Smoothed Analysis of the Minimum-Mean Cycle
Canceling Algorithm and the Network Simplex
Algorithm*

Kamiel Cornelissen and Bodo Manthey

University of Twente, Enschede, The Netherlands
k.cornelissen@utwente.nl, b.mantheyQ@utwente.nl

Abstract. The minimum-cost flow (MCF) problem is a fundamental op-
timization problem with many applications and seems to be well under-
stood. Over the last half century many algorithms have been developed
to solve the MCF problem and these algorithms have varying worst-case
bounds on their running time. However, these worst-case bounds are not
always a good indication of the algorithms’ performance in practice. The
Network Simplex (NS) algorithm needs an exponential number of itera-
tions for some instances, but it is considered the best algorithm in prac-
tice and performs best in experimental studies. On the other hand, the
Minimum-Mean Cycle Canceling (MMCC) algorithm is strongly polyno-
mial, but performs badly in experimental studies.

To explain these differences in performance in practice we apply the
framework of smoothed analysis. For the number of iterations of the
MMCC algorithm we show an upper bound of O(mn?log(n)log(¢)).
Here n is the number of nodes, m is the number of edges, and ¢ is a
parameter limiting the degree to which the edge costs are perturbed.
We also show a lower bound of £2(mlog(¢)) for the number of iterations
of the MMCC algorithm, which can be strengthened to 2(mn) when
¢ = O(n?). For the number of iterations of the NS algorithm we show a
smoothed lower bound of 2(m - min{n, ¢} - ¢).

1 Introduction

The minimum-cost flow (MCF) problem is a well-studied problem with many
applications in, for example, modeling transportation and communication net-
works [1,7]. Over the last half century many algorithms have been developed to
solve it. The first algorithms proposed in the 1960s were all pseudo-polynomial.
These include the Out-of-Kilter algorithm by Minty [17] and by Fulkerson [8], the
Cycle Canceling algorithm by Klein [13], the Network Simplex (NS) algorithm
by Dantzig [5], and the Successive Shortest Path (SSP) algorithm by Jewell [11],
Iri [10], and Busacker and Gowen [4]. In 1972 Edmonds and Karp [6] proposed
the Capacity Scaling algorithm, which was the first polynomial MCF algorithm.
In the 1980s the first strongly polynomial algorithms were developed by Tar-
dos [24] and by Orlin [18]. Later, several more strongly polynomial algorithms

* A full version with all proofs is available at http://arxiv.org/abs/1504.08251.

(© Springer — COCOON 2015

were proposed such as the Minimum-Mean Cycle Canceling (MMCC) algorithm
by Goldberg and Tarjan [9] and the Enhanced Capacity Scaling algorithm by
Orlin [19], which currently has the best worst-case running time. For a more
complete overview of the history of MCF algorithms we refer to Ahuja et al. [1].

When we compare the performance of several MCF algorithms in theory
and in practice, we see that the algorithms that have good worst-case bounds
on their running time are not always the ones that perform best in practice.
Zadeh [25] showed that there exist instances for which the Network Simplex
(NS) algorithm has exponential running time, while the Minimum-Mean Cycle
Canceling (MMCC) algorithm runs in strongly polynomial time, as shown by
Goldberg and Tarjan [9]. In practice however, the relative performance of these
algorithms is completely different. Kovécs [15] showed in an experimental study
that the NS algorithm is much faster than the MMCC algorithm on practical
instances. In fact, the NS algorithm is even the fastest MCF algorithm of all. An
explanation for the fact that the NS algorithm performs much better in practice
than indicated by its worst-case running time is that its worst-case instances are
very contrived and unlikely to occur in practice. To better understand the prac-
tical performance for the NS algorithm and the MMCC algorithm, we analyze
these algorithms in the framework of smoothed analysis.

Smoothed analysis was introduced by Spielman and Teng [22] to explain why
the simplex algorithm usually needs only a polynomial number of iterations in
practice, while in the worst case it needs an exponential number of iterations.
In the framework of smoothed analysis, an adversary can specify any instance
and this instance is then slightly perturbed before it is used as input for the
algorithm. This perturbation can model, for example, measurement errors or
numerical imprecision. In addition, it can model noise on the input that can
not be quantified exactly, but for which there is no reason to assume that it is
adversarial. Algorithms that have a good smoothed running time often perform
well in practice. We refer to two surveys [16, 23] for a summary of results that
have been obtained using smoothed analysis.

