
On Smoothed Analysis
of Quicksort and Hoare’s Find

Mahmoud Fouz1, Manfred Kufleitner2, Bodo Manthey1, and
Nima Zeini Jahromi1

1 Saarland University, Department of Computer Science
Postfach 151150, 66041 Saarbrücken, Germany

mfouz/manthey@cs.uni-saarland.de, nzeini@studcs.uni-saarland.de
2 Universität Stuttgart, FMI

Universitätsstraße 38, 70569 Stuttgart, Germany
manfred.kufleitner@fmi.uni-stuttgart.de

Abstract. We provide a smoothed analysis of Hoare’s find algorithm
and we revisit the smoothed analysis of quicksort. Hoare’s find algorithm
– often called quickselect – is an easy-to-implement algorithm for finding
the k-th smallest element of a sequence. While the worst-case number
of comparisons that Hoare’s find needs is Θ(n2), the average-case num-
ber is Θ(n). We analyze what happens between these two extremes by
providing a smoothed analysis of the algorithm in terms of two different
perturbation models: additive noise and partial permutations.
In the first model, an adversary specifies a sequence of n numbers of [0, 1],
and then each number is perturbed by adding a random number drawn
from the interval [0, d]. We prove that Hoare’s find needsΘ(n

d+1

p
n/d+n)

comparisons in expectation if the adversary may also specify the element
that we would like to find. Furthermore, we show that Hoare’s find needs
fewer comparisons for finding the median.
In the second model, each element is marked with probability p and
then a random permutation is applied to the marked elements. We
prove that the expected number of comparisons to find the median is
in Ω

`
(1− p) n

p
logn

´
, which is again tight.

Finally, we provide lower bounds for the smoothed number of compar-
isons of quicksort and Hoare’s find for the median-of-three pivot rule,
which usually yields faster algorithms than always selecting the first el-
ement: The pivot is the median of the first, middle, and last element of
the sequence. We show that median-of-three does not yield a significant
improvement over the classic rule: the lower bounds for the classic rule
carry over to median-of-three.

1 Introduction

To explain the discrepancy between average-case and worst-case behavior of the
simplex algorithm, Spielman and Teng introduced the notion of smoothed anal-
ysis [17]. Smoothed analysis interpolates between average-case and worst-case
analysis: Instead of taking a worst-case instance, we analyze the expected worst-
case running time subject to slight random perturbations. The more influence

Proc. 15th Int. Comp. and Combinatorics Conf. (COCOON 2009) – c© Springer

we allow for perturbations, the closer we come to the average case analysis of the
algorithm. Therefore, smoothed analysis is a hybrid of worst-case and average-
case analysis. In practice, neither can we assume that all instances are equally
likely, nor that instances are precisely worst-case instances. The goal of smoothed
analysis is to capture the notion of a typical instance mathematically. Typical
instances are, in contrast to worst-case instances, often subject to measurement
or rounding errors. On the other hand, typical instances still have some (adver-
sarial) structure, which instances drawn completely at random do not. Spielman
and Teng [18] give a survey of results and open problems in smoothed analysis.

In this paper, we provide a smoothed analysis of Hoare’s find [7], which is a
simple algorithm for finding the k-th smallest element of a sequence of numbers:
Pick the first element as the pivot and compare it to all n−1 remaining elements.
Assume that `− 1 elements are smaller than the pivot. If ` = k, then the pivot
is the element that we are looking for. If ` > k, then we recurse to find the k-th
smallest element of the list of the smaller elements. If ` < k, then we recurse to
find the (k − `)-th smallest element among the larger elements. The number of
comparisons to find the specified element is Θ(n2) in the worst case and Θ(n) on
average. Furthermore, the variance of the number of comparisons is Θ(n2) [8]. As
our first result, we close the gap between the quadratic worst-case running-time
and the expected linear running-time by providing a smoothed analysis.

