Computing Cycle Coverswithout Short Cycles

Markus Blaser and Bodo Siebert

Institut fur Theoretische Informatik, Med. Universitat Libeck
WallstraRe 40, 23560 Lubeck, Germany
bl aeser/ si ebert @cs. nu-| uebeck. de

Abstract. A cycle cover of a graph is a spanning subgraph where eachisode
part of exactly one simple cycle. A-cycle cover is a cycle cover where each
cycle has length at leagt We call the decision problems whether a directed or
undirected graph has facycle coverk-DCC andk-UCC. Given a graph with
edge weights one and two, MinrDCC and Mink-UCC are the minimization
problems of finding &-cycle cover with minimum weight.

We present factod/3 approximation algorithms for Mik-DCC with running
time O(n®/?) (independent of). Specifically, we obtain a factdy/3 approxima-
tion algorithm for the asymmetric travelling salespersoobfem with distances
one and two and a fact@y'3 approximation algorithm for the directed path pack-
ing problem with the same running time. On the other hand,heevghatk-DCC

is N'"P-complete fork > 3 and that Mink-DCC has no PTAS fok > 4, unless

P =NP.

Furthermore, we design a polynomial time factg6é approximation algorithm
for Min-k-UCC. As a lower bound, we prove that Mk¥JCC has no PTAS for

k > 12, unlessP = N'P.

1 Introduction

A cycle cover of an either directed or undirected gr&plis a spanning subgrapti
where each node @ is part of exactly one simple cycle 6f. Computing cycle covers
is an important task in graph theory, see for instance Loaad Plummer [14], Graham
et al. [7], and the vast literature cited there.

A k-restricted cycle cover (ok-cycle cover for short) is a cycle cover in which
each cycle has length at ledstTo be specific, we call the decision problems whether
a graph has &-cycle coverk-DCC, if the graph is directed, arildUCC, if the graph
is undirected. Sincé&-DCC andk-UCC are N'P-complete fork > 3 andk > 6,
respectively, we also consider the following relaxatioseg a complete loopless graph
with edge weights one and two, findkacycle cover of minimum weight. Note that a
graphG = (V, E) has ak-cycle cover if the corresponding weighted graph has a
cycle cover of weightV|, where edges get weight one and “nonedges” get weight
two in the corresponding complete graph. We call these problMin4-DCC and
Min-%-UCC. They stand in one-to-one correspondence with silyiéetors as defined
by Hartvigsen [9]. A simple-factor is a spanning subgraph that contains only node-
disjoint paths and cycles of length at leas{The paths arise from deleting the weight
two edges from the cycles.)

* supported by DFG research grant Re 672/3

9th Ann. European Symposium on Algorithms (ESA 2001F) Springer

As our main contribution, we devise approximation algarighfor finding minimum
weightk-cycle covers in graphs with weights one and two. Moreoverpvovide lower
bounds in terms of\"P-completeness and nonapproximability, thus determinlireg t
computational complexity of these problems for almostall

1.1 Previousresults

The problemg-DCC and Min2-DCC of finding a (minimum2-cycle cover in directed
graphs can be solved in polynomial time by reduction to tpatite matching problem.
To our knowledge, nothing is known for valuks> 3.

The problen8-UCC of finding a3-cycle cover in undirected graphs can be solved in
polynomial time using Tutte’s reduction [18] to the classiperfect matching problem
in undirected graphs which can be solved in polynomial tisee(Edmonds [4]). Also
Min-3-UCC can be solved in polynomial time. Hartvigsen [8] hasigiesd a power-
ful polynomial time algorithm for-UCC. This algorithm works for Mink-UCC, too.
He has also presented a polynomial time algorithm that coaspa minimum weight
5-cycle cover in graphs where the weight one edges form atitpgraph [9]. On the
other hand, Cornuéjols and Pulleyblank [3] have repored Papadimitriou showed
the A"P-completeness df-UCC fork > 6.

