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Abstract. We present randomized approximation algorithms for multi-
criteria Max-TSP. For Max-STSP with k > 1 objective functions, we
obtain an approximation ratio of 1

k
− ε for arbitrarily small ε > 0. For

Max-ATSP with k objective functions, we obtain a ratio of 1
k+1
− ε.

1 Multi-Criteria Traveling Salesman Problem

1.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most fundamental problems
in combinatorial optimization. Given a graph, the goal is to find a Hamiltonian
cycle of minimum or maximum weight. We consider finding Hamiltonian cycles
of maximum weight (Max-TSP).

An instance of Max-TSP is a complete graph G = (V,E) with edge weights
w : E → N. The goal is to find a Hamiltonian cycle of maximum weight. The
weight of a Hamiltonian cycle (or, more general, of a subset of E) is the sum of
the weights of its edges. If G is undirected, we speak of Max-STSP (symmetric
TSP). If G is directed, we have Max-ATSP (asymmetric TSP).

Both Max-STSP and Max-ATSP are NP-hard and APX-hard. Thus, we are in
need of approximation algorithms. The currently best approximation algorithms
for Max-STSP and Max-ATSP achieve approximation ratios of 61/81 and 2/3,
respectively [3, 5].

Cycle covers are an important tool for designing approximation algorithms
for the TSP. A cycle cover of a graph is a set of vertex-disjoint cycles such that
every vertex is part of exactly one cycle. Hamiltonian cycles are special cases of
cycle covers that consist of just one cycle. Thus, the weight of a maximum-weight
cycle cover is an upper bound for the weight of a maximum-weight Hamiltonian
cycle. In contrast to Hamiltonian cycles, cycle covers of maximum weight can be
computed efficiently using matching algorithms [1].

1.2 Multi-Criteria Optimization

In many optimization problems, there is more than one objective function. Con-
sider buying a car: We might want to buy a cheap, fast car with a good gas
mileage. How do we decide which car suits us best? With multiple criteria in-
volved, there is no natural notion of a best choice. Instead, we have to be content
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with a trade-off. The aim of multi-criteria optimization is to cope with this prob-
lem. To transfer the concept of an optimal solution to multi-criteria optimization
problems, the notion of Pareto curves was introduced (cf. Ehrgott [4]). A Pareto
curve is a set of solutions that can be considered optimal.

More formally, a k-criteria optimization problem consists of instances I, solu-
tions sol(X) for every instance X ∈ I, and k objective functions w1, . . . , wk that
map X ∈ I and Y ∈ sol(X) to N. Throughout this paper, our aim is to maximize
the objective functions. We say that a solution Y ∈ sol(X) dominates another
solution Z ∈ sol(X) if wi(Y, X) ≥ wi(Z,X) for all i ∈ [k] = {1, . . . , k} and
wi(Y, X) > wi(Z,X) for at least one i. This means that Y is strictly preferable
to Z. A Pareto curve contains all solutions that are not dominated by another
solution. Unfortunately, Pareto curves cannot be computed efficiently in many
cases: They are often of exponential size, and they are often NP-hard to compute
even for otherwise easy problems. Thus, we have to be content with approximate
Pareto curves.

For simpler notation, let w(Y, X) = (w1(Y, X), . . . , wk(Y, X)). We will omit
the instance X if it is clear from the context. Inequalities are meant component-
wise. A set P ⊆ sol(X) of solutions is called an α approximate Pareto curve
for X ∈ I if the following holds: For every solution Z ∈ sol(X), there exists
a Y ∈ P with w(Y ) ≥ αw(Z). We have α ≤ 1, and a 1 approximate Pareto
curve is a Pareto curve. (This is not precisely true if there are several solutions
whose objective values agree. However, in our case this is inconsequential, and
we will not elaborate on this for the sake of clarity.) An algorithm is called an α
approximation algorithm if, given the instance X, it computes an α approximate
Pareto curve. It is called a randomized α approximation algorithm if its success
probability is at least 1/2. This success probability can be amplified to 1− 2−m

by executing the algorithm m times and taking the union of all sets of solutions.
(We can remove dominated solutions from this union, but this is not required
by the definition of an approximate Pareto curve.)