Hoare’s find is closely related to quicksort [6], which needs Θ(n2) comparisons
in the worst case and Θ(n log n) on average [10, Section 5.2.2]. The smoothed
number of comparisons that quicksort needs has already been analyzed [12].
Choosing the first element as the pivot element, however, results in poor running-
time if the sequence is nearly sorted. There are two common approaches to
circumvent this problem: First, one can choose the pivot randomly among the
elements. However, randomness is needed to do so, which is sometimes expen-
sive. Second, without any randomness, a common approach to circumvent this
problem is to compute the median of the first, middle, and last element of the
sequence and then to use this median as the pivot [15,16]. This method is faster
in practice since it yields more balanced partitions and it makes the worst-case
behavior much more unlikely [10, Section 5.5]. It is also faster both in average
and in worst case, albeit only by constant factors [4, 14]. Quicksort with the
median-of-three rule is widely used, for instance in the qsort() implementation
in the GNU standard C library glibc [13] and also in a recent very efficient
implementation of quicksort on a GPU [2]. The median-of-three rule has also
been used for Hoare’s find, and the expected number of comparisons has been
analyzed precisely [9]. Our second goal is a smoothed analysis of both quicksort
and Hoare’s find with the median-of-three rule to get a thorough understanding
of this variant of these two algorithms.

1.1 Preliminaries

We denote sequences of real numbers by s = (s1, . . . , sn), where si ∈ R. For
n ∈ N, we set [n] = {1, . . . , n}. Let U = {i1, . . . , i`} ⊆ [n] with i1 < i2 < . . . < i`.

Then sU = (si1 , si2 , . . . , si`) denotes the subsequence of s of the elements at
positions in U . We denote probabilities by P and expected values by E.

Throughout the paper, we will assume for the sake of clarity that numbers like√
n are integers and we do not write down the tedious floor and ceiling functions

that are actually necessary. Since we are interested in asymptotic bounds, this
does not affect the validity of the proofs.

Pivot Rules. Given a sequence s, a pivot rule simply selects one element of s
as the pivot element. The pivot element will be the one to which we compare
all other elements of s. In this paper, we consider four pivot rules, two of which
play only a helper role (the acronyms of the rules are in parentheses):

Classic rule (c): The first element s1 of s is the pivot element.
Median-of-three rule (m3): The median of the first, middle, and last element is

the pivot element, i.e., median(s1, sdn/2e, sn).
Maximum-of-two rule (max2): The maximum of the first and the last element

becomes the pivot element, i.e., max(s1, sn).
Minimum-of-two rule (min2): The minimum of the first and the last element

becomes the pivot element, i.e., min(s1, sn).

The first pivot rule is the easiest-to-analyze and easiest-to-implement pivot
rule for quicksort and Hoare’s find. Its major drawback is that it yields poor
running-times of quicksort and Hoare’s find for nearly sorted sequences. The
advantages of the median-of-three rule has already been discussed above. The
last two pivot rules are only used as tools for analyzing the median-of-three rule.

Quicksort, Hoare’s Find, Left-to-right Maxima. Let s be a sequence of length n
consisting of pairwise distinct numbers. Let p be the pivot element of s according
to some rule. For the following definitions, let L = {i ∈ {1, . . . , n} | si < p} be the
set of positions of elements smaller than the pivot, and let R = {i ∈ {1, . . . , n} |
si > p} be the set of positions of elements greater than the pivot.

Quicksort is the following sorting algorithm: Given s, we construct sL and sR
by comparing all elements to the pivot p. Then we sort sL and sR recursively to
obtain s′L and s′R, respectively. Finally, we output s′ = (s′L, p, s

′
R). The number

sort(s) of comparisons needed to sort s is thus sort(s) = (n − 1) + sort(sL) +
sort(sR) if s has a length of n ≥ 1, and sort(s) = 0 when s is the empty sequence.
We do not count the number of comparisons needed to find the pivot element.
Since this number is O(1) per recursive call for the pivot rules considered here,
this does not change the asymptotics.

Hoare’s find aims at finding the k-th smallest element of s. Let ` = |sL|.
If ` = k − 1, then p is the k-th smallest element. If ` ≥ k, then we search for
the k-th smallest element of sL. If ` < k − 1, then we search for the (k − `)-th
smallest element of sR. Let find(s, k) denote the number of comparisons needed
to find the k-th smallest element of s, and let find(s) = maxk∈[n] find(s, k).

