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1. INTRODUCTION

Multicast transmissions allow huge savings of network traf-
fic compared to unicast transmissions when the same data is
sent to a lot of users. These savings are achieved by the fact
that users may “share” links, since each node in a multicast
network can send an incoming transmission to an arbitrary
number of neighbours. If there are costs incurred when using
an edge, then this sharing is an obstacle for pricing.

Formally, the (binary) multicast pricing problem is de-
fined as follows: Let G = (V, E) be an edge weighted undi-
rected graph. The graph G models the underlying network,
edge weight c. represents the costs for using edge e. There is
a distinguished set N C V of users. Furthermore, there is a
node r ¢ N, the service provider. A cost-sharing mechanism
determines which users receive the transmission and assigns
a price to each of these users. Each user : € N has a (secret)
utility u;. He derives utility u; from getting the transmis-
sion. If i gets the transmission at price x;, his individual wel-
fare is u; —z;. If ¢ does not get the transmission, his welfare is
—x;. However, the cost-sharing mechanism does not a priori
know the values u;. It has to rely on the users to report these
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values. The users are selfish and thus might not be willing
to report their true utility. In a game-theoretic framework,
their set of strategies is to report any value b; > 0 as their
utility. Given these bids b;, the task of the mechanism is
to select a subset Q@ C N of the users, find a multicast
tree F' serving @), and assign prices z; to the users. The
cost-sharing mechanism for the tree F’ should meet some of
the following socio-economic and game-theoretic properties:
No Positive Transfer (NPT), Voluntary Participation (VP),
Consumer Sovereignty (CS), Group Strategyproof (GSP) or
Strategyproof (SP), Budget Balance (BB), and Efficiency
(EFF). For a definition of these terms, see e.g. [1, 2, 4]. We
also define these properties in Section 3 for rated problems,
which include binary problems as a special case. It is a clas-
sical result in game theory that there is no strategyproof
mechanism that meets both BB and EFF. From a computa-
tional point of view, we also want that the mechanism can
efficiently be computed. In a distributed setting, it might
also be desirable that the mechanism can be computed with
low communication costs.

2. RELATED WORK

Most of the current pricing mechanisms for multicast trans-
missions assume that the underlying multicast tree is fixed,
that is, G is a tree with root r and leaves NNV (see for instance
[1, 2]). Thus for any subset of the users to be served, the
tree used is a subtree of the underlying fixed tree. From the
viewpoint of combinatorial optimization, this problem is not
very interesting. For fixed trees, mechanisms are designed
and analyzed that meet—beside NPT, VP, and CS—either
GSP and BB or SP and EFF. The work of Jain and Vazirani
[4] is a notable exception, as they do not assume that there
is a fixed multicast tree.

Most of the pricing mechanisms mentioned above are bi-
nary, that means, either a user gets the full transmission or
nothing at all. In a network with widely differing bandwidth
connections—such as the internet—it is however unavoid-
able to have transmissions of data at different qualities or
rates, say p1 < p2 < --- < py, where the number of rates
¢ is determined in advance. Adler and Rubenstein [1] pro-
posed two approaches to handle different rates, which both
reflect practice: Under the layered paradigm, the transmis-
sion is sent in layers. Layer 1 has rate p; and every other
layer ¢ > 1 has rate p; — p;—1. To receive rate p;, a user is
sent layers 1,...,j. Under the split session paradigm, there
is a separate multicast transmission for each rate. Each
user receives at most one of those transmissions. Adler and



Rubenstein study marginal cost mechanisms under those
paradigms. They assume that a fixed multicast tree is given.
They do not treat budget balanced mechanisms or general
graphs and pose those extensions as an open problem.

3. PROBLEMSWITH RATES

We here address the open problems posed by Adler and
Rubenstein. We also propose two new paradigms (LC, SSC)
for mechanisms with rates.

Now each user i has an utility vector u; = (ui,1,...,%i.¢)
and w;,x is the utility of ¢ when receiving the transmission
at rate px. The possible strategies of each user ¢ is to bid a
vector b; = (bi,1,...,bi ), where b; x > 0 indicates the price
that ¢ is willing to pay for rate py. We are studying mech-
anisms that, given those n bids b = (b1,...,b,), compute a
function ¢ : N — {0,...,¢}. (In the case of binary mecha-
nisms, g simply is a characteristic function.) For each user %,
@i := q(4) is the rate of the transmission received by i. ¢; = 0
means that the user does not receive the transmission at all.
Such a function ¢ will be called a rate function. The mecha-
nism also provides a function z : N — R. z; := z(i) denotes
the price that user ¢ has to pay to receive the transmission at
rate pg;. The individual welfare of user i is u; 4, —2; provided
that ¢; > 0, since he gets the transmission at rate pq; for
the price z;. Otherwise, his welfare is —z;. Finally, Cost(q)
denotes the true costs incurred by the service provider when
serving the users at rates according to the function gq.

