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blaeser/siebert@tcs.mu-luebeck.de

Abstract. A cycle cover of a graph is a spanning subgraph where each nodeis
part of exactly one simple cycle. Ak-cycle cover is a cycle cover where each
cycle has length at leastk. We call the decision problems whether a directed or
undirected graph has ak-cycle coverk-DCC andk-UCC. Given a graph with
edge weights one and two, Min-k-DCC and Min-k-UCC are the minimization
problems of finding ak-cycle cover with minimum weight.
We present factor4/3 approximation algorithms for Min-k-DCC with running
timeO(n5/2) (independent ofk). Specifically, we obtain a factor4/3 approxima-
tion algorithm for the asymmetric travelling salesperson problem with distances
one and two and a factor2/3 approximation algorithm for the directed path pack-
ing problem with the same running time. On the other hand, we show thatk-DCC
is NP-complete fork ≥ 3 and that Min-k-DCC has no PTAS fork ≥ 4, unless
P = NP .
Furthermore, we design a polynomial time factor7/6 approximation algorithm
for Min-k-UCC. As a lower bound, we prove that Min-k-UCC has no PTAS for
k ≥ 12, unlessP = NP.

1 Introduction

A cycle cover of an either directed or undirected graphG is a spanning subgraphC
where each node ofG is part of exactly one simple cycle ofC. Computing cycle covers
is an important task in graph theory, see for instance Lovász and Plummer [14], Graham
et al. [7], and the vast literature cited there.

A k-restricted cycle cover (ork-cycle cover for short) is a cycle cover in which
each cycle has length at leastk. To be specific, we call the decision problems whether
a graph has ak-cycle coverk-DCC, if the graph is directed, andk-UCC, if the graph
is undirected. Sincek-DCC andk-UCC areNP-complete fork ≥ 3 and k ≥ 6,
respectively, we also consider the following relaxation: given a complete loopless graph
with edge weights one and two, find ak-cycle cover of minimum weight. Note that a
graphG = (V, E) has ak-cycle cover if the corresponding weighted graph has ak-
cycle cover of weight|V |, where edges get weight one and “nonedges” get weight
two in the corresponding complete graph. We call these problems Min-k-DCC and
Min-k-UCC. They stand in one-to-one correspondence with simple2-factors as defined
by Hartvigsen [9]. A simple2-factor is a spanning subgraph that contains only node-
disjoint paths and cycles of length at leastk. (The paths arise from deleting the weight
two edges from the cycles.)
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As our main contribution, we devise approximation algorithms for finding minimum
weightk-cycle covers in graphs with weights one and two. Moreover, we provide lower
bounds in terms ofNP-completeness and nonapproximability, thus determining the
computational complexity of these problems for almost allk.

1.1 Previous results

The problems2-DCC and Min-2-DCC of finding a (minimum)2-cycle cover in directed
graphs can be solved in polynomial time by reduction to the bipartite matching problem.
To our knowledge, nothing is known for valuesk ≥ 3.

The problem3-UCC of finding a3-cycle cover in undirected graphs can be solved in
polynomial time using Tutte’s reduction [18] to the classical perfect matching problem
in undirected graphs which can be solved in polynomial time (see Edmonds [4]). Also
Min-3-UCC can be solved in polynomial time. Hartvigsen [8] has designed a power-
ful polynomial time algorithm for4-UCC. This algorithm works for Min-4-UCC, too.
He has also presented a polynomial time algorithm that computes a minimum weight
5-cycle cover in graphs where the weight one edges form a bipartite graph [9]. On the
other hand, Cornuéjols and Pulleyblank [3] have reported that Papadimitriou showed
theNP-completeness ofk-UCC fork ≥ 6.

Let n be the number of nodes of a graphG = (V, E). For k > n/2 the problem
Min-k-DCC is the asymmetric and Min-k-UCC is the symmetric travelling salesperson
problem with distances one and two. These problems areAPX -complete [17]. For ex-
plicit lower bounds, see Engebretsen and Karpinski [5]. Thebest upper bound for the
symmetric case is due to Papadimitriou and Yannakakis [17].They give a factor7/6
approximation algorithm running in polynomial time. For the asymmetric case, Vish-
wanathan [19] presents a polynomial time factor17/12 approximation algorithm. Ex-
ploiting an algorithm by Kosaraju, Park, and Stein [12] for the asymmetric maximum
travelling salesperson problem, one obtains an approximation algorithm with perfor-
mance ratio88/63 ≈ 1.397 by replacing weights two with weights zero.

