one
are pure.) J 6= = {1, 2, . . . ,m}\J= denotes the set of all indices corresponding to
mixed clauses. For each clause cj , we define sets of indices I+

j , I−j ⊆ {1, . . . , n}
as follows: i ∈ I+

j iff xi occurs positive in cj and i ∈ I−j iff xi occurs negative in
cj .

Our 0.6603-approximation algorithm (see Figure 1) works as follows. As in-
put, it gets a clause set C and an integer K. We first solve the following relaxed

Approx (C, K, ε)

Input: Clause set C over variables x1, . . . , xn,
nonnegative integer K ≤ n,
an ε > 0.

Output: Assignment with at most K ones.

1: for 0 ≤ k ≤ K do
2: Solve the linear program LPk.

Let Mk be the value of an optimum solution.
3: Choose kmax such that Mkmax is maximized.

Let (y?, z?) be the corresponding optimum solution of LPkmax .
4: A1 := Rounding Procedure 1 (C, kmax, y

?, z?).
5: A2 := Rounding Procedure 2 (C, kmax, y

?, z?, ε).
6: Return the assignment Ai (i = 1, 2) that satisfies the maximum

number of clauses.

Fig. 1. The approximation algorithm

linear program LPk for each 0 ≤ k ≤ K:

maximize
m∑

j=1

wj · zj

subject to
∑
i∈I+

j

yi +
∑
i∈I−j

(1− yi) ≥ zj (j = 1, . . . ,m) ,

n∑
i=1

yi = k ,

0 ≤ zj ≤ 1 (j = 1, . . . ,m) ,

0 ≤ yi ≤ 1 (i = 1, . . . , n) .

Variable yi corresponds to Boolean variable xi and variable zj to clause cj .
This is essentially the same relaxed linear program as used by Goemans and
Williamson [8] for Max-SAT. We have just added the cardinality constraint∑n

i=1 yi = k.
For 0 ≤ k ≤ K, let Mk be the value of an optimum solution of LPk and

choose kmax such that Mkmax is maximal. Let (y?, z?) be an optimum solution of
the relaxed linear program LPkmax . We round y? in two different ways to obtain
two assignments each with at most K ones. The assignment satisfying the larger
number of clauses is a 0.6603-approximation to an optimum assignment. We
solve LPk for each k separately and do not replace the cardinality constraint by∑n

i=1 yi ≤ K, since the first rounding procedure can only be applied if
∑n

i=1 yi

is integral.
The quality of each of the two rounding procedures depends on the distribu-

tion of the values of z?
j among pure and mixed clauses. In the remainder of the

Rounding Procedure 1 (C, k, y?, z?)

Input: Clause set C over variables x1, . . . , xn,
nonnegative integer k ≤ n,
optimum solution (y?, z?) of LPk.

Output: Assignment with exactly k ones.

1: Let a? = y?.
2: while a? has two noninteger coefficients a?

i1 and a?
i2 do

3: Apply a “pipage rounding” step to a? as described in the text.
4: Return the assignment a?.

Fig. 2. Rounding Procedure 1

analysis, δ is chosen such that
∑

j∈J=
z?
j = δ ·

∑m
j=1 z?

j . Rounding Procedure 1
is favorable, if δ is large, whereas Rounding Procedure 2 is advantageous, if δ is
small.

For the sake of simplicity, we only consider the unweighted case in the fol-
lowing analysis (i.e., all wj equal one). However, it is possible to transfer the
analysis for the unweighted case to the weighted case with only marginal extra
effort.

2.1 Rounding Procedure 1

In this section, we present a simple deterministic rounding procedure, which is
based on Ageev and Sviridenko’s “pipage rounding” [1]. The solution obtained
by this rounding procedure has weight at least (3

8 + 3
8δ) ·

∑m
j=1 z?

j .
First, we modify the set C of clauses to obtain a new set Ĉ of clauses. For

each j ∈ J=, we add cj to Ĉ. For each j ∈ J 6=, we do the following: assume that
cj = xi1 ∨ xi2 . If y?

i1
≥ 1 − y?

i2
, we add the clause xi1 to Ĉ. Otherwise, we add

xi2 to Ĉ. Formally, we treat Ĉ as a multiset, since two different mixed clauses
may be transformed into the same clause.