The number of scan maxima of s is the number of maxima seen when scanning
s according to some pivot rule: let scan(s) = 1 + scan(sR), and let scan(s) = 0
when s is the empty sequence. If we use the classic pivot rule, the number of

scan maxima is just the number of left-to-right maxima, i.e., the number of new
maxima that we see if we scan s from left to right. The number of scan maxima
is a useful tool for analyzing quicksort and Hoare’s find, and has applications,
e.g., in motion complexity [3].

We write c-scan(s), m3-scan(s), max2-scan(s), and min2-scan(s) to denote
the number of scan maxima according to the classic, median-of-three, maximum,
or minimum pivot rule, respectively. Similar notation is used for quicksort and
Hoare’s find.

Perturbation Model: Additive noise. The first perturbation model that we con-
sider is additive noise. Let d > 0. Given a sequence s ∈ [0, 1]n, i.e., the num-
bers s1, . . . , sn lie in the interval [0, 1], we obtain the perturbed sequence s =
(s1, . . . , sn) by drawing ν1, . . . , νn uniformly and independently from the inter-
val [0, d] and setting si = si + νi. Note that d = d(n) may be a function of the
number n of elements, although this will not always be mentioned explicitly.

We denote by scand(s), sortd(s) and findd(s) the (random) number of scan
maxima, quicksort comparisons, and comparisons of Hoare’s find of s, preceded
by the acronym of the pivot rule used.

Our goal is to prove bounds for the smoothed number of comparisons that
Hoare’s find needs, i.e., maxs∈[0,1]n E

(
c-findd(s)

)
, as well as for Hoare’s find and

quicksort with the median-of-three pivot rule, i.e., maxs∈[0,1]n E
(
m3-findd(s)

)
and maxs∈[0,1]n E

(
m3-sortd(s)

)
. The max reflects that the sequence s is chosen

by an adversary.
If d < 1/n, the sequence s can be chosen such that the order of the elements

is unaffected by the perturbation. Thus, in the following, we assume d ≥ 1/n. If
d is large, the noise will swamp out the original instance, and the order of the
elements of s will basically depend only on the noise rather than the original
instance. For intermediate d, we interpolate between the two extremes.

The choice of the intervals for the adversarial part and the noise is arbitrary.
All that matters is the ratio of the sizes of the intervals: For a < b, we have
maxs∈[a,b]n E

(
findd·(b−a)(s)

)
= maxs∈[0,1]n E

(
findd(s)

)
. In other words, we can

scale (and also shift) the intervals, and the results depend only on the ratio of the
interval sizes and the number of elements. The same holds for all other measures
that we consider. We will exploit this in the analysis of Hoare’s find.

Perturbation Model: Partial Permutations. The second perturbation model that
we consider is partial permutations, introduced by Banderier, Beier, and Mehl-
horn [1]. Here, the elements are left unchanged. Instead, we permute a random
subsets of the elements.

Without loss of generality, we can assume that s is a permutation of a set of n
numbers, say, {1, . . . , n}. The perturbation parameter is p ∈ [0, 1]. Any element
si (or, equivalently, any position i) is marked independently of the others with a
probability of p. After that, all marked positions are randomly permuted: Let M
be the set of positions that are marked, and let π : M → M be a permutation
drawn uniformly at random. Then si = sπ(i) if i ∈ M and si = si otherwise.
If p = 0, no element is marked, and we obtain worst-case bounds. If p = 1,

all elements are marked, and s is a uniformly drawn random permutation. We
denote by pp-findp(s) the random number of comparisons that Hoare’s find needs
with the classic pivot rule when s is perturbed.

1.2 Known Results

Additive noise is perhaps the most basic and natural perturbation model for
smoothed analysis. In particular, Spielman and Teng added random numbers to
the entries of the adversarial matrix in their smoothed analysis of the simplex
algorithm [17]. Damerow et al. [3] analyzed the smoothed number of left-to-
right maxima of a sequence under additive noise. They obtained upper bounds
of O

(√
n
d log n + log n

)
for a variety of distributions and a lower bound of

Ω(
√
n+log n). Manthey and Tantau tightened their bounds for uniform noise to

O
(√

n/d+ log n
)
. Furthermore, they proved that the same bounds hold for the

smoothed tree height. Finally, they showed that quicksort needs O
(
n
d+1 ·

√
n
d

)
comparisons in expectation, and this bound is also tight [12].

