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Abstract— The k-means method is one of the most widely
used clustering algorithms, drawing its popularity from its speed
in practice. Recently, however, it was shown to have exponential
worst-case running time. In order to close the gap between practical
performance and theoretical analysis, the k-means method has been
studied in the model of smoothed analysis. But even the smoothed
analyses so far are unsatisfactory as the bounds are still super-
polynomial in the number n of data points.

In this paper, we settle the smoothed running time of the k-
means method. We show that the smoothed number of iterations is
bounded by a polynomial in n and 1/, where o is the standard
deviation of the Gaussian perturbations. This means that if an
arbitrary input data set is randomly perturbed, then the k-means
method will run in expected polynomial time on that input set.
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1. INTRODUCTION

Clustering is a fundamental problem in computer sci-
ence with applications ranging from biology to information
retrieval and data compression. In a clustering problem,
a set of objects, usually represented as points in a high-
dimensional space R¢, is to be partitioned such that objects
in the same group share similar properties. The k-means
method is a traditional clustering algorithm, which is based
on ideas by Lloyd [19]. It begins with an arbitrary clustering
based on k centers in R?, and then repeatedly makes local
improvements until the clustering stabilizes. The algorithm
is greedy and as such, it offers virtually no accuracy guar-
antees. However, it is both very simple and very fast, which
makes it appealing in practice. Indeed, one recent survey of
data mining techniques states that the k-means method “is by
far the most popular clustering algorithm used in scientific
and industrial applications” [10].

However, theoretical analysis has long been at stark
contrast with what is observed in practice. In particular,
it was recently shown that the worst-case running time
of the k-means method is 2°("™) even on two-dimensional
instances [24]. Conversely, the only upper bounds known
for the general case are k™ and n®* %) Both upper bounds
are based entirely on the trivial fact that the k-means method
never encounters the same clustering twice [15]. In contrast,
Duda et al. state that the number of iterations until the
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clustering stabilizes is often linear or even sublinear in
n on practical data sets [11, Section 10.4.3]. The only
known polynomial upper bound, however, applies only in
one dimension and only for certain inputs [14].

So what does one do when worst-case analysis is at odds
with what is observed in practice? We turn to the smoothed
analysis of Spielman and Teng [23], which considers the
running time after first randomly perturbing the input. Intu-
itively, this models how fragile worst-case instances are and
if they could reasonably arise in practice. In addition to the
original work on the simplex algorithm, smoothed analysis
has been applied successfully in other contexts, e.g., for
the ICP algorithm [5], online algorithms [8], the knapsack
problem [9], and the 2-opt heuristic for the TSP [12].

The k-means method is in fact a perfect candidate for
smoothed analysis: it is extremely widely used, it runs very
fast in practice, and yet the worst-case running time is expo-
nential. Performing this analysis has proven very challenging
however. It has been initiated by Arthur and Vassilvitskii
who showed that the smoothed running time of the k-means
method is polynomially bounded in n* and 1/o, where o
is the standard deviation of the Gaussian perturbations [5].
The term n* has been improved to min(nV*, k% . n) by
Manthey and Réglin [20]. Unfortunately, this bound remains
exponential even for relatively small values of k. In this
paper we settle the smoothed running time of the k-means
method: We prove that it is polynomial in n and 1/0. The
exponents in the polynomial are unfortunately too large to
match the practical observations, but this is in line with
other works in smoothed analysis, including Spielman and
Teng’s original analysis of the simplex method [23]. The
arguments presented here, which reduce the smoothed upper
bound from exponential to polynomial, are intricate enough
without trying to optimize constants, even in the exponent.
However, we hope and believe that our work can be used as
a basis for proving tighter results in the future.

Due to space limitations, some proofs are only in the full
version at http://arxiv.org/abs/0904.1113.

1.1. k-Means Method

An input for the k-means method is a set X C R? of n
data points. The algorithm outputs & centers c1, ..., ¢, € R?



and a partition of & into k clusters Cy, ..
method proceeds as follows:

., Cg. The k-means

1) Select cluster centers ci, ..., c; € R? arbitrarily.

2) Assign every x € X to the cluster C; whose cluster
center ¢; is closest to it, i.e., ||z — ¢;|| < ||a — ¢;|| for
all j # 4.

3) Set¢; = ﬁ Ezeci T.

4) If clusters or centers have changed, goto 2. Otherwise,
terminate.

In the following, an iferation of k-means refers to one execu-
tion of step 2 followed by step 3. A slight technical subtlety
in the implementation of the algorithm is the possible event
that a cluster loses all its points in Step 2. There exist some
strategies to deal with this case [14]. For simplicity, we use
the strategy of removing clusters that serve no points and
continuing with the remaining clusters.

If we define ¢(x) to be the center closest to a data point z,
then one can check that each step of the algorithm decreases
the following potential function:

V=3 cxle—c@)?.

The essential observation for this is the following: If we
already have cluster centers ci,...,c; € R? representing
clusters, then every data point should be assigned to the
cluster whose center is nearest to it to minimize W. On the
other hand, given clusters Cy,...,Cg, the centers cq,...,ck
should be chosen as the centers of mass of their respective
clusters in order to minimize the potential.

