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Abstract. We consider a weighted generalization of multiple sequence align-
ment with sum-of-pair score. Multiple sequence alignment without weights is
known to be\NP-complete and can be approximated within a constant factor, but
it is unknown whether it has a polynomial time approximation scheme. Weighted
multiple sequence alignment can be approximated within a fact6r(afg® n)
wheren is the number of sequences.

We prove that weighted multiple sequence alignment is MAXP-hard and
establish a numerical lower bound on its approximability, nangégl— e. This

lower bound is obtained already for the simple binary weighted case where the
weights are restricted t and1. Furthermore, we show that weighted multiple
sequence alignment and its restriction to binary weights can be approximated
exactly to the same degree.

1 Introduction

Multiple sequence alignment (MSA) is an important problem in computational biology.
The alignment of a group of protein or nucleotide sequences yields information about
the relationships between these sequences and it is also used to detect similarities (so
called “homologous regions”) between them. This information is applied in construct-
ing evolutionary trees and finding coherences between the function and structure of
proteins and their sequences.

Many objective functions have been suggested to measure the quality of a multiple
sequence alignment. One of the most widely used is the so called sum-of-pair score
(SP-score, Carrillo et al. [6]).

MSA with SP-score is known to h&P-complete (Wang et al. [12]). For the case
that the scoring function does not have to be a metric, Just has shown that MSA with
SP-score is MAXSNP-hard [9]. Akutsu et al. have investigated the multiple sequence
alignment problem under several scoring functions, namely) G#-score and/C-
score [1]. They have shown that a variant of the multiple sequence alignment problem
called local multiple alignment is MAXSA/P-hard under these scoring schemes.

However, if the scoring function fulfils the triangle inequality, no lower bound for
this problem is known so far. The complexity of MSA over an alphabet of fixed size with
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metric SP-scoring functions is of main interest. According to Jiang et al. the approx-
imability of MSA with metric SP-score is an important open problem in computational
biology [8].

To represent existing knowledge about the relationships of the sequences consid-
ered, a weighted variant of MSA was introduced by Wu et al. [13]. Each pair of se-
guences is assigned a nonnegative value reflecting their degree of relationship. This
means that a pair which is assumed to be closely related will be assigned a high weight
while a less related pair will be assigned a smaller weight. This generalization of MSA
is called weighted MSA, or WMSA for short.

In this paper we also examine a restricted version of WMSA called binary weighted
MSA (BMSA), where the weights are restricteddt@nd1. The binary weights can be
used to represent an arbitrary graph over which multiple sequence alignments can be
determined. We will prove that BMSA is equivalent to WMSA with respect to their
approximability. Thus, an approximation algorithm for BMSA directly yields an ap-
proximation algorithm for the general case with the same performance ratio. Moreover,
we prove the MAXSN P-hardness and a numerical lower bound for the approxima-
bility of BMSA. These results are obtained even if the sequences are of fixed length
and the alphabet is of fixed size. Thus, the difficulty of multiple sequence alignment is
caused by the number of sequences, not by their length.

In the next section we give a formal definition of the problems considered. The
reduction from WMSA to BMSA is presented in section 3. In section 4 we prove a lower
bound for the approximability of a problem called MAX-E2-neg-Lin2. This result will
be used in section 5 to prove a lower bound for the approximability of BMSA.

2 Definitions and Notations

Let X' be an alphabet anf’ := YU{—}, where “-" denotes a gap symbd}|/] denotes

the [-th symbol of a sequencg. LetS = {Si,...,S,} be a family (a multiset) of

sequences oveXx'. An alignmentof S is a family A = {5‘1, cee Sn} of sequences over
X such that allS; have equal length an$}; is obtained fromsS; by inserting gaps. The
following is an example of an alignment of three seque®®€§'CTG, TTCTTTG

andATTGTT.
ATTCT——G

-TTCTTTG
ATTGT-T—-

A functiond : ¥’> — N will be called scoring functionif it is a metric, i.e. for
anyz,y,z € X’ we haved(z,y) = 0iff x = y, d(z,y) = d(y,z), andd(z,z) <
d(z,y) + d(y, z). We define the distance of two sequenéesand S; of length/ as
D(S;,5;) == Sy d(Si[K], S;[k])-

Carrillo and Lipman introduced a scoring scheme for alignments csilledof-pair
score(SP-score, [6]). The SP-score of an alignmgnt= {S,...,S,} is defined by
D(A) := Y ;< D(S, ;). Multiple sequence alignment (MSA) is the problem
of finding an alignment with minimum SP-score.

