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Abstract. In this paper, we consider two-player zero-sum stochastic
mean payoff games with perfect information modeled by a digraph with
black, white, and random vertices. These BWR-games games are polyno-
mially equivalent with the classical Gillette games, which include many
well-known subclasses, such as cyclic games, simple stochastic games,
stochastic parity games, and Markov decision processes. They can also
be used to model parlor games such as Chess or Backgammon.

It is a long-standing open question if a polynomial algorithm exists that
solves BWR-games. In fact, a pseudo-polynomial algorithm for these
games with an arbitrary number of random nodes would already im-
ply their polynomial solvability. Currently, only two classes are known
to have such a pseudo-polynomial algorithm: BW-games (the case with
no random nodes) and ergodic BWR-~games (in which the game’s value
does not depend on the initial position) with constant number of random
nodes. In this paper, we show that the existence of a pseudo-polynomial
algorithm for BWR-games with constant number of random vertices im-
plies smoothed polynomial complexity and the existence of absolute and
relative polynomial-time approximation schemes. In particular, we ob-
tain smoothed polynomial complexity and derive absolute and relative
approximation schemes for BW-games and ergodic BWR~games (assum-
ing a technical requirement about the probabilities at the random nodes).

1 Introduction

The rise of the Internet has led to an explosion in research in game theory: the
mathematical modeling of competing agents in strategic situations. The central
concept in such models is that of a Nash equilibrium, defining a state where
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no agent gains an advantage by changing her current strategy; it serves as a
prediction for the outcome of strategic situations in which selfish agents compete.

A fundamental result in game theory shows that if the agents can choose a
mized strategy (i.e., probability distributions of deterministic strategies), a Nash
equilibrium is guaranteed to exist in finite games. Often, however, already pure
(i.e., deterministic) strategies already lead to a Nash equilibrium. Still, the exis-
tence of Nash equilibria might be irrelevant in practice, since their computation
would take too long. Thus, algorithmic aspects of game theory have gained a lot
of interest. Following the dogma that only polynomial time algorithms are feasi-
ble in practice, it is desirable to show polynomial time complexity for the com-
putation of Nash equilibria. On the other hand, in cases where such an efficient
algorithm is not known to exist an approximate notion of Nash equilibria has
been suggested, in which no agent can gain a substantial advantage by changing
her current strategy. In this paper, we advocate another notion of tractability
by considering the smoothed complexity of a well-known two-player stochastic
game for which the existence of a polynomial algorithm is a long-standing open
question. In contrast to the usual worst-case complexity, smoothed complexity
analyzes the running time of algorithms on typical instances. By establishing
smoothed polynomial complexity, we argue that the computation of a Nash
equilibrium is feasible in all, but artificially constructed worst-case instances.

The model that we consider is mean stochastic payoff games or BWR-games:
we are given a directed graph G = (V, E) whose vertex set V' is partitioned into
three subsets V = Vp U Viyy U Vi that correspond to black, white, and random
positions, respectively. The arcs stand for moves. The black and white vertices
are owned by two players: BLACK — the minimizer — owns the black vertices in
Vg, and WHITE — the maximizer — owns the white vertices in Vjy. The vertices
in Vi are owned by nature. We have a local reward r. € R for each arc e € E
and a probability p,, for each arc (v, u) going out of v € V. Starting from some
vertex vg € V, a token is moved along one arc e in every round of the game. If
the token is on a black vertex, BLACK selects an outgoing arc e and moves the
token along e. If the token is on a white vertex, WHITE selects an outgoing arc
e. In a random position v € Vi, a move e = (v,u) is chosen according to the
probabilities p,, of the outgoing arcs of v. In all cases, BLACK pays WHITE the
reward 7. on the selected arc e. A strategy of a player is a mapping that assign
a move (u,v) € E to each position u he owns.

Starting from a given initial position vy € V, the game produces for a pair of
fixed strategies (i.e., one for each player) an infinite walk {vg, v1,ve, ...} (called a
play). Let b; denote the reward r,,,,, received by WHITE in step ¢ € {0,1,...}.
The undiscounted limit average effective payoff is defined as the Cesdaro average
¢ = liminf,,_, %. WHITE’s objective is to maximize ¢, while BLACK’s
objective is to minimize c. Every such game is known to have a pair of uniformly
optimal strategies that result in a Nash equilibrium (called a saddle point) from
any initial position [4,8]. All optimal pairs of strategies, from a given initial
position v result in a unique payoff u(v), called the value of the game at v. An
algorithm is said to solve the game if it computes an optimal pair of strategies.