Papadimitriou and Yannakakis [8] showed that (1 − ε) approximate Pareto
curves of size polynomial in the instance size and 1/ε exist. The technical re-
quirement for the existence is that the objective values of solutions in sol(X) are
bounded from above by 2p(N) for some polynomial p, where N is the size of X.
This is fulfilled in most optimization problems and in particular in our case.

A fully polynomial time approximation scheme (FPTAS) for a multi-criteria
optimization problem computes (1− ε) approximate Pareto curves in time poly-
nomial in the size of the instance and 1/ε for all ε > 0. Papadimitriou and
Yannakakis [8] showed that multi-criteria minimum-weight matching admits a
randomized FPTAS, i. e., the algorithm succeeds in computing a (1 − ε) ap-
proximate Pareto curve with constant probability. This yields also a randomized
FPTAS for the multi-criteria maximum-weight cycle cover problem [7], which
we will use in the following.

Manthey and Ram [6, 7] designed randomized approximation algorithms for
several variants of multi-criteria Min-TSP. However, they leave it as an open
problem to design any approximation algorithm for Max-TSP.



1.3 New Results

We devise the first approximation algorithm for multi-criteria Max-TSP. For k-
criteria Max-STSP, we achieve an approximation ratio of 1

k − ε for arbitrarily
small ε > 0. For k-criteria Max-ATSP, we achieve 1

k+1 − ε. Our algorithm is
randomized. Its running-time is polynomial in the input size and 1/ε and expo-
nential in the number k of criteria. However, the number of different objective
functions is usually a small constant. The main ingredient for our algorithm
is a decomposition technique for cycle covers and a reduction from k-criteria
instances to (k − 1)-criteria instances.

Due to lack of space, some proofs are omitted. For complete proofs, we refer
to the full version of this paper [2].

2 Outline and Idea

A straight-forward 1/2 approximation for mono-criterion Max-ATSP is the fol-
lowing: First, we compute a maximum-weight cycle cover C. Then we remove
the lightest edge of each cycle, thus losing at most half of C’s weight. In this
way, we obtain a collection of paths. Finally, we add edges to connect the paths
to get a Hamiltonian cycle. For Max-STSP, the same approach yields a 2/3
approximation since the length of every cycle is at least three.

Unfortunately, this does not generalize to multi-criteria Max-TSP for which
“lightest edge” is usually not well defined: If we break an edge that has little
weight with respect to one objective, we might lose a lot of weight with respect to
another objective. Based on this observation, the basic idea behind our algorithm
and its analysis is the following case distinction:

Light-weight edges: If all edges of our cycle cover contribute only little to its
weight, then removing one edge does not decrease the overall weight by too
much. Now we choose the edges to be removed such that no objective loses
too much of its weight.

Heavy-weight edges: If there is one edge that is very heavy with respect to at
least one objective, then we take only this edge from the cycle cover. In this
way, we have enough weight for one objective, and we proceed recursively
on the remaining graph with k − 1 objectives.

In this way, the approximation ratio for k-criteria Max-TSP depends on two
questions: First, how well can we decompose a cycle cover consisting solely of
light-weight edges? Second, how well can (k − 1)-criteria Max-TSP be approxi-
mated? We deal with the first question in Section 3. In Section 4, we present and
analyze our approximation algorithms, which also gives an answer to the second
question. Finally, we give evidence that the analysis of the approximation ratios
is tight and point out some ideas that might lead to better approximation ratios
(Section 5).



3 Decompositions

Let α ∈ (0, 1], and let C be a cycle cover. We call a collection P ⊆ C of paths
an α-decomposition of C if w(P ) ≥ αw(C) (recall that all inequalities are meant
component-wise). In the following, our aim is to find α-decompositions of cycle
covers consisting solely of light-weight edges, that is, w(e) ≤ αw(C) for all e ∈ C.

Of course, not every cycle cover possesses an α-decomposition for every α. For
instance, a single directed cycle of length two, where each edge has a weight of
1 shows that α = 1/2 is best possible for a single objective function in directed
graphs. On the other hand, by removing the lightest edge of every cycle, we
obtain a 1/2-decomposition.