Wu et al. generalized MSA to weighted sum-of-pair score [13]. The weights are
given byW := (ws, s, )s,,s,es, @ Symmetric matrix of nonnegative integers. Then the



weighted SP-score of an alignmentis Dw (A) = > ;i< ws, s, - D(Si,S;).
This generalization is callegeighted multiple sequence alignmé@atMSA). The aim
is to find an alignment with minimum weighted SP-score.

An instance of WMSA is a 4-tupléX, S, d, W). We consider the case of a fixed
alphabet”’ and a fixed scoring functiosh Thus, a problem instance of WMSA is given
by a pair(S,W). It is easy to see that any lower bound for this case also holds if we
allow arbitrary scoring functions and alphabets.

A special case of WMSA ibinary weighted MSABMSA), where the weights are
restricted ta) and1.

It has been shown that MSA with SP-score\ig>-complete [12]. For an arbitrary
fixed constant, MSA can be approximated in polynomial time within a factozef -,
wheren > r is the number of sequences [4]. It is unknown whether MSA admits a
polynomial time approximation scheme (PTAS, see e.g. Ausiello et al. [3]). WMSA
with arbitrary weights can be approximated within a factoOcéfog2 n) [13]. Using a
technique of Bartal [5] one can obtain a randomizédbg n - llog n) approximation.

Papadimitriou et al. introduced a class of optimization problems called MAXP
[10]. They showed that there exist problems which are M&X P-complete with re-
spect to L-reductions. In the followingpt(7) denotes the optimal score of an instance
I of an optimization problem. For examplept(S) denotes the score of an optimal
(weighted) alignment of.

Definition 1. LetI7 and II’ be two optimization problems. ThéhL-reduces td7’ if
there exist polynomial time computable functigisf, and constantsy,v» > 0 such
that for each instancé of IT:

1. Functionf, produces aninstancE = f; (1) of II’ such thabpt(I’) < ~;-opt(]).
2. Given a solutionS” of I’ with costc’(S’), function f» produces a solutiors =
f2(1,5") of I with coste(.S) such thatc(S) — opt(I)| < 2 - |/ (S”) — opt(I')].

No MAX SN P-hard problem has a PTAS, unle§sP = P (Arora et al. [2]).

3 Reduction from WMSA to BMSA

LetS = {S1,..., S, } be afamily of sequences ovi&randW = (ws, s,) be a weight
matrix. Let/ be the maximal length of the sequences§iandd,, ., be the maximum of
the scoring functionl. We assume that the weights and the scoring function are unary
coded. This does not seem to be a restriction because in practice the weights are very
small and the scoring function is fixed.

We construct a family of sequencé&$ as an instance of BMSA as follows. Let
K := 2 dunax - |. For a sequencs; € S generate copiesTf eSS (1<k<K)
of this sequence. Furthermore, for edckl « < n constructws, s, copiesS}” edS
(I < p < ws,s;) of S;. The weight matridV’ = (w} ;)1,ses is given by

1 if I=S0"and] = S/,
wy =91 ifI= Syt andJ = Tf or vice versa
0 otherwise,



whereA = B means thatl and B are not only equal but denote the same sequence.

Since the weights and the scoring function are unary coded, the inpuvsife¢he
instance of WMSA fulfils the bound € 2(n 143" ,_, ws, s,). On the other hand,
the input sizeV’ of the constructed instance of BMSA satisfies

N'€O(p K 1+1- Yoy ws,s, + (0 K+30,_ ws,.s,)°) -
Y

e e
Note thatN’ is polynomially bounded byv.

Lemma 1. If S has an alignmen#l with weighted scor®y, (A) thenS’ has an align-
mentA’ with scoreDy/ (A") = Dy (A).

Proof. Let A = {Sy, ..., S5,} be an alignment of with weighted scoreD. We obtain
an alignmentd’ = {A|A € S’} of &' by settingT} = S; andS}" = S; for all
j,k, i, u. The score ofd’ with respect to the weight matri¥’’ is

n  WS;.S; ws;,S;
Dwi(A)=> > ZD S TR+ >0 Y DS, Si) = D (A).
i,j=1 p=1 k= 1\WO_/ 1<i<j<n p=1 \?(Sf?/

O

Lemma 2. Given an alignmenid’ of S’ with weighted scoréDy,(.A’) we can con-
struct an alignmentd of S with less or equal score in polynomial time.