We consider a slightly more general model of smoothed analysis, introduced
by Beier and Vocking [2]. In this model the adversary can not only specify the
mean of the noisy parameter, but also the type of noise. We use the following
smoothed input model for the MCF problem. An adversary can specify the
structure of the flow network including all nodes and edges, and also the exact
edge capacities and budgets of the nodes. However, the adversary can not specify
the edge costs exactly. For each edge e the adversary can specify a probability
density g. : [0,1] — [0, ¢] according to which the cost of e is drawn at random.
The parameter ¢ determines the maximum density of the density function and
can therefore be interpreted as the power of the adversary. If ¢ is large, the
adversary can very accurately specify each edge cost and we approach worst-
case analysis. If ¢ = 1, the adversary has no choice but to specify the uniform
density on the interval [0, 1] and we have average-case analysis.

Brunsch et al. [3] were the first to show smoothed bounds on the running
time of an MCF algorithm. They showed that the SSP algorithm needs O(mng)

iterations in expectation and has smoothed running time O(mno(m+nlog(¢))),
since each iteration consists of finding a shortest path. They also provide a lower
bound of 2(m-min{n, ¢}-¢) for the number of iterations that the SSP algorithm
needs, which is tight for ¢ = £2(n). These bounds show that the SSP algorithm
needs only a polynomial number of iterations in the smoothed setting, in contrast
to the exponential number it needs in the worst case, and explains why the
SSP algorithm performs quite well in practice. In order to fairly compare the
SSP algorithm with other MCF algorithms in the smoothed setting, we need
smoothed bounds on the running times of these other algorithms. Brunsch et
al. [3] asked particularly for smoothed running time bounds for the MMCC
algorithm, since the MMCC algorithm has a much better worst-case running
time than the SSP algorithm, but performs worse in practice. It is also interesting
to have smoothed bounds for the NS algorithm, since the NS algorithm is the
fastest MCF algorithm in practice. However, until now no smoothed bounds were
known for other MCF algorithms. In this paper we provide smoothed lower and
upper bounds for the MMCC algorithm, and a smoothed lower bound for the
NS algorithm.

For the MMCC algorithm we prove an upper bound of O(mn?log(n)log(¢))
for the expected number of iterations that the MMCC algorithm needs (Sec-
tion 2). For dense graphs, this is an improvement over the ©(m?n) iterations
that the MMCC algorithm needs in the worst case, if we consider ¢ a constant
(which is reasonable if it models, for example, numerical imprecision or mea-
surement errors).

We also provide a lower bound (Section 3.1) on the number of iterations
that the MMCC algorithm needs. For every n, every m € {n,n + 1,...,n%},
and every ¢ < 2", we provide an instance with ©(n) nodes and ©(m) edges
for which the MMCC algorithm requires §2(mlog(¢)) iterations. For ¢ = £2(n?)
we can improve our lower bound (Section 3.2). We show that for every n > 4
and every m € {n,n +1,...,n?}, there exists an instance with ©(n) nodes and
O(m) edges, and ¢ = O(n?), for which the MMCC algorithm requires §2(mn)
iterations. This is indeed a stronger lower bound than the bound for general ¢,
since we have mlog(¢) = ©(mlog(n)) for ¢ = O(n?).

For the NS algorithm we provide a lower bound (Section 4) on the number of
non-degenerate iterations that it requires. In particular, we show that for every
n, every m € {n,...,n%}, and every ¢ < 2" there exists a flow network with ©(n)
nodes and @(m) edges, and an initial spanning tree structure for which the NS
algorithm needs 2(m - min{n, ¢} - $) non-degenerate iterations with probability
1. The existence of an upper bound is our main open problem. Note that our
bound is the same as the lower bound that Brunsch et al. [3] found for the
smoothed number of iterations of the SSP algorithm. This is no coincidence,
since we use essentially the same instance (with some minor changes) to show
our lower bound. We show that with the proper choice of the initial spanning tree
structure for the NS algorithm, we can ensure that the NS algorithm performs
the same flow augmentations as the SSP algorithm and therefore needs the same
number of iterations (plus some degenerate ones).

