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Med. Universiẗat zu L̈ubeck

Wallstraße 40, 23560 L̈ubeck, Germany
siebert@tcs.mu-luebeck.de

Abstract. We consider a weighted generalization of multiple sequence align-
ment with sum-of-pair score. Multiple sequence alignment without weights is
known to beNP-complete and can be approximated within a constant factor, but
it is unknown whether it has a polynomial time approximation scheme. Weighted
multiple sequence alignment can be approximated within a factor ofO(log2 n)
wheren is the number of sequences.
We prove that weighted multiple sequence alignment is MAXSNP-hard and
establish a numerical lower bound on its approximability, namely324

323
− ε. This

lower bound is obtained already for the simple binary weighted case where the
weights are restricted to0 and1. Furthermore, we show that weighted multiple
sequence alignment and its restriction to binary weights can be approximated
exactly to the same degree.

1 Introduction

Multiple sequence alignment (MSA) is an important problem in computational biology.
The alignment of a group of protein or nucleotide sequences yields information about
the relationships between these sequences and it is also used to detect similarities (so
called “homologous regions”) between them. This information is applied in construct-
ing evolutionary trees and finding coherences between the function and structure of
proteins and their sequences.

Many objective functions have been suggested to measure the quality of a multiple
sequence alignment. One of the most widely used is the so called sum-of-pair score
(SP-score, Carrillo et al. [6]).

MSA with SP-score is known to beNP-complete (Wang et al. [12]). For the case
that the scoring function does not have to be a metric, Just has shown that MSA with
SP-score is MAXSNP-hard [9]. Akutsu et al. have investigated the multiple sequence
alignment problem under several scoring functions, namely#LOG#-score andIC-
score [1]. They have shown that a variant of the multiple sequence alignment problem
called local multiple alignment is MAXSNP-hard under these scoring schemes.

However, if the scoring function fulfils the triangle inequality, no lower bound for
this problem is known so far. The complexity of MSA over an alphabet of fixed size with

? supported by DFG research grant RE 672/3

7th Ann. Int. Conf. on Computing and Combinatorics (COCOON 2001)c© Springer



metric SP-scoring functions is of main interest. According to Jiang et al. the approx-
imability of MSA with metric SP-score is an important open problem in computational
biology [8].

To represent existing knowledge about the relationships of the sequences consid-
ered, a weighted variant of MSA was introduced by Wu et al. [13]. Each pair of se-
quences is assigned a nonnegative value reflecting their degree of relationship. This
means that a pair which is assumed to be closely related will be assigned a high weight
while a less related pair will be assigned a smaller weight. This generalization of MSA
is called weighted MSA, or WMSA for short.

In this paper we also examine a restricted version of WMSA called binary weighted
MSA (BMSA), where the weights are restricted to0 and1. The binary weights can be
used to represent an arbitrary graph over which multiple sequence alignments can be
determined. We will prove that BMSA is equivalent to WMSA with respect to their
approximability. Thus, an approximation algorithm for BMSA directly yields an ap-
proximation algorithm for the general case with the same performance ratio. Moreover,
we prove the MAXSNP-hardness and a numerical lower bound for the approxima-
bility of BMSA. These results are obtained even if the sequences are of fixed length
and the alphabet is of fixed size. Thus, the difficulty of multiple sequence alignment is
caused by the number of sequences, not by their length.

In the next section we give a formal definition of the problems considered. The
reduction from WMSA to BMSA is presented in section 3. In section 4 we prove a lower
bound for the approximability of a problem called MAX-E2-neg-Lin2. This result will
be used in section 5 to prove a lower bound for the approximability of BMSA.

2 Definitions and Notations

LetΣ be an alphabet andΣ′ := Σ∪{−}, where “−” denotes a gap symbol.S[l] denotes
the l-th symbol of a sequenceS. Let S = {S1, . . . , Sn} be a family (a multiset) of
sequences overΣ. An alignmentof S is a familyA = {S̃1, . . . , S̃n} of sequences over
Σ′ such that allS̃i have equal length and̃Si is obtained fromSi by inserting gaps. The
following is an example of an alignment of three sequencesATTCTG, TTCTTTG
andATTGTT .