Closely related to the travelling salesperson problems with distances one and two
is the node-disjoint path packing problem. This problem hasvarious applications, such
as mapping parallel programs to parallel architectures andoptimization of code, see
e.g. Vishwanathan [19] and the pointers provided there. We are given a directed or
undirected graph. Our goal is to find a spanning subgraphS consisting of node-disjoint
paths such that the number of edges inS is maximized. Utilizing the algorithms of
Papadimiriou and Yannakakis [17] and of Kosaraju, Park, andStein [12], one obtains
a polynomial time factor5/6 approximation algorithm for the undirected problem and
a polynomial time approximation algorithm with performance ratio38/63 ≈ 0.603 for
the directed problem.

1.2 Our results

We present factor4/3 approximation algorithms for Min-k-DCC with running time
O(n5/2) (independent ofk). Specifically, we obtain a factor4/3 approximation algo-
rithm for the asymmetric travelling salesperson problem with distances one and two
and a factor2/3 approximation algorithm for the directed node-disjoint path packing



Input: a complete loopless directed graphG with edge weights one and two,
an integerk ≥ 3.

Output: ak-cycle cover ofG.

1. Compute a minimum weight2-cycle coverC of G.
2. Form the bipartite graphB and compute the functionF .
3. Compute a decomposition ofF as in Lemma 2
4. Patch the cycles ofC together acccording to the refined patching procedure.

Fig. 1. The algorithm for directed cycle covers.

problem with the same running time, thus improving the results of Vishwanathan and
Kosaraju, Park, and Stein. On the other hand, we show thatk-DCC isNP-complete for
k ≥ 3 and that Min-k-DCC does not have a PTAS fork ≥ 4, unlessP = NP . For the
undirected case, we design factor7/6 approximation algorithms for Min-k-UCC with
polynomial running time (independent ofk). It includes the algorithm of Papadimitriou
and Yannakakis as a special case. As a lower bound, we prove that there is no PTAS for
Min-k-UCC fork ≥ 12, unlessP = NP .

2 Approximation algorithms for directed cycle covers

In this section, we present approximation algorithms for Min-k-DCC with performance
ratio 4/3 for anyk ≥ 3 running in timeO(n5/2) (independent ofk). Particularly, we
obtain a factor4/3 approximation algorithm for the asymmetric travelling salesperson
problem with distances one and two by choosingk > n/2.

Our input consists of a complete loopless directed graphG with node setV of
cardinality n, a weight functionw that assigns each edge ofG weight one or two,
and an integerk ≥ 3. Our aim is to find ak-cycle cover of minimum weight. For the
analysis, we assume that a minimum weightk-cycle cover ofG has weightn + ℓ for
some0 ≤ ℓ ≤ n. In other words, a minimum weightk-cycle cover consists ofn − ℓ
edges of weight one andℓ edges of weight two.

Figure 1 gives an overview of our algorithm. A detailed explanation of each of the
steps is given in the subsequent paragraphs.

Computing a 2-cycle cover.We first compute an optimal2-cycle coverC of G. This
can be done in polynomial time. Assume that this coverC consists of cyclesc1, . . . , cr.
We denote the set{c1, . . . , cr} by C. The lengths of some of these cycles may already
bek or larger, but some cycles, sayc1, . . . , cs for s ≤ r, have length strictly less than
k. The basic idea of our algorithm is to usecycle patching(also called subtour patching
when considering travelling salesperson problems, see Lawler et al. [13]). A straight
forward way is to discard one edge (if possible of weight two)of each cycle of length
strictly less thank and patch the resulting paths arbitrarily together to obtain one long
cycle. An easy analysis shows that this yields a factor3/2 approximation. We obtain
the4/3 approximation by refining the patching procedure.



Auxiliary edges.For the refined patching procedure, we form a bipartite graphB as
follows: we have the node setC< = {c1, . . . , cs} on the one side andV on the other.
There is an edge(c, v) in B iff v does not belong to the cyclec and there is a nodeu in
c such that(u, v) has weight one inG.