In the rest of our introduction we introduce the MCF problem, the MMCC
algorithm and the NS algorithm in more detail. In the rest of our paper, all
logarithms are base 2.

1.1 Minimum-Cost Flow Problem

A flow network is a simple directed graph G = (V, F) together with a nonneg-
ative capacity function v : F — Ry defined on the edges. For convenience, we
assume that G is connected and that E does not contain a pair (u, v) and (v, u) of
reverse edges. For the MCF problem, we also have a cost function ¢ : E — [0, 1]
on the edges and a budget function b : V' — R on the nodes. Nodes with nega-
tive budget require a resource, while nodes with positive budget offer it. A flow
f + E — Ry is a nonnegative function on the edges that satisfies the capacity
constraints, 0 < f(e) < u(e) (for all e € F), and flow conservation constraints
b(V) + X (uyer [(€) = 2o (vuwyer [(€') (for all v € V). The cost c(f) of a
flow f is defined as the sum of the flow on each edge times the cost of that edge,
that is, ¢(f) = >_.cp c(e)- f(e). The objective of the minimum-cost flow problem
is to find a flow of minimum cost or conclude that no feasible flow exists.

In our analysis we often use the concept of a residual network, which we
define here. For an edge e = (u,v) we denote the reverse edge (v,u) by e~ !.
For flow network G and flow f, the residual network G; is defined as the graph
Gy =(V,Ef UEy). Here Ef = {e| e € E and f(e) < u(e)} is the set of forward
edges with capacity u/(e) = u(e) — f(e) and cost ¢/(e) = c(e). B, = {e | e7! €
E and f(e™!) > 0} is the set of backward edges with capacity u'(e) = f(e™")
and cost ¢/(e) = —c(e™!). Here u/(e) is also called the residual capacity of edge
e for flow f.

1.2 Minimum-Mean Cycle Canceling Algorithm
The MMCC algorithm works as follows:

— First we find a feasible flow using any maximum-flow algorithm.

— Next, as long as the residual network contains cycles of negative total cost,
we find a cycle of minimum-mean cost and maximally augment flow along
this cycle.

— We stop when the residual network does not contain any cycles of negative
total cost.

For a more elaborate description of the MMCC algorithm, we refer to Korte
and Vygen [14]. In the following, we denote the mean cost of a cycle C' by
1w(C) = (X .cccle)) /IC]. Also, for any flow f, we denote the mean cost of the
cycle of minimum-mean cost in the residual network Gy by p(f).

Goldberg and Tarjan [9] proved in 1989 that the Minimum-Mean-Cycle Can-
celing algorithm runs in strongly polynomial time. Five years later Radzik and
Goldberg [21] slightly improved this bound on the running time and showed
that it is tight. In the following we will focus on the number of iterations the

MMCC algorithm needs, that is, the number of cycles that have to be canceled.
A bound on the number of iterations can easily be extended to a bound on the
running time, by noting that a minimum-mean cycle can be found in O(nm)
time, as shown by Karp [12]. The tight bound on the number of iterations that
the MMCC algorithm needs is as follows.

Theorem 1.1 (Radzik and Goldberg). The number of iterations needed by
the MMCC' algorithm is bounded by O(nm?) and this bound is tight.

To prove our smoothed bounds in the next sections, we use another result
by Korte and Vygen [14, Corollary 9.9] which states that the absolute value of
the mean cost of the cycle that is canceled by the MMCC algorithm, |u(f)],
decreases by at least a factor 1/2 every mn iterations.

Theorem 1.2 (Korte and Vygen). Every mn iterations of the MMCC algo-
rithm, |pu(f)| decreases by at least a factor 1/2.