For undirected graphs and k = 1, α = 2/3 is optimal: We can find a 2/3-
decomposition by removing the lightest edge of every cycle, and a single cycle
of length three, where each edge weight is 1, shows that this is tight.

More general, we define αd
k ∈ (0, 1] to be the maximum number such that

every directed cycle cover C with w(e) ≤ αd
k ·w(C) for all e ∈ C possesses an αd

k-
decomposition. Analogously, αu

k ∈ (0, 1] is the maximum number such that every
undirected cycle cover C with w(e) ≤ αu

k ·w(C) possesses an αu
k -decomposition.

We have αd
1 = 1

2 and αu
1 = 2

3 , as we have already argued above. We also have
αu

k ≥ αd
k and αu

k ≤ αu
k−1 as well as αd

k ≤ αd
k−1.

3.1 Existence of Decompositions

In this section, we investigate for which values of α such α-decompositions exist.
In the subsequent section, we show how to actually find good decompositions.
We have already dealt with αu

1 and αd
1. Thus, k ≥ 2 remains to be considered

in the following theorems. In particular, only k ≥ 2 is needed for the analysis of
our algorithms.

Let us first normalize our cycle covers to make the proofs in the following
a bit easier. For directed cycle covers C, we can restrict ourselves to cycles of
length two: If we have a cycle c of length ` with edges e1, . . . , e`, we replace it
by b`/2c cycles (e2j−1, e2j) for j = 1, . . . , b`/2c. If ` is odd, then we add a edge
e`+1 with w(e`+1) = 0 and add the cycle (e`, e`+1). (Strictly speaking, edges
are 2-tuples of vertices, and we cannot simply reconnect them. What we mean
is that we remove the edges of the cycle and create new edges with the same
names and weights together with appropriate new vertices.) We do this for all
cycles of length at least three and call the resulting cycle cover C ′. Now any
α-decomposition P ′ of the new cycle cover C ′ yields an α-decomposition P of
the original cycle cover C by removing the newly added edges e`+1: In C, we
have to remove at least one edge of the cycle c to obtain a decomposition. In
C ′, we have to remove at least b`/2c edges of c, thus at least one. Furthermore,
if w(e) ≤ α · w(C) for every e ∈ C, then also w(e) ≤ α · w(C ′) for every e ∈ C ′

since we kept all edge weights. This also shows w(P ) = w(P ′).
We are interested in α-decompositions that work for all cycle covers with k

objective functions. Thus in particular, we have to be able to decompose C ′.



(1, 0) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1)

(a) αd
2 ≤ 1/3.

(0, 1)(1, 0)

(1, 1)

(b) αu
2 ≤ 1/2.

Fig. 1. Examples that limit the possibility of decomposition.

The consequence is that if every directed cycle cover consisting solely of cycles
of length two possesses an α-decomposition, then all directed cycle covers do so.

For undirected cycle covers, we can restrict ourselves to cycles of length
three: We replace a cycle c = (e1, . . . , e`) by b`/3c cycles (e3j−2, e3j−1, e3j) for
1 ≤ j ≤ b`/3c. If ` is not divisible by three, then we add one or two edges
e`+1, e`+2 to form a cycle of length three with the remaining edge(s). Again,
every α-decomposition of the new cycle cover yields an α-decomposition of the
original cycle cover.

The following two theorems are proved using the probabilistic method.

Theorem 1. For all k ≥ 2, we have αu
k ≥ 1/k.

For undirected graphs and k = 2, we do not need the assumption that the
weight of each edge is at most αu

2 times the weight of the cycle cover. Lemma 1
below immediately yields a (1/2 − ε) approximation for bi-criteria Max-STSP:
First, we compute a Pareto curve of cycle covers. Second, we decompose each
cycle cover to obtain a collection of paths, which we then connect to form Hamil-
tonian cycles. The following lemma can also be generalized to arbitrary k that
do not contain cycles of length at most k.

Lemma 1. For every undirected cycle cover C with edge weights w = (w1, w2),
there exists a collection P ⊆ C of paths with w(P ) ≥ w(C)/2.