BWR-games are an equivalent formulation [5] of the stochastic games with
perfect information and mean payoff that were introduced in 1957 by Gillette [4].
They generalize many important problems. The special case of BWR-games
without random vertices (Vg = 0) is known as cyclic or mean payoff games
(see, e.g., [5]); we call these BW-games. If one of the sets Vg or Vi is empty,
we obtain a Markov decision process for which polynomial-time algorithms are
known [9]. If both are empty (Vg = Viy = (), we get a weighted Markov chain.

Besides their many applications, all these games are of interest to complexity
theory: Karzanov and Lebedev [7] proved that the decision problem “whether
the value of a BW-game is positive” is in the intersection of NP and co-NP.
Yet, no polynomial algorithm is known even in this special case, see, e.g., the
recent survey by Vorobyov [14]. A similar complexity claim can be shown to
hold for BWR-games. On the other hand, there exist algorithms (see, e.g., [5])
that solve BW-games in practice very fast. The situation for these games is thus
comparable to linear programming before the seminal discovery of the ellipsoid
method, where the problem was also known to lie in the intersection of NP and
co-NP and where the simplex algorithm proved to be a fast algorithm in practice.
Spielman and Teng [12, 13] introduced smoothed analysis to explain the practical
performance of the simplex method. We further enforce this analogy by showing
a smoothed polynomial complexity for a large class of BWR-games.

While there are numerous pseudo-polynomial algorithms known for the BW-
case [5,15], pseudo-polynomiality for BWR-games (with no restriction on the
number of random nodes) is in fact equivalent to polynomiality [1]. Recently, a
pseudo-polynomial algorithm was given in [3] for BWR-games with a constant
number of random vertices and polynomial common denominator of transition
probabilities, but under the assumption that the game is ergodic, i.e., the game
value does not depend on the initial position. However, the existence of a sim-
ilar algorithm for the non-ergodic or non-constant number of random vertices
remains open, as the approach in [3] does not seem to generalize to these cases.

1.1 Our Results and Some Related Work

Approximation Schemes. The only result that we are aware of regarding approx-
imation schemes is the observation made by Roth et al. [11] that the values of
BW-games can be approximated within an absolute error of £ in polynomial-
time, if all rewards are in the range [—1, 1]. This follows immediately from trun-
cating the rewards and using any of the known pseudo-polynomial algorithms.
In this paper, we generalize this result to BWR-games in two directions.
Throughout the paper, we write G for any class of digraphs G = (Vg U Vi U
Vg, F) that admit a pseudo-polynomial algorithm A, i.e., A solves any BWR-
game G on G € G, with integral rewards and rational transition probabilities,
in time polynomial in n, D, and R, where n = n(G) is the total number of
vertices, R = R(G) is the size of the range of the rewards, and D = D(G) is
the common denominator of the transition probabilities. E.g., digraphs without
random vertices are known to belong to G. The same holds for digraphs that have
a constant number of random nodes and are structurally ergodic [6], i.e., for any



set of rewards, all positions have the same game value. Note that the dependence

on D is inherent in all known pseudo-polynomial algorithms for BWR-games.
Let pmin = Pmin(G) be the minimum positive transition probability in the

game G. Throughout the paper, we will assume that k := |Vg| is constant.

Theorem 1. For any € > 0, there exists for each of the following two cases an
algorithm that returns a pair of strategies that approximates the value of any
BWR-game on G € G from any starting position:

i. With rewards in the interval [—1,1], within an absolute error of e, in time
poly(n, -1 1).

1. With non-negative integral rewards, within a relative error of €, in time
poly(n,log R, -4, 1).

? Pmin’ €

Our reduction in case (i), unlike case (ii), has the property that if the pseudo-
polynomial algorithm returns wuniformly optimal strategies, i.e., that are inde-
pendent of the starting position, then so does the approximation scheme (in an
approximate sense). With some more work, we can show that the same is also
true in case (ii) of Theorem 1 for BW-games.