1.3 Network Simplex Algorithm

The Network Simplex (NS) algorithm starts with an initial spanning tree struc-
ture (T, L,U) and associated flow f, where each edge in E is assigned to exactly
one of T', L, and U, and it holds that

— f(e) =0 for all edges e € L,

— f(e) = u(e) for all edges e € U,

— 0 < f(e) <wuf(e) for all edges e € T,

— the edges of T form a spanning tree of G (if we consider the undirected
version of both the edges of T' and the graph G).

If the MCF problem has a feasible solution, such a structure can always be found
by first finding any feasible flow and then augmenting flow along cycles consisting
of only edges that have a positive amount of flow less than their capacity, until
no such cycles remain. Note that the structure (7', L,U) uniquely determines
the flow f, since the edges in T form a tree. In addition to the spanning tree
structure, the NS algorithm also keeps track of a set of node potentials 7(v) for
all nodes v € V. The node potentials are defined such that the potential of a
specified root node is 0 and that the potential for other nodes is such that the
reduced cost ¢™(u,v) = c(u,v) — w(u) + w(v) of an edge (u,v) equals 0 for all
edges (u,v) € T.

In each iteration, the NS algorithm tries to improve the current flow by
adding an edge to T that violates its optimality condition. An edge in L violates
its optimality condition if it has strictly negative reduced cost, while an edge in
U violates its optimality condition if it has strictly positive reduced cost. One
of the edges e that violates its optimality condition is added to T', which creates
a unique cycle C in T'. Flow is maximally augmented along C, until the flow on
one of the edges ¢’ € C' becomes 0 or reaches its capacity. The edge ¢’ leaves T,
after which T is again a spanning tree of GG. Next we update the sets T', L, and

U, the flow and the node potentials. This completes the iteration. If any edges
violating their optimality condition remain, another iteration is performed. One
iteration of the NS algorithm is also called a pivot. The edge e that is added to
T is called the entering edge and the edge €’ that leaves T is called the leaving
edge. Note that in some cases the entering edge can be the same edge as the
leaving edge. Also, if one of the edges in the cycle C already contains flow equal
to its capacity, the flow is not changed in that iteration, but the spanning tree
T still changes. Such an iteration we call degenerate.

Note that in each iteration, there can be multiple edges violating their opti-
mality condition. There are multiple possible pivot rules that determine which
edge enters T in this case. In our analysis we use the (widely used in practice)
pivot rule that selects as the entering edge, from all edges violating their opti-
mality condition, the edge for which the absolute value of its reduced cost |¢ (e)|
is maximum. In case multiple edges in C are candidates to be the leaving edge,
we choose the one that is most convenient for our analysis.

If a strongly feasible spanning tree structure [1] is used, it can be shown
that the number of iterations that the NS algorithm needs is finite. However,
Zadeh [25] showed that there exist instances for which the NS algorithm (with
the pivot rule stated above) needs an exponential number of iterations. Orlin [20]
developed a strongly polynomial version of the NS algorithm, which uses cost-
scaling. However, this algorithm is rarely used in practice and we will not consider
it in the rest of our paper. For a more elaborate discussion of the NS algorithm
we refer to Ahuja et al. [1].

2 Upper Bound for the MMCC Algorithm

In this section we show an upper bound of O(mn? log(n) log(¢)) for the expected
number of iterations that the MMCC algorithm needs starting from the initial
residual network G'; for the feasible starting flow f for flow network G = (V, E).
Note that we assumed in Section 1.1 that G is simple and that E does not
contain a pair (u,v) and (v,u) of reverse edges. This implies that for each pair
of nodes u,v € V, there is always at most one edge from u to v and at most one
edge from v to u in any residual network G;. We first show that the number of
cycles that appears in at least one residual network G for a feasible flow f on
G, is bounded by (n 4 1)!, where n = |V]|.

Lemma 2.1. The total number of cycles that appears in any residual network
Gy for a feasible flow f on G, is bounded by (n + 1)!.

We next show that the probability that any particular cycle has negative
mean cost close to 0 can be bounded. In the rest of this section, € > 0.

Lemma 2.2. The probability that an arbitrary cycle C' has mean cost u(C) €
[—¢,0] can be bounded by neg.

Corollary 2.3. The probability that there exists a cycle C' with u(C) € [—&,0]
is at most (n + 1)ned.