In the following, we will speak of k-means rather than of
the k-means method for short. The worst-case running time
of k-means is bounded from above by (k2n)k? < n3kd,
which follows from Inaba et al. [15] and Warren [27].
(The bound of O(n*d) frequently stated in the literature
holds only for constant values for k£ and d, but in this
paper k and d are allowed to grow.) This upper bound is
based solely on the observation that no clustering occurs
twice during an execution of k-means since the potential
decreases in every iteration. On the other hand, the worst-
case number of iterations has been proved to be exp(y/n) for
d € Q(y/n) [3]. This has been improved recently to exp(n)
for d > 2 [24].

1.2. Related Work

The problem of finding good k-means clusterings allows
for polynomial-time approximation schemes [6], [21], [18]
with various dependencies of the running time on n, k, d,
and the approximation ratio 1+&. The running times of these
approximation schemes depend exponentially on k. Recent
research on this subject also includes the work by Gaddam
et al. [13] and Wagstaff et al. [26]. However, the most widely
used algorithm for k-means clustering is still the k-means
method due to its simplicity and speed.

Despite its simplicity, the k-means method itself and
variants thereof are still the subject of research [16], [4],

[22]. Let us mention in particular the work by Har-Peled and
Sadri [14] who have shown that a certain variant of the k-
means method runs in polynomial time on certain instances.
In their variant, a data point is said to be (1+¢)-misclassified
if the distance to its current cluster center is larger by a factor
of more than (1 + ¢) than the distance to its closest center.
Their lazy k-means method only reassigns points that are
(1 + £)-misclassified. In particular, for ¢ = 0, lazy k-means
and k-means coincide. They show that the number of steps
of the lazy k-means method is polynomially bounded in the
number of data points, 1/, and the spread of the point set
(the spread of a point set is the ratio between its diameter
and the distance between its closest pair).

In an attempt to reconcile theory and practice, Arthur and
Vassilvitskii [5] performed the first smoothed analysis of
the k-means method: If the data points are perturbed by
Gaussian perturbations of standard deviation o, then the
smoothed number of iterations is polynomial in nk, d, the
diameter of the point set, and 1/0. However, this bound is
still super-polynomial in the number n of data points. They
conjectured that k-means has indeed polynomial smoothed
running time, i.e., that the smoothed number of iterations is
bounded by some polynomial in n and 1/0.

Since then, there has been only partial success in prov-
ing the conjecture. Manthey and Roglin improved the
smoothed running time bound by devising two bounds [20]:
The first is polynomial in nV* and 1/o. The second is
k¥ poly(n,1/c), where the degree of the polynomial is
independent of k£ and d. Additionally, they proved a poly-
nomial bound for the smoothed running time of k-means on
one-dimensional instances.

1.3. Our Contribution

We prove that the k-means method has polynomial
smoothed running time. This finally proves Arthur and
Vassilvitskii’s conjecture [5].

Theorem 1.1. Fix an arbitrary set X' C [0,1]% of n points
and assume that each point in X' is independently perturbed
by a normal distribution with mean 0 and standard deviation
o, yielding a new set X of points. Then the expected running
time of k-means on X is bounded by a polynomial in n and
1/o.

We did not optimize the exponents in the polynomial as
the arguments presented here, which reduce the smoothed
upper bound from exponential to polynomial, are already
intricate enough and would not yield exponents matching
the experimental observations even when optimized. We
hope that similar to the smoothed analysis of the simplex
algorithm, where the first polynomial bound [23] stimu-
lated further research culminating in Vershynin’s improved
bound [25], our result here will also be the first step towards
a small polynomial bound for the smoothed running time
of k-means. As a reference, let us mention that the upper



bound on the expected number of iterations following from

our proof is i
O(n logo-((;n)k: d ) )

The idea is to prove, first, that the potential after one
iteration is bounded by some polynomial and, second, that
the potential decreases by some polynomial amount in every
iteration (or, more precisely, in every sequence of a few
consecutive iterations). To do this, we prove upper bounds on
the probability that the minimal improvement is small. The
main challenge is the huge number of up to n3*¢ possible
clusterings. Each of these clusterings yields a potential
iteration of k-means, and a simple union bound over all
of them is too weak to yield a polynomial bound.

To prove the bound of poly(n¥*, 1/c) [20], a union
bound was taken over the n®*? clusterings. This is already
a technical challenge as the set of possible clusterings is
fixed only after the points are fixed. To show a polynomial
bound, we reduce the number of cases in the union bound
by introducing the notion of transition blueprints. Basically,
every iteration of k-means can be described by a transition
blueprint. The blueprint describes the iteration only roughly,
so that several iterations are described by the same blueprint.
Intuitively, iterations with the same transition blueprint are
correlated in the sense that either all of them make a small
improvement or none of them do. This dramatically reduces
the number of cases that have to be considered in the union
bound. On the other hand, the description conveyed by a
blueprint is still precise enough to allow us to bound the
probability that any iteration described by it makes a small
improvement.

We distinguish between several types of iterations, based
on which clusters exchange how many points. Sections 4.1
to 4.5 deal with some special cases of iterations that need
separate analyses.

After that, we analyze the general case (Section 4.6). The
difficulty in this analysis is to show that every transition
blueprint contains “enough randomness”. We need to show
that this randomness allows for sufficiently tight upper
bounds on the probability that the improvement obtained
from any iteration corresponding to the blueprint is small.

Finally, we put the six sections together to prove that k-
means has polynomial smoothed running time (Section 4.7).

2. PRELIMINARIES

For a finite set X C RY, let cm(X) = I)%I >ex @ be
the center of mass of the set X. If H C R? is a hyperplane
and x € R? is a single point, then dist(z, H) = min{||z —
yll | y € H} denotes the distance of the point x to the
hyperplane H.