Lemma 1. B has a matching of cardinality at leasts − ℓ.

Proof. Consider an optimalk-cycle coverCopt of G. Since the length of the cycles in
C< are strictly less thank, for each cyclec in C< there is an edge(u, v) of Copt such
thatu belongs toc butv does not. Fix such an edge for each cycle inC<. At leasts− ℓ
of these edges have weight one, thus appear inB and form a matching. ⊓⊔

Decomposition of functions.We compute a maximum matchingM in B. FromM we
obtain a directed graphF = (C, A) with (c, c′) ∈ A whenever(c, u) is an edge of
M andu is a node ofc′. Each node ofF has outdegree at most one, thusF defines a
partial functionC → C whose domain is a subset ofC<. By abuse of notation, we call
this function againF . By the construction ofB, we haveF (c) 6= c for all c ∈ C, i.e.F
does not contain any loops.

Lemma 2. Any loopless partial functionF has a spanning subgraphS consisting
solely of node-disjoint trees of depth one, paths of length two, and isolated nodes such
that any node in the domain ofF is not an isolated node ofS. Such a spanning subgraph
S can be found in polynomial time.

Proof. Every weakly connected component ofF is either a cycle possibly with some
trees converging into it, a tree (whose rootr is not contained in the domain ofF ), or an
isolated node (which is also not contained in the domain ofF ). It suffices to prove the
lemma for each weakly connected component ofF .

The case where a component is a cycle with some trees converging into it follows
from Papadimitriou and Yannakakis [17, Lem. 2]. In this case, no isolated nodes arise.

In the case of a tree, we take a leaf that has maximum distance from the rootr. Let
s be the successor of that leaf. Ifs equalsr, then the component considered is a tree of
depth one and we are done. Otherwise, we build a tree of heightone with roots and all
predecessors ofs as leaves, remove this tree, and proceed inductively. We endup with
a collection of node disjoint trees of height one and possibly one isolated node, the root
r of the component. Sincer is not contained in the domain ofF , this case is completed.

If a node is isolated, then this node is not contained in the domain ofF , becauseF
is loopless. Again, we are done.

This decomposition can be computed in polynomial time. ⊓⊔

A refined patching procedure.We compute a decomposition of the directed graphF
according to Lemma 2. Isolated nodes of this decomposition correspond to elements
of C not in the domain ofF , i.e. either cycles of length at leastk or unmatched cycles
from C<. The former ones, call themC≥

iso, fulfil the requirements of ak-cycle cover,
thus we can ignore them in the subsequent considerations. Wedenote the latter ones by
C<
iso. The cycles inC<

iso have length strictly less thank. We merge those cycles to one
long cycled, breaking an edge of weight two whenever possible.
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Fig. 3. Paths of length two

Next, we consider the trees of height one. Letc be the root of such a tree and
ci1 , . . . , cim

∈ C< \ C<
iso be its leaves. For each cycleciµ

, there is an edge fromciµ

to a nodevµ of c. By construction, these nodesv1, . . . , vm are pairwise distinct. We
mergeci1 andc as depicted in Fig. 2. We call this new cycle againc and incorporate the
remaining cyclesci2 , . . . , cim

in the same fashion. (The nodev in Fig. 2 may be some
vµ′ but this does not matter.) After that we mergec with d. In c, we break one of the
edges drawn dashed in Fig. 2. Ind, we discard an edge that does not belong to a cycle
in C<

iso, i.e. has been added during the merging process. We call thisnew cycle againd.
Finally, we consider the paths of length two. The three cycles corresponding to such

a path are merged as shown in Fig. 3. (The end node of the edgee and the start node
of edgef may coincide. Moreover, the two removed edges of the cycle inthe middle
may coincide. In the latter case, we only incur weight one instead of weight two.) The
resulting cycle will be merged withd as described above in the case of a tree.

At the end of this procedure, we are left with the cycled and the cycles inC≥
iso. If

the cycled still has length stricly less thank, we break one cycleb ∈ C≥
iso and merge

it with d. The resulting cycle has length at leastk. If possible, we chooseb such thatb
contains an edge of weight two and break this edge.