Lemma 2.4. If none of the residual networks Gy for feasible flows f on G
contain a cycle C with 1(C) € [—e,0][, then the MMCC algorithm needs at most
mn[logy(1/e)] iterations.

Theorem 2.5. The expected number of iterations that the MMCC algorithm
needs is O(mn?log(n) log(¢)).

3 Lower Bound for the MMCC Algorithm

3.1 General Lower Bound

In this section we describe a construction that, for every n, every m € {n,n +
1,...,n2}, and every ¢ < 2", provides an instance with ©(n) nodes and ©(m)
edges for which the MMCC algorithm requires £2(mlog(¢)) iterations. For sim-
plicity we describe the initial residual network G, which occurs after a flow
satisfying all the budgets has been found, but before the first minimum-mean
cycle has been canceled. For completeness, we will explain at the end of the
description of G how to choose the initial network, budgets, and starting flow
such that G is the first residual network.

We now describe how to construct G given n, m, and ¢. In the following,
we assume ¢ > 64. If ¢ is smaller than 64, the lower bound on the number of
iterations reduces to £2(m) and a trivial instance with ©(n) nodes and ©(m)
edges will require £2(m) iterations. We define k,, = [5(log(¢) — 4)] and k, =
|2 (log(¢) — 5)]. Note that this implies that k, = ky, or ky = ky — 1. For the
edge costs we define intervals from which the edge costs are drawn uniformly at
random. We define G = (V, &) as follows.

- V=A{a,b,e,dfUUUVUWUX, where U = {uy,...,un}t, V={v1,..., 0.},
W =A{wr,...,wg, }, and X = {z1,..., 2, }

-¢&=F,UE,UE,UE.UE;UE,UE,.

— Eyy is an arbitrary subset of U x V' of cardinality m. Each edge (u;, v;) has
capacity 1 and cost interval [0,1/¢].

— E, contains the edges (a,u;), Ep contains the edges (u;,b), E. contains the
edges (¢,v;), and E4 contains the edges (v;,d) (i = 1,...,n). All these edges
have infinite capacity and cost interval [0,1/¢].

— FE,, contains the edges (d,w;) and (w;,a) (i =1,...,ky). An edge (d, w;) has
capacity m and cost interval [0,1/¢]. An edge (w;,a) has capacity m and
cost interval [—22721 —22-2 4 1 /¢].

— E, contains the edges (b, z;) and (z;,¢) (: =1,...,k;). An edge (b, z;) has
capacity m and cost interval [0,1/¢]. An edge (x;,c¢) has capacity m and
cost interval [—21721 —2172 4 1 /¢].

Note that all cost intervals have width 1/¢ and therefore correspond to valid
probability densities for the edge costs, since the costs are drawn uniformly at
random from these intervals. The edges of the types (w;, a) and (x;, ¢) have a cost
interval that corresponds to negative edge costs. The residual network with these

negative edge costs can be obtained by having the following original instance
(before computing a flow satisfying the budget requirements): All nodes, edges,
costs and capacities are the same as in G, except that instead of the edges of type
(w;, a) we have edges (a,w;) with capacity m and cost interval [22721 —1/¢, 2272
and instead of the edges of type (z;,c¢) we have edges (c,z;) with capacity m
and cost interval [2172! —1/¢, 2172¢]. In addition, node a has budget k,,m, node
¢ has budget k,m, the nodes of the types w; and x; have budget —m and all
other nodes have budget 0. If we now choose as the initial feasible flow the flow
that sends m units from a to each node of type w; and from c¢ to each node of
type x; then we obtain the initial residual network G.