For our smoothed analysis, an adversary specifies an
instance X’ C [0, 1]¢ of n points. Then each point 2’ € X" is
perturbed by adding an independent d-dimensional Gaussian
random vector with standard deviation o to x’ to obtain the

data point x. These perturbed points form the input set X.
For convenience we assume that ¢ < 1. This assumption
is without loss of generality as for larger values of o,
the smoothed running time can only be smaller than for
o =1 [20, Section 7]. Additionally we assume k& < n and
d < n: First, k < n is satisfied after the first iteration since
at most n clusters can contain any points. Second, k-means
is known to have polynomial smoothed complexity for
d € Q(n/logn) [3]. The restriction of the adversarial points
to be in [0, 1]d is necessary as, otherwise, the adversary can
diminish the effect of the perturbation by placing all points
far apart from each other. Another way to cope with this
problem is to state the bounds in terms of the diameter of the
adversarial instance [5]. However, to avoid having another
parameter, we have chosen the former model.

Throughout the following, we assume that the perturbed
point set X is contained in some hypercube of side-length
D,ie., X C [-D/2,D/2]* = D. We choose D such that
the probability of X Z D is bounded from above by n 3%,
Then, as the worst-case number of iterations is bounded by
n3F4 [15], the event X Z D contributes only an insignificant
additive term of +1 to the expected number of iterations,
which we ignore in the following.

Since Gaussian random vectors are heavily concentrated
around their mean and all means are in [0, 1]¢, we can choose
D = /90kdIn(n) to obtain the desired failure probability
for X ¢ D.

For our smoothed analysis, we use essentially three
properties of Gaussian random variables. Let X be a d-
dimensional Gaussian random variable with standard devi-
ation o. First, the probability that X assumes a value in
any fixed ball of radius ¢ is at most (¢/0)?. Second, let
b1,...,bey € R? be orthonormal vectors for some d’ < d.
Then the vector (b;-X, ..., by-X) € RY is a d’-dimensional
Gaussian random variable with the same standard deviation
o. Third, let H be any hyperplane. Then the probability
that a Gaussian random variable assumes a value that is
within a distance of at most ¢ from H is bounded by ¢/o.
This follows also from the first two properties if we choose
d’ =1 and b; to be the normal vector of H.

We will often upper-bound various probabilities, and it
will be convenient to reduce the exponents in these bounds.
Under certain conditions, this can be done safely regardless
of whether the base is smaller or larger than 1.

Fact 2.1. Let p be a probability, and let A, c,b,e, and €'
be positive real numbers satisfying ¢ > 1 and e > €. If
p < A+c-b° then it is also true that p < A+ c-b°.

2.1. Potential Drop in an Iteration of k-Means

During an iteration of the k-means method there are two
possible events that can lead to a significant potential drop:
either one cluster center moves significantly, or a data point
is reassigned from one cluster to another and this point



has a significant distance from the bisector of the clusters
(the bisector is the hyperplane that bisects the two cluster
centers). In the following we quantify the potential drops
caused by these events.

The potential drop caused by reassigning a data point x
from one cluster to another can be expressed in terms of the
distance of x from the bisector of the two cluster centers
and the distance of these two centers. The following lemma
follows from basic linear algebra (cf., e.g., [20, Proof of
Lemma 4.5]).

Lemma 2.2. Assume that, in an iteration of k-means, a point
x € X switches from C; to C;. Let ¢; and c; be the centers of
these clusters, and let H be their bisector. Then reassigning
x decreases the potential by 2 - ||c; — ¢;|| - dist(z, H).

The following lemma, which also follows from basic
linear algebra, reveals how moving a cluster center to the
center of mass decreases the potential.

Lemma 2.3 (Kanungo et al. [17]). Assume that the center
of a cluster C moves from c to cm(C') during an iteration
of k-means, and let |C| denote the number of points in C

when the movement occurs. Then the potential decreases by
C] - lle — em(C)]1*.

2.2. The Distance between Centers

As the distance between two cluster centers plays an
important role in Lemma 2.2, we analyze how close together
two simultaneous centers can be during the execution of k-
means. This has already been analyzed implicitly [20, Proof
of Lemma 3.2], but the variant below gives stronger bounds.
From now on, when we refer to a k-means iteration, we will
always mean an iteration after the first one. By restricting
ourselves to this case, we ensure that the centers at the
beginning of the iteration are the centers of mass of actual
clusters, as opposed to the arbitrary choices that were used
to seed k-means.

Definition 2.4. Let . denote the minimum distance between
two cluster centers at the beginning of a k-means iteration in
which (1) the potential VU drops by at most €, and (2) at least
one data point switches between the clusters corresponding
tfo these centers.

Lemma 2.5. Fix real numbers Y > 1 and e > 2. Then, for
any € € [0,1],

Prs. < vel] < (G

3. TRANSITION BLUEPRINTS

Our smoothed analysis of k-means is based on the poten-
tial function W. If X C D, then after the first iteration, ¥ will
always be bounded from above by a polynomial in n and
1/0. Therefore, k-means terminates quickly if we can lower-
bound the drop in ¥ during each iteration. So what must
happen for a k-means iteration to result in a small potential

drop? Recall that any iteration consists of two distinct
phases: assigning points to centers, and then recomputing
center positions. Furthermore, each phase can only decrease
the potential. According to Lemmas 2.2 and 2.3, an iteration
can only result in a small potential drop if none of the
centers move significantly and no point is reassigned that
has a significant distance to the corresponding bisector. The
previous analyses [5], [20] essentially use a union bound
over all possible iterations to show that it is unlikely that
there is an iteration in which none of these events happens.
Thus, with high probability, we get a significant potential
drop in every iteration. As the number of possible iterations
can only be bounded by n3*?, these union bounds are quite
wasteful and yield only super-polynomial bounds.