For further analysis, we consider the relaxed linear program ˆLPk correspond-
ing to the set Ĉ of clauses. (Note that we do not need ˆLPk to apply the rounding
procedure but only to analyze the approximation ratio of the rounded solution.)
For given η ∈ [0, 1]n, let Πη denote the linear program obtained from ˆLPk by
substituting every variable yi by the corresponding ηi. Let ẑ? be the optimum
solution of Πy? . (Note that due to the structure of Πη, the optimum solution is
unique.) By the construction of Ĉ, (y?, ẑ?) is a solution of ˆLPk fulfilling

m∑
j=1

ẑ?
j ≥ δ ·

m∑
j=1

z?
j + 1

2 (1− δ) ·
m∑

j=1

z?
j = (1

2 + 1
2δ) ·

m∑
j=1

z?
j . (1)

(Note that ẑ?
j = z?

j if j ∈ J=, otherwise ẑ?
j is either y?

i1
or 1 − y?

i2
.) All clauses

in Ĉ are pure, in other words, Ĵ 6= = ∅. (We use the same naming conventions

for Ĉ and ˆLPk as for C and LPk, we just add a “ˆ”.) The fact that Ĵ 6= is empty
allows us to apply “pipage rounding”. To this aim, let

F̂ (y) =
m∑

j=1

1−
∏

i∈Î+
j

(1− yi) ·
∏

i∈Î−j

yi

 .

Note that for each j, either Î+
j or Î−j is empty. If η is a {0, 1}-valued vector of

length n, then F̂ (η) is exactly the number of satisfied clauses when we assign to
each Boolean variable xi the value ηi. Furthermore, if ζ denotes the optimum
solution of Π̂η, then

∑m
j=1 ζj ≥ F̂ (η).

Goemans and Williamson [8] proved that for any η ∈ [0, 1]n and any ζ that
is an optimal solution of Π̂η, we have

F̂ (η) ≥ 3
4

m∑
j=1

ζj . (2)

(In general, the factor 3
4 has to be replaced by 1−(1− 1

`)` where ` is the maximum
clause length.)

Every clause in Ĉ contains either only positive or only negative literals. Thus,
the univariate quadratic polynomial Φi1,i2,η defined by

Φi1,i2,η(ε) = F̂ (η1, . . . , ηi1−1, ηi1 − ε, ηi1+1, . . . , ηi2 + ε, . . .)

is convex for all choices of indices i1, i2, since the coefficient of ε2 is nonnegative
by the fact that for all j either Î+

j or Î−j is empty.
Now consider a vector η ∈ [0, 1]n with

∑n
i=1 ηi = k and assume that η is not

a {0, 1}-vector. Then there are two indices i1 and i2 such that ηi1 , ηi2 ∈ (0, 1).
Let ε1 = min{ηi1 , 1 − ηi2} and ε2 = −min{ηi2 , 1 − ηi1}. By the convexity of
Φi1,i2,η, we have either

Φi1,i2,η(ε1) ≥ F̂ (η) or Φi1,i2,η(ε2) ≥ F̂ (η) .

Let η′ be the vector obtained from η as follows. If the first of the inequalities
above is fulfilled, we replace ηi1 by ηi1 − ε1 and ηi2 by ηi2 + ε1. Otherwise, if the
second one is fulfilled, we replace ηi1 by ηi1 − ε2 and ηi2 by ηi2 + ε2. The vector
η′ has at least one more {0, 1}-entry than η by the choice of ε1 and ε2. By the
construction of η′, we have

F̂ (η′) ≥ F̂ (η) . (3)

Now we start with the initial optimum solution (y?, z?) of LPk and treat it
as a solution of ˆLPk. Then we repeatedly apply a “pipage rounding” step to y?

as described above. After at most n such steps, we have a {0, 1}-vector a?. Since
a “pipage rounding” step never changes the sum of the vector elements, a? has
exactly k ones. We have

F̂ (a?) ≥ F̂ (y?) ≥ 3
4

m∑
j=1

ẑ?
j ,

Rounding Procedure 2 (C, k, y?, z?, ε)

Input: Clause set C over variables x1, . . . , xn,
nonnegative integer k with 0 ≤ k ≤ n,
optimum solution (y?, z?) of LPk,
ε > 0.

Output: Assignment with at most k ones.

1: if k is not sufficiently large then
2: Try all assignments with at most k ones.