In deriving these approximation schemes from a pseudo-polynomial algo-
rithm as defined above, we face two main technical challenges that distinguish
the computation of approximate equilibria of BWR-games from similar standard
techniques used in optimization: (i) the running time of the pseudo-polynomial
algorithm depends polynomially both on the maximum reward and the common
denominator D of the transition probabilities; thus to obtain a fully polynomial-
time approzimation scheme (FPTAS) with an absolute guarantee whose running
time is independent of D, we need to truncate the probabilities and bound the
change in the game value, which is a non-linear function of D, (ii) to obtain an
FPTAS with a relative guarantee, one usually exploits a (trivial) lower/upper
bound on the optimum value; this is not possible in the case of BWR-games, since
the game value can be arbitrarily small; the situation becomes even more compli-
cated, if we look for uniformly e-optimal strategies, since we have to output one
pair of strategies which guarantees e-optimality from any starting position. In
order to solve the first issue, we analyze the change in the game values and opti-
mal strategies if the rewards or transition probabilities are changed. The second
issue is solved through repeated applications of the pseudo-polynomial algorithm
on a truncated game; after each such application we show that either the value
of the game has already been approximated within the required accuracy, or
the range of the rewards can be shrunk by a constant factor without changing
the value of the game (Sections 3.2 and 3.3).Since BW-games and structurally
ergodic BWR-games with constant & admit pseudo-polynomial algorithms, we
obtain the following results.

Corollary 1. There is an FPTAS that solves,

1. within a relative error, in uniformly e-optimal strategies, any BW-game with
non-negative (rational) rewards;



1. within an absolute error, in uniformly e-optimal strategies, any structurally

ergodic BWR-game with rewards in [—1,1] and % = poly(n);
1. within a relative error, in uniformly e-optimal strategies, any structurally

ergodic BWR-game with non-negative rational rewards and m L — poly(n).

Note that (i) strengthens the absolute FPTAS for BW-games [11], and (ii) and
(iii) enlarge the class of games for which an FPTAS exists.

Smoothed Analysis for BWR-games. We further show that typical instances of
digraphs that admit a pseudo-polynomial algorithm can be solved in polynomial
time. Towards this end, we do a smoothed analysis using the one-step model
introduced by Beier and Vocking [2]: an adversary specifies a BWR-game G and
for each arc a density function. These functions are bounded from above by a
parameter ¢. Then the rewards for all arcs are drawn independently according
to their respective density functions. We prove that in this setting, independent
of the actual choices of the adversary, the resulting game can be solved in poly-
nomial time with high probability; there exists a polynomial P(n,¢,1/e) such
that the probability that the algorithm exceeds a running-time of P(n,®,1/¢) is
at most e. This shows that such BWR-games with a constant number of random
vertices have smoothed polynomial complexity.

Theorem 2. There is an algorithm solving any BWR-game on any G € G with
rational transition probabilities and D = poly(n) in smoothed polynomial time.

Theorem 2 is similar to the result by Beier and Vicking [2] who showed that a
binary optimization problem defined by linear constraints and a linear objective
function has smoothed polynomial complexity if it admits a pseudo-polynomial
algorithm. Our proof of Theorem 2 has a similar structure like their analysis.
However, in the case of BWR-games, the situation becomes more complicated:
First, we have to deal with two conflicting objectives (of the two players). Second,
the coefficients of the objective functions are not given explicitly. In consequence,
our proof requires a novel isolation lemma that deals with two players who
optimize the same objective function in two different directions. Furthermore,
our procedure for certifying that the solution found is indeed the optimal solution
is considerably more involved and requires careful rounding of the coefficients in
order to certify optimality.

Corollary 2. (i) BW-games and (i) structurally ergodic BWR-games with D =
poly(n) can be solved in smoothed polynomial time.

Let us remark finally that removing the assumption that k is constant in the

above results remains a challenging open problem.

2 Preliminaries, Notation and Basic Properties

BWR-games and Markov Chains. A BWR-game is defined by a triple G =
(G, P,r), where G = (V = Viy UV UVg, E) is a digraph that may have loops and



multiple arcs, but no terminal vertices, i.e., vertices of out-degree 0; P € [0,1]¥
is the vector of probability distributions for all v € Vi specifying the probability
Pow Of @ move from v to u; r € R¥ is a local reward function. It is assumed that
Zu:(u,u)eE Doy = 1 for all v € Vi and p,, ,, > 0 whenever (v,u) € E and v € Vj.