We resolve this problem by introducing the notion of
transition blueprints. Such a blueprint is a description of
an iteration of k-means that almost uniquely determines ev-
erything that happens during the iteration. In particular, one
blueprint can simultaneously cover many similar iterations,
which will dramatically reduce the number of cases that have
to be considered in the union bound. We begin with the
notion of a transition graph, which is part of a transition
blueprint.

Definition 3.1. Given a k-means iteration, we define its
transition graph to be the labeled, directed multigraph with
one vertex for each cluster, and with one edge (C;,C;) with
label x for each data point x switching from cluster C; to
cluster Cj.

We define a vertex in a transition graph to be balanced if
its in-degree is equal to its out-degree. Similarly, a cluster
is balanced during a k-means iteration if the corresponding
vertex in the transition graph is balanced.

To make the full blueprint, we also require information
on approximate positions of cluster centers. We will see
below that for an unbalanced cluster this information can
be deduced from the data points that change to or from this
cluster. For balanced clusters we turn to brute force: We tile
the hypercube D with a lattice L., where consecutive points
are at a distance of y/ne/d from each other, and choose one
point from L. for every balanced cluster.

Definition 3.2. An (m, b, ¢) transition blueprint B consists of
a weakly connected transition graph G with m edges and
b balanced clusters, and one lattice point in L. for each
balanced cluster in the graph. A k-means iteration is said
to follow B if G is a connected component of the iteration’s
transition graph and if the lattice point selected for each
balanced cluster is within a distance of at most \/ne of the
cluster’s actual center position.

If X C D, then by the Pythagorean theorem, every cluster
center must be within distance /ne of some point in L..
Therefore, every k-means iteration follows at least one
transition blueprint.



As m and b grow, the number of valid (m, b, ) transition
blueprints grows exponentially, but the probability of failure
that we will prove in the following section decreases equally
fast, making the union bound possible. This is what we gain
by studying transition blueprints rather than every possible
configuration separately.

For an unbalanced cluster C that gains the points A C X
and loses the points B C X during the considered iteration,
the approximate center of C is defined as

[Blem(B)—|A|cm(A)
|B|—[A] ’

If C is balanced, then the approximate center of C is
the lattice point specified in the transition blueprint. The
approximate bisector of C; and C; is the bisector of the
approximate centers of C; and C;. Now consider a data
point = switching from some cluster C; to some other cluster
C;. We say the approximate bisector corresponding to x is
the hyperplane bisecting the approximate centers of C; and
C;. Unfortunately, this definition applies only if C; and C;
have distinct approximate centers, which is not necessarily
the case (even after the random perturbation). We will
call a blueprint non-degenerate if the approximate bisector
is in fact well defined for each data point that switches
clusters. The intuition is that, if one actual cluster center
is far away from its corresponding approximate center, then
during the considered iteration the cluster center must move
significantly, which causes a potential drop according to
Lemma 2.3. Otherwise, the approximate bisectors are close
to the actual bisectors and we can show that it is unlikely
that all points that change their assignment are close to
their corresponding approximate bisectors. This will yield
a potential drop according to Lemma 2.2.

The following lemma formalizes what we mentioned
above: If the center of an unbalanced cluster is far away
from its approximate center, then this causes a potential drop
in the corresponding iteration.

Lemma 3.3. Consider an iteration of k-means in which a
cluster C gains a set A of points and loses a set B of points
with |A] # | B|. If |lem(C) — ELem@Baem(l|) > /g
then the potential decreases by at least e.

Now we show that we get a significant potential drop if a
point that changes its assignment is far from its correspond-
ing approximate bisector. Formally, we will be studying the
following quantity A(B5).

Definition 3.4. Fix a non-degenerate (m,b,e)-transition
blueprint B. Let A(B) denote the maximum distance between
a data point in the transition graph of B and its correspond-
ing approximate bisector.

Lemma 3.5. Fix € € [0,1] and a non-degenerate (m,b,c)-
transition blueprint B. If there exists an iteration that follows
B and that results in a potential drop of at most €, then

5. - A(B) < 6DVndz.

4. ANALYSIS OF TRANSITION BLUEPRINTS

Let A denote the smallest improvement of the potential
U made by any sequence of three consecutive iterations of
the k-means method. In the following, we will define and
analyze some variables A; such that A can be bounded from
below by the minimum of the A;. These random variables
are essentially a case analysis covering different types of
transition graphs. The first five cases deal with special types
of blueprints that require separate attention and do not fit
into the general framework of case six. The sixth and most
involved case (Section 4.6) deals with general blueprints.

When analyzing these random variables, we will ignore
the case that a cluster can lose all its points in one iteration.
If this happens, then k-means continues with one cluster less,
which can happen only % times. Since the potential U does
not increase even in this case, this gives only an additive
term of k to our analysis.

In the lemmas in this section, we do not specify the
parameters mm and b when talking about transition blueprints.
When we say an iteration follows a blueprint with some
property P, we mean that there are parameters m and b such
that the iteration follows an (m,b, ) transition blueprint
with property P, where £ will be clear from the context.