Let n be the number of nodes of a graph= (V, E). Fork > n/2 the problem
Min-£-DCC is the asymmetric and Mih-UCC is the symmetric travelling salesperson
problem with distances one and two. These problemsig?d’-complete [17]. For ex-
plicit lower bounds, see Engebretsen and Karpinski [5]. Bést upper bound for the
symmetric case is due to Papadimitriou and Yannakakis [fdy give a factof7/6
approximation algorithm running in polynomial time. Foetasymmetric case, Vish-
wanathan [19] presents a polynomial time fact@y 12 approximation algorithm. Ex-
ploiting an algorithm by Kosaraju, Park, and Stein [12] foe asymmetric maximum
travelling salesperson problem, one obtains an approiamaigorithm with perfor-
mance rati’38/63 ~ 1.397 by replacing weights two with weights zero.

Closely related to the travelling salesperson problemk distances one and two
is the node-disjoint path packing problem. This problemva®us applications, such
as mapping parallel programs to parallel architecturesagiunization of code, see
e.g. Vishwanathan [19] and the pointers provided there. Y¥egi&ven a directed or
undirected graph. Our goal is to find a spanning subgfpbnsisting of node-disjoint
paths such that the number of edgesSiris maximized. Utilizing the algorithms of
Papadimiriou and Yannakakis [17] and of Kosaraju, Park, &iih [12], one obtains
a polynomial time factob /6 approximation algorithm for the undirected problem and
a polynomial time approximation algorithm with performanetio38/63 ~ 0.603 for
the directed problem.

1.2 Our results

We present factod/3 approximation algorithms for Mik-DCC with running time
O(n®/?) (independent of). Specifically, we obtain a factet/3 approximation algo-
rithm for the asymmetric travelling salesperson problerthwiistances one and two
and a factor2/3 approximation algorithm for the directed node-disjointtppacking

Input: a complete loopless directed gra@hwith edge weights one and two,
an integerk > 3.
Output: ak-cycle cover ofG.

Compute a minimum weigttcycle coverC of G.
Form the bipartite grapB and compute the functiof'.
Compute a decomposition éfas in Lemma 2

Patch the cycles af' together acccording to the refined patching procedure.

N

Fig. 1. The algorithm for directed cycle covers.

problem with the same running time, thus improving the rssof Vishwanathan and
Kosaraju, Park, and Stein. On the other hand, we show:HsEC is \P-complete for
k > 3 and that Mink-DCC does not have a PTAS far> 4, unlessP = N'P. For the
undirected case, we design fac@i6 approximation algorithms for Mik-UCC with
polynomial running time (independentgy. It includes the algorithm of Papadimitriou
and Yannakakis as a special case. As a lower bound, we pratwttre is no PTAS for
Min-k-UCC fork > 12, unlessP = N'P.

2 Approximation algorithmsfor directed cycle covers

In this section, we present approximation algorithms fon¥iDCC with performance
ratio 4/3 for anyk > 3 running in timeO(n%/?) (independent o). Particularly, we
obtain a factord /3 approximation algorithm for the asymmetric travellingesgderson
problem with distances one and two by choosing n/2.

Our input consists of a complete loopless directed gr@phith node setl of
cardinality n, a weight functionw that assigns each edge &f weight one or two,
and an integek > 3. Our aim is to find a-cycle cover of minimum weight. For the
analysis, we assume that a minimum weightycle cover ofG has weightn + ¢ for
somel < ¢ < n. In other words, a minimum weiglit-cycle cover consists of — ¢
edges of weight one antkedges of weight two.

Figure 1 gives an overview of our algorithm. A detailed exgléon of each of the
steps is given in the subsequent paragraphs.

Computing a 2-cycle coveiVe first compute an optima&-cycle coverC of G. This

can be done in polynomial time. Assume that this c@veonsists of cycles, ..., c,.
We denote the sdficy, ..., ¢} by C. The lengths of some of these cycles may already

be k or larger, but some cycles, say, ..., cs for s < r, have length strictly less than
k. The basic idea of our algorithmis to usgcle patchindalso called subtour patching
when considering travelling salesperson problems, seddrat al. [13]). A straight
forward way is to discard one edge (if possible of weight tabgach cycle of length
strictly less thark and patch the resulting paths arbitrarily together to @btaie long
cycle. An easy analysis shows that this yields a fa8j@ approximation. We obtain
the4/3 approximation by refining the patching procedure.

Auxiliary edges.For the refined patching procedure, we form a bipartite grapdes
follows: we have the node sét = {cy,...,cs} on the one side and on the other.
Thereis an edgé, v) in B iff v does not belong to the cycteand there is a nodein
¢ such thai(u, v) has weight one 6.