Analysis. The algorithm runs in polynomial time. On a unit-cost RAM (with all used
numbers bounded by a polynomial inn), the 2–cycle cover and the bipartite match-
ing can be computed in timeO(n5/2), see e.g. Papadimitriou and Steiglitz [15]. The
decomposition ofF and the cycle patching can be done in timeO(n2) in a straight
forward manner. Thus, the overall running time isO(n5/2).

We proceed with estimating the approximation performance.

Lemma 3. For n ≥ 12, thek-cycle cover produced by the algorithm has weight no
worse than4/3 times the weight of an optimalk-cycle cover.

Proof. Let Copt be an optimalk-cycle cover ofG. SinceCopt is also a2-cycle cover of
G, we havew(C) ≤ w(Copt) = n + ℓ. The cost of thek-cycle cover produced by the
algorithm isw(C) plus the extra costs due to the mergings.



First, when merging the cycles inC<
iso to form the cycled, we incur an extra cost of

one for eachc ∈ C<
iso.

Next, we consider the merging as shown in Fig. 2. We charge thecosts tovµ and
the nodes ofcµ. These are at least three nodes. Since the edge ofF has weight one, the
cost of this merging is at most1/3 per node involved. The merging ofc with d is free
of costs, since we only break edges we have already paid for when formingc andd.

In the case depicted in Fig. 3, we charge the costs of the merging to the nodes of the
three cycles. These are at least six nodes. Altogether, the cost of this merging is again
at most1/3 per node involved. As above, the merging withd is free of costs.

It is clear that each node is only charged once this way. For the moment, assume
that the cycled has length at leastk, thus an additional merging is not needed. Letn2

be the total number of nodes contained in the cycles fromC<
iso. The weightw(Capx) of

thek-cycle coverCapx produced by the algorithm is at most

w(Capx) ≤ n + ℓ + 1
3 (n − n2) + |C<

iso|. (1)

We haven2 ≥ 2 · |C<
iso| and, by Lemma 1,|C<

iso| ≤ ℓ. Hencew(Capx) ≤
4
3 (n + ℓ).

If d has length strictly less thank, then one additional merging is needed. This yields
an approximation ratio of4/3 + ǫ for anyǫ > 0. We can get rid of theǫ by refining the
analysis as follows. Either the merging process ofb ∈ C≥

iso andd is free of costs, sinceb
contains an edge of weight two, or all cycles inC≥

iso consist solely of weight one edges.
SinceC≥

iso is nonempty, these are at leastn/2 edges. The cycled contains at least half of
the original edges of the merged cycles. Henced and the cycles inC≥

iso contain at least
a fraction of3/4 of the edges of the2-cycle coverC. Thus, after the last merging step,
we have a cycle cover of weight at most5

4 (n + ℓ) + 1 ≤ 4
3 (n + ℓ) for n ≥ 12. ⊓⊔

Theorem 1. There is a factor4/3 approximation algorithm forMin-k-DCC running
in timeO(n5/2) for anyk ≥ 3. ⊓⊔

Corollary 1. There is a factor4/3 approximation algorithm for the asymmetric travel-
ling salesperson problem with distances one and two runningin timeO(n5/2). ⊓⊔

Corollary 2. There is a factor2/3 approximation algorithm for the node-disjoint path
packing problem in directed graphs running in timeO(n5/2).

Proof. We transform a given directed graphG into a complete loopless directed graph
H with edge weights one and two by assigning edges ofG weight one and “nonedges”
weight two. The details are spelled out by Vishwanathan [19,Sect. 2]. ⊓⊔

3 Approximation algorithms for undirected cycle covers

We outline factor7/6 approximation algorithms for Min-k-UCC for anyk ≥ 5. In par-
ticular, we recover the factor7/6 approximation algorithm for the symmetric travelling
salesperson problem with distances one and two of Papdimitriou and Yannakakis [17,
Thm. 2] by choosingk > n/2. The algorithm is quite similar to the directed case, so
we confine ourselves to pointing out the differences.



Computing an optimal4-cycle cover. Instead of starting with a minimum weight2-
cycle cover, we exploit Hartvigsen’s polynomial time algorithm [8] for computing a
minimum weight4-cycle coverC. This gives us the inequalityn2 ≥ 4 · |C<

iso| (instead
of n2 ≥ 2 · |C<

iso| in the directed case).