Choose the one that satisfies the maximum number of clauses.
3: else
4: do k times
5: Draw and replace one index from the set {1, 2, . . . , n} at random.

The probability of choosing i is
y?

i
k

.
6: Set xi = 1 iff i was drawn at least once in the last step.
7: Return the assignment computed.

Fig. 3. Rounding Procedure 2

where the first inequality follows from repeated application of Inequality 3 and
the second is simply Inequality 2. Thus by Inequality 1, we obtain

F̂ (a?) ≥
(

3
8 + 3

8δ
)
·

m∑
j=1

z?
j ,

which proves the next lemma.

Lemma 1. Let a? ∈ {0, 1}n be the assignment with exactly k ones obtained by
applying Rounding Procedure 1 to the solution (y?, z?). Then a? satisfies at least
(3
8 + 3

8δ) ·N many clauses, where N is the number of clauses that are satisfied
by an optimum assignment with k ones.

2.2 Rounding Procedure 2

The rounding procedure presented in the previous section yields a good approxi-
mation ratio if δ is large. In this section we focus our attention on mixed clauses.
We present a rounding procedure which works well especially if δ is small.

The rounding procedure is described in Figure 3. It works as follows. We
draw and replace k times an index out of the set {1, 2, . . . , n}, where i is drawn
with probability y?

i

k . (Note that
∑n

i=1 y?
i = k.) Let S be the set of indices drawn.

Then we set xi = 1 iff i ∈ S. The assignment obtained assigns the value one to
at most k variables.

Now we have to estimate the probability that a clause is satisfied by the as-
signment obtained. For pure clauses we use the estimate given by Sviridenko [10,
Theorem 1, Cases 1 and 3].

Lemma 2 (Sviridenko [10]). Assume that cj is a pure clause. Then the prob-
ability that cj is satisfied by the random assignment is

Pr(cj is satisfied) ≥
(
1− e−1

)
· z?

j .

For mixed clauses, the estimate given by Sviridenko [10, Theorem 1, Case 2]
can be improved.

Lemma 3. Assume that cj is a mixed clause. Then for every ε > 0 there is a
k0 ∈ N such that for all k ≥ k0 the probability that cj is satisfied by the random
assignment is

Pr(cj is satisfied) ≥
(

3
4 − ε

)
· z?

j .

To prove Lemma 3, we need the following lemma.

Lemma 4. For every α, β ∈ [0, 1] and k ≥ 4
ln(4·ε+1) we have

1− e−β ·
(
1− e−

4
k−α

)
≥

(
3
4 − ε

)
·min {1, β + 1− α} .

Proof. Let ε > 0 be some arbitrary fixed constant. Throughout this proof, we
substitute µ = α− β, ν = α + β, and ξ = 4

k . We consider the function

f(µ, ν) :=
1− e

µ−ν
2 + e−ξ−ν

min{1, 1−µ}
=

1− e−β ·
(
1− e−

4
k−α

)
min

{
1, β+1−α

} .

Our aim is to find the minimum of the function for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.
We restrict ourselves to µ < 1, since limµ→1,µ<1 f(µ, ν) → +∞ > 3

4 .
Consider the partial derivative

fν(µ, ν) = 1
min{1,1−µ} ·

(
1
2 · e

µ−ν
2 − e−ξ−ν

)
.

We have fν(µ, ν) = 0 iff ν = ln 4− µ− 2 · ξ. Furthermore, we have

fνν(µ, ν) = 1
min{1,1−µ} ·

(
− 1

4 · e
µ−ν

2 + e−ξ−ν
)

> 0

for ν = ln 4 − µ − 2 · ξ and −1 ≤ µ < 1. Thus, the only local minima of f are
obtained for ν = ln 4 − µ − 2 · ξ. Since f has no local maximum, these are the
only values to be considered in the sequel and we can restrict our attention to
the function

g(µ) = f(µ, ln 4− µ− 2 · ξ) = 1
min{1,1−µ} ·

(
1− 1

4 · e
ξ+µ

)
.

For µ ≤ 0, g(µ) = 1 − 1
4 · e

ξ+µ is monotonically decreasing. For µ ≥ 0, g(µ) =
1

1−µ ·
(
1− 1

4 · e
ξ+µ

)
is monotonically increasing. Thus, g reaches its minimum for

µ = 0 and we have

f(µ, ν) ≥ f(0, ln 4− 2 · ξ) = 1− 1
4 · e

ξ .