Banderier et al. [1] introduced partial permutations as a perturbation model
for ordering problems like left-to-right maxima or quicksort. They proved that
a sequence of n numbers has, after partial permutation, an expected number of
O
(√

n
p log n

)
left-to-right maxima, and they proved a lower bound of Ω

(√
n/p

)
for p ≤ 1

2 . This has later been tightened by Manthey and Reischuk [11] to
Θ
(
(1 − p) ·

√
n/p

)
. They transferred this to the height of binary search trees,

for which they obtained the same bounds. Banderier et al. [1] also analyzed
quicksort, for which they proved an upper bound of O

(
n
p log n

)
.

1.3 New Results

We give a smoothed analysis of Hoare’s find under additive noise. We consider
both finding an arbitrary element and finding the median. First, we analyze
finding arbitrary elements, i.e., the adversary specifies k, and we have to find
the k-th smallest element (Section 2). For this variant, we prove tight bounds
of Θ

(
n
d+1

√
n/d+ n

)
for the expected number of comparisons. This means that

already for very small d ∈ ω(1/n), the smoothed number of comparisons is
reduced compared to the worst case. If d is a small constant, i.e., the noise is a
small percentage of the data values like 1%, then O(n3/2) comparisons suffice.

If the adversary is to choose k, our lower bound suggests that we will have
either k = 1 or k = n. The main task of Hoare’s find, however, is to find medians.
Thus, second, we give a separate analysis of how much comparisons are needed
to find the median (Section 2.2). It turns out that under additive noise, finding
medians is arguably easier than finding maximums or minimums: For d ≤ 1/2,
we have the same bounds as above. For d ∈ (1

2 , 2), we prove a lower bound of
Ω
(
n3/2 · (1 −

√
d/2)

)
, which again matches the upper bound of Section 2 that

of course still applies. For d > 2, we prove that a linear number of comparisons
suffices, which is considerably less than the Ω

(
(n/d)3/2

)
general lower bound of

Section 2. For the special value d = 2, we prove a tight bound of Θ(n log n).

algorithm d ≤ 1/2 d ∈ (1/2, 2) d = 2 d > 2

quicksort (c) Θ
`
n
p
n/d

´
Θ
`
n3/2

´
Θ
`
n3/2

´
Θ
`
(n/d)3/2

´
quicksort (m3) Ω

`
n
p
n/d

´
Ω
`
n3/2

´
Ω
`
n3/2

´
Ω
`
(n/d)3/2

´
Hoare’s find (median, c) Θ

`
n
p
n/d

´
Ω
`
n3/2(1−

p
d/2)

´
Θ(n logn) O

`
d

d−2
· n
´

Hoare’s find (general, c) Θ
`
n
p
n/d

´
Θ
`
n3/2

´
Θ
`
n3/2

´
Θ
`
(n/d)3/2

´
Hoare’s find (general, m3) Θ

`
n
p
n/d

´
Θ
`
n3/2

´
Θ
`
n3/2

´
Θ
`
(n/d)3/2

´
scan maxima (c) Θ

`p
n/d

´
Θ
`√
n
´

Θ
`√
n
´

Θ
`p

n/d
´

scan maxima (m3) Θ
`p

n/d
´

Θ
`√
n
´

Θ
`√
n
´

Θ
`p

n/d
´

Table 1. Overview of bounds for additive noise. The bounds for quicksort and scan
maxima with classic pivot rule are by Manthey and Tantau [12]. The upper bounds for
Hoare’s find in general apply also to Hoare’s find for finding the median. Note that,
even for large d, the precise bounds for quicksort, Hoare’s find, and scan maxima never
drop below Ω(n logn), Ω(n), and Ω(logn), respectively.

algorithm bound

quicksort O
`
(n/p) logn

´
Hoare’s find Ω

`
(1− p)(n/p) logn

´
scan maxima Θ

`
(1− p)

p
n/p

´
binary search trees Θ

`
(1− p)

p
n/p

´
Table 2. Overview of bounds for partial permutations. All results are for the classic
pivot rule. The results about quicksort, scan maxima, and binary search trees are by
Banderier et al. [1] and Manthey and Reischuk [11]. The upper bound for quicksort also
holds for Hoare’s find, while the lower bound for Hoare’s find also applies to quicksort.