Standardly, we define a strategy sy € Sy for WHITE as a mapping that
assigns a move (v,u) € E to each position v € Viy. For simplicity, we may write
sw(v) = u for sy (v) = (v,u). Strategies sp € Sp for BLACK are analogously
defined. A pair of strategies s = (sw,sp) is called a situation. Given a BWR-
game G = (G, P,r) and a situation s = (sp, sw), we obtain a weighted Markov
chain G(s) = (G(s) = (V, E(s)), P(s),r) with transition matrix P(s) defined by:

1 if (v e Viy and u=sw(v)) or (v € Vg and u = sp(v));
Pou(s) =< 0 if (v e Viy and u # sw(v)) or (v € Vg and u # sp(v));
P ifv € Vg

Here, E(s) = {e € E | pe(s) > 0} is the set of arcs with positive probability.
Given an initial position vy € V from which the play starts, we define the limiting
(mean) effective payoff ¢y, (s) in G(s) as ¢y, (s) = p(s)'r =3 g pe(s)re, where
p(s) = p(s,v0) € [0,1]F is the arc-limiting distribution for G(s) starting from vy.
This means that for (v,u) € E, pyu(s) = 7y (8)ppu(s), where 7 € [0,1]V is the
limiting distribution in the Markov chain G(s) starting from vg. In what follows,
we use (G,vp) to denote the game starting from vy. We write p(s) for p(s,vo),
when v is clear from the context. For rewards r : E — R, let »~ = min, . and
rt = max,r.. Let [r] = [r~,r"] be the range of 7. Let R = R(G) =rT —r~.

Strategies and Saddle Points. If we consider c¢,,(s) for all possible situations,
we obtain a matrix game Cy, : Sw x Sp — R, with entries Cy,(sw,sp) =
Coo (8w, sB). Every such game has a Nash equilibrium in pure strategies [4, 8];
a corresponding pair of strategies is said to be optimal. Moreover, there exists
optimal strategies (s}, s;;) that do not depend on the starting position vg; such
strategies are called uniformly optimal. Although there might be several optimal
strategies, it is easy to see that they all lead to the same value. We define this
to be the value of the game and write 1, (G) := Cy,(s}y, s53) where (sfy, s5)
is any pair of optimal strategies. Note that p,,(G) may depend on the starting
node vg.

3 Approximation Schemes

Given a BWR~game G = (G = (V, E), P,r), a constant ¢ > 0, and a starting po-
sition v € V', an e-relative approximation of the value of the game is determined
by a situation (sjy, s};) such that

max i, (Glow, 53)) < (14 (@) and  min o (Gsiv,50)) = (1= ua(@). (1)

An alternative to relative approximations is to look for an approximation with
absolute error of €. This is achieved by a situation (s}, s;) such that

max o (G(sw, 55)) < (@) +¢ and  minpu(Glsiv, 55) > po(0) —e. ()



A situation (s}, s7;) satisfying (1) (resp., (2)) is called relative (resp., absolute)
e-optimal. If the pair (s, s;) is e-optimal for any starting position, it is called
uniformly e-optimal.

3.1 Absolute Approximation

Let G = (V,E) be a graph in G and G = (G, P,r) be a BWR-game on G.
In this section, we assume that 7~ = —1 and r+ = 1, i.e., all rewards are
from the interval [—1,1]. We apply the pseudo-polynomial algorithm A on a
truncated game G = (G = (V, E), P,7) defined by rounding the rewards to the
nearest integer multiple of /4 (denoted 7 := |r]<), and truncating the vector
of probabilities (pyy, : u € V) for each random node v € Vi as follows.
Lemma 1. Let a € [0,1]" with ||a||y = 1. Let B € Z* be an integer such that
ming.,so{a;} > 27B. Then there exists o/ € [0,1]" such that (i) ||o/||1 = 1;
(ii) for all i = 1,...,n, o} = ¢;/28 where ¢; € Z* is an integer; (iii) for all
i=1,...,n, a; >0 if and only a; > 0, and (iv) ||a — a'[| < 27B.

Lemma 2. Let A be a pseudo-polynomial algorithm that solves, in (uniformly)

optimal strategies, any BWR-game G = (G, P,r) with G € G in time 7(n, D, R).