For directed cycle covers, our aim is again to show that the probability of
having not enough weight in one component is less than 1/k. Hoeffding’s in-
equality works only for k ≥ 7. We use a different approach, which immediately
gives us the desired result for k ≥ 6, and which can be tweaked to work also for
small k.

Theorem 2. For all k ≥ 2, we have αd
k ≥ 1/(k + 1).

Figure 1 shows that Theorems 1 and 2, respectively, are tight for k = 2. Due
to these limitations for k = 2, proving larger values for αu

k or αd
k does not immedi-

ately yield better approximation ratios (see Section 5). However, for larger values
of k, Hoeffding’s inequality yields the existence of Ω(1/ log k)-decompositions.
Together with a different technique for heavy-weight cycle covers, this might
lead to improved approximation algorithms for larger values of k.

Lemma 2. We have αu
k , αd

k ∈ Ω(1/ log k).



P ← Decompose(C, w, k, α)
input: cycle cover C, edge weights w, k ≥ 2, w(e) ≤ α · w(C) for all e ∈ C
output: a collection P of paths
1: obtain w′ from w by scaling each component such that w′

i(C) = 1/α for all i
2: normalize C to C′ as described in the text such that C′ consists solely of cycles of

length three (undirected) or two (directed)
3: while there are cycles c and c′ in C′ with w′(c) ≤ 1/2 and w′(c′) ≤ 1/2 do
4: combine c and c′ to c̃ with w′(c̃) = w′(c) + w′(c′)
5: replace c and c′ by c̃ in C′

6: try all possible combinations of decompositions
7: choose one P ′ that maximizes mini∈[k] w

′
i(P )

8: translate P ′ ⊆ C′ back to obtain a decomposition P ⊆ C
9: return P

Algorithm 1: A deterministic algorithm for finding a decomposition.

3.2 Finding Decompositions

While we know that decompositions exist due to the previous section, we have
to find them efficiently in order to use them in our approximation algorithm. We
present a deterministic algorithm and a faster randomized algorithm for finding
decompositions.

Decompose (Algorithm 1) is a deterministic algorithm for finding a decom-
position. The idea behind this algorithm is as follows: First, we scale the weights
such that w(C) = 1/α. Then w(e) ≤ 1 for all edges e ∈ C. Second, we normalize
all cycle covers such that they consist solely of cycles of length two (in case of
directed graphs) or three (in case of undirected graphs). Third, we combine very
light cycles as long as possible. More precisely, if there are two cycles c and c′

such that w′(c) ≤ 1/2 and w′(c′) ≤ 1/2, we combine them to one cycle c̃ with
w′(c̃) ≤ 1. The requirements for an α-decomposition to exist are still fulfilled.
Furthermore, any α-decomposition of C ′ immediately yields an α-decomposition
of C.

Lemma 3. Let k ≥ 2. Let C be an undirected cycle cover and w1, . . . , wk be
edge weights such that w(e) ≤ αu

k ·w(C). Then Decompose(C,w, k, αu
k) returns

a collection P of paths with w(P ) ≥ αu
k · w(C).

Let C be a directed cycle cover and w1, . . . , wk be edge weights such that
w(e) ≤ αd

k ·w(C). Then Decompose(C,w, k, αd
k) returns a collection P of paths

with w(P ) ≥ αd
k · w(C).

Let us also estimate the running-time of Decompose. The normalization in
lines 1 to 5 can be implemented to run in linear time. Due to the normalization,
the weight of every cycle is at least 1/2 with respect to at least one w′

i. Thus, we
have at most 2k/αu

k cycles in C ′ in the undirected case and at most 2k/αd
k cycles

in C ′ in the directed case. In either case, we have O(k2) cycles. All of these cycles
are of length two or of length three. Thus, we find an optimal decomposition,
which in particular is an αu

k or αd
k-decomposition, in time linear in the input size

and exponential in k.



P ← RandDecompose(C, w, k, α)
input: cycle cover C, edge weights w = (w1, . . . , wk), k ≥ 2, w(e) ≤ α · w(C) for all

e ∈ C
output: a collection P of paths with w(P ) ≥ α · w(C)
1: if k ≥ 6 then
2: repeat
3: randomly choose one edge of every cycle of C
4: remove the chosen edges to obtain P
5: until w(P ) ≥ α · w(C)
6: else
7: P ← Decompose(C, w, k, α)

Algorithm 2: A randomized algorithm for finding a decomposition.