Auxiliary edges.A little more care is necessary when collecting auxiliary edges via
the matching inB, since for each weight two edge, we may now only spend an extra
amount of1/6 instead of1/3. We normalize the computed4-cycle coverC as follows:
first we may assume that there is only one cyclet with weight two edges, since we may
merge two such cycles without any costs. Second, we may assume that for each weight
two edge{u, v} of t there is no weight one edge{v, x} in G for some nodex of a
different cycle, because otherwise we may merge this cycle with t at no costs. We now
may bound the number of nodes for which we have to charge extracosts of1/6 in (1)
by n − n2 − ℓ instead ofn − n2. This is due to the fact that ift is the root of a tree of
height one according to the decomposition of Lemma 2, then atleastℓ nodes oft are
unmatched because of the second above mentioned property oft. Altogether, the total
weight isw(Capx) ≤

7
6n + 5

6 ℓ + 1
3 |C

<
iso| ≤

7
6 (n + ℓ).

Decomposition of functions.The decomposition according to Lemma 2 works without
any changes in the undirected case.

A refined patching procedure.Here we use the patching procedure as devised by Pa-
padimitriou and Yannakakis [17, Fig. 2], which is only suited for the undirected case.
Together with the fact that each involved circle has at leastfour nodes (instead of two
in the directed case) we obtain lower the merging costs of1/6 per node.

Applying the above mentioned modifications to our algorithmfor the directed case,
we get the following theorem.

Theorem 2. For anyk ≥ 5, there is a polynomial time factor7/6 approximation algo-
rithm for Min-k-UCC. ⊓⊔

4 Lower bounds

4.1 NP-completeness of 3-DCC

To show theNP-completeness of3-DCC we will reduce 3-Dimensional Matching
(3DM) to this problem. Consider a hypergraphH = (W, X) with W = W0∪W1∪W2

andX ⊆ W0 × W1 × W2. The setsW0, W1, W2 are disjoint and of the same size,
Wk =

{

wk
1 , . . . , wk

n

}

. 3DM is the question whether there exists a subsetX ′ ⊆ X such
that each element ofW appears in exactly one element ofX ′ (perfect 3-dimensional
matching). 3DM is known to beNP-complete (Garey, Johnson [6]).

We construct a graphG = (V, E) such thatG has a 3-cycle cover iffH has a perfect
3-dimensional matching. LetV × =

(

W0 × W1

)

∪
(

W1 × W2

)

∪
(

W2 × W0

)

. For
k = 0, 1, 2 andj = 1, . . . , n let Uk

j =
{

uk
j [i, q] | i = 1, . . . , n− 1 ∧ q = 1, 2, 3

}

be a

set ofhelper nodesfor wk
j . The set of nodesV is given byV = V ×∪

(
⋃2

k=0

⋃n
j=1 Uk

j

)

.
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Fig. 4. The subgraph connecting
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wk
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ℓ

´
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`
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´

via three helper nodes.

For each edge
(

w0
a, w1

b , w
2
c

)

∈ X we construct three edges
(

(w0
a, w1

b ), (w1
b , w2

c )
)

,
(

(w1
b , w2

c ), (w2
c , w0

a)
)

,
(

(w2
c , w0

a), (w0
a, w1

b )
)

∈ E connecting the corresponding ele-

ments ofV ×. Furthermore, two nodes
(

wk
j , w

(k+1) mod 3
ℓ

)

and
(

wk
j , w

(k+1) mod 3
ℓ+1

)

are
connected via helper nodes as shown in Fig. 4. In the following we writek + 1 instead
of (k + 1) mod 3 for short.

We divide the setV × into subsetsΓ k
j =

{(

wk
j , wk+1

ℓ

)

| ℓ = 1, . . . , n
}

. The subset
Γ k

j contains the nodes that representwk
j .

Assume thatG has a3-cycle coverC. We call a helper nodeuk
j [ℓ, 2] and a node of

V × companionsif they are part of the same cycle inC. Due to the construction either
(

wk
j , wk+1

ℓ

)

or
(

wk
j , wk+1

ℓ+1

)

is the only companion ofuk
j [ℓ, 2]. Hence, the following

lemma holds.