ATTCT−−G
−TTCTT TG
ATTGT−T−

A function d : Σ′2 → N will be calledscoring functionif it is a metric, i.e. for
any x, y, z ∈ Σ′ we haved(x, y) = 0 iff x = y, d(x, y) = d(y, x), andd(x, z) ≤
d(x, y) + d(y, z). We define the distance of two sequencesS̃i and S̃j of length l as
D(S̃i, S̃j) :=

∑l
k=1 d(S̃i[k], S̃j [k]).

Carrillo and Lipman introduced a scoring scheme for alignments calledsum-of-pair
score(SP-score, [6]). The SP-score of an alignmentA = {S̃1, . . . , S̃n} is defined by
D(A) :=

∑
1≤i<j≤n D(S̃i, S̃j). Multiple sequence alignment (MSA) is the problem

of finding an alignment with minimum SP-score.
Wu et al. generalized MSA to weighted sum-of-pair score [13]. The weights are

given byW := (wSi,Sj )Si,Sj∈S , a symmetric matrix of nonnegative integers. Then the



weighted SP-score of an alignmentA is DW (A) :=
∑

1≤i<j≤n wSi,Sj
· D(S̃i, S̃j).

This generalization is calledweighted multiple sequence alignment(WMSA). The aim
is to find an alignment with minimum weighted SP-score.

An instance of WMSA is a 4-tuple(Σ,S, d,W ). We consider the case of a fixed
alphabetΣ and a fixed scoring functiond. Thus, a problem instance of WMSA is given
by a pair(S,W ). It is easy to see that any lower bound for this case also holds if we
allow arbitrary scoring functions and alphabets.

A special case of WMSA isbinary weighted MSA(BMSA), where the weights are
restricted to0 and1.

It has been shown that MSA with SP-score isNP-complete [12]. For an arbitrary
fixed constantr, MSA can be approximated in polynomial time within a factor of2− r

n ,
wheren ≥ r is the number of sequences [4]. It is unknown whether MSA admits a
polynomial time approximation scheme (PTAS, see e.g. Ausiello et al. [3]). WMSA
with arbitrary weights can be approximated within a factor ofO(log2 n) [13]. Using a
technique of Bartal [5] one can obtain a randomizedO(log n · llog n) approximation.

Papadimitriou et al. introduced a class of optimization problems called MAXSNP
[10]. They showed that there exist problems which are MAXSNP-complete with re-
spect to L-reductions. In the following,opt(I) denotes the optimal score of an instance
I of an optimization problem. For example,opt(S) denotes the score of an optimal
(weighted) alignment ofS.

Definition 1. LetΠ andΠ ′ be two optimization problems. ThenΠ L-reduces toΠ ′ if
there exist polynomial time computable functionsf1, f2 and constantsγ1, γ2 > 0 such
that for each instanceI of Π:

1. Functionf1 produces an instanceI ′ = f1(I) ofΠ ′ such thatopt(I ′) ≤ γ1 ·opt(I).
2. Given a solutionS′ of I ′ with costc′(S′), functionf2 produces a solutionS =

f2(I, S′) of I with costc(S) such that|c(S)− opt(I)| ≤ γ2 · |c′(S′)− opt(I ′)|.

No MAX SNP-hard problem has a PTAS, unlessNP = P (Arora et al. [2]).

3 Reduction from WMSA to BMSA

LetS = {S1, . . . , Sn} be a family of sequences overΣ andW = (wSi,Sj ) be a weight
matrix. Letl be the maximal length of the sequences inS anddmax be the maximum of
the scoring functiond. We assume that the weights and the scoring function are unary
coded. This does not seem to be a restriction because in practice the weights are very
small and the scoring function is fixed.

We construct a family of sequencesS ′ as an instance of BMSA as follows. Let
K := 2 · dmax · l. For a sequenceSj ∈ S generateK copiesT k

j ∈ S ′ (1 ≤ k ≤ K)

of this sequence. Furthermore, for each1 ≤ i ≤ n constructwSi,Sj
copiesSi,µ

j ∈ S ′
(1 ≤ µ ≤ wSi,Sj ) of Sj . The weight matrixW ′ = (w′

I,J)I,J∈S′ is given by

w′
I,J :=


1 if I ≡ Si,µ

j andJ ≡ Sj,µ
i ,

1 if I ≡ Si,µ
j andJ ≡ T k

j or vice versa,
0 otherwise,



whereA ≡ B means thatA andB are not only equal but denote the same sequence.
Since the weights and the scoring function are unary coded, the input sizeN of the