By exploiting the probabilistic argument of the previous section, we can find
a decomposition much faster with a randomized algorithm. RandDecompose
(Algorithm 2) does this: We choose the edges to be deleted uniformly at random
for every cycle. The probability that we obtain a decomposition as required is
positive and bounded from below by a constant. Furthermore, as the proofs of
Theorems 1 and 2 show, this probability tends to one as k increases. For k ≥ 6,
it is at least approximately 0.7 for undirected cycle covers and at least 1/4 for
directed cycle covers. For k < 6, we just use our deterministic algorithm, which
has linear running-time for constant k. The following lemma follows from the
considerations above.

Lemma 4. Let k ≥ 2. Let C be an undirected cycle cover and w1, . . . , wk be
edge weights such that w(e) ≤ αu

k · w(C). Then RandDecompose(C,w, k, αu
k)

returns a collection P of paths with w(P ) ≥ αu
k · w(C).

Let C be a directed cycle cover and w1, . . . , wk be edge weights such that
w(e) ≤ αd

k · w(C). Then RandDecompose(C,w, k, αd
k) returns a collection P

of paths with w(P ) ≥ αd
k · w(C).

The expected running-time of RandDecompose is O(|C|).

4 Approximation Algorithms

Based on the idea sketched in Section 2, we can now present our approximation
algorithms for multi-criteria Max-ATSP and Max-STSP. However, in particular
for Max-STSP, some additional work has to be done if heavy edges are present.

4.1 Multi-Criteria Max-ATSP

We first present our algorithm for Max-ATSP (Algorithm 3) since it is a bit
easier to analyze.

First of all, we compute a (1−ε) approximate Pareto curve C of cycle covers.
Then, for every cycle cover C ∈ C, we decide whether it is a light-weight cycle
cover or a heavy-weight cycle cover (line 7). If C has only light-weight edges,



PTSP ←MC-MaxATSP(G, w, k, ε)
input: directed complete graph G = (V, E), k ≥ 1, edge weights w : E → Nk, ε > 0
output: approximate Pareto curve PTSP for k-criteria Max-TSP
1: if k = 1 then
2: compute a 2/3 approximation PTSP

3: else
4: compute a (1− ε) approximate Pareto curve C of cycle covers
5: PTSP ← ∅
6: for all cycle covers C ∈ C do
7: if w(e) ≤ αd

k · w(C) for all edges e ∈ C then
8: P ← Decompose(C, w, k)
9: add edges to P to form a Hamiltonian cycle H; add H to PTSP

10: else
11: let e = (u, v) ∈ C be an edge with w(e) 6≤ αd

k · w(C)
12: for all a, b, c, d ∈ V such that P e

a,b,c,d is legal do
13: for i← 1 to k do
14: obtain G′ from G by contracting the paths of P e

a,b,c,d

15: obtain w′ from w by removing the ith objective
16: P ′

TSP ←MC-MaxATSP(G′, w′, k − 1, ε)
17: for all H ′ ∈ P ′

TSP do
18: form a Hamilton cycle from H ′ plus P e

a,b,c,d; add it to PTSP

19: form a Hamilton cycle from H ′ plus (u, v); add it to PTSP

Algorithm 3: Approximation algorithm for k-criteria Max-ATSP.

b

a

u v

d

c

(a) Two disjoint paths.

a

u

b=c

v

d

(b) With b = c.
a

u=c v=b

d

(c) Including edge e.

Fig. 2. The three possibilities of P e
a,b,c,d. Symmetrically to (b), we also have a = d.

Symmetrically to (c), we also have v = a and u = d.

we decompose it to obtain a collection P of paths. Then we add edges to P to
obtain a Hamiltonian cycle H, which we then add to PTSP.