Lemma 1. B has a matching of cardinality at least— /.

Proof. Consider an optimat-cycle coverC,. of G. Since the length of the cycles in
C= are strictly less thar, for each cycle: in C< there is an edgéu, v) of Cqp, Such
thatu belongs ta- butv does not. Fix such an edge for each cycl€in At leasts — ¢
of these edges have weight one, thus appe&r amd form a matching. a

Decomposition of functiondMe compute a maximum matchidg in B. From M we
obtain a directed graph’ = (C, A) with (¢,¢/) € A whenever(c,u) is an edge of
M andu is a node of’. Each node of has outdegree at most one, thidslefines a
partial functionC — C whose domain is a subset@f. By abuse of notation, we call
this function agairf'. By the construction oB, we haveF'(c) # cforallc e C,i.e. F
does not contain any loops.

Lemma 2. Any loopless partial functiort” has a spanning subgrapl consisting
solely of node-disjoint trees of depth one, paths of length &ind isolated nodes such
that any node in the domain &fis not an isolated node &f. Such a spanning subgraph
S can be found in polynomial time.

Proof. Every weakly connected componentBfis either a cycle possibly with some
trees converging into it, a tree (whose rea$ not contained in the domain &f), or an
isolated node (which is also not contained in the domaifRofit suffices to prove the
lemma for each weakly connected componenk'of
The case where a component is a cycle with some trees congango it follows
from Papadimitriou and Yannakakis [17, Lem. 2]. In this ¢caseisolated nodes arise.
In the case of a tree, we take a leaf that has maximum distaoicethe root-. Let
s be the successor of that leaf.slequals-, then the component considered is a tree of
depth one and we are done. Otherwise, we build a tree of heightvith roots and all
predecessors afas leaves, remove this tree, and proceed inductively. Weupvth
a collection of node disjoint trees of height one and pogsibk isolated node, the root
r of the component. Sineeis not contained in the domain &f, this case is completed.
If a node is isolated, then this node is not contained in thmalo of F', becausé”
is loopless. Again, we are done.
This decomposition can be computed in polynomial time. a

A refined patching procedureNe compute a decomposition of the directed graph
according to Lemma 2. Isolated nodes of this decompositisrespond to elements
of C not in the domain of, i.e. either cycles of length at leasior unmatched cycles
from C<. The former ones, call thed, fulfil the requirements of &-cycle cover,
thus we can ignore them in the subsequent considerationdeYeae the latter ones by
Cs,- The cycles irCS, have length strictly less than We merge those cycles to one

iso*

long cycled, breaking an edge of weight two whenever possible.

Fig. 2. Trees of height one

e f
OO0~

Fig. 3. Paths of length two

Next, we consider the trees of height one. kdbe the root of such a tree and
Ciry---s G, € C<\ Cs, be its leaves. For each cyatg , there is an edge from;,
to a nodev,, of c. By construction, these nodes, . .., v,, are pairwise distinct. We
mergec;, andc as depicted in Fig. 2. We call this new cycle agaand incorporate the
remaining cycles;,, . .., ¢;,, in the same fashion. (The noden Fig. 2 may be some
v, but this does not matter.) After that we mekgeith d. In ¢, we break one of the
edges drawn dashed in Fig. 2.dnwe discard an edge that does not belong to a cycle
inCs,, i.e. has been added during the merging process. We caiiehisycle agair.

Finally, we consider the paths of length two. The three c/ctaresponding to such
a path are merged as shown in Fig. 3. (The end node of thee«dge the start node
of edgef may coincide. Moreover, the two removed edges of the cyctaémmiddle
may coincide. In the latter case, we only incur weight onéiad of weight two.) The
resulting cycle will be merged witli as described above in the case of a tree.

At the end of this procedure, we are left with the cyéland the cycles ircﬁifo. If
the cycled still has length stricly less thaky, we break one cyclé € Cifo and merge
it with d. The resulting cycle has length at leastf possible, we choosksuch thab
contains an edge of weight two and break this edge.

Analysis. The algorithm runs in polynomial time. On a unit-cost RAM {fwall used
numbers bounded by a polynomial), the 2—cycle cover and the bipartite match-
ing can be computed in tim@(n°/2), see e.g. Papadimitriou and Steiglitz [15]. The
decomposition ofF" and the cycle patching can be done in ti@én?) in a straight
forward manner. Thus, the overall running timeﬂénf’/?).