4.1. Balanced Clusters of Small Degree

Lemma 4.1. Fix ¢ > 0 and a constant z; € N. Let A
denote the smallest improvement made by any iteration that
follows a blueprint with a balanced non-isolated node of in-
and outdegree at most z1d. Then,

0-2

Pr[Al < 5] <e- ("421“) .

4.2. Nodes of Degree One

Lemma 4.2. Fix ¢ € [0,1]. Let Ay denote the smallest
improvement made by any iteration that follows a blueprint
with a node of degree 1. Then,

Pr[AQ §5] §5-%§"u.

4.3. Fairs of Adjacent Nodes of Degree Two

Given a transition blueprint, we now look at pairs of
adjacent nodes of degree 2. Since we have already dealt with
the case of balanced clusters of small degree (Section 4.1),
we can assume that the nodes involved are unbalanced. This
means that one cluster of the pair gains two points while the
other cluster of the pair loses two points.

Lemma 4.3. Fix ¢ € [0,1]. Let Ag denote the smallest
improvement made by any iteration that follows a non-
degenerate blueprint with at least three disjoint pairs of
adjacent unbalanced nodes of degree 2. Then,

Pr[Aggs] <eg- (M)

o6



4.4. Blueprints with Constant Degree

Now we analyze iterations that follow blueprints in which
every node has constant degree. It might happen that a
single iteration does not yield a significant improvement in
this case. But we get a significant improvement after three
consecutive iterations of this kind. The reason for this is
that during three iterations one cluster must assume three
different configurations. One case in the previous analy-
ses [5], [20] is iterations in which every cluster exchanges
at most O(dk) data points with other clusters. The case
considered in this section is similar, but instead of relying on
the somewhat cumbersome notion of key-values used in the
previous analyses, we present a simplified and more intuitive
analysis here, which also sheds more light on the previous
analyses.

We define an epoch to be a sequence of consecutive
iterations in which no cluster center assumes more than
two different positions. Equivalently, there are at most two
different sets C;,C!’ that every cluster C; assumes. Arthur
and Vassilvitskii [5] used the obvious upper bound of 2*
for the length of an epoch (the term length refers to the
number of iterations in the sequence). This upper bound
has been improved to two [20]. By the definition of length
of an epoch, this means that after at most three iterations,
either k-means terminates or one cluster assumes a third
configuration.

For our analysis, we introduce the notion of (7,c)-
coarseness. In the following, /A denotes the symmetric
difference of two sets.

Definition 4.4. We say that X is (n,c)-coarse if for any
pairwise distinct subsets C1, Ca, and Cs of X with |C1 ACa| <
¢ and |CoACs| < ¢ either |em(Cy) — cm(Ca)|| > n or
l[em(C2) — em(Cs)|| > 7.

Since the length of any epoch is at most three, in every
sequence of three consecutive iterations, one cluster assumes
three different configurations. This yields the following
lemma.

Lemma 4.5. Assume that X is (1, ¢)-coarse and consider a
sequence of three consecutive iterations. If in each of these
iterations every cluster exchanges at most c points, then the
potential decreases by at least n?.

Lemma 4.6. For 1) > 0, the probability that X is not (1, c)-
coarse is at most (Tn)%¢ - (2nen /o)<,

Combining Lemmas 4.5 and 4.6 immediately yields the
following result.

Lemma 4.7. Fix ¢ > 0 and a constant zo € N. Let Ay
denote the smallest improvement made by any sequence
of three consecutive iterations that follow blueprints whose
nodes all have degree at most zs. Then,

PrlAs <e] <o (QQEETY

4.5. Degenerate blueprints

Lemma 4.8. Fix ¢ € [0,1]. Let A5 denote the smallest
improvement made by any iteration that follows a degenerate
blueprint. Then,

PI'[A5 §5] <eg- (%2"11)

4.6. Other Blueprints

Now, after having ruled out five special cases, we can
analyze the case of a general blueprint.

Lemma 4.9. Fix ¢ € [0,1]. Let Ag be the smallest improve-
ment made by any iteration whose blueprint does not fall
into any of the previous five categories with z1 = 8 and
zo = 7. This means that we consider only non-degenerate
blueprints whose balanced nodes have in- and out-degree
at least 8d + 1, that do not have nodes of degree one, that
have at most two disjoint pairs of adjacent unbalanced node
of degree 2, and that have a node with degree at least 18.

Then,
PrA < €] < - (WD

o6

Proving this lemma requires some preparation. Assume
that the iteration follows a blueprint B with m edges and b
balanced nodes. We distinguish two cases: either the center
of one unbalanced cluster assumes a position that is /ne
away from its approximate position or all centers are at
most y/ne far away from their approximate positions. In the
former case the potential drops by at least € according to
Lemma 3.3. If this is not the case, the potential drops if one
of the points is far away from its corresponding approximate
bisector according to Lemma 3.5.

The fact that the blueprint does not belong to any of the
previous categories allows us to derive the following upper
bound on its number of nodes.

Lemma 4.10. Let B denote an arbitrary transition blueprint
with m edges and b balanced nodes in which every node has
degree at least two and every balanced node has degree at
least 2dz1 + 2. Furthermore, let there be at most two disjoint
pairs of adjacent nodes of degree two in B, and assume that
there is one node with degree at least zo + 1 > 2. Then the
number of nodes in B is bounded from above by

ifb=0,

5
e 3
%m_w ifb> 1.