If C contains a heavy-weight edge, then there exists an edge e = (u, v) and
an i with wi(e) > αk · wi(C). We pick one such edge. Then we iterate over all
possible vertices a, b, c, d (including equalities and including u and v). We denote
by P e

a,b,c,d the graph with vertices u, v, a, b, c, d and edges (a, u), (u, b), (c, v),
and (v, d). We call P e

a,b,c,d legal if it can be extended to a Hamiltonian cycle:
P e

a,b,c,d is legal if and only if it consists of one or two vertex-disjoint directed
paths. Figure 2 shows the different possibilities.

For every legal P e
a,b,c,d, we contract the paths as follows: We remove all out-

going edges of a and c, all incoming edges of b and d, and all edges incident to u
or v. Then we identify a and b as well as c and d. If P e

a,b,c,d consists of a single
path, then we remove all vertices except the two endpoints of this path, and we
identify these two endpoints.



In this way, we obtain a slightly smaller instance G′. Then, for every i, we
remove the ith objective to obtain w′, and recurse on G′ with only k−1 objectives
w′. This yields a approximate Pareto curves P ′

TSP of Hamiltonian cycles of G′.
Now consider any H ′ ∈ P ′

TSP. We expand the contracted paths to obtain H.
Then we construct two tours: First, we just add P e

a,b,c,d to H, which yields a
Hamiltonian cycle by construction. Second, we observe that no edge in H is
incident to u or v. We add the edge (u, v) to H as well as some more edges
such that we obtain a Hamiltonian cycle. We put the Hamiltonian cycles thus
constructed into PTSP.

We have not yet discussed the success probability. Randomness is needed for
computing the approximate Pareto curves of cycle covers and the recursive calls
of MC-MaxATSP with k − 1 objectives. Let N be the size of the instance at
hand, and let pk(N, 1/ε) is a polynomial that bounds the size of a (1−ε) approx-
imate Pareto curve from above. Then we need at most N4 · pk(N, 1/ε) recursive
calls of MC-MaxATSP. In total, the number of calls of randomized algorithms
is bounded by some polynomial qk(N, 1/ε). We amplify the success probabilities
of these calls such that the probability is at least 1− 1

2·qk(N,1/ε) . Thus, the prob-
ability that one such call is not successful is at most qk(N, 1/ε) · 1

2·qk(N,1/ε) ≤ 1/2
by a union bound. Hence, the success probability of the algorithm is at least 1/2.

Instead of Decompose, we can also use RandDecompose. We modify
RandDecompose such that the running-time is guaranteed to be polynomial
and that there is only a small probability that RandDecompose errs. Further-
more, we have to make the error probabilities of the cycle cover computation
as well as the recursive calls of MC-MaxATSP slightly smaller to maintain an
overall success probability of at least 1/2.

The running-time of MC-MaxATSP is polynomial in the input size and 1/ε,
which can be seen by induction on k: We have a polynomial time approximation
algorithm for k = 1. For k > 1, the approximate Pareto curve of cycle covers can
be computed in polynomial time, yielding a polynomial number of cycle covers.
All further computations can also be implemented to run in polynomial time
since MC-MaxATSP for k−1 runs in polynomial time by induction hypothesis.

Theorem 3. MC-MaxATSP is a randomized 1
k+1−ε approximation for multi-

criteria Max-ATSP. Its running-time is polynomial in the input size and 1/ε.

Proof. We have already discussed the error probabilities and the running-time.
Thus, it remains to consider the approximation ratio, and we can assume in
the following, that all randomized computations are successful. We prove the
theorem by induction on k. For k = 1, this follows since mono-criterion Max-
ATSP can be approximated with a factor 2/3 > 1/2.

Now assume that the theorem holds for k − 1. We have to prove that, for
every Hamiltonian cycle Ĥ, there exists a Hamiltonian cycle H ∈ PTSP with
w(H) ≥

(
1

k+1 − ε
)
·w(Ĥ). Since every Hamiltonian cycle is in particular a cycle

cover, there exists a C ∈ C with w(C) ≥ (1 − ε) · w(Ĥ). Now we distinguish
two cases. The first case is that C consists solely of light-weight edges, i. e.,
w(e) ≤ 1

k+1 · w(C), then Decompose returns a collection P of paths with



w(P ) ≥ 1
k+1 ·w(C) ≥

(
1

k+1 −ε
)
·w(Ĥ), which yields a Hamiltonian cycle H with

w(H) ≥ w(P ) ≥
(

1
k+1 − ε

)
· w(Ĥ) as claimed.