After that, we aim at analyzing different pivot rules, namely the median-
of-three rule. As a tool, we analyze the number of scan maxima under the
maximum-of-two, minimum-of-two, and median-of-three rule (Section 3). We
essentially show that the same bounds as for the classic rule carry over to these
rules. Then we apply these findings to quicksort and Hoare’s find (Section 4).
Again, we prove a lower bound that matches the lower bound for the classic rule.
Thus, the median-of-three does not seem to help much under additive noise. The
results concerning additive noise are summarized in Table 1.

Finally, and to contrast our findings for additive noise, we analyze Hoare’s
find under partial permutations (Section 5). We prove that there exists a se-
quence on which Hoare’s find needs an expected number of Ω

(
(1− p) · np · log n

)
comparisons. Since this matches the upper bound for quicksort [1] up to a factor
of O(1−p), this lower bound is essentially tight. For completeness, Table 2 gives
an overview of the results for partial permutations.

Due to lack of space, proofs are omitted. For complete proofs, we refer to the
full version of this paper [5].

2 Smoothed Analysis of Hoare’s Find

2.1 General Bounds

In this section, we state tight bounds for the smoothed number of comparisons
that Hoare’s find needs using the classic pivot rule.

Theorem 1. For d ≥ 1/n, we have

maxs∈[0,1]n E
(
c-findd(s)

)
∈ Θ

(
n
d+1

√
n/d+ n

)
.

Since find(s) ≤ sort(s) for any s, we already have an upper bound for
the smoothed number of comparisons that quicksort needs [12]. This bound
is O

(
n
d+1 ·

√
n/d + n log n

)
, which matches the bound of Theorem 1 for d ∈

O
(
n1/3 · log−2/3 n

)
. Thus for the proof of the theorem, d ∈ Ω

(
n1/3 · log−2/3 n

)
remains to be analyzed. The proof of the lower bound is similar to Manthey and
Tantau’s lower bound proof for quicksort [12].

2.2 Finding the Median

In this section, we provide tight bounds for the special case of finding the median
of a sequence using Hoare’s find. Somewhat surprisingly, finding the median
seems to be easier in the sense that fewer comparisons suffice.

Theorem 2. Depending on d, we have the following bounds for

maxs∈[0,1]n E
(
c-findd(s, dn/2e)

)
:

For d ≤ 1
2 , we have Θ

(
n ·
√
n/d

)
. For 1

2 < d < 2, we have Ω
((

1−
√
d/2
)
·n3/2

)
and O

(
n3/2

)
. For d = 2, we have Θ

(
n · log n

)
. For d > 2, we have O

(
d
d−2 · n

)
.

The upper bound of O(n ·
√
n/d) for d < 2 follows from our general upper

bound (Theorem 1). For d ≤ 1
2 , our lower bound construction for the general

bounds also works: The median is among the last n/2 elements, which are the
big ones. (We might want to have dn/2e or n/2+1 large elements to assure this.)
The rest of the proof remains the same. For d > 2, Theorem 2 states a linear
bound, which is asymptotically equal to the average-case bound. Thus, we do
not need a lower bound in this case.

First, we state a crucial fact about the value of the median: Intuitively, the
median should be around d/2 if all elements of s are 0, and it should be around
1 +d/2 if all elements of s are 1. We make this precise: Independent of the input
sequence, the median will be neither much smaller than d/2 nor much greater
than 1 + d/2 with high probability.

Lemma 1. Let s ∈ [0, 1]n, and let d > 0. Let ξ = c
√

log n/n. Let m be the
median of s. Then P

(
m /∈

[
d/2− ξ, 1 + d/2+

])
≤ 4 · exp

(
−2c2 log n/d2

)
.