We proceed with estimating the approximation performance.

Lemma 3. For n > 12, the k-cycle cover produced by the algorithm has weight no
worse thant/3 times the weight of an optiméatcycle cover.

Proof. Let C,p,¢ be an optimak-cycle cover ofGG. SinceC,,p is also a2-cycle cover of
G, we havew(C) < w(Copt) = n + £. The cost of the:-cycle cover produced by the
algorithm isw(C) plus the extra costs due to the mergings.

First, when merging the cycles @t
one for eachr € C5,.

Next, we consider the merging as shown in Fig. 2. We chargedbts tov,, and
the nodes ot,,. These are at least three nodes. Since the edgehafs weight one, the
cost of this merging is at most/3 per node involved. The merging ofwith d is free
of costs, since we only break edges we have already paid fenddrmingc andd.

In the case depicted in Fig. 3, we charge the costs of the ngetgithe nodes of the
three cycles. These are at least six nodes. Altogetheroteof this merging is again
at mostl /3 per node involved. As above, the merging witfs free of costs.

It is clear that each node is only charged once this way. Fontbment, assume
that the cyclel has length at least, thus an additional merging is not needed. het
be the total number of nodes contained in the cycles #£gm The weightw(Cy,x) of
the k-cycle coverC, . produced by the algorithm is at most

to form the cycled, we incur an extra cost of

w(Capx) <N+ L+ 3(n —n2) + [CS, |- (1)

We haven, > 2-|C5, | and, by Lemma 1iC5, | < £. Hencew(Capx) < 3(n + £).

If d has length strictly less thdn then one additional merging is needed. This yields
an approximation ratio of/3 + € for anye > 0. We can get rid of the by refining the
analysis as follows. Either the merging process efcfo andd is free of costs, sinck
contains an edge of weight two, or all cycleﬁ‘ﬁO consist solely of weight one edges.
SincecifO is nonempty, these are at leagt2 edges. The cyclé contains at least half of

the original edges of the merged cycles. Hed@and the cycles ilti'ifO contain at least

a fraction of3/4 of the edges of the-cycle coverC. Thus, after the last merging step,
we have a cycle cover of weight at masn + ¢) + 1 < 3(n + ¢) forn > 12. O

Theorem 1. There is a factort/3 approximation algorithm foMin-%£-DCC running
in time O(n°/?) for anyk > 3. O

Corollary 1. There is a factod /3 approximation algorithm for the asymmetric travel-
ling salesperson problem with distances one and two runimitigne O (n°/2). O

Corollary 2. There is a factoR/3 approximation algorithm for the node-disjoint path
packing problem in directed graphs running in tifén>/2).

Proof. We transform a given directed graphinto a complete loopless directed graph
H with edge weights one and two by assigning edges afeight one and “nonedges”
weight two. The details are spelled out by Vishwanathan §et. 2]. a

3 Approximation algorithmsfor undirected cycle covers

We outline factof7/6 approximation algorithms for Mirk-UCC for anyk > 5. In par-
ticular, we recover the factat/6 approximation algorithm for the symmetric travelling
salesperson problem with distances one and two of Papdim#éind Yannakakis [17,
Thm. 2] by choosing: > n/2. The algorithm is quite similar to the directed case, so
we confine ourselves to pointing out the differences.

Computing an optimal-cycle cover. Instead of starting with a minimum weighbt

cycle cover, we exploit Hartvigsen’s polynomial time aligfom [8] for computing a
minimum weight4-cycle coverC'. This gives us the inequality, > 4 - |C,| (instead
of ng > 2 |Cs, | in the directed case).

Auxiliary edges. A little more care is necessary when collecting auxiliargesl via
the matching inB, since for each weight two edge, we may now only spend an extra
amount ofl /6 instead ofl /3. We normalize the computedcycle coverC as follows:
first we may assume that there is only one cyaléth weight two edges, since we may
merge two such cycles without any costs. Second, we may asthatfor each weight
two edge{u, v} of ¢ there is no weight one edde, «} in G for some noder of a
different cycle, because otherwise we may merge this cyitleiat no costs. We now
may bound the number of nodes for which we have to charge ea$ts ofl /6 in (1)
by n — no — £ instead ofn — ns. This is due to the fact that ifis the root of a tree of
height one according to the decomposition of Lemma 2, théeaat/ nodes oft are
unmatched because of the second above mentioned propertjladgether, the total
weight isw(Capx) < Zn+ 20+ $|C5,| < E(n+0).