instance of WMSA fulfils the boundN ∈ Ω
(
n · l+

∑n
i,j=1 wSi,Sj

)
. On the other hand,

the input sizeN ′ of the constructed instance of BMSA satisfies

N ′ ∈ O
(
n ·K · l︸ ︷︷ ︸

T ·
·

+ l ·
∑n

i,j=1 wSi,Sj︸ ︷︷ ︸
S·,·

·

+(n ·K +
∑n

i,j=1 wSi,Sj
)2︸ ︷︷ ︸

W ′

)
.

Note thatN ′ is polynomially bounded byN .

Lemma 1. If S has an alignmentA with weighted scoreDW (A) thenS ′ has an align-
mentA′ with scoreDW ′(A′) = DW (A).

Proof. LetA = {S̃1, . . . , S̃n} be an alignment ofS with weighted scoreD. We obtain
an alignmentA′ = {Ã|A ∈ S ′} of S ′ by settingT̃ k

j = S̃j and S̃i,µ
j = S̃j for all

j, k, i, µ. The score ofA′ with respect to the weight matrixW ′ is

DW ′(A′) =
n∑

i,j=1

wSi,Sj∑
µ=1

K∑
k=1

D(S̃i,µ
j , T̃ k

j )︸ ︷︷ ︸
=0

+
∑

1≤i<j≤n

wSi,Sj∑
µ=1

D(S̃j,µ
i , S̃i,µ

j )︸ ︷︷ ︸
=D(S̃i,S̃j)

= DW (A) .

ut

Lemma 2. Given an alignmentA′ of S ′ with weighted scoreDW ′(A′) we can con-
struct an alignmentA of S with less or equal score in polynomial time.

Proof. Let A′ = {Ã|A ∈ S ′} be an arbitrary alignment ofS ′ with scoreDW ′(A′).
The copies of a sequenceSj ∈ S will be calledconsistentif there exists a sequenceBj

with T̃ k
j = Bj andS̃i,µ

j = Bj for all k, i, µ. The sequenceBj is calledblock.
We consider the case that for somej0 the copies ofSj0 are not consistent and distin-

guish two cases. First, if not all̃T k
j0

are equal, letDk :=
∑n

i=1

∑wSi,Sj

µ=1 D(T̃ k
j0

, S̃i,µ
j0

)
be the score of̃T k

j0
with the sequences̃Si,·

j0
. Choosek0 such thatDk0 is minimal among

all Dk and setT̃ k
j0

= T̃ k0
j0

for all k 6= k0. This way we obtain a new alignment with less
or equal score.

Now we consider the case that there exists aBj0 such thatT̃ k
j0

= Bj0 for all k. Then

there exists a sequencẽSi0,µ0
j0

6= Bj0 . This sequence yields at least scoreK with the

sequences̃T ·
j0

, because it yields a score of at least1 with everyT̃ k
j0

. SetS̃i0,µ0
j0

= Bj0 .

ThenS̃i0,µ0
j0

yields score0 with anyT̃ k
j0

and at most scoreK with S̃j0,µ0
i0

. Thus, the new
alignment has less or equal score.

By these modifications we iteratively obtain a new alignment ofS ′ such that for any
j ∈ {1, . . . , n} the copies ofSj are consistent with blockBj . The blocks ofS ′ induce
an alignmentA = {B1, . . . , Bn} of S with scoreDW (A) =

∑
1≤i<j≤n wSi,Sj

·
D(Bi, Bj) ≤ DW ′(A′). ut

With these results we have shown that aλ-approximation for BMSA can be used as
aλ-approximation for WMSA. Thus, the following theorem holds.

Theorem 1. If BMSA can be approximated within a constant factorλ in polynomial
time, thenWMSA can also be approximated withinλ in polynomial time. ut



4 The Non-Approximability of MAX-E2-neg-Lin2

We consider the multiplicative group{1,−1}. Let G = {G1, . . . , Gt} be a multiset of
linear equations over the variablesU = {x1, . . . , xr}, Gi=̂xαi,1 ·. . .·xαi,k

= ai, k ≥ 2,
αi,q ∈ {1, . . . , r}, andai ∈ {1,−1} is a constant. MAX-Ek-Lin2 is the optimization
problem of finding the maximum number of simultaneously satisfiable equations. A
restriction of MAX-Ek-Lin2 is MAX-Ek-neg-Lin2, whereai = −1 for all 1 ≤ i ≤ t.