Proof. Let A’ = {A|A € S’} be an arbitrary alignment &’ with score Dy, (A’).
The copies of a sequenée € S will be calledconsistentf there exists a sequendg;

with TF = B; andS;* = B; for all k, i, ;.. The sequencs; is calledblock

We consider the case that for sogaehe copies of;, are not consistent and distin-
guish two cases. First, if not all are equal, leDj, := Y"1, 3% D(T%, §5)
be the score oTj’f) with the sequenceféj0 . Choosék such thatDy,, is minimal among
all Dy, and setf”;j) = Tj’? for all & # ky. This way we obtain a new alignment with less
or equal score. ~

Now we consider the case that there exisiasuch thafl = B;, forall k. Then

there exists a sequenS@“g’“O # Bj,. This sequence yields at least scéfewith the
sequence§’; , because it yields a score of at leastith everyT” . SetS?*** = B .

ThenSio* yields score) with any7* and at most scor& with S7°#°. Thus, the new
alignment has less or equal score.
By these modifications we iteratively obtain a new alignmerf’afuch that for any

j € {1,...,n} the copies of5; are consistent with blocB;. The blocks ofS’ induce
an alignmentd = {B,...,B,} of S with scoreDw (A) = >, <, Ws,s;
D(B;, Bj) < Dy (A"). T O

With these results we have shown that-approximation for BMSA can be used as
a A-approximation for WMSA. Thus, the following theorem holds.

Theorem 1. If BMSA can be approximated within a constant factoin polynomial
time, therlWMSA can also be approximated withixin polynomial time. ad



4 The Non-Approximability of MAX-E2-neg-Lin2

We consider the multiplicative groufd, —1}. LetG = {G,, ..., G} be a multiset of
linear equations over the variablés= {z1,..., 2.}, Gi=a, - . " Ta,, = @i k > 2,
a;q € {1,...,7}, anda; € {1,—1} is a constant. MAX-Ek-Lin2 is the optimization
problem of finding the maximum number of simultaneously satisfiable equations. A
restriction of MAX-Ek-Lin2 is MAX-Ek-neg-Lin2, where;, = —1forall 1 < < ¢.

MAX-E2-neg-Lin2 is exactly the problem MAX-Cut (see e.g. [3]) where the equa-
tions correspond to the edges, the variables correspond to the nodes, and multiple
edges are allowed. Therefore, MAX-E2-neg-Lin2 is M&X/P-complete [10]. We
use MAX-E2-neg-Lin2 here due to the simpler notation.

An instance of MAX-Ek-Lin2 or MAX-Ek-neg-Lin2 consisting @fequations will
be calledn-satisfiableiff 7 - ¢ is the maximum number of simultaneously satisfiable
equations. Estad proved in [7] that it i8/P-hard to distinguisi{1 — )-satisfiable and
(1 + ¢)-satisfiable instances of MAX-E3-Lin2 for army> 0.

Instead of the known lower bound for the approximability of MAX-Cugtad [7]
and Trevisan et al. [11]) we will construct a reduction from MAX-E3-Lin2 to MAX-E2-
neg-Lin2 to prove that it isV"P-hard to distinguish{13 — €)- and (11 + ¢)-satisfiable
instances of MAX-E2-neg-Lin2 for any > 0; the gadget used by Trevisan et al. [11]
does not yield such a gap directly. This result will be used in section 5 to establish the
lower bound for the approximability of BMSA.

We will now reduce MAX-E3-Lin2 to MAX-E2-neg-Lin2. Le§ = {G4,...,G;}
be a multiset of equations over variablésG; =z, , - Tqa, , * Ta, ; = G-

We construct an instan¢® of MAX-E2-neg-Lin2 with22 - ¢ equations and - ¢ +
2 - r 4+ 2 variables. The reduction is similar to the reduction from MAX-E3-Lin2 to
MAX-E2-Lin2 in [7]. The set of variable#/’ is given by

U ={af |1 <j< ryU{z", 27 U{pi1, pi2spis,pi|l <i < t}.