Lemma 4. AssumeG has a3-cycle coverG. For anywk
j ∈ V exactlyn − 1 of then

nodes inΓ k
j have a companion. ⊓⊔

We say that the only node
(

wk
j , wk+1

ℓ

)

∈ Γ k
j that has no companionparticipates

for wk
j . Now we are prepared to prove theNP-completeness of3-DCC.

Theorem 3. 3-DCC is NP-complete.

Proof. Given a hypergraphH we construct a graphG as described above.
AssumeH has a 3-dimensional matchingX ′ ⊆ X . ThenG has the following

3-cycle cover. For any
(

w0
a, w1

b , w2
c

)

∈ X ′ let
(

w0
a, w1

b

)

,
(

w1
b , w2

c

)

, and
(

w2
c , w

0
a

)

par-
ticipate forw0

a, w1
b , andw2

c . These three nodes form a cycle of length3. Let
(

wk
j , wk+1

ℓ

)

be the node that participates forwk
j . Then forℓ′ < ℓ the nodesuk

j [ℓ′, 2] and
(

wk
j , wk+1

ℓ′

)

and forℓ′ > ℓ the nodesuk
j [ℓ′− 1, 2] and

(

wk
j , wk+1

ℓ′

)

are companions. Thus, forℓ′ < ℓ

the nodes
(

wk
j , wk+1

ℓ′

)

anduk
j [ℓ′, q] (q = 1, 2, 3) and forℓ′ > ℓ the nodes

(

wk
j , wk+1

ℓ′

)

anduk
j [ℓ′ − 1, q] (q = 1, 2, 3) form cycles each of length4. Thus all nodes ofG are

covered by a cycle of length at least3.
On the other hand assume thatG has a3-cycle coverC. Due to Lemma 4 we only

have to take care for the participating nodes inV ×. The participating nodes form cycles
whose lengths are multiples of3. We cut all the edges fromW1 ×W2 to W2 ×W0. The
remaining paths of lengths two yield a 3-dimensional matching forH .

Noting that3-DCC is inNP completes the proof. ⊓⊔

By replacing the nodes ofV × by paths and extending the helper node constructions
we obtain the following generalization.

Theorem 4. The problemk-DCC isNP-complete for anyk ≥ 3. ⊓⊔
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Fig. 5. The clause gadgetGi if ci consists of (a) three, (b) two, or (c) one literal. The dashed,
dotted, and dash-dotted edges correspond to the first, second, and third literal ofci, respectively.

4.2 Nonapproximability of Min-4-DCC

In this section we show that Min-4-DCC does not have a polynomial time approxima-
tion scheme (PTAS, see e.g. Ausiello et al. [2]), unlessNP = P . For this purpose we
reduce Max-3SAT(3) to this problem. An instance of Max-3SATis a setF of disjunctive
clauses where each clause consists of at most three literals. Max-3SAT is the problem of
finding the maximum number of simultaneously satisfiable clauses. Max-3SAT(3) is the
restricted version where each variable occurs at most threetimes inF . We may assume
that each variable occurs at least once positive and at leastonce negative. Otherwise, we
can eliminate this variable by setting it to the appropriatevalue. In particular, each vari-
able occurs twice or three times. Papadimitriou and Yannakakis [16] have shown that
Max-3SAT(3) is MAXSNP-complete. They have presented a reduction from Max-
3SAT to Max-3SAT(3) using so called regular expanders (see e.g. Ajtai [1]). A setF
of clauses will be calledη-satisfiable iffη · |F | is the maximum number of satisfiable
clauses inF . Håstad [10] has proven that it isNP-hard to distinguish1- and(7/8+ ǫ)-
satisfiable instances of Max-3SAT for anyǫ > 0. The reduction of Papadimitriou and
Yannakakis and the result of Håstad yield the following lemma.

Lemma 5. There exists a constantλ < 1 such that it isNP-hard to distinguish1- and
λ-satisfiable instances ofMax-3SAT(3). ⊓⊔

We reduce Max-3SAT(3) to Min-4-DCC. For this purpose, letF = {c1, . . . , ct}
be a set of disjunctive clauses over variablesU = {x1, . . . , xr}. We construct a graph
G = (V, E). For each variablexj we have one nodeuj ∈ V . These nodes will be
calledvariable nodes. For each clauseci we have three nodesvi,1, vi,2, vi,3 ∈ V . Let
Vi = {vi,1, vi,2, vi,3} be the set of these nodes.