Then for any € > 0, there is an algorithm that solves, in (uniformly) absolute

e-optimal strategies, any BWR-game G = (G, P,r) with G € G in time bounded
22k+5n3k2 4

by T(n, =51, 2), where pmin = pmin(9)-

€Pmin

3.2 Relative approximation

Let G = (V,E) be a graph in G and G = (G, P,r) be a BWR-game on G with
non-negative rational rewards (i.e., 7~ = 0). Without loss of generality, we may
assume that the rewards are integral with min., o7 = 1. The algorithm is
given as Algorithm 1. The main idea is to truncate the rewards, scaled by a
certain factor 1/K, and use the pseudo-polynomial algorithm on the truncated
game G. If the value in the truncated game [y, (_C’;), from the starting node w, is
large enough (step 5) then we get a good relative approximation of the original
value and we are done. Otherwise, the information that i, (Q) is small allows us
to reduce the maximum reward by a factor of 2 in the original game (step 8).
Thus the algorithm terminates in polynomial time (in the bit length of R(G)).
To remove the dependence on D in the running time, we need also to truncate
the transition probabilities. In the algorithm, we denote by P the transition
probabilities obtained from P by applying Lemma 1 with B = [log1/e"], where

2k
we select &' = sH,, where 0 = 0(G) := 20£e)BH2n o, that 26(G,e) <

min

&) = K(G), where 6(G,¢) = (512 (5pmin) " [nk(k + 1) (3pmin) " + 3k +
1]+ €n>r* with 7. = r.(G) := max{|r(G)|, |r—(9)|}.

Lemma 3. Let A be a pseudo-polynomial algorithm that solves any BWR-game
G = (G,P,r) with G € G in time 7(n,D,R). Then for any € € (0,1), there



Algorithm 1 FPTAS-BWR(G, w, ¢)
Input: a BWR-~game G = (G = (V, E), P,r), a starting vertex w € V, an accuracy e.
Output: an c-optimal pair (Sw, §g) for the game (G, w).

1: if rf(g) =1 then

2. G:=(G, P, r); return A(Q,v)
3: K= T;(g)§ fo = | 5¢] for e € E; G=(G,P,#)
4: (§W7§BA) = A( A7w)
5: if j1,(G) > 2 then
6: return (Sw,S5B)
7: else
i] >t
8: forallee E,let 7e = 2 ¢ 7 2(1+e)

Te otherwise
9: G :=(G,P,7); return FPTAS-BWR(G, w, ¢)

Algorithm 2 FPTAS-BW(G,¢)

Input: a BW-game G = (G = (V =V U Vi, E),r), and accuracy .
Output: a uniformly e-optimal pair (5w, $g) for G.

1: if 7(G) = 1 then

2:  return A(G)

3: K = it e = |52 ] for e € B; G = (G, 7)
4: (3w, 5p) == AG); U= {ueV | m(9) > 7}
5: if U =V then
6: return (Sw,5B) = (Sw,$B)
7: else
8 G:=G[V\U|
o t

9:  foralle € B(Q), let 7 = { ol ifre > 2(1+e)

Te otherwise
10:  G:=(G,7)
11: (3w, 3p) :=FPTAS-BW(G,¢)
12 §(w) := 8(w) for all w € U; § = (Sw, §B)

is an algorithm that solves, in relative e-optimal strategies, any BWR-game

(G = (G, P,r),w) with G € G, from any given starting position w, in time
2 4,2 q

(T (n, A (1+€)(3+26)7 2(1+€)2(;§++12€)n) + Poly(n)) (|llogR] 4+ 1).

ok
€Pimin €Pmin

Remark 1. Tt is easy to see that, for structurally ergodic BWR-games, one can
modify the above procedure to return uniformly e-optimal strategies.

3.3 Uniformly relative e-approximation for BW-games
Note that the FPTAS in Lemma 3 does not necessarily return a uniformly e-

optimal situation, even if the pseudo-polynomial algorithm A provides a uni-
formly optimal situation. In case of BW-games, we can modify this FPTAS to



return a situation which is e-optimal for all v € V. The algorithm is given as Al-
gorithm 2. The main difference is that when we recurse on a game with reduced
rewards (step 11), we have also to delete all nodes that have large values u(G,v)
in the truncated game. This is similar to the approach used to decompose a
BW-game into ergodic classes [5]. However, the main technical difficulty is that,
with approximate equilibria, WHITE (resp., BLACK) might still have some in-
centive to move from a higher-value (resp., lower-value) class to a lower-value
(resp., higher-value) class, since the values are just estimated approximately. We
show that such a move will not be very profitable for WHITE (resp., BLACK).
As before, we assume that the rewards are integral with min.., so7e = 1.