The second case is that C contains at least one heavy-weight edge e = (u, v).
Let (a, u), (u, b), (c, v), and (v, d) be the edges in Ĥ that are incident to u or v.
(We may have some equalities among the vertices as shown in Figure 2.) Note
that Ĥ does not necessarily contain the edge e. We consider the corresponding
P e

a,b,c,d and divide the second case into two subcases.
The first subcase is that there is a j ∈ [k] with wj(P e

a,b,c,d) ≥ 1
k+1 · wj(Ĥ),

i. e., at least a 1
k+1 fraction of the jth objective is concentrated in P e

a,b,c,d. (We
can have j = i or j 6= i.) Let J ⊆ [k] be the set of such j.

We fix one j ∈ J arbitrarily and consider the graph G′ obtained by removing
the jth objective and contracting the paths (a, u, b) and (c, v, d). A fraction of
1− 1

k+1 = k
k+1 of the weight of Ĥ is left in G′ with respect to all objectives but

those in J . Thus, G′ contains a Hamiltonian cycle Ĥ ′ with w`(Ĥ ′) ≥ k
k+1 ·w`(Ĥ)

for all ` ∈ [k] \ J . Since (k − 1)-criteria Max-ATSP can be approximated with
a factor of 1

k − ε by assumption, P ′
TSP contains a Hamiltonian cycle H ′ with

w`(H ′) ≥ ( 1
k − ε) · k

k+1 · w`(Ĥ) ≥
(

1
k+1 − ε

)
· w`(Ĥ) for all ` ∈ [k] \ J . Together

with P e
a,b,c,d, which contributes enough weight to the objectives in J , we obtain

a Hamiltonian cycle H with w(H) ≥
(

1
k+1 − ε

)
· w(Ĥ), which is as claimed.

The second subcase is that wj(P e
a,b,c,d) ≤ 1

k+1 ·wj(H) for all j ∈ [k]. Thus, at
least a fraction of k

k+1 of the weight of Ĥ is outside of P e
a,b,c,d. We consider the

case with the ith objective removed. Then, with the same argument as in the first
subcase, we obtain a Hamiltonian cycle H ′ of G′ with w`(H ′) ≥

(
1

k+1−ε
)
·w`(Ĥ)

for all ` ∈ [k] \ {i}. To obtain a Hamiltonian cycle of G, we take the edge
e = (u, v) and connect its endpoints appropriately. (For instance, if a, b, c, d
are distinct, then we add the path (a, u, v, d) and the edge (c, b).) This yields
enough weight for the ith objective in order to obtain a Hamiltonian cycle H
with w(H) ≥

(
1

k+1 − ε
)
· w(Ĥ) since wi(e) ≥ 1

k+1 · w(C) ≥
(

1
k+1 − ε

)
· w(Ĥ).

4.2 Multi-Criteria Max-STSP

MC-MaxATSP works of course also for undirected graphs, for which it achieves
an approximation ratio of 1

k+1 − ε. But we can do better for undirected graphs.
Our algorithm MC-MaxSTSP for undirected graphs (Algorithm 4) starts by

computing an approximate Pareto curve of cycle covers just as MC-MaxATSP
did. Then we consider each cycle cover C separately. If C consists solely of light-
weight edges, then we can decompose C using Decompose. If C contains one
or more heavy-weight edges, then some more work has to be done than in the
case of directed graphs. The reason is that we cannot simply contract paths –
this would make the new graph G′ (and the edge weights w′) asymmetric.