Decomposition of functionsThe decomposition according to Lemma 2 works without
any changes in the undirected case.

A refined patching proceduredere we use the patching procedure as devised by Pa-
padimitriou and Yannakakis [17, Fig. 2], which is only sditer the undirected case.
Together with the fact that each involved circle has at léast nodes (instead of two

in the directed case) we obtain lower the merging costs 6fper node.

Applying the above mentioned modifications to our algorifiemthe directed case,
we get the following theorem.

Theorem 2. Foranyk > 5, there is a polynomial time factdi/6 approximation algo-
rithm for Min-k-UCC. a

4 L ower bounds

41 NP-completenessof 3-DCC

To show theNP-completeness 03-DCC we will reduce 3-Dimensional Matching
(3DM) to this problem. Consider a hypergrafin= (W, X) with W = Wy UTW; U W,
and X C Wy x Wy x Ws. The setdly, Wy, Wy are disjoint and of the same size,
Wy, = {wh,...,wk}. 3DM is the question whether there exists a subge€ X such
that each element d/ appears in exactly one element®f (perfect 3-dimensional
matching). 3DM is known to b&/P-complete (Garey, Johnson [6]).

We constructa grapfi = (V, F) such thatz has a 3-cycle cover ifff has a perfect
3-dimensional matching. Lét* = (Wy x W1) U (Wi x Wa) U (W x Wy). For
k=0,1,2andj =1,...,nletUf = {uf[i,q] [i=1,...,n—1 A ¢=1,2,3} bea
set ofhelper nodeor w*. The set of node¥ is given byl = V¥ U (Ui Ui, UF)-

i) g ()

ué‘ [¢,3] (’wf, wé‘jll)

Fig. 4. The subgraph connectir@}, w; *") and (w¥, w; ') via three helper nodes.

For each edgéw?, wi,w?) € X we construct three edgééw?, w}), (wi, w?)),
(wi,w?), (w2w?)), (w2, wl), (w?,w})) € E connecting the corresponding ele-
ments ofV *. Furthermore, two nodego®, w* ™ ™°* *) and (w#, w{t 1" ™" ?) are
connected via helper nodes as shown in Fig. 4. In the follgwia writek + 1 instead
of (k + 1) mod 3 for short.

We divide the set’* into subsetd * = {(w¥,w;™) [£=1,...,n}. The subset
I'f contains the nodes that represefjt

Assume that? has a3-cycle coverC. We call a helper nodef [¢,2] and a node of
V= co;riplanionﬁ theykﬂe part of the same cycle @. Due to the construction either

(wh,w;™) or (wh,wgf) is the only companion of/%[¢,2]. Hence, the following

lemma holds.
Lemma 4. Assumé= has a3-cycle coverG. For anwa € V exactlyn — 1 of then
nodes inF;‘”’ have a companion. a

We say that the only nod@w®,w;*') € I'F that has no companioparticipates

for w;‘” Now we are prepared to prove th&P-completeness df-DCC.
Theorem 3. 3-DCCis N'P-complete.

Proof. Given a hypergrapl/ we construct a grapy’ as described above.
AssumeH has a 3-dimensional matching’ C X. ThenG has the following
3-cycle cover. For anyw?, w}, w?) € X' let (wd, w}), (wi,w?), and (w?, w?) par-
ticipate forw?, w}, andw?. These three nodes form a cycle of lengthet (w”, w; ™)
be the node that participates fof . Then for¢’ < ¢ the nodes:*[¢’, 2] and (w¥, wj)

and for¢’ > ¢ the nodes:?[¢' — 1,2] and (w”, wy ") are companions. Thus, féf < ¢
the nodeqw”, w;™) andu®[¢’, q] (¢ = 1,2,3) and for¢’ > ¢ the nodeqw’, wy;™)
anduf [(' —1,q] (¢ = 1,2,3) form cycles each of length. Thus all nodes o7 are
covered by a cycle of length at least

On the other hand assume tlfahas a3-cycle coverC. Due to Lemma 4 we only
have to take care for the participating node¥in. The participating nodes form cycles
whose lengths are multiples 8fWe cut all the edges fro; x W5 to Ws x Wy. The
remaining paths of lengths two yield a 3-dimensional matgtior H .

