
Privacy in Non-Private Environments?

Markus Bläser1??, Andreas Jakoby2, Maciej Lískiewicz2? ? ?, and Bodo
Manthey2†

1 Institut für Theoretische Informatik, ETH Zürich, Switzerland
mblaeser@inf.ethz.ch

2 Institut für Theoretische Informatik, Universität zu Lübeck, Germany
jakoby/liskiewi/manthey@tcs.uni-luebeck.de

Abstract. We study private computations in information-theoretical
settings on networks that are not 2-connected. Non-2-connected networks
are “non-private” in the sense that most functions cannot privately be
computed on them. We relax the notion of privacy by introducing lossy
private protocols, which generalize private protocols. We measure the
information each player gains during the computation. Good protocols
should minimize the amount of information they lose to the players.
Throughout this work, privacy always means 1-privacy, i.e. players are
not allowed to share their knowledge. Furthermore, the players are honest
but curious, thus they never deviate from the given protocol.
By use of randomness by the protocol the communication strings a cer-
tain player can observe on a particular input determine a probability
distribution. We define the loss of a protocol to a player as the logarithm
of the number of different probability distributions the player can ob-
serve. For optimal protocols, this is justified by the following result: For
a particular content of any player’s random tape, the distributions the
player observes have pairwise fidelity zero. Thus the player can easily
distinguish the distributions.
The simplest non-2-connected networks consists of two blocks that share
one bridge node. We prove that on such networks, communication com-
plexity and the loss of a private protocol are closely related