Lemma 4. Let A be a pseudo-polynomial algorithm that solves, in uniformly op-
timal strategies, any BWR-game G = (G, P,r) with G € G in time 7(n, R). Then
for any € > 0, there is an algorithm that solves, in uniformly relative e-optimal
strategies, any BW-game G = (G, P,r) with G € G, in time (7(n, mtif/)%) +

- — In(l+e)
poly(n))h, where h = |log R| + 1, and ¢’ = 2>,

4 Smoothed Analysis

We use the following notion of polynomial smoothed complexity introduced by
Beier and Vocking [2]. A problem is said to have smoothed polynomial complex-
ity if and only if there exists an algorithm A with running-time 7" and a constant
a such that

Vo >1,Yn e N: fenll)i)({@ Exf(T(X)Y) = O(ng) . (3)

Here, D,,(¢) denotes all possible vectors of density functions bounded by ¢ for
instances of size n, and X is an instance drawn according to f. Equivalently,
there exists a polynomial P(n,¢,1/¢) such that with probability at most €, A
exceeds a running-time of P(n, ¢, 1/e).

Let A be a pseudo-polynomial algorithm that solves any BWR-game G =
(G,P,r) with G = (V,E) € G. In this section, we show that any such game
can be solved in smoothed polynomial time. For this, we assume that an adver-
sary specifies a game together with density functions for the rewards (one for
each arc), and these density functions are bounded by ¢, and show a bound as
in (3). One (technical) issue is that the perturbed rewards are of course real,
non-rational numbers with probability 1. Thus, we cannot really use existing
algorithms as sub-routine, and we cannot even compute anything with these
numbers on an ordinary RAM. To cope with this problem, we use Beier and
Vocking’s [2] approach and assume that the rewards are in [—1, 1] and that we
can access the bits of the rewards one-by-one.

To state our results in a bit more general setting, we will assume that A solves
any BWR-game G in uniformly optimal strategies. If this was not the case, then
it is easy to modify the procedure and analysis in this section to solve the game
starting from a given vertex.



Algorithm 3 Solve(G)

Input: a BWR-game G = (G = (V, E), P,r).

Output: an optimal pair (5w, $p) for the game G.

: 4y < log((nD)°¢); i < 0 {co is a constant to be specified later}

repeat
Ci=lo+i e+ 27" i=i+1
7= |rle; G:= (G, P,7); G :=
(3w,88) == A(G) _

until § is optimal in G. . for alle € E

(G, P, 2"F)

Before describing the procedure (Algorithm 3), we need to introduce some
notation. Let us write |z |, for the largest integer smaller than or equal to x that
has b bits (i.e., we basically cut off all bits after the b-th bit). Let v = v(G) :=
(kn)~2(2D)~2(*+2) and ¢ > 0. Given the game G = (G = (V, E), P,r), define,
for each e € E, the game G, . = (G, P,r(e)), where

e 2 -1 if ¢/ = 5
rofe)= eI R =e (4)
Ter otherwise.

The basic idea behind our smoothed analysis is as follows: We use a certain
number of bits for each reward. Then we run the pseudo-polynomial algorithm to
solve the resulting game with the rewards rounded down (and scaled to integers)
because we do not have more bits at that point (Step 4). This can be done in
polynomial-time as long as we have O(logn) bits. Then we try to certify that the
solution obtained is also a solution for the true rewards (Step 6). If this succeeds,
then we are done. If this fails, then we use one more bit and repeat the process.

To prove a smoothed polynomial running time, we need to show that with
high probability a logarithmic number of bits suffices to compute an equilibrium
for the original (untruncated) game. Furthermore, we have to devise a certificate
proving that the computed equilibrium is indeed an equilibrium for the original
game (we will show that such a certificate is given in Step 6). Both results are
based on a sensitivity analysis of the game: we show that by changing the rewards
slightly, an optimal strategy remains optimal for the changed game.

A key ingredient for our smoothed analysis is an adaption of the isolation
lemma [10] to our setting. An adaption of the isolation lemma has already been
used successfully in smoothed analysis of integer programs [2]. It basically says
the following: Of course, there are exponentially many alternative strategies for
each player. But if a player replaces the optimal strategy with an alternative
strategy, the payoff for the respective player gets worse significantly.