_ z2—4

Proof: Let A be the set of nodes of degree two, and
let B be the set of nodes of higher degree. We first bound
the number of edges between nodes in A: There are at most
two disjoint pairs of adjacent nodes of degree two. For each
of these pairs, we define its extension to be the longest path
of nodes of degree two containing the pair. We know that
none of these extensions can form a cycle as the transition
graph is connected and contains a node of degree zo+1 > 2.
There are |h/2] disjoint pairs in an extension consisting of



h nodes. As the extensions contain all edges between nodes
of degree 2, this implies that the number of edges between
vertices in A is at most four. Let deg(A) and deg(B) denote
the sum of the degrees of the nodes in A and B, respectively.
The total degree deg(A) of the vertices in A is 2| A|. Hence,
there are at least 2| A|—8 edges between A and B. Therefore,

2|A| — 8 < deg(B) = 2|A| — 8 < 2m — 2|A|
= |A| < m+2.

Let ¢ denote the number of nodes. The nodes in B have
degree at least 3, there is one node in B with degree at least
z9 + 1, and balanced nodes have degree at least 2z7d + 2
(and hence, belong to B). Therefore, if b = 0,

2m > 2|A|+3(t— A — 1)+ 22+ 1
= 2m+|A| >3t 42 — 2
= Sm>3t42—4.

If b > 1, then the node of degree at least zo + 1 might be
balanced and we obtain

2m > 2|A| + (221d + 2)b+ 3(t — |A] — b)
=2m+|A| > 3t + (2z:1d — 1)b
= Sm>3t+ (2z1d - 1)b—2.

The lemma follows by solving these inequalities for ¢. ®

We can now continue to bound Pr[A(B) < A] for a fixed
blueprint B. The previous lemma implies that a relatively
large number of points must switch clusters, and each such
point is positioned independently according to a normal
distribution. Unfortunately, the approximate bisectors are not
independent of these point locations, which adds a technical
challenge. We resolve this difficulty by changing variables
and then bounding the effect of this change.

Lemma 4.11. For a fixed transition blueprint B with m
edges and b balanced clusters that does not belong to any
of the previous five categories and for any A > 0, we have
m , z2—1
(\/E:Lz)\)?JrzT lbeO,
Pr [A(B) < )\] < m y (221d42)b-2

(@) ? ifb>1.

g

Proof: We partition the set of edges in the transition
graph into reference edges and test edges. For this, we
ignore the directions of the edges in the transition graph and
compute a spanning tree in the resulting undirected multi-
graph. We let an arbitrary balanced cluster be the root of
this spanning tree. If all clusters are unbalanced, then an
arbitrary cluster is chosen as the root. We mark every edge
whose child is an unbalanced cluster as a reference edge.
In this way, every unbalanced cluster C; can be incident
to several reference edges. But we will refer only to the
reference edge between C;’s parent and C; as the reference
edge associated with C;. Possibly except for the root, every

unbalanced cluster is associated with exactly one reference
edge. Observe that in the transition graph, the reference edge
of an unbalanced cluster C; can either be directed from C; to
its parent or vice versa, as we ignored the directions of the
edges when we computed the spanning tree. From now on,
we will again take into account the directions of the edges.

For every unbalanced cluster ¢ with an associated refer-
ence edge, we define the point ¢; as

q; = ZzeA,, T — ZmGBi z, (1)

where A; and B; denote the sets of incoming and outgoing
edges of C;, respectively. The intuition behind this definition
is as follows: as we consider a fixed blueprint 3, once g; is
fixed also the approximate center of cluster ¢ is fixed. Let
q denote the point defined as in (1) but for the root instead
of cluster ¢. If all clusters are unbalanced and g; is fixed for
every cluster except for the root, then also the value of ¢
is implicitly fixed as ¢ 4+ > ¢; = 0. Hence, once each ¢; is
fixed, the approximate center of every unbalanced cluster is
also fixed.

Relabeling as necessary, we assume without loss of gen-
erality that the clusters with an associated reference edge are
the clusters Cq,...,C, and that the corresponding reference
edges correspond to the points py, ..., p,. Furthermore, we
can assume that the clusters are topologically sorted: if C;
is a descendant of C;, then i < j.

Let us now assume that an adversary chooses an arbitrary
position for g; for every cluster C; with ¢ € [r]. Intuitively,
we will show that regardless of how the transition blueprint
B is chosen and regardless of how the adversary fixes the
positions of the g;, there is still enough randomness left to
conclude that it is unlikely that all points involved in the
iteration are close to their corresponding approximate bisec-
tors. We can alternatively view this as follows: Our random
experiment is to choose the md-dimensional Gaussian vector
p=(p1,...,pm), Where p1,...,p, € R? are the points that
correspond to the edges in the blueprint. For each i € [r]
and j € [d] let b;; € {—1,0,1}™? be the vector so that the
j-th component of ¢; can be written as p-b; ;- Then allowing
the adversary to fix the positions of the ¢; is equivalent to
letting him fix the value of every dot product p - l_)ij.