In the following we describe how the nodes ofG are connected via edges with
weight one. All other edges have weight two. The nodes inVi are connected via a cycle
as shown in Fig. 5. The subgraph induced byVi will be called theclause gadgetGi.
The clause gadgets and the variable nodes are connected as follows. Each variable node
uj has two incoming and two outgoing edgesein

j,+, eout
j,+ representing the literalxj , and

ein
j,−, eout

j,− representingxj as depicted in Fig. 6a. Ifci is the first clause where the literal
xj appears in, then the edgeeout

j,+ is identical with eitherf in
i,1, f in

i,2, or f in
i,3 depending

on wherexj occurs inci. If a literal occurs in more than one clause then one of the
outgoing edges of the first gadget and one of the incoming edges of the second gadget
are identical according to where the literal appears in these clauses. Ifci is the last
clause where the literalxj appears in, then the edgeein

j,+ is identical with eitherfout
i,1 ,
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Fig. 6. (a) The edges starting and ending atuj . (b) Example:x1 is the first literal in bothc1 and
c2, andx1 is the second literal inc3.

fout
i,2 , or fout

i,3 depending on wherexj occurs inci. The clauses which containxj are
connected in a similar fashion. An example is shown in Figure6b.

Let C = (V, EC) be a cycle cover ofG. We introduce a weightνC

(

Ṽ
)

for subsets
Ṽ ⊆ V of nodes. For a single nodez ∈ V the weightνC

(

{z}
)

of z with respect to the
cycle coverC is half of the weight of its incoming edge plus half of the weight of its
outgoing edge. For̃V ⊆ V we haveνC

(

Ṽ
)

=
∑

z∈Ṽ νC

(

{z}
)

. ThenνC

(

V
)

= w(C).
Let an assignment for the variablesU be given that satisfiesk of the t clauses of

F . We construct a4-cycle coverC with weightw(C) = r + 4 · t − k as follows. If
xj = true thenein

j,+, eout
j,+ ∈ EC , otherwiseein

j,−, eout
j,− ∈ EC . If the j-th literal of

ci is true thenf in
i,j , f

out
i,j ∈ EC . For any satisfied clauseci add some of the edges

(

vi,1, vi,2

)

,
(

vi,2, vi,3

)

, and
(

vi,3, vi,1

)

if necessary. The clauses that are not satisfied
are connected in one big cycle. This yields weight4 per unsatisfied clause. Every node
in C has indegree1 and outdegree1. HenceC is a cycle cover. If a clauseci is satisfied
by only one literal, then the cycle passingGi contains two edges withinGi and both one
incoming and one outgoing edge. If a clause is satisfied by more than one literal, then
the cycle passes at least two variable nodes. Thus, the obtained cycle cover is a4-cycle
cover. The case in which only one clause is not satisfied by theassignment is a special
one since then we cannot form one big loop of the unsatisfied clauses. But this case is
negligible for sufficiently large instances of Max-3SAT(3), since we are interested in
approximability.

For the other direction consider a4-cycle coverC of G and a clause gadgetGi

with νC

(

Vi

)

= 3. Such a gadget will be calledsatisfying. Any clause gadget that is not
satisfying yields weight at least7/2. It holds thatGi is satisfying iff all edges that start
or end inGi have weight one. Since all cycles must have at least length4 we have the
following lemma.

Lemma 6. LetC = (V, EC) be an arbitrary4-cycle cover ofG andGi be a satisfying
clause gadget inC. Then the following properties hold:

1. At least two of the edgesf in
i,1, f

out
i,1 , . . . , fout

i,3 are inEC .
2. For j = 1, 2, 3: f in

i,j ∈ E′ ⇔ fout
i,j ∈ E′. ⊓⊔

A satisfying clause gadgetGi yields a partial assignment for the variables ofci. If
f in

i,j , f
out
i,j ∈ E′ then thej-th literal of ci is settrue and the corresponding variable is

assigned an appropriate value, otherwise we do not assign a value to this literal. Due to
Lemma 6 the obtained partial assignment satisfiesci.