The idea to prove the upper bound for d > 2 is as follows: Since d > 2 and
according to Lemma 1 above, it is likely that any element can assume a value
greater or smaller than the median. Thus, after we have seen a few number of
pivots (for which we “pay” with O(d

d−2n) comparisons), all elements that are
not already cut off are within some small interval around the median. These
elements are uniformly distributed. Thus, the linear average-case bound applies.

Lemma 2. Let d > 2 be bounded away from 2. Then

maxs∈[0,1]n E
(
c-findd(s, dn/2e)

)
∈ O

(
d
d−2 · n

)
.

3 Scan Maxima with Median-of-three Rule

The results in this section serve as a basis for the analysis of both quicksort and
Hoare’s find with the median-of-three rule. In order to analyze the number of
scan maxima with the median-of-three rule, we analyze this number with the
maximum and minimum of two rules. This is justified since, for every sequence
s, we have max2-scan(s) ≤ m3-scan(s) ≤ min2-scan(s).

The reason for considering max2-scan and min2-scan is that it is hard to
keep track where the middle element with median-of-three rule lies: Depending
on which element actually becomes the pivot and which elements are greater
than the pivot, the new middle position can be on the far left or on the far
right of the previous middle. From E

(
max2-scand(s)

)
∈ Ω

(√
n
d + log n

)
and

E
(
min2-scand(s)

)
∈ O

(√
n
d + log n

)
, we get our bounds for m3-scan.

Theorem 3. For every d ≥ 1/n, we have

maxs∈[0,1]n E
(
m3-scand(s)

)
∈ Θ

(√
n/d+ log n

)
.

4 Quicksort and Hoare’s Find with Median-of-three Rule

Now we use our results about scan maxima from the previous section to provide
lower bounds for the number of comparisons that quicksort and Hoare’s find need
using the median-of-three pivot rule. We only give lower bounds here since they
match already the upper bounds for the classic pivot rule. We strongly believe
that the median-of-three rule does not yield worse bounds than the classic rule
and, hence, that our bounds are tight. The goal of this section is to establish a
lower bound for Hoare’s find, which then carries over to quicksort.

Theorem 4. For d ≥ 1/n, we have

maxs∈[0,1]n E
(
m3-findd(s)

)
∈ Ω

(
n
d+1

√
n/d+ n

)
and

maxs∈[0,1]n E
(
m3-sortd(s)

)
∈ Θ

(
n
d+1

√
n/d+ n log n

)
.

5 Hoare’s Find Under Partial Permutations

To complement our findings about Hoare’s find, we analyze the number of com-
parisons subject to partial permutations. For this model, we already have an
upper bound of O(np log n), since that bound has been proved for quicksort by
Banderier et al. [1]. We show that this is asymptotically tight (up to factors
depending only on p) by proving that Hoare’s find needs a smoothed number of
Ω
(
(1− p)np · log n

)
comparisons. The main idea behind the proof of the follow-

ing theorem is as follows: We aim at finding the median. The first few elements
are close to and smaller than the median. Thus, it is unlikely that one of them
is permuted further to the left. This implies that all unmarked of the first few
elements become pivot elements. Then they have to be compared to many of the
Ω(n) elements larger than the median, which yields our lower bound.

Theorem 5. Let p ∈ (0, 1) be a constant. There exist sequences s of length n
such that under partial permutations we have

E
(
pp-findp(s)

)
∈ Ω

(
(1− p) · np · log n

)
.

For completeness, to conclude this section, and as a contrast to Sections 2
and 2.2, let us remark that for partial permutations, finding the maximum using
Hoare’s find seems to be easier than finding the median: The lower bound con-
structed above for finding the median requires that there are elements on either
side of the element we aim for. If we aim at finding the maximum, all elements
are on the same side of the target element. In fact, we believe that for finding
the maximum, an expected number of O(f(p) ·n) for some function f depending
on p suffices.