We choose k = 4
ξ ≥

4
ln(4·ε+1) and obtain f(µ, ν) ≥ 3

4 − ε. ut

Proof (of Lemma 3). Assume that cj = xi1 ∨ xi2 . Then we have

Pr(cj is satisfied) = Pr
(
i1∈S ∨ i2 /∈S

)
≥ 1− e−y?

i1
(
1− e−

4
k−y?

i2
)

≥
(

3
4 − ε

)
·min

{
1,

(
yi1 + (1− yi2)

)}
≥

(
3
4 − ε

)
· z?

j .

The first inequality follows from Sviridenko’s results, which hold for all k above
some constant k1 (independent of y?

i1
and y?

i2
). The second one follows from

Lemma 4. The last inequality follows from z?
j ≤ yi1 + (1− yi2) and z?

j ≤ 1. ut

If k < k0 := max
{

4
ln(4·ε+1) , k1

}
, we can try all assignments with at most k

ones in polynomial time. Thus, our algorithm solves the problem exactly in this
case.

By Lemma 2, we have an expected weight of at least δ ·
(
1− e−1

)
·
∑m

j=1 z?
j

for pure clauses. For mixed clauses we have an expected weight of at least (1−
δ) ·

(
3
4 − ε

)
·
∑m

j=1 z?
j by Lemma 3.

The randomized rounding procedure presented in this section can be deran-
domized using the method of conditional expectation (see e.g. Alon et al. [2]).

Overall, we obtain the following lemma.

Lemma 5. For any ε > 0, if we apply Rounding Procedure 2 to the optimal
solution (y?, z?), we obtain an assignment with at most k ones that satisfies at
least ((

1
4−

1
e

)
· δ + 3

4 − ε
)
·N

clauses, where N is the maximum number of clauses that can be satisfied by an
assignment with exactly k ones. ut

2.3 Analysis of the Approximation Ratio

Our approximation algorithm (see Figure 1) solves the linear program LPk for
every 0 ≤ k ≤ K. It chooses kmax such that Mkmax is maximized. Then it applies
both Rounding Procedure 1 and 2 to this optimum solution and obtains two
assignments. Finally, it returns the assignment satisfying the larger number of
clauses. The approximation ratio of the algorithm is, for an arbitrary ε > 0,

min
0≤δ≤1

max
{(

3
8 · δ + 3

8

)
,

(
1
4−

1
e

)
· δ + 3

4 − ε
}

.

By some simple calculations, we obtain the following theorem.

Theorem 1. For every ε > 0, there is a polynomial time approximation algo-
rithm for Max-2SAT-CC with approximation ratio 6+3·e

16+2·e − ε. ut

Note that 6+3·e
16+2·e > 0.66031.

Greedy (C, K)

Input: Clause set C over variables x1, . . . , xn,
nonnegative integer K with 0 ≤ K ≤ n.

Output: Assignment GK with at most K ones.

1: if K = 0 then
2: Let GK be the assignment that assigns zero to all variables and return.
3: else
4: Let p = max{p1, . . . , pn} and q = max{q1, . . . , qn}.

Set ξ = 1, if p ≥ q. Otherwise, set ξ = 0.
Choose an index i0 such that pi0 = p, if ξ = 1, and qi0 = q, otherwise.

5: Substitute xi0 7→ ξ and remove all trivial clauses.
Let C′ be the clause set obtained.

6: G′ := Greedy(C′, K − ξ).
7: Let GK be the assignment, that behaves on {x1, . . . , xn} \ {xi0} like G′

and assigns xi0 the value ξ.

Fig. 4. The greedy algorithm

3 A Fast Greedy Algorithm for Max-SAT-CC

The approximation algorithm presented in Section 2 surely has polynomial run-
ning time. However, it involves solving a linear program K times. The same
is true for Sviridenko’s (1 − e−1)-approximation algorithm for arbitrary clause
lengths. Thus, a faster algorithm might be desirable for practical applications.
Figure 4 shows a simple greedy algorithm working for arbitrary clause lengths.
As the main result of the present section, we prove that it has approximation
performance 1

2 . Again for the sake of simplicity, we present the algorithm only
for the case of unweighted clauses. It can be extended to handle weighted clauses
in a straight forward manner.