After the positions of the ¢; are chosen, we know the
location of the approximate center of every unbalanced
cluster. Additionally, the blueprint provides an approximate
center for every balanced cluster. Hence, we know the
positions of all approximate bisectors. We would like to
estimate the probability that all points p,1,...,p, have a
distance of at most A\ from their corresponding approximate
bisectors. For this, we further reduce the randomness and
project each point p; with ¢ € {r + 1,...,m} onto the
normal vector of its corresponding approximate bisector.
Formally, for each ¢ € {r + 1,...,m}, let h; denote a
normal vector to the approximate bisector corresponding to
pi, and let 1_77;71 S Pl,l]md denote the vector such that



Figure 1.  Solid and dashed edges indicate reference and test edges,
respectively. When computing the spanning tree, the directions of the edges
are ignored. Hence, reference edges can either be directed from parent to
child or vice versa. In this example, the spanning tree consists of the edges
p3, p7, P1, and p2, and its root is Cs. We denote by I; the d x d identity
matrix and by Oy the d X d zero matrix. The first three columns of M
correspond to q1, g2, and ¢3. The rows correspond to the points p1, ..., p7.
Each block matrix B; corresponds to an orthonormal basis of R? and is
therefore orthogonal.

p - Bi,l = p; - h;. This means that p; is at a distance
of at most A from its approximate bisector if and only if
p- b;1 lies in some fixed interval Z; of length 2)\. As this
event is independent of the other points p; with j # 4,
the vector b;; is a unit vector in the subspace spanned
by the vectors €(; _1)d+1,-- -, €id from the canonical basis.
Let B; = {bj1,...,b;q} be an orthonormal basis of this
subspace. Let M denote the (md) x (md) matrix whose
columns are the vectors b1, ..., b1q,...,b , bing. Fig-
ure 1 illustrates these definitions.

For i € [r] and j € [d], the values of p - b;; are fixed by
an adversary. Additionally, we allow the adversary to fix the
values of p - b;; fori € {r+1,...,m} and j € {2,...,d}.
All this together defines an (m — r)-dimensional affine
subspace U of R™?. We stress that the subspace U is
chosen by the adversary and no assumptions about U are
made. In the following, we will condition on the event that
p=(p1,--.,pm) lies in this subspace. We denote by F the
event that p-b;; € Z; forall i € {r+1,...,d}. Conditioned
on the event that the random vector p lies in the subspace
U, p follows an (m — r)-dimensional Gaussian distribution
with standard deviation o. However, we cannot directly
estimate the probability of the event JF as the projections
of the vectors b;; onto the affine subspace U might not be
orthogonal. To estimate the probability of F, we perform
a change of variables. Let ay,...,a,—, be an arbitrary
orthonormal basis of the (m — r)-dimensional subspace
obtained by shifting U so that it contains the origin. Assume
for the moment that we had, for each of these vectors ay,
an interval 7, such that F can only occur if p - a, € Z; for

o,

every ¢. Then we could bound the probability of F from
above by [] \Z{JU as the p-a, can be treated as independent
one-dimensional Gaussian random variables with standard
deviation o after conditioning on U. In the following, we
construct such intervals Zj.

It is important that the vectors b;; for i € [m] and j €
[d] form a basis of R™“, To see this, let us first have a
closer look at the matrix M € R™?*™? viewed as an m x
m block matrix with blocks of size d x d. From the fact
that the reference points are topologically sorted it follows
that the upper left part, which consists of the first dr rows
and columns, is an upper triangular matrix with non-zero
diagonal entries.

As the upper right (dr) x d(m — r) sub-matrix of M
consists solely of zeros, the determinant of M is the product
of the determinant of the upper left (dr) x (dr) sub-matrix
and the determinant of the lower right d(m —r) x d(m —r)
sub-matrix. Both of these determinants can easily be seen
to be different from zero. Hence, also the determinant of M
is not equal to zero, which in turn implies that the vectors
l;ij are linearly independent and form a basis of R™¢,

In particular, we can write every a, as a linear combi-

nation of the vectors b;;. Let a, = Zi j cfjb,;j for some
coefficients cf; € R. Since the values of p- b; are fixed for
i €|r] and j € [d] as well as for ¢ € {r +1,...,m} and

j€{2,...,d}, we can write

Prae=re+ D ch(p-bin)

for some constant r, that depends on the fixed values chosen
by the adversary. Let ¢y = max{|c};| | i > r}. The event
F happens only if, for every i > r, the value of p-b;; lies in
some fixed interval of length 2. Thus, we conclude that F
can happen only if for every ¢ € [m — r| the value of j- a,
lies in some fixed interval 7 of length at most 2¢yax (m —
r)A. It only remains to bound cp,.x from above. For ¢ €
[m — r], the vector c* of the coefficients ij is obtained as
the solution of the linear system Mc! = @,. The fact that
the upper right (dr) x d(m — r) sub-matrix of M consists
only of zeros implies that the first dr entries of @, uniquely
determine the first dr entries of the vector ¢f. As @, is a unit
vector, the absolute values of all its entries are bounded by
1. Now we observe that each row of the matrix M contains
at most two non-zero entries in the first dr columns because
every edge in the transition blueprint belongs to only two
clusters. This and a short calculation shows that the absolute
values of the first dr entries of ¢ are bounded by r: The
absolute values of the entries d(r — 1) + 1,...,dr coincide
with the absolute values of the corresponding entries in ay
and are thus bounded by 1. Given this, the rows d(r — 2) +
1,...,d(r — 1) imply that the corresponding values in a,
are bounded by 2 and so on.