We now show that the MMCC algorithm needs £2(m log(¢)) iterations for the
initial residual network G. First we make some basic observations. The minimum-
mean cycle C' never contains the path P; = (d, wj,a) if the path P; = (d, w;, a)
has positive residual capacity for some ¢ < j, since the mean cost of C' can be
improved by substituting P; by F; in C. Analogously, C' never contains the path
Pj = (b,zj,c) if the path P; = (b, x;, ¢) has positive residual capacity for some
i < j. Also, since all cycles considered have mean cost strictly less than 1/¢,
cycles will never include more edges with cost at least —1/¢ than necessary. In
addition, since the edges of type (w;,a) and (z;,c) are saturated in the order
cheapest to most expensive, none of these edges will ever be included in reverse
direction in the minimum-mean cycle. The above observations lead to three
candidate types for the minimum-mean cycle: cycles of type (d,w;,a,u,v,d),
of type (b,z;,c,v,u,b), and of type (d, w;,a,u,b,z;,¢,v,d). Here u and v are
arbitrary nodes in U and V, respectively. In the following series of lemmas we
compare the mean costs of these cycle types. Here u and v are again arbitrary
nodes in U and V, possibly different for the cycles that are compared. In our
computations we always assume worst-case realization of the edge costs, that is,
if we want to show that a cycle C7 has lower mean cost than a cycle Cs, we
assume that all edges in C7 take the highest cost in their cost interval, while all
edges in Oy take the lowest cost in their cost interval (an edge that appears in
both (7 and C5 can even take its highest cost in C and its lowest cost in Cs in
the analysis).

Lemma 3.1. The cycle C; = (d,w;,a,u,v,d) has lower mean cost than the
cycle Cy = (b, x;, ¢, v,u,b).

Lemma 3.2. The cycle Cy = (b, x;, c,v,u,b) has lower mean cost than the cycle
Cy = (d, wit1,a,u,v,d).

Lemma 3.3. The cycle C; = (d,w;,a,u,v,d) has lower mean cost than the
cycle Cy = (d, wy, a,u, b, x;,¢,v,d).

Lemma 3.4. The cycle Cq = (b, x;, ¢, v, u,b) has lower mean cost than the cycle
CZ = (bv Ziy C, U, d7 Wi+1,a, U, b)

The above observations and lemmas allow us to determine the number of
iterations that the MMCC algorithm needs for residual network G.

Theorem 3.5. The MMCC algorithm needs m(ky, + k) iterations for residual
network G, independent of the realization of the edge costs.

Proof (sketch). Using Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.4 we
show that the first m iterations cancel cycles of type (d, w1, a,u,v,d), the next
m iterations cancel cycles of type (b,x1,c,v,u,b), the next m iterations cancel
cycles of type (d,ws,a,u,v,d), etc. The total number of iterations is therefore
m(ky + kz)-

The instance G and Theorem 3.5 allow us to state a lower bound on the
number of iterations that the MMCC algorithm needs in the smoothed setting.

Theorem 3.6. For every n, every m € {n,n + 1,...,n%}, and every ¢ < 2",
there exists an instance with ©(n) nodes and O(m) edges for which the MMCC
algorithm requires 2(mlog(¢)) iterations, independent of the realization of the
edge costs.

3.2 Lower Bound for ¢ Dependent on n

In Section 3.1 we considered the setting where ¢ does not depend on n. In this
setting we showed that the MMCC algorithm needs £2(m log(¢)) iterations. We
can improve the lower bound if ¢ is much larger than n. In this section we
consider the case where ¢ = 2(n?). In particular, we show that for every n > 4
and every m € {n,...,n%} there exists an instance with ©(n) nodes, ©(m) edges,
and ¢ = O(n?) for which the MMCC algorithm needs §2(mn) iterations.

The initial residual network H that we use to show our bound is very similar
to the initial residual network G that was used to show the bound in Section 3.1.
Below we describe the differences. We set ¢ = 400000n2. The constant of 400000
is large, but for the sake of readability and ease of calculations we did not try
to optimize it.

— The node set W now consists of n nodes {wy,...,w,} and the node set X
now consists of n nodes {z1,...,z,}.