The algorithm can easily be transformed into a 1
2 -approximation algorithm

for the problem where we are asked to find an optimum asignment with exactly
K ones. For this purpose, we just have to add a statement similar to the one in
lines 1–2 that does the following: if K = n, then it returns the assignment giving
all variables the value one.

3.1 Analysis of the Approximation Ratio

For each variable xi, let pi be the number of clauses in which xi appears
positive and qi be the number of clauses in which xi appears negative. Let
p = max{p1, . . . , pn} and q = max{q1, . . . , qn}. Basically, the algorithm chooses
an index i0 such that by specializing xi0 , we satisfy the largest possible num-
ber of clauses that can be satisfied by substituting only one variable. Then we
proceed recursively.

For the analysis, let Ak, 0 ≤ k ≤ n, be an optimum assignment with at
most k ones for C and let Optk be the number of clauses satisfied by Ak. In the
same way we define A′

k and Opt′k for C ′. The next two lemmata are crucial for
analyzing the approximation performance of the greedy algorithm.

Lemma 6. For all 1 ≤ k ≤ n, we have Optk +q ≥ Optk−1 ≥ Optk −p.

Proof. We start with the first inequality: if Ak−1 is also an optimum assignment
with at most k ones, then we are done. Otherwise, if we change a zero of Ak−1

into a one, then we get an assignment with at most k ones. By the definition of
q, this assignment satisfies at least Optk−1−q clauses. Consequently, Optk +q ≥
Optk−1.

The second inequality follows in a similar fashion: if Ak has at most k − 1
ones, then we are done. Otherwise, if we change a one in Ak into a zero, we get
an assignment with at most k − 1 ones. By the definition of p, this assignment
satisfies at least Optk −p clauses. ut

Corollary 1. For all 1 ≤ k ≤ n, we have Opt′k +q ≥ Opt′k−1 ≥ Opt′k −p.

Proof. The proof of Lemma 6 surely works for C ′ if we define p′ and q′ accord-
ingly. By the maximality of p and q, we may replace p′ and q′ by p and q. ut

Lemma 7. For all 1 ≤ k ≤ n, we have

Ak(xi0) = 1 ⇒ Opt′k−1 ≥ Optk −p and
Ak(xi0) = 0 ⇒ Opt′k ≥ Optk −q .

Proof. In the first case, if we restrict Ak to {x1, . . . , xn} \ {xi0}, we get an
assignment with at most k − 1 ones. It satisfies at least Optk −p clauses of C ′.

The second case follows in the same way: if we restrict Ak to {x1, . . . , xn} \
{xi0}, we get an assignment with at most k ones that satisfies at least Optk −q
clauses of C ′. ut

Theorem 2. Algorithm Greedy returns an assignment GK with at most K
ones that satisfies at least 1

2 OptK clauses.

Proof. The proof is by induction on the recursion depth. If the depth is zero
(i.e., K = 0), then Greedy obviously returns the optimum assignment.

Now assume that Greedy has approximation performance 1
2 on all instances

that can be solved with recursion depth at most d and assume that C is an
instance requiring recursion depth d+1. We distinguish two cases, namely ξ = 1
and ξ = 0. Each case has two subcases, namely AK(xi0) = 1 and AK(xi0) = 0.

We start with ξ = 1. Let NK denote the number of clauses satisfied by GK .
If AK(xi0) = 1, then

NK ≥ 1
2 Opt′K−1 +p (by the induction hypothesis)

≥ 1
2 OptK + 1

2p (by Lemma 7)

≥ 1
2 OptK .

If AK(xi0) = 0, then

NK ≥ 1
2 Opt′K−1 +p (by the induction hypothesis)

≥ 1
2 (Opt′K −p) + p (by Corollary 1)

≥ 1
2 (Opt′K +q) (since p ≥ q)

≥ 1
2 OptK (by Lemma 7).

This completes the case ξ = 1.
The case ξ = 0 is handled as follows: if AK(xi0) = 1, then we have

NK ≥ 1
2 Opt′K +q (by the induction hypothesis)

≥ 1
2 (Opt′K−1−q) + q (by Corollary 1)

≥ 1
2 (Opt′K−1 +p) (since q ≥ p)

≥ 1
2 OptK (by Lemma 7).