MAX-E2-neg-Lin2 is exactly the problem MAX-Cut (see e.g. [3]) where the equa-
tions correspond to the edges, the variables correspond to the nodes, and multiple
edges are allowed. Therefore, MAX-E2-neg-Lin2 is MAXSNP-complete [10]. We
use MAX-E2-neg-Lin2 here due to the simpler notation.

An instance of MAX-Ek-Lin2 or MAX-Ek-neg-Lin2 consisting oft equations will
be calledη-satisfiableiff η · t is the maximum number of simultaneously satisfiable
equations. H̊astad proved in [7] that it isNP-hard to distinguish

(
1− ε

)
-satisfiable and(

1
2 + ε

)
-satisfiable instances of MAX-E3-Lin2 for anyε > 0.

Instead of the known lower bound for the approximability of MAX-Cut (Håstad [7]
and Trevisan et al. [11]) we will construct a reduction from MAX-E3-Lin2 to MAX-E2-
neg-Lin2 to prove that it isNP-hard to distinguish

(
18
22 − ε

)
- and

(
17
22 + ε

)
-satisfiable

instances of MAX-E2-neg-Lin2 for anyε > 0; the gadget used by Trevisan et al. [11]
does not yield such a gap directly. This result will be used in section 5 to establish the
lower bound for the approximability of BMSA.

We will now reduce MAX-E3-Lin2 to MAX-E2-neg-Lin2. LetG = {G1, . . . , Gt}
be a multiset of equations over variablesU , Gi=̂xαi,1 · xαi,2 · xαi,3 = ai.

We construct an instanceG′ of MAX-E2-neg-Lin2 with22 · t equations and4 · t +
2 · r + 2 variables. The reduction is similar to the reduction from MAX-E3-Lin2 to
MAX-E2-Lin2 in [7]. The set of variablesU ′ is given by

U ′ = {x+
j , x−j |1 ≤ j ≤ r} ∪ {z+, z−} ∪ {pi,1, pi,2, pi,3, pi,z|1 ≤ i ≤ t} .

Note that if an assignment satisfies an equation of an instance of MAX-E2-neg-Lin2,
then the negated assignment also satisfies the equation. So without loss of generality
we assume that in any casez+ = 1.

We interpretx+
j = xj . We call an assignmentconsistent forxj if x+

j 6= x−j and
thereforex+

j = xj = (−x−j ). An assignment that is consistent for everyxj and where
z+ 6= z− is calledconsistent.

For an equationGi=̂xαi,1 · xαi,2 · xαi,3 = ai we construct the twelve equations

x+
αi,q

· pi,q′ = −1 for q, q′ = 1, 2, 3 andq 6= q′ ,

x+
αi,q

· pi,z = −1 for q = 1, 2, 3 ,

x−αi,q
· pi,q = −1 for q = 1, 2, 3 .

We add either the four equationsz+ · pi,q = −1 (q = 1, 2, 3) andz− · pi,z = −1 if
ai = 1 or the four equationsz− ·pi,q = −1 (q = 1, 2, 3) andz+ ·pi,z = −1 if ai = −1.
For every equation inG we construct the three equationsx+

αi,q
·x−αi,q

= −1 (q = 1, 2, 3).
Finally, we add the equationz+ · z− = −1 three times. Note thatG′ contains3 · t times



the equationz+ · z− = −1. Let nj be the number of occurrences of the variablexj in
G. ThenG′ containsnj times the equationx+

j · x−j = −1.
For every equationGi ∈ G we have constructed22 equations forG′. These22

equations are called therepresentation ofGi.

Lemma 3. Let an arbitrary assignment forU be given. Assignz− = −1 andx+
j = xj ,

x−j = (−xj) for j = 1, . . . , r. Then for anyi ∈ {1, . . . , t} there exists an assignment
for pi,1, pi,2, pi,3, andpi,z such that 18 equations of the representation ofGi are sat-
isfied ifGi is satisfied by the given assignment and 16 equations of the representation
are satisfied ifGi is not satisfied.