Noting that3-DCC is in NP completes the proof. a

By replacing the nodes df * by paths and extending the helper node constructions
we obtain the following generalization.

Theorem 4. The problenk-DCCis A'P-complete for any: > 3. O

@ i

® ., © .
out Vil in
i~ : N 0,2 ~__ 1 N ~__ : \

in-"" Vi3 V2 “~rout

i3 i3
Fig.5. The clause gadgef; if ¢; consists of (a) three, (b) two, or (c) one literal. The dashed
dotted, and dash-dotted edges correspond to the first,demod third literal of:;, respectively.

4.2 Nonapproximability of Min-4-DCC

In this section we show that Mid-DCC does not have a polynomial time approxima-
tion scheme (PTAS, see e.g. Ausiello et al. [2]), unl&s8 = P. For this purpose we
reduce Max-3SAT(3) to this problem. An instance of Max-3$2\& setF’ of disjunctive
clauses where each clause consists of at most three litstaks3SAT is the problem of
finding the maximum number of simultaneously satisfiablasts. Max-3SAT(3) is the
restricted version where each variable occurs at most thmes in . We may assume
that each variable occurs at least once positive and atdeastnegative. Otherwise, we
can eliminate this variable by setting it to the appropniatiee. In particular, each vari-
able occurs twice or three times. Papadimitriou and Yankiaka6] have shown that
Max-3SAT(3) is MAX SN P-complete. They have presented a reduction from Max-
3SAT to Max-3SAT(3) using so called regular expanders (sgeAgtai [1]). A setF’

of clauses will be called-satisfiable iffr - | F'| is the maximum number of satisfiable
clauses inF". Hastad [10] has proven that itA§7P-hard to distinguish- and(7/8 +¢)-
satisfiable instances of Max-3SAT for aay> 0. The reduction of Papadimitriou and
Yannakakis and the result of Hastad yield the followinghean

Lemma5. There exists a constait< 1 such that it is\VP-hard to distinguish - and
A-satisfiable instances dflax-3SAT(3) a

We reduce Max-3SAT(3) to Min-DCC. For this purpose, |eF = {c1,...,c:}
be a set of disjunctive clauses over varialiles- {1, ..., }. We construct a graph
G = (V, E). For each variable;; we have one node; € V. These nodes will be
calledvariable nodesFor each clause; we have three nodes ;,v;2,v;3 € V. Let
Vi = {wvi1,vi2,v;3} be the set of these nodes.

In the following we describe how the nodes @Gfare connected via edges with
weight one. All other edges have weight two. The nodds iare connected via a cycle
as shown in Fig. 5. The subgraph inducedWgywill be called theclause gadgeG;.
The clause gadgets and the variable nodes are connectdbbas f&Each variable node
u; has two incoming and two outgoing edg%g, e?_"{ﬁ representing the literal;, and

;‘L e?}‘j representing; as depicted in Fig. 6a. lf; is the first clause where the literal
x; appears in, then the edge"! is identical with eitherf}";, f%, or /% depending

on wherex; occurs ing;. If a literal occurs in more than one clause then one of the
outgoing edges of the first gadget and one of the incomingsedibthe second gadget
are identical according to where the literal appears indt#auses. If; is the last
clause where the literal; appears in, then the edg’g‘+ is identical with either, i‘j‘ft,

e

(a) equt eip (b)

3= 3= - \Cﬂ
Ui
ein J emlt CQA
Jit+ Jit+

fu AQ

Fig. 6. (a) The edges starting and ending:at (b) Example:x; is the first literal in bothr; and
co, andz; is the second literal ins.