Note that if an assignment satisfies an equation of an instance of MAX-E2-neg-Lin2,
then the negated assignment also satisfies the equation. So without loss of generality
we assume that in any caseé = 1.

We interpretrj+ = z;. We call an assignmeminsistent for; if :cj # x; and
therel‘or%;r = x; = (—z; ). An assignment that is consistent for everyand where
2T # 2~ is calledconsistent

For an equatiold’; =z, , - Za, , - Ta, , = a; WE CONstruct the twelve equations

3
z,q pigy =—1 forg,¢ =1,2,3andq # ¢,
(—Jth Di,z =-1 forq:1,273’
To,, " Pig =—1 forg=1,23.

We add either the four equations - p; , = —1 (¢ = 1,2,3) andz™ - p; , = —1if
a; = 1 or the four equations™ -p; , = —1 (¢ = 1,2, 3) andz* Piz = —1lifa; = —1.
For every equation ig we construct the three equat|om§ =-1(¢=1,2,3).
Finally, we add the equation” - 2~ = —1 three times. Note tha;t’ contains3 - t times



the equatiort™ - 2~ = —1. Letn; be the number of occurrences of the variabjen
G. Theng’ containsn; times the equation - =7 = —1.

For every equatior?; € G we have constructe#2 equations forg’. These22
equations are called thepresentation of7,.

Lemma 3. Let an arbitrary assignment fdy’ be given. Assiga— = —1 andxj =,
z; = (—z;)forj=1,...,r. Thenforany € {1,...,t} there exists an assignment
for p; 1, pi2, pi3, @andp; . such that 18 equations of the representatiorpfare sat-
isfied if G; is satisfied by the given assignment and 16 equations of the representation
are satisfied if7; is not satisfied.

It is not possible to satisfy more than 18 equations of the representatiGp i§
satisfied by the assignment and to satisfy more than 16 equatiéhssfnot satisfied

by the assignment.
Proof. The lemma can be proved by testing all possible assignments. O

If an assignment fot/ satisfiesg of the t equations o7, then the corresponding
consistent assignment féf satisfiesl6 - ¢ + 2 - g equations ofG’. This assignment
can be found efficiently by adjusting the assignmenfar, p; 2, p; 3, andp; .. On the
other hand, a consistent assignmentdrthat satisfied6 - ¢ + 2 - g equations ofy’
yields an assignment f@f that satisfieg equations of;.

Lemma 4. Given an arbitrary assignment fdr’ that satisfied6 - ¢ + 2 - g equations
of G’, a consistent assignment that satisfies at least this amount of equatiGhsani
be computed in polynomial time.

Proof. First assume that™ = 2~ in the given assignment. Then tBe ¢ equations
2T .z~ = —1 are not satisfied by the assignment. ket= (—z"). Then these& - ¢
equations will be satisfied. On the other hand,occurs in only3 - ¢ other equations.
Thus, at mos8 - ¢ equations are no longer satisfied. Altogether the number of satisfied
equations is not decreased by this modification.

If there exists g with 27 =z, then there are; equations:} - 2; = —1 thatare
not satisfied by the assignment. gt = (—z ). Then then; equations:f -2 = —1
are satisfied by the modified assignment. On the other hanatcurs in onlyn; other
equations. Thus, at mosf; equations are no longer satisfied. The number of satisfied
equations is thus not decreased by this modification.

This way we iteratively obtain a consistent assignment. Obviously, the modifica-
tions can be computed in polynomial time. O

Now we can prove the following theorem used in section 5.

Theorem 2. For any e > 0 it is N'P-hard to distinguish(5 — €)- and (32 + ¢)-
satisfiable instances dflAX-E2-neg-Lin2

Proof. An instance of MAX-E3-Lin2 is)-satisfiable iff the corresponding instance of
MAX-E2-neg-Lin2 is (1%£22)-satisfiable. According to &stad [7] it isAP-hard to
distinguish(1 — ¢)- and (3 + ¢)-satisfiable instances of MAX-E3-Lin2 for agy> 0.
Thus, it isAP-hard to distinguish(%&l_@)- and (%&ém)—saﬂsﬁable in-

stances of MAX-E2-neg-Lin2. Choosirgg= 11 - e completes the proof. O




Since MAX-Cut and MAX-E2-neg-Lin2 are exactly the same problem, we obtain
the same approximability gap for MAX-Cut.