6 Concluding Remarks

We have shown tight bounds for the smoothed number of comparisons for Hoare’s
find under additive noise and under partial permutations. Somewhat surprisingly,
it turned out that, under additive noise, Hoare’s find needs (asymptotically) more
comparisons for finding the maximum than for finding the median. Furthermore,
we analyzed quicksort and Hoare’s find with the median-of-three pivot rule, and
we proved that median-of-three does not yield an asymptotically better bound.
Let us remark that also the lower bounds for left-to-right maxima as well as for
the height of binary search trees [11] can be transferred to median-of-three. The
bounds remain equal.

A natural question regarding additive noise is what happens when the noise
is drawn according to an arbitrary distribution rather than the uniform dis-
tribution. Some first results on this for left-to-right maxima were obtained by
Damerow et al. [3]. We conjecture the following: If the adversary is allowed to
specify a density function bounded by φ, then all upper bounds still hold with
d = 1/φ (the maximum density of the uniform distribution on [0, d] is 1/d).
However, as Manthey and Tantau point out [12], a direct transfer of the results
for uniform noise to arbitrary noise might be difficult.

References

1. Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three com-
binatorial problems. In Proc. of the 28th Int. Symp. on Mathematical Foundations
of Computer Science (MFCS), vol. 2747 of Lecture Notes in Comput. Sci., pp.
198–207. Springer, 2003.

2. Daniel Cederman and Philippas Tsigas. A practical quicksort algorithm for graph-
ics processors. In Proc. of the 16th Ann. European Symp. on Algorithms (ESA),
vol. 5193 of Lecture Notes in Comput. Sci., pp. 246–258. Springer, 2008.

3. Valentina Damerow, Friedhelm Meyer auf der Heide, Harald Räcke, Christian
Scheideler, and Christian Sohler. Smoothed motion complexity. In Proc. of the
11th Ann. European Symp. on Algorithms (ESA), vol. 2832 of Lecture Notes in
Comput. Sci., pp. 161–171. Springer, 2003.

4. Hannu Erkiö. The worst case permutation for median-of-three quicksort. The
Computer Journal, 27(3):276–277, 1984.

5. Mahmoud Fouz, Manfred Kufleitner, Bodo Manthey, and Nima Zeini Jahromi. On
smoothed analysis of quicksort and Hoare’s find. Computing Research Repository,
arXiv:0904.3898 [cs.DS], 2009.

6. C. A. R. Hoare. Algorithm 64: Quicksort. Comm. ACM, 4(7):322, 1961.
7. C. A. R. Hoare. Algorithm 65: Find. Comm. ACM, 4(7):321–322, 1961.
8. Peter Kirschenhofer and Helmut Prodinger. Comparisons in Hoare’s find algorithm.

Combin. Probab. Comput., 7(1):111–120, 1998.
9. Peter Kirschenhofer, Helmut Prodinger, and Conrado Martinez. Analysis of

Hoare’s find algorithm with median-of-three partition. Random Structures Al-
gorithms, 10(1-2):143–156, 1997.

10. Donald E. Knuth. Sorting and Searching, vol. 3 of The Art of Computer Program-
ming. Addison-Wesley, 2nd edition, 1998.

11. Bodo Manthey and Rüdiger Reischuk. Smoothed analysis of binary search trees.
Theoret. Comput. Sci., 378(3):292–315, 2007.

12. Bodo Manthey and Till Tantau. Smoothed analysis of binary search trees and
quicksort under additive noise. In Proc. of the 33rd Int. Symp. on Mathematical
Foundations of Computer Science (MFCS), vol. 5162 of Lecture Notes in Comput.
Sci., pp. 467–478. Springer, 2008.

13. Douglas C. Schmidt. qsort.c. C standard library stdlib within glibc 2.7,
available at http://ftp.gnu.org/gnu/glibc/, 2007.

14. Robert Sedgewick. The analysis of quicksort programs. Acta Inform., 7(4):327–355,
1977.

15. Robert Sedgewick. Implementing quicksort programs. Comm. ACM, 21(10):847–
857, 1978.

16. Richard C. Singleton. Algorithm 347: An efficient algorithm for sorting with min-
imal storage. Comm. ACM, 12(3):185–186, 1969.

17. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463,
2004.

18. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms and
heuristics: Progress and open questions. In Foundations of Computational Mathe-
matics, Santander 2005, pp. 274–342. Cambridge University Press, 2006.