Assume that the first dr coefficients of ¢’ are fixed to
values whose absolute values are bounded by r. This leaves



us with a system M’(ct)’ = @}, where M’ is the lower right
((m —r)d) x ((m — r)d) sub-matrix of M, (c*)’ are the
remaining (m —r)d entries of ¢, and @} is a vector obtained
from a, by taking into account the first dr fixed values of
c’. All absolute values of the entries of @) are bounded by
2r+1. As M’ is a diagonal block matrix, we can decompose
this into m — r systems with d variables and equations each.
As every d x d-block on the diagonal of the matrix M’
is an orthonormal basis of the corresponding d-dimensional
subspace, the matrices in the subsystems are orthonormal.
Furthermore, the right-hand sides have a norm of at most
(2r + 1)\/8 Hence, we can conclude that ¢y, is bounded
from above by 3v/dr.

Thus, the probability of the event F can be bounded from
above by

" AN (6\/Er(mfr))\)m_r < (\/EmQ)\)m_r ’

t=r+1 \/2r¢c 2o

where we used that 7(m — r) < m?/4. Using Fact 2.1, we
can replace the exponent m — r by a lower bound. If all
nodes are unbalanced, then r equals the number of nodes
minus one. Otherwise, if b > 1, then r equals the number
of nodes minus b. Hence, Lemma 4.10 yields
(L"Lz*)%ﬂ‘ij+1 ifb=0
(ﬂmZA)%+(221d;1)b_2+b ifb>1
which completes the proof. [ |

With the previous lemma, we can bound the probability
that there exists an iteration whose transition blueprint does
not fall into any of the previous categories and that makes
a small improvement.

Proof of Lemma 4.9: Let B denote the set of (m, b, ¢)-
blueprints that do not fall into the previous five categories.
Here, ¢ is fixed but there are nk possible choices for m
and b. As in the proof of Lemma 4.3, we will use a union
bound to estimate the probability that there exists a blueprint
B € B with A(B) < A. Note that once m and b are fixed,
there are at most (nk?)™ possible choices for the edges
in a blueprint, and for every balanced cluster, there are at

d
most (DT‘{E) choices for its approximate center. Also, in

all cases, m > max(z2 + 1,b(dz; + 1)) = max(8,8bd +b),
because there is always one vertex with degree at least zo+1,
and there are always b vertices with degree at least 2dz; + 2.

Now we set Y = k° - v/ndD. Lemma 4.11 and some
lengthy calculations yield

Pr 3B € B|A(B) < S2Ynd . 18]

- (O(1)-n327/10k29d25/10D13/")
. T X
g

<

On the other hand Y = k% - v/ndD > 1, so Lemma 2.5

guarantees

6
Pr[s. <Ve/6] <e- (ou{%Y)

. (O(l)~n11/2k5d1/2D1/2)6 .. (0(1) n33k30d3D3)

o o6

Finally, we know from Lemma 3.5 that if a blueprint 5
can result in a potential drop of at most ¢, then 0. - A(B) <
6D+v/nds. We must therefore have either 5. < Ye'/¢ or
A(B) < GDF ¢1/3. Therefore,

Pr[AG < 5]
< Pr[3BeB|AB) < S8 3] 4 Pr[5, < VY]
< o (Qwangnesty
which concludes the proof. [ ]

4.7. The Main Theorem

Given the analysis of the different types of iterations,
we can complete the proof that k-means has polynomial
smoothed running time.

Proof of Theorem 1.1: Let T denote the maximum
number of iterations that k-means can need on the perturbed
data set X, and let A denote the minimum possible potential
drop over a period of three consecutive iterations. As re-
marked in Section 2, we can assume that all the data points
lie in the hypercube [—D/2, D/2]¢ for D = /90kd - In(n
because the alternative contributes only an additive term of
+1 to E[T].

After the first iteration, we know ¥ < ndD?2. This implies
that if 77 > 3t + 1, then A < ndD?/t. However, in the
previous section, we proved that for € € (0, 1],

PriA <e] < Y0 Pr[A, <e] <. QUnTkTdD]

Recall from Section 2 that T < n3kd
perturbation. Therefore, we have E [T

regardless of the

O(ndD?) + 31" 23 P[T > 3t + 1]

< of
O(ndD?) + Z?ii;ddm 3P |A < P
(

IN

IN

2 0(1).n?3k3043 D3
0 ndD2)+Zt ndD2 sndD- . O

t o6
O(1)-n**k3*d8.In* (n)
50 )

which completes the proof. [ ]

5. CONCLUDING REMARKS

In this paper, we settled the smoothed running time of the
k-means method for d > 2. For d = 1, it was already known
that k-means has polynomial smoothed running time [20].

The exponents in our smoothed analysis are constant
but large. We did not make a huge effort to optimize the
exponents as the arguments are intricate enough even with-
out trying to optimize constants. Furthermore, we believe
that our approach, which is essentially based on bounding



the smallest possible improvement in a single step, is too
pessimistic to yield a bound that matches experimental
observations. A similar phenomenon occurred already in the
smoothed analysis of the 2-opt heuristic for the TSP [12].
There it was possible to improve the bound for the number
of iterations by analyzing sequences of consecutive steps
rather than single steps. It is an interesting question if this
approach also leads to an improved smoothed analysis of
k-means.

Squared Euclidean distances, while most natural, are not
the only distance measure used for k-means clustering. The
k-means method can be generalized to arbitrary Bregman
divergences [7]. Bregman divergences include the Kullback-
Leibler divergence, which is used, e.g., in text classification,
or Mahalanobis distances. Due to its role in applications, k-
means clustering with Bregman divergences has attracted
a lot of attention recently [1], [2]. Since only little is
known about the performance of the k-means method for
Bregman divergences, we raise the question how the k-
means method performs for Bregman divergences in the
worst and smoothed case.
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