It is not possible to satisfy more than 18 equations of the representation ifGi is
satisfied by the assignment and to satisfy more than 16 equations ifGi is not satisfied
by the assignment.

Proof. The lemma can be proved by testing all possible assignments. ut

If an assignment forU satisfiesg of the t equations ofG, then the corresponding
consistent assignment forU ′ satisfies16 · t + 2 · g equations ofG′. This assignment
can be found efficiently by adjusting the assignment forpi,1, pi,2, pi,3, andpi,z. On the
other hand, a consistent assignment forU ′ that satisfies16 · t + 2 · g equations ofG′
yields an assignment forU that satisfiesg equations ofG.

Lemma 4. Given an arbitrary assignment forU ′ that satisfies16 · t + 2 · g equations
of G′, a consistent assignment that satisfies at least this amount of equations ofG′ can
be computed in polynomial time.

Proof. First assume thatz+ = z− in the given assignment. Then the3 · t equations
z+ · z− = −1 are not satisfied by the assignment. Letz− = (−z+). Then these3 · t
equations will be satisfied. On the other hand,z− occurs in only3 · t other equations.
Thus, at most3 · t equations are no longer satisfied. Altogether the number of satisfied
equations is not decreased by this modification.

If there exists aj with x+
j = x−j , then there arenj equationsx+

j ·x
−
j = −1 that are

not satisfied by the assignment. Letx−j = (−x+
j ). Then thenj equationsx+

j ·x
−
j = −1

are satisfied by the modified assignment. On the other handx−j occurs in onlynj other
equations. Thus, at mostnj equations are no longer satisfied. The number of satisfied
equations is thus not decreased by this modification.

This way we iteratively obtain a consistent assignment. Obviously, the modifica-
tions can be computed in polynomial time. ut

Now we can prove the following theorem used in section 5.

Theorem 2. For any ε > 0 it is NP-hard to distinguish
(

18
22 − ε

)
- and

(
17
22 + ε

)
-

satisfiable instances ofMAX-E2-neg-Lin2.

Proof. An instance of MAX-E3-Lin2 isη-satisfiable iff the corresponding instance of
MAX-E2-neg-Lin2 is

(
16+2·η

22

)
-satisfiable. According to H̊astad [7] it isNP-hard to

distinguish
(
1− ξ

)
- and

(
1
2 + ξ

)
-satisfiable instances of MAX-E3-Lin2 for anyξ > 0.

Thus, it isNP-hard to distinguish
(

16+2·(1−ξ)
22

)
- and

(
16+2·( 1

2+ξ)

22

)
-satisfiable in-

stances of MAX-E2-neg-Lin2. Choosingξ = 11 · ε completes the proof. ut



Since MAX-Cut and MAX-E2-neg-Lin2 are exactly the same problem, we obtain
the same approximability gap for MAX-Cut.

Corollary 1. For any ε > 0 it is NP-hard to decide whether the maximum cut of an
instanceG = (V,E) (where multiple edges are allowed) ofMAX-Cut consists of at
most

(
17
22 + ε

)
· |E| or at least

(
18
22 − ε

)
· |E| edges. ut

5 The Non-Approximability of BMSA

In this section we reduce MAX-E2-neg-Lin2 to BMSA. LetG = {G1, . . . , Gt} be an
instance of MAX-E2-neg-Lin2 over a set of variablesU = {x1, . . . , xr}, Gi=̂xαi,1 ·
xαi,2 = −1, αi,q ∈ {1, . . . , r}. We construct a family of sequencesS = {Z} ∪
{Xj |j = 1, . . . , r} ∪ {Yi,1, Yi,2|i = 1, . . . , t} over the alphabetΣ = {•, ◦,×}. Let
Z := ◦◦◦◦◦◦◦◦ be a sequence of length8. Z will be used as a control sequence. For
j ∈ {1, . . . , r} let Xj := •◦◦◦◦◦◦◦• be a sequence of length9 that represents the
variablexj ∈ U . For eachi ∈ {1, . . . , t} create two sequencesYi,1 := •◦◦×◦×◦◦•
andYi,2 := •◦◦◦×◦◦◦•, each of length 9.Yi,q represents the variablexαi,q in Gi.