25t, or f23' depending on where; occurs inc;. The clauses which contairy are
connected in a similar fashion. An example is shown in Figlre
LetC = (V, E¢) be a cycle cover ofi. We introduce a weightc (f/) for subsets
V C V of nodes. For a single nodec V the weightvc ({z}) of z with respect to the
cycle coverC' is half of the weight of its incoming edge plus half of the wWdigf its
outgoing edge. Fo¥ C V we haveve (V) = 3 ve ({2}). Thenve (V) = w(0).
Let an assignment for the variabl&sbe given that satisfies of thet clauses of
F'. We construct al-cycle coverC with weightw(C) = r + 4 - t — k as follows. If
z; = true thenel’, e € E¢, otherwiseel” , e e Eg. If the j-th literal of

T T+ Jr—
¢; is true then fi, ;?;t € E¢. For any satisfied clausg add some of the edges

(vi,1,vi2), (vi2,vi3), and (v 3,v;,1) if necessary. The clauses that are not satisfied
are connected in one big cycle. This yields weiglpier unsatisfied clause. Every node
in C has indegreé and outdegreé. HenceC' is a cycle cover. If a clausg is satisfied
by only one literal, then the cycle passifig contains two edges withi§; and both one
incoming and one outgoing edge. If a clause is satisfied byerti@n one literal, then
the cycle passes at least two variable nodes. Thus, theneltaycle cover is d-cycle
cover. The case in which only one clause is not satisfied baskignment is a special
one since then we cannot form one big loop of the unsatisfeaasels. But this case is
negligible for sufficiently large instances of Max-3SAT(8)nce we are interested in
approximability.

For the other direction consider4acycle coverC of G and a clause gadgét;
with ve (%) = 3. Such a gadget will be callesiitisfying Any clause gadget that is not
satisfying yields weight at leagy/2. It holds thatG; is satisfying iff all edges that start
or end inG; have weight one. Since all cycles must have at least lehgté have the
following lemma.

Lemma®6. LetC = (V, E-) be an arbitrary4-cycle cover of7 andG, be a satisfying
clause gadget ii'. Then the following properties hold:

1. Atleast two of the edges’, /1", ..., 74" arein Ec.

7,1

2. Forj=1,2,3 fheE & fMekF. o

A satisfying clause gadgé€t; yields a partial assignment for the variables:pfif
jf‘j, ;jyt € E' then thej-th literal of ¢; is settrue and the corresponding variable is
assigned an appropriate value, otherwise we do not assiglua o this literal. Due to
Lemma 6 the obtained partial assignment satigfies
By considering all satisfying clause gadgets we step byabéqin a partial assign-

ment that satisfies at least those clauses whose gadgetstiafgiisg. The following

lemma assures that the obtained partial assignment isstensii.e. we never have to
assign bothitrue andfalse to one variable.

Lemma 7. LetC be an arbitrary4-cycle cover of7. There are no two satisfying clause
gadgets; and G and a variabler; such thatz; has to be assigned different values
according to these clause gadgets. a

Proof. If z; has to be assigned different values thgroccurs positive ir; and nega-
tive in ¢;» or vice versa. We only consider the first case. By symmetrycaverestrict
ourselves to the case where the litetaloccurs exactly once if" and thatz; is the
first variable in both clauses. According @ the literalz; has to be assignetkrue.
Sincec; is the only clause that contaif, the two edges)’ = [ande™ = i
belong toE¢. On the other hand;}* and f}} belong toE. Sincez; occurs at most
twice positive inF” at least one of the edgeg$}* and f} connectsV; to u;. Thus,u;
has indegree at leagtor outdegree at least a contradiction. O

Each variable node yields at least weightEach satisfying clause gadget yields
weight3. All other clause gadgets yield at least weigi2.

The following theorem proves that a constant- 1 exists such that Min-DCC
cannot be approximated in polynomial time with performarati® £, unless\P = P.
Thus, Min4-DCC does not have a PTAS, unles§$® = P.

Theorem 5. There exists a constat > 1 such that it isA/P-hard to distinguish
instancess = (V, E) of Min-4-DCC whose minimum cycle cover has weiglit and
instances whose minimum cycle cover has at least wé€ighf]|.

Proof. Due to the reduction described above,-gatisfiable instance of Max-3SAT(3)
yields a graph which has 4cycle cover with weightV| = » + 3 - t. On the other
hand, everyi-cycle cover of a graph corresponding to\a&atisfiable instance has at
least weight+3-X-t+(7/2)- (1 —\)-t = K. Since every clause consists of at most
three literals and every variable appears at least twiceave#yt < 3/2. Therefore,
the following inequality holds:
K > (3/2+3- XA+ (7/2)-(1—=N) ¢t _10-2A P

r+3-t (3/2+3)-t 9
Thus, deciding whether the minimudacycle cover of a graph has weigfit| or at
least weight - |V is at least as hard as distinguishihgand M-satisfiable instances of
Max-3SAT(3). This completes the proof due to Lemma 5. a

If we replace the variable nodes by paths of lengths4 we obtain the result that
Min-%-DCC does not have a PTAS for ahy> 4.