Lemma 5 (Isolation Lemma). Let E be a finite set, and F C Rf be a fam-
ily of (distinct) vectors, such that for any distinct p,p’ € F, there exists an
e € E with |pe — pl| > 7. Let {we}ecr be independent continuous random
variables with maximum density ¢. Define gap(w) := w? p* — w’ p**, where

pr = aigmaxpef wl'p and p** = argmax,c r .z - w?p. Then Pr(gap(w) < ¢) <
|Ele¢-, where k = maxeep | Fe|, and Fe ={x | pe = x for some p € F}.

10



We use the above lemma with the set F representing a set of arc-limiting
distributions, corresponding to a set of situations in the game starting from a
certain vertex. For that we need bounds for x and ~.

Lemma 6. Let G = (G = (V,E), P,r) be a BWR-game, u € V' be any vertex,
and s be an arbitrary situation. Then (i) every entry of the arc-limiting distribu-
tion p(s) for the Markov chain (G(s),u) can be written as rational numbers of the
form &, where a,b € Z and a,b < kn(2D)*2. Hence, (ii) the number of possi-
ble entries in p(s) is bounded by k = (kn)?(2D)2*+2) and (iii) for any situation
s’ such that p(s') # p(s), there is an arc e such that p.(s) — pe(s’) > v =~(G).

To use the given pseudo-polynomial algorithm, we have to truncate the (per-
turbed) rewards after a certain number of bits. The following lemma assures that
this is possible (with high probability) without changing the optimal strategies,
as long as the rounded rewards and the true rewards are close enough. Before
we state the lemma, it is useful to observe that, if the rewards are continuous,
independently distributed random variables, then, for any two distinct situations
s and ¢, we have Pr(1,(G(s)) = p(G(s"))) = 0 if and only if p(s) # p(s’). Thus
for the structurally ergodic case, with probability one, two distinct situations re-
sult in two distinct values. On the other hand, in the general case, there might be
many optimal situations, but all of them lead to the same limiting distribution.

Given a strategy sy € Sy of WHITE we call a uniform best response (UBR)
of BLACK any strategy s € Sg, such that 1, (G(sw, %)) < tu(G(sw, sp)) for
all sp € Sp. Similarly, a UBR of WHITE is defined. (Note that the existence
of such a UBR is an immediate corollary of the existence of uniformly optimal
situations in BWR-~games.) We denote by UBRg(sw ) and UBRg(sp) the sets of
uniform best responses in G, corresponding to strategies sy and sp, respectively.

Lemma 7. Let G = (G = (V,E),P,r), ¢ = (G = (V,E), P,r') be two BWR-
games such that 1 = (r¢)ecr s a vector of independent continuous random
variables with mazimum density ¢, and ||r' — r|e < &, for some given € > 0.

Let 0 := :i;zgs)f Then, the following holds for any situation s:

i. Pr(s is not uniformly optimal in G' | s is uniformly optimal in G) < 26;
ii. Pr(s is not uniformly optimal in G | s is uniformly optimal in G') < 26.

Still, it can happen that rounding results in different optimal strategies. How
can we be sure that the solution obtained from the rounded rewards is also
optimal for the game with the true rewards? Step 6 in Algorithm 3 is one way
to do this. The basic idea is as follows: Let § be a uniformly optimal situation
in the rounded game. Lemma 7 says that with high probability s is a uniformly
optimal situation in G, and hence it is also uniformly optimal in any game on
the same graph and transition matrix, but with rewards lying in a small interval
around the rounded rewards. Thus, we create |E| copies of the truncated game;
in each copy the reward on a single arc is perturbed by a certain amount within
this small interval. If § is uniformly optimal in all these games, then it is also
uniformly optimal for all rewards from that small interval. The following lemma
justifies the correctness of this certificate.
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Lemma 8. Let G = (G = (V,E), P,7) be a BWR-game and u be an arbitrary
vertex. Consider a situation § = (S§w, 8p) such that, for alle € E, § is optimal in
the game (Geo,u) (defined in (4)). Then 5 is also optimal in (G = (G, P,r),u),
for any r such that ||r — 7| < €.

Now, we have all ingredients to prove that Algorithm 3 solves, in uniformly

optimal strategies and in smoothed polynomial time, any BWR-game on a graph
which admits a pseudo-polynomial algorithm and have a constant number of
random vertices. This establishes Theorem 2.
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