If AK(xi0) = 0, then

NK ≥ 1
2 Opt′K +q (by the induction hypothesis)

≥ 1
2 OptK + 1

2q (by Lemma 7)

≥ 1
2 OptK .

This completes the proof. ut

The approximation factor proved in the previous theorem is tight, a worst
case example is the following: We have two clauses x1 ∨ x2 and x1, each with
weight 1, a clause x1 with weight ε, and K = 1. (If we allow multisets as clause
sets, then this can be transformed into an unweighted instance.) The optimum
assignment gives x1 the value zero and x2 the value one. This satisfies all clauses
but x1 and we get weight 2. Greedy however gives x1 the value one and thus
only achieves weight 1 + ε. Thus, in contrast to the maximum coverage problem
(i.e., clause sets with only positive literals), this greedy approach does not achieve
the optimum approximation factor of 1− e−1.

3.2 Estimating the Running Time

The greedy algorithm presented above can be implemented such that its running
time is O(N log N), where N is the length of the input. For the analysis, let
ri = max{pi, qi} be the maximum number of clauses that can be satisfied by
setting xi appropriately.

We start with building a heap containing the values ri (1 ≤ i ≤ n). Then
we extract the variable xi with maximum ri from the heap and set it to an
appropriate value. After that we have to update the ri′ values of some variables
xi′ and maintain the heap. Finally, we continue the recursion.

Let us estimate the running time. Let nj be the number of variables of clause
cj and mi be the number of occurences of variable xi.

In recursion depth t, we extract variable xit from the heap and set it to either
zero or one. Together with maintaining the heap, this requires a running time
of O(log n + mit

).
Let Ct be the set of clauses that will be satisfied by setting xit

in depth t.
(Note that the sets Ct are pairwise disjoint.) We have to update the value ri′ of all
variables xi′ that occur in clauses of Ct. These are at most

∑
cj∈Ct

nj . Together
with maintaining the heap, this requires a running time of O

(∑
cj∈Ct

nj · log n
)
.

Thus the overall running time is

O
(∑n

t=1

(
log n ·

(
1 +

∑
cj∈Ct

nj

)
+ mit

))
⊆ O (N · log N) .

4 Conclusions

We have presented an approximation algorithm with approximation performance
6+3·e
16+2·e − ε (for an arbitrary ε > 0) for Max-2SAT-CC, the Max-2SAT problem
with the additional constraint that the value one may be assigned to at most
K variables. Thus, we are able to give a positive answer to Sviridenko’s ques-
tion [10] whether Max-SAT-CC can be approximated better than 1− e−1 if the
clause length is bounded. Our approach can be extended to handle larger values
of `. Since there are more types of mixed clauses, the analysis becomes more
complicated.

Furthermore, we have presented a greedy algorithm for Max-SAT-CC with
running time O(N log N), which achieves a tight approximation ratio of 1

2 .

References

1. A. A. Ageev and M. I. Sviridenko. Approximation algorithms for maximum cover-
age and max cut with given sizes of parts. In Proc. of the 7th Int. Conf. on Integer
Programming and Combinatorial Optimization (IPCO), volume 1620 of Lecture
Notes in Comput. Sci., pages 17–30. Springer, 1999.

2. N. Alon, J. H. Spencer, and P. Erdös. The Probabilistic Method. John Wiley and
Sons, 1992.

3. T. Asano and D. P. Williamson. Improved approximation algorithms for MAX
SAT. J. Algorithms, 42(1):173–202, 2002.

4. G. P. Cornuéjols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts
to optimize float: An analytic study of exact and approximate algorithms. Man-
agement Science, 23:789–810, 1977.

5. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
6. U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,

1998.
7. U. Feige and M. X. Goemans. Approximating the value of two prover proof systems,

with applications to MAX 2SAT and MAX DICUT. In Proc. of the 3rd Israel Symp.
on the Theory of Comput. and Systems (ISTCS), pages 182–189, 1995.

8. M. X. Goemans and D. P. Williamson. New 3
4
-approximation algorithms for the

maximum satisfiability problem. SIAM J. Discrete Math., 7(4):656–666, 1994.
9. J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

10. M. I. Sviridenko. Best possible approximation algorithm for MAX SAT with car-
dinality constraint. Algorithmica, 30(3):398–405, 2001.