Theorem 6. Foranyk > 4 there exists a constagt > 1 such thaMin-k-DCCcannot
be approximated with performance ratjp, unless\'P = P. 0

We can transform a directed graph into an undirected grapbfdgcing each node
with three nodes (see e.g. Hopcroft and Ullman [11]). Apmdythis transformation to
the graph constructed in this section we obtain the follgwireorem.

Theorem 7. Min-k-UCCdoes not have a PTAS for aky> 12, unlessNP =P. O

5 Conclusionsand open problems

We have presented factdy3 and7/6 approximation algorithms for Mik-DCC and
Min-k-UCC, respectively, with polynomial running time (indeplemt of k). On the
other hand, we have shown thaDCC is A'P-complete fork > 3 and Min%-DCC
does not possess a PTAS flor> 4, unlessN’P = P. The status of Mi3-DCC is
open. We strongly conjecture that this problem also has #&PlinlessAP = P. In
the undirected case, Papadimitriou has shaWi-hardness ok-UCC fork > 6. The
complexity of5-UCC and the approximability of Mik-UCC for5 < k < 11 remains
open.

References

1. M. Ajtai. Recursive construction for 3-regular exparsdeCombinatorica 14(4):379-416,
1994.
2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Martikgpaccamela, and M. Protasi.
Complexity and ApproximatiorSpringer, 1999.
3. G. Cornuégjols and W. Pulleyblank. A matching problemhwside constraints.Discrete
Math., 29:135-159, 1980.
. J. Edmonds. Paths, trees, and flow€ranad. J. Math.17:449-467, 1965.
. L. Engebretsen and M. Karpinski. Approximation hardn&fs§SP with bounded metrics.
Technical Report 00-089, Electronic Colloquium on Com@gdmplexity (ECCC), 2000.
6. M.R. Garey and D. S. Johnsd@omputers and Intractability: A Guide to NP-Completeness
W. H. Freeman and Company, 1979.
7. R.L. Graham, M. Grotschel, and L. Lovasz, editétandbook of Combinatoricsolume 1.
Elvsevier, 1995.
8. D. Hartvigsen An Extension of Matching Theorf?hD thesis, Carnegie-Mellon University,
1984.
9. D. Hartvigsen. The square-free 2-factor problem in hifgagraphs. Iri7th Int. Conf. on In-
teger Programming and Combinatorial Optimization (IPC@)lume 1620 of_ecture Notes
in Comput. Scj.pages 234—-241. Springer, 1999.
10. J. Hastad. Some optimal inapproximability resultsPtac. 29th Ann. Symp. on Theory of
Comput. (STOGpages 1-10. ACM, 1997.

(G208

11. J. E. Hopcroft and J. D. Ullmamntroduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.

12. S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and skperstrings. IfProc. 35th
Ann. Symp. on Foundations of Comput. Sci. (FQ@&yes 166—177. IEEE, 1994.

13. E.L.Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Bn®ys, editorsThe Traveling
Salesman ProblemWiley, 1985.

14. L. Lovasz and M. D. PlummeMatching Theory Elsevier, 1986.

15. C. Papadimitriou and K. SteiglitZombinatorial Optimization: Algorithms and Complexity
Prentice-Hall, 1982.

16. C. H. Papadimitriou and M. Yannakakis. Optimizationpragimation, and complexity
classesJ. Comput. System Scl3(3):425-440, 1991.

17. C. H. Papadimitriou and M. Yannakakis. The travelingsadan problem with distances one
and two.Math. Oper. Res18:1-11, 1993.

18. W. T. Tutte. A short proof of the factor theorem for finiteghs. Canad. J. Math.6:347—
352, 1954,

19. S. Vishwanathan. An approximation algorithm for thenasyetric travelling salesman prob-
lem with distances one and twtnform. Process. Lett44:297-302, 1992.