The scoring function is given in the following table. Note that it is a metric.

- • ◦ ×
- 0 1 2 5
• 1 0 1 4
◦ 2 1 0 3
× 5 4 3 0

The weight matrixW = (wI,J)I,J∈S is given by

wI,J :=


1 if I ≡ Yi,q andJ ≡ Yi,q′ ,
1 if I ≡ Z andJ ≡ Yi,q or vice versa,
1 if I ≡ Yi,q andJ ≡ Xαi,q

or vice versa,
0 otherwise.

The setSi = {Yi,1, Yi,2, Xαi,1 , Xαi,2} will be called therepresentation ofGi. Note
that in general a sequenceXj occurs in more than one representation.

Let A = {S̃|S ∈ S} be an alignment ofS. ThenDi(A) denotes the score of the
equationGi, Di(A) = D(Ỹi,1, Ỹi,2)+D(Ỹi,1, X̃αi,1)+D(Ỹi,2, X̃αi,2)+D(Ỹi,1, Z̃)+
D(Ỹi,2, Z̃). By the construction of the weight matrix,DW (A) =

∑t
i=1 Di(A) holds.

Definition 2. An alignmentA = {S̃|S ∈ S} of S will be calledvariable-consistent
with respect to an assignment forU if, after eliminating all columns consisting solely
of gaps (which do not affect the score), the following holds for allj, i, andq:

1. Z̃ = −Z−
2. X̃j =

{
Xj− if xj = −1
−Xj if xj = 1

3. Ỹi,q =
{

Yi,q− if xαi,q = −1
−Yi,q if xαi,q

= 1



The following lemma follows immediately from this definition.

Lemma 5. An alignment is variable-consistent iff for alli = 1, . . . , t andq = 1, 2 the
following properties hold:

A. Either Yi,q[1] or Yi,q[9] matches a gap inZ. No other character ofZ or Yi,q

matches a gap in the other sequence.
B. No character in either of the two sequencesYi,q, Xαi,q

matches a gap in the other
sequence. ut

These properties are referred to as property A and B. The following is an example
of a variable-consistent alignment representing the equationGi=̂x1 · x2 = −1 which
is satisfied byx1 = −1 andx2 = 1.

Ỹi,1 = • ◦ ◦ × ◦ × ◦ ◦ • –
Ỹi,2 = – • ◦ ◦ ◦ × ◦ ◦ ◦ •
X̃1 = • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • –
X̃2 = – • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
Z̃ = – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ –

Note the functional region of a pairYi,1, Yi,2 given by the triples×◦× and◦×◦. If Yi,1

andYi,2 represent the same value, the functional region yields a weighted score of9.
Otherwise, it yields a weighted score of3. If an alignmentA is variable-consistent, we
haveDi(A) = 29 if Gi is satisfied by the represented assignment andDi(A) = 31
otherwise.

The next two lemmas have similar proofs. Thus, we only give a proof of the first.

Lemma 6. Alignments of the pairs{Yi,1, Z} and {Yi,2, Z} yield scores of8 and 5,
respectively, if they fulfil property A. Violating property A yields scores of at least10
and7, respectively.

Proof. An alignment of{Yi,1, Z} that fulfils property A yields score8.
Let us consider an alignment of{Yi,1, Z} that does not fulfil property A. Then at

least one of the charactersYi,1[2], . . . , Yi,1[8], Z[1], . . . , Z[8] matches a gap in the other
sequence.

We distinguish two cases. If there is an “×” in Yi,1 matching a gap inZ, then the
alignment yields a score of5 for this “×” plus 3 for the other “×” plus 1 for each “•”.
So altogether it yields a score of at least10.

On the other hand consider the case that no “×” in Yi,1 matches a gap inZ. Then
there is a “◦” in Yi,1 or Z matching a gap in the other sequence. So the alignment yields
a score of3 for each “×” plus 1 for each “•” plus 2 for the “◦” matching a gap. So the
alignment again yields a score of at least10.

The statement aboutYi,2 andZ can be proved in a similar fashion. ut

Lemma 7. Alignments of the pairs{Yi,1, Xαi,1} and {Yi,2, Xαi,2} yield scores of6
and 3, respectively, if they fulfil property B. Violating property B yields scores of at
least8 and5, respectively. ut



With the fact that an optimal alignment of a pair{Yi,1, Yi,2} has score7 we can
prove the following.