— Node a is split into two nodes a; and as. From node a; to as there is a
directed path consisting of n edges, all with infinite capacity and cost interval
[0,1/¢]. Edges (a,u;) are replaced by edges (a2, u;) with infinite capacity
and cost interval [0,1/¢]. Edges (w;, a) are replaced by edges (w;,a;) with
capacity m and cost interval [—(727’?’)21_27 —(”T’?’)Ql_2 + 3

— Node cis split into two nodes ¢; and co. From node ¢; to ¢y there is a directed
path consisting of n edges, all with infinite capacity and cost interval [0, 1/¢].
Edges (¢, v;) are replaced by edges (c2,v;) with infinite capacity and cost
interval [0, 1/¢]. Edges (x;, ¢) are replaced by edges (z;, 1) with capacity m
and cost interval [—(”T’S)Qz_l7 —("773)21_1 + é]

Note that this is a valid choice of cost intervals for the edges (w;,a;) and
(x;,c1) and that they all have negative costs, since (z,, 1) is the most expensive
of them and we have

n—3 2n—1 3 2n 1 1
- S (1-2) s < (e < 0. (1
(n) +¢ - (n) +400000n2 < () +6400000 <0 ()

As in Section 3.1, there are three candidate types for the minimum-mean cost
cycle: cycles of type (d,w,a,u,v,d), cycles of type (b, x,c,v,u,b), and cycles of
type (d,w,a,u,b,x,c,v,d). Again we assume worst-case realizations of the edge
costs and compare the mean costs of cycles of the different types in a series of
lemmas.

Lemma 3.7. The cycle C; = (d,w;,a,u,v,d) has lower mean cost than the
cycle Cy = (b, x;, ¢, v,u,b).

Lemma 3.8. The cycle Cq = (b, x;, ¢, v, u,b) has lower mean cost than the cycle
Cy = (d,wit1,a,u,v,d).

Lemma 3.9. The cycle C; = (d,w;,a,u,v,d) has lower mean cost than the
cycle Cy = (d, w;, a,u,b, z;,c,v,d).

Lemma 3.10. The cycle Cy = (b, z;,c,v,u,b) has lower mean cost than the
cycle Cy = (b, x;, ¢, v,d, wit1, a,u,b).

The above lemmas allow us to determine the number of iterations that the
MMCC algorithm needs for initial residual network H.

Theorem 3.11. The MMCC algorithm needs 2mn iterations for initial residual
network H, independent of the realization of the edge costs.

Initial residual network H and Theorem 3.11 allow us to state a lower bound
for the number of iterations that the MMCC Algorithm needs in the smoothed
setting for large ¢.

Theorem 3.12. For every n > 4 and every m € {n,n+1,...,n%}, there exists
an instance with O(n) nodes and O(m) edges, and ¢ = O(n?), for which the
MMCC algorithm requires £2(mn) iterations, independent of the realization of
the edge costs.

4 Lower bound for the Network Simplex Algorithm

In this section we provide a lower bound of 2(m - min{n, ¢} - ¢) for the number
of iterations that the NS algorithm requires in the setting of smoothed analysis.
The instance of the MCF problem that we use to show this lower bound is very
similar to the instance used by Brunsch et al. [3] to show a lower bound on the
number of iterations that the SSP algorithm needs in the smoothed setting. The
differences are that they scaled their edge costs by a factor of ¢, which we do
not, that we add an extra path from node s to node ¢, and that the budgets of
the nodes are defined slightly differently. We can show that every non-degenerate
iteration of the NS algorithm for our instance corresponds with an iteration of
the SSP algorithm for the instance of Brunsch et al. Because of space constraints
we omit the analysis and only provide our main result.

10

Theorem 4.1. For every n, every m € {n,...,n%}, and every ¢ < 2" there
exists a flow network with ©(n) nodes and ©(m) edges, and an initial spanning
tree for which the Network Simplex algorithm needs 2(m - min{n, ¢} - ¢) non-
degenerate iterations with probability 1.