By considering all satisfying clause gadgets we step by stepobtain a partial assign-
ment that satisfies at least those clauses whose gadgets are satisfying. The following



lemma assures that the obtained partial assignment is consistent, i.e. we never have to
assign bothtrue andfalse to one variable.

Lemma 7. LetC be an arbitrary4-cycle cover ofG. There are no two satisfying clause
gadgetsGi andGi′ and a variablexj such thatxj has to be assigned different values
according to these clause gadgets. ⊓⊔

Proof. If xj has to be assigned different values thenxj occurs positive inci and nega-
tive in ci′ or vice versa. We only consider the first case. By symmetry, wecan restrict
ourselves to the case where the literalxj occurs exactly once inF and thatxj is the
first variable in both clauses. According toGi′ the literalxj has to be assignedtrue.
Sinceci′ is the only clause that containsxj , the two edgesein

j,− = fout
i′,1 andeout

j,− = f in
i′,1

belong toEC . On the other hand,fout
i,1 andf in

i,1 belong toEC . Sincexj occurs at most
twice positive inF at least one of the edgesfout

i,1 andf in
i,1 connectsVi to uj. Thus,uj

has indegree at least2 or outdegree at least2, a contradiction. ⊓⊔

Each variable node yields at least weight1. Each satisfying clause gadget yields
weight3. All other clause gadgets yield at least weight7/2.

The following theorem proves that a constantξ > 1 exists such that Min-4-DCC
cannot be approximated in polynomial time with performanceratioξ, unlessNP = P .
Thus, Min-4-DCC does not have a PTAS, unlessNP = P .

Theorem 5. There exists a constantξ > 1 such that it isNP-hard to distinguish
instancesG = (V, E) of Min-4-DCCwhose minimum cycle cover has weight|V | and
instances whose minimum cycle cover has at least weightξ · |V |.

Proof. Due to the reduction described above, a1-satisfiable instance of Max-3SAT(3)
yields a graph which has a4-cycle cover with weight|V | = r + 3 · t. On the other
hand, every4-cycle cover of a graph corresponding to aλ-satisfiable instance has at
least weightr+3 ·λ · t+(7/2) · (1−λ) · t = Kλ. Since every clause consists of at most
three literals and every variable appears at least twice we haver/t ≤ 3/2. Therefore,
the following inequality holds:

Kλ

r + 3 · t
≥

(3/2 + 3 · λ + (7/2) · (1 − λ)) · t

(3/2 + 3) · t
=

10 − λ

9
= ξ > 1.

Thus, deciding whether the minimum4-cycle cover of a graph has weight|V | or at
least weightξ · |V | is at least as hard as distinguishing1- andλ-satisfiable instances of
Max-3SAT(3). This completes the proof due to Lemma 5. ⊓⊔

If we replace the variable nodes by paths of lengthsk − 4 we obtain the result that
Min-k-DCC does not have a PTAS for anyk ≥ 4.

Theorem 6. For anyk ≥ 4 there exists a constantξk > 1 such thatMin-k-DCCcannot
be approximated with performance ratioξk, unlessNP = P . ⊓⊔

We can transform a directed graph into an undirected graph byreplacing each node
with three nodes (see e.g. Hopcroft and Ullman [11]). Applying this transformation to
the graph constructed in this section we obtain the following theorem.

Theorem 7. Min-k-UCCdoes not have a PTAS for anyk ≥ 12, unlessNP = P . ⊓⊔



5 Conclusions and open problems

We have presented factor4/3 and7/6 approximation algorithms for Min-k-DCC and
Min-k-UCC, respectively, with polynomial running time (independent ofk). On the
other hand, we have shown thatk-DCC isNP-complete fork ≥ 3 and Min-k-DCC
does not possess a PTAS fork ≥ 4, unlessNP = P . The status of Min-3-DCC is
open. We strongly conjecture that this problem also has no PTAS, unlessNP = P. In
the undirected case, Papadimitriou has shownNP-hardness ofk-UCC fork ≥ 6. The
complexity of5-UCC and the approximability of Min-k-UCC for5 ≤ k ≤ 11 remains
open.
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