Corollary 1. For anye > 0 it is NP-hard to decide whether the maximum cut of an
instanceG = (V, E) (where multiple edges are allowed) bfAX-Cut consists of at
most(3Z +€) - |E| or at least(13 — ¢) - | E| edges. O

5 The Non-Approximability of BMSA

In this section we reduce MAX-E2-neg-Lin2 to BMSA. Lgt= {G,...,G;} be an
instance of MAX-E2-neg-Lin2 over a set of variables= {z1,...,2.}, Gi=xq, , -
To,, = —1, a;4 € {1,...,7}. We construct a family of sequencés = {Z} U
{X5l7 =1,...,r} U{Y;1,Y; 2l = 1,...,t} over the alphabel’ = {e,0,x}. Let
Z := oooooooo be a sequence of leng® Z will be used as a control sequence. For
je{l,...,r} let X; := eoocoooooe be a sequence of lengththat represents the
variablez; € U. For eachi € {1,...,t} create two sequencé$; := eooxoxocoe
andY; ; := eoocoxoooe, each of length 9Y; , represents the variable,, , in G;.
The scoring function is given in the following table. Note that it is a metric.
| [[-[e]o]x]
0[1(2

w| O

10
2|1
54

WOl

0

The weight matriX? = (wy,5)r,ses is given by

iflI=Y,,andJ =Y, 4,

if ] =ZandJ =Y, , or vice versa

if I =Y;,andJ = X,,  orvice versa
otherwise

wr,j =

O =

The setS; = {Y;1,Yi2, Xa,,, Xa, .} Will be called therepresentation ofx;. Note
that in general a sequengg occurs in more than one representation.

Let A = {5]S € S} be an alignment of. ThenD;(A) denotes the score of the
equationG;, D;(A) = D(Yi1,Y;2) + D(Yi1, Xow,) + D(Yio, Xa, )+ D(Yin, Z)+
D(Y;.2, Z). By the construction of the weight matriRy (A) = 32¢_, D;(A) holds.

Definition 2. An alignment4 = {S|S € S} of S will be called variable-consistent
with respect to an assignment for if, after eliminating all columns consisting solely
of gaps (which do not affect the score), the following holds foy all andg:

1.2 =-7—
o _ [ Xy— itz =1
2.Xj_{—Xj |fl‘J:1

5> Y~ ifa,,, =1
3. Y= {—Yi,q if oy, =1



The following lemma follows immediately from this definition.

Lemma 5. An alignment is variable-consistent iff for al= 1,...,t andg = 1,2 the
following properties hold:

A. EitherY; 4[1] or Y; ,[9] matches a gap irZ. No other character ofZ or Y; ,
matches a gap in the other sequence.

B. No character in either of the two sequenégsg, X,, , matches a gap in the other
sequence. O

These properties are referred to as property A and B. The following is an example
of a variable-consistent alignment representing the equétiéhr; - xo = —1 which
is satisfied byry = —1 andz, = 1.

Y;1= @o0oxoxooe~—
ﬁ,QZ—ooooxoooo
Xlzooooooooo—
X2:—ooooooooo
7 = —00000000—

Note the functional region of a palf;, 1, Y; » given by the triplescox andoxo. If Y; 3
andY; . represent the same value, the functional region yields a weighted scére of
Otherwise, it yields a weighted scoreflf an alignmentA is variable-consistent, we
haveD;(A) = 29 if G, is satisfied by the represented assignment2add) = 31
otherwise.

The next two lemmas have similar proofs. Thus, we only give a proof of the first.

Lemma 6. Alignments of the pair§Y; 1, Z} and {Y; », Z} yield scores o and 5,
respectively, if they fulfil property A. Violating property A yields scores of at [e@st
and7, respectively.

Proof. An alignment of{Y; 1, Z} that fulfils property A yields scorg.

Let us consider an alignment §¥; ;, Z} that does not fulfil property A. Then at
least one of the characters; [2], ..., Y;1[8], Z[1], ..., Z[8] matches a gap in the other
sequence.