The properties NPT, VP, CS, (G)SP, and BB are refined
as follows to handle multiple rates.

No Positive Transfer: For all users ¢, z; > 0.

Voluntary Participation (VP):If ¢; > 0, then b; 5, —z; >
0, otherwise x; = 0.

Consumer Sovereignty (CS): For every user ¢ and for
every rate py, there is an f-vector b} such that if ¢ bids b,

then ¢ will get the service at rate py (independent of the
other bids).

Group Strategyproof (GSP): Even if a set of users C
collude, their dominant strategy is to report their true utility
u; as b; for all ¢ € C. If this property holds only for sets C'
of size one, then we speak of Strategyproof (SP).

Budget Balance (BB): ), . z; = Cost(g), i.e., neither a
deficit nor a surplus is created. If only Cost(q) < >, .y =i <
a-Cost(q) holds, then we speak of a-approximate Budget
Balance (a-BB).

A binary mechanism for the multicast pricing problem can
be interpreted as a rated mechanism with only one possible
rate. Since such mechanisms are well studied, it is a nat-
ural design paradigm to construct rated mechanism for the
multicast pricing problem from binary ones.

Let M1, M>, ..., M; be mechanisms for rates p1, p2—p1, . . .
pe—pe—1 under the layered paradigm or for rates p1, p2,. .., pe
under the split session paradigm, respectively, such that all
of My,..., M; meet NPT, VP, CS, GSP, and BB. Moulin [5]
showed that for each such mechanism M), there is a cross-
monotonic cost-sharing function £, such that &x(gq,4) is ex-
actly the costs user 7 has to pay if the mechanism selects
users according to the characteristic function ¢q. This func-
tion £ is budget balanced, that is, >-"_, £x(g,¢) = Cost(g).

For a rate function ¢ : N — {0,1,...,¢}and 1 < k </, let
g=r : N — {0,1} be the characteristic function of all users
to whom rate p, is assigned. Let g<i be the characteristic
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function of all users to whom one of the rates pi,...,pk
is assigned. The fact that the rated mechanism should be
composed of binary mechanisms manifests in the following
two properties:
Layered Costs (LC): For all users ¢, ; = >3-, &x(g<a, ©).
Split Session Costs (SSC): For all i, z; = &g, (q=q;, ).
Under the layered paradigm, the price x; user 7 has to pay
is exactly the sum of the first ¢; cost-shares of ¢ with respect
to &1,...,&, since to get rate pg, user i has to receive the
first g; layers. Under the split session paradigm, the price is
simply &g, (g=q;,7), the share of 7 in the g;th group.

4. RESULTS

We design a meta mechanism under the layered paradigm
that uses a binary mechanism for each layer as a blackbox.

THEOREM 1. If&,..., & are cross-monotonic and budget
balanced, then there is a mechanism L that meets NPT, VP,
CS, SP, BB, and LC. If each £ is only ax-BB, then L is
only a-BB, where o = max{ai,...,ap}.

This meta mechanism is interesting on its own and can be
applied to other pricing problems with rates. It remains an
open question whether one can also achieve GSP for such
a meta mechanism. Once we have this meta mechanism,
we can plug various binary mechanisms into it. If the un-
derlying multicast tree is fixed, we can for instance use the
Shapley value (see e.g. [2]). If there is no underlying fixed
multicast tree, then we can exploit the binary mechanism
by Jain and Vazirani [4] to get a mechanism for the mul-
ticast problem with rates under the layered paradigm that
meets NPT, VP, CS, SP, and BB. This mechanism works
for general graphs and computes for each layer a multicast
tree whose weight is at most twice the weight of an optimum
Steiner tree, provided that the triangle inequality holds.

Then we show that for the split session paradigm, such a
meta mechanism does not exist.

THEOREM 2. There are cross-momnotonic functions &1,&2
such that there is no mechanism for &1,&> that meets NPT,
VP, CS, SP, BB, and SSC.

This insight complements nicely the results by Adler and
Rubenstein that the split session paradigm is also harder
than the layered paradigm in their setting.

Finally, we extend the techniques of Jain and Vazirani to a
larger class of constrained forest problems by incorporating
ideas of Goemans and Williamson [3]. This allows us to
model extended multicast scenarios like having simultaneous
(parallel) transmissions or several (mirrored) servers.
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