Lemma 8. Given an arbitrary alignment with score31 · t − 2 · g we can construct a
variable-consistent alignment with less or equal score in polynomial time.

Proof. LetA be an arbitrary alignment withDW (A) = 31 · t− 2 · g.
Let I be the set of alli such thatYi,1 andYi,2 fulfil properties A and B. This implies

an assignment for the variablesUI = {xj ∈ U |∃i ∈ I : Xj ∈ Si}. Let I = {1, . . . , t}\
I. Because in every setSi for i ∈ I there exists a sequenceYi,q that violates property
A or B, we haveDi(A) ≥ 31 for eachi ∈ I due to Lemmas 6 and 7.

For i ∈ I if xαi,q
∈ UI (q ∈ {1, 2}), we realignYi,q with respect toxαi,q

. Then we
assign an arbitrary value to the variables inU \ UI and realign the correspondingYi,q

andXj .
By these modifications we obtain an alignmentA′. ThenDi(A′) = Di(A) for i ∈ I

andDi(A′) ≤ 31 ≤ Di(A) otherwise. Thus,DW (A′) ≤ DW (A). A′ is variable-
consistent due to its construction and can be computed in polynomial time. ut

The alignment obtained yields an assignment that satisfies at leastg equations ofG.

Theorem 3. BMSA is MAX SNP-hard.

Proof. We reduce MAX-E2-neg-Lin2 to BMSA.f1 is given by the construction ofS
from a familyG of t equations. One can see thatopt(S) ≤ 31 · t.

An equation ofG will be satisfied by 2 of the 4 possible assignments of its variables.
Therefore, for every multisetG of t equations an assignment exists that satisfies at least
1
2 · t equations. Then forγ1 = 62 we haveopt(S) ≤ γ1 · opt(G).

Given an alignment ofS with score31·t−2·g′ for someg′ we can find an assignment
satisfyingg ≥ g′ equations ofG due to Lemma 8. Letγ2 = 1

2 , then|g − opt(G)| ≤
γ2 · |(31 · t− 2 · g′)− opt(S)| holds. ut

Theorem 4. BMSA has no polynomial time approximation with performance ratio
324
323 − ε for anyε > 0, unlessNP = P.

Proof. An instance of MAX-E2-neg-Lin2 consisting oft equations isη-satisfiable iff
the corresponding instance of BMSA has an alignment with score(31− 2 · η) · t.

The optimal alignment of a BMSA instance corresponding to a
(

18
22 − ξ

)
-satisfiable

instance of MAX-E2-neg-Lin2 has score
(
31−2 ·

(
18
22 −ξ

))
· t = 323+22·ξ

11 · t. Using the(
324
323 − ε

)
-approximation algorithm for BMSA we are able to find an alignment with

score at most
(

324
323 − ε

)
· 323+22·ξ

11 · t =: K1.
The optimal alignment of a BMSA instance corresponding to a

(
17
22 + ξ

)
-satisfiable

instance of MAX-E2-neg-Lin2 has score
(
31−2·

(
17
22+ξ

))
·t =: K2. We haveK1 < K2

iff ξ < 1
22 ·

3232·ε
647−323·ε . Chooseξ with 0 < ξ < 1

22 ·
3232·ε

647−323·ε . Then the
(

324
323 − ε

)
-

approximation for BMSA can be used to distinguish
(

18
22 − ξ

)
- and

(
17
22 + ξ

)
-satisfiable

instances of MAX-E2-neg-Lin2. This would implyNP = P due to Theorem 2. ut

Since WMSA is a generalization of BMSA it is also MAXSNP-hard and we ob-
tain the same non-approximability result.



6 Conclusions

We have shown MAXSNP-hardness and proved a numerical lower bound for the
approximability of weighted multiple sequence alignment (WMSA). These results hold
even if we restrict the problem to binary weights (BMSA). Furthermore, BMSA and
WMSA are equivalent with respect to their approximability. But the distance to the best
known upper bound is huge. An obvious goal is to reduce this gap.

Finally, we would like to know how well the unweighted version of the multiple
sequence alignment problem with metric SP-score can be approximated.
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