5 Discussion

In Section 4 we showed a smoothed lower bound of 2(m - min{n, ¢} - ¢) for the
number of iterations that the NS algorithm needs. This bound is the same as
the smoothed lower bound that Brunsch et al. [3] showed for the SSP algorithm.
For the SSP algorithm this lower bound is even tight in case ¢ = 2(n). Still,
the NS algorithm is usually much faster in practice than the SSP algorithm. We
believe that the reason for this difference is that the time needed per iteration
is much less for the NS algorithm than for the SSP algorithm. In practical
implementations, the entering edge is usually picked from a small subset (for
example of size ©(y/m)) of the edges, which removes the necessity of scanning all
edges for the edge which maximally violates its optimality conditions. Also, the
spanning tree structure allows for fast updating of the flow and node potentials,
in particular when the flow changes on only a small fraction of the edges. For
the SSP algorithm an iteration consists of finding a shortest path, which takes
O(m + nlog(n)) time. The experimental results of Kovécs [15] seem to support
this claim, since on all test instances the SSP algorithm is slower than the NS
algorithm, but never more than a factor m. To allow a better comparison of
the SSP algorithm and the NS algorithm in the smoothed setting, it would be
useful to have a smoothed upper bound on the running time of the NS algorithm.
Finding such an upper bound is our main open problem.

There is a gap between our smoothed lower bound of £2(mlog(¢)) (Sec-
tion 3.1) for the number of iterations that the MMCC algorithm requires and
our smoothed upper bound of O(mn?log(n)log(¢)). Since our lower bound for
the MMCC algorithm is weaker than the lower bound for the SSP algorithm,
while the MMCC algorithm performs worse on practical instances than the SSP
algorithm, we believe that our lower bound for the MMCC algorithm can be
strengthened. Our stronger lower bound of £2(mn) in case ¢ = 2(n?) (Sec-
tion 3.2) is another indication that this is likely possible.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

2. René Beier and Berthold Vécking. Random knapsack in expected polynomial time.
Journal of Computer and System Sciences, 69(3):306-329, 2004.

3. Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, Heiko Roglin, and Clemens
Roésner. Smoothed analysis of the successive shortest path algorithm. Computing
Research Repository 1501.05493 [cs.DS], arXiv, 2015. Preliminary version at SODA
2013.

11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Robert G. Busacker and Paul J. Gowen. A procedure for determining a family
of miminum-cost network flow patterns. Technical Report Technical Paper 15,
Operations Research Office, 1960.

George B. Dantzig. Linear programming and extensions. Rand Corporation Re-
search Study. Princeton Univ. Press, Princeton, NJ, 1963.

. Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic

efficiency for network flow problems. Journal of the ACM, 19(2):248-264, 1972.
Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

Delbert R. Fulkerson. An out-of-kilter algorithm for minimal cost flow problems.
Journal of the SIAM, 9(1):18-27, 1961.

Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations
by canceling negative cycles. J. ACM, 36(4):873-886, October 1989.

Masao Iri. A new method for solving transportation-network problems. Journal
of the Operations Research Society of Japan, 3(1,2):27-87, 1960.

William S. Jewell. Optimal flow through networks. Operations Research, 10(4):476—
499, 1962.

Richard M. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23(3):309 — 311, 1978.

Morton Klein. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Management Science, 14(3):205-220,
1967.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer Publishing Company, Incorporated, 1st edition, 2007.

Péter Kovéacs. Minimum-cost flow algorithms: An experimental evaluation. Opti-
mization Methods and Software, 30(1):94-127, 2015.

Bodo Manthey and Heiko Réglin. Smoothed analysis: Analysis of algorithms be-
yond worst case. it — Information Technology, 53(6):280-286, 2011.

George J. Minty. Monotone networks. In Proceedings of the Royal Society of
London A, pages 194-212, 1960.

James B. Orlin. Genuinely polynomial simplex and non-simplex algorithms for the
minimum cost flow problem. Technical report, Sloan School of Management, MIT,
Cambridge, MA, 1984. Technical Report No. 1615-84.

James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Op-
erations Research, 41(2):338-350, 1993.

James B. Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Math. Program., 77:109-129, 1997.

Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of
minimum-mean cycle cancellations and related results. Algorithmica, 11(3):226—
242, 1994.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. J. ACM, 51(3):385-463,
2004.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to
explain the behavior of algorithms in practice. Communications of the ACM,
52(10):76-84, 2009.

Eva Tardos. A strongly polynomial minimum cost circulation algorithm. Combi-
natorica, 5(3):247-256, 1985.

Norman Zadeh. A bad network problem for the simplex method and other mini-
mum cost flow algorithms. Mathematical Programming, 5(1):255-266, 1973.

12