We distinguish two cases. If there is ar™in Y; ; matching a gap ir¥Z, then the
alignment yields a score 6ffor this “x” plus 3 for the other %" plus 1 for each ‘e”.
So altogether it yields a score of at least

On the other hand consider the case thatxbif Y; ; matches a gap i@. Then
thereisa®©”in Y; ; or Z matching a gap in the other sequence. So the alignment yields
a score oB for each ” plus 1 for each ‘e” plus 2 for the “o” matching a gap. So the
alignment again yields a score of at ledgt

The statement abodf » andZ can be proved in a similar fashion. a

Lemma 7. Alignments of the pairgY; i, X,, ,} and {Y; 2, X,, ,} yield scores of
and 3, respectively, if they fulfil property B. Violating property B yields scores of at
least8 and5, respectively. O



With the fact that an optimal alignment of a pdiY; 1,Y; -} has scor&’ we can
prove the following.

Lemma 8. Given an arbitrary alignment with scor&l - ¢ — 2 - g we can construct a
variable-consistent alignment with less or equal score in polynomial time.

Proof. Let.A be an arbitrary alignment withy, (A) =31t —2- g.

Let I be the set of all such that/; ; andY;  fulfil properties A and B. This implies
an assignment for the variables = {z; e U|Fi € I : X; € S;}. Let] = {1,...,t}\
I. Because in every sé&; for i € I there exists a sequentg,, that violates property
A or B, we haveD;(A) > 31 for eachi € T due to Lemmas 6 and 7.

Fori € I if Ta,, € Ur (g € {1,2}), we realigny; , with respect tac,,, ,. Then we
assign an arbitrary value to the variabledin, U; and realign the correspondinig,,
and.X;.

By these modifications we obtain an alignmetit ThenD;(A") = D;(A)fori € I
and D;(A’) < 31 < D;(A) otherwise. ThusDw (A") < Dy (A). A’ is variable-
consistent due to its construction and can be computed in polynomial time. O

The alignment obtained yields an assignment that satisfies aylegsations ofj.
Theorem 3. BMSA is MAX SN P-hard.

Proof. We reduce MAX-E2-neg-Lin2 to BMSA{; is given by the construction &
from a family G of ¢ equations. One can see that(S) < 31 - 1.

An equation ofG will be satisfied by 2 of the 4 possible assignments of its variables.
Therefore, for every multisét of ¢t equations an assignment exists that satisfies at least
3 - t equations. Then foy; = 62 we haveopt(S) < 1 - opt(G).

Given an alignment of with score31-t—2-¢’ for someg’ we can find an assignment
satisfyingg > ¢’ equations ofj due to Lemma 8. Lef, = % then|g — opt(G)| <
v2-|(Bl-t—2-¢') — opt(S)| holds. O

Theorem 4. BMSA has no polynomial time approximation with performance ratio
321 — eforanye > 0, unless\'P = P.

Proof. An instance of MAX-E2-neg-Lin2 consisting efequations ig;-satisfiable iff
the corresponding instance of BMSA has an alignment with s@ire- 2 - ) - ¢.

The optimal alignment of a BMSA instance corresponding @%f 5)-satisfiable
instance of MAX-E2-neg-Lin2 has scof@l —2- (35 —¢)) -t = 325224 .4 Using the

(322 — ¢)-approximation algorithm for BMSA we are able to find an alignment with

score at mos{32: —¢) - 3231224 ¢ = |y
The optimal alignment of a BMSA instance corresponding (égaJr 5)—satisfiable
instance of MAX-E2-neg-Lin2 has sco(81—2- (11 +¢))-t =: K». We havek; < K,
iff & < & - #;2‘36 Chooset with 0 < € < 55 - %ﬁz‘;e Then the(223 — ¢)-
approximation for BMSA can be used to distinguig}j — ¢)- and (L + ¢)-satisfiable
instances of MAX-E2-neg-Lin2. This would imply P = P due to Theorem 2. O

Since WMSA is a generalization of BMSA it is also MAXN P-hard and we ob-
tain the same non-approximability result.



6 Conclusions

We have shown MAXSNAP-hardness and proved a numerical lower bound for the
approximability of weighted multiple sequence alignment (WMSA). These results hold
even if we restrict the problem to binary weights (BMSA). Furthermore, BMSA and
WMSA are equivalent with respect to their approximability. But the distance to the best
known upper bound is huge. An obvious goal is to reduce this gap.

Finally, we would like to know how well the unweighted version of the multiple
sequence alignment problem with metric SP-score can be approximated.
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