So assume that a cycle cover C ∈ C contains a heavy-weight edge e = {u, v}.
Let i ∈ [k] be such that wi(e) ≥ wi(C)/k. In a first attempt, we remove the ith
objective to obtain w′. Then we set w′(f) = 0 for all edges f incident to u or
v. We recurse with k − 1 objectives on G with edge weights w′. This yields a



PTSP ←MC-MaxSTSP(G, w, k, ε)
input: undirected complete graph G = (V, E), k ≥ 2, edge weights w : E → Nk, ε > 0
output: approximate Pareto curve PTSP for k-criteria Max-TSP
1: compute a (1− ε) approximate Pareto curve C of cycle covers
2: PTSP ← ∅
3: if k = 2 then
4: for all C ∈ C do
5: P ← Decompose(C, w, k)
6: add edges to P to form a Hamiltonian cycle H; add H to PTSP

7: else
8: for all cycle covers C ∈ C do
9: if w(e) ≤ w(C)/k for edges e ∈ C then

10: P ← Decompose(C, w, k)
11: add edges to P to form a Hamiltonian cycle H; add H to PTSP

12: else
13: let i ∈ [k] and e = {u, v} ∈ C with wi(e) > wi(C)/k
14: for all ` ∈ {0, . . . , 4k}, distinct x1, . . . , x` ∈ V \ {u, v}, and k ∈ [k] do
15: U ← {x1, . . . , x`, u, v}
16: obtain w′ from w by removing the jth objective
17: set w′(f) = 0 for all edges f incident to U
18: PU,j

TSP ←MC-MaxSTSP(G, w′, k − 1, ε)
19: for all H ∈ PU,j

TSP do
20: remove all edges f from H with f ⊆ U to obtain H ′

21: for all HU such that H ′ ∪HU is a Hamiltonian cycle do
22: add H ′ ∪HU to PTSP

Algorithm 4: Approximation algorithm for k-criteria Max-STSP.

tour H ′ on G. Now we remove all edges incident to u or v of H ′ and add new
edges including e. In this way, we get enough weight with respect to objective
i. Unfortunately, there is a problem if there is an objective j and an edge f
incident to u or v such that f contains almost all weight with respect to wj : We
cannot guarantee that this edge f is included in H without further modifying
H ′. To cope with this problem, we do the following: In addition to u and v, we
set the weight of all edges incident to the other vertex of f to 0. Then we recurse.
Unfortunately, there may be another objective j′ that now causes problems. To
solve the whole problem, we iterate over all ` = 0, . . . , 4k and over all additional
vertices x1, . . . , x` 6= u, v. Let U = {x1, . . . , x`, u, v}. We remove one objective
i ∈ [k] to obtain w′, set the weight of all edges incident to U to 0, and recurse
with k − 1 objectives. Although the time needed to do this is exponential in k,
we maintain polynomial running-time for fixed k.

As in the case of directed graphs, we can make the success probability of
every randomized computation small enough to maintain a success probability
of at least 1/2.

The base case is now k = 2: In this case, every cycle cover possesses a 1/2
decomposition, and we do not have to care about heavy-weight edges. Overall,
we obtain the following result.



Theorem 4. MC-MaxSTSP is a randomized 1
k − ε approximation for multi-

criteria Max-STSP. Its running-time is polynomial in the input size and 1/ε.

5 Remarks

The analysis of the approximation ratios of our algorithms is essentially optimal:
Our approach can at best lead to approximation ratios of 1

k+c for some c ∈ Z. The
reason is as follows: Assume that (k−1)-criteria Max-TSP can be approximated
with a factor of τk. If we have a k-criteria instance, we have to set the threshold
for heavy-weight edges somewhere. Assume for the moment that this threshold
αk be arbitrary. Then the ratio for k-criteria Max-TSP is min{αk, (1 − αk) ·
τk−1}. Choosing αk = τk−1

τk−1+1 maximizes this ratio. Thus, if τk−1 = 1/T for
some T , then τk ≤ τk−1

τk−1+1 = 1
T+1 . We conclude that the denominator of the

approximation ratio increases by at least 1 if we go from k − 1 to k.
For undirected graphs, we have obtained a ratio of roughly 1/k, which is

optimal since αu
2 = 1/2 implies c ≥ 0. Similarly, for directed graphs, we have a

ratio of 1
k+1 , which is also optimal since αd

2 = 1/3 implies c ≥ 1.
Due to the existence of Ω(1/ log k)-decompositions, we conjecture that both

k-criteria Max-STSP and k-criteria Max-ATSP can in fact be approximated with
factors of Ω(1/ log k). This, however, requires a different approach or at least a
new technique for heavy-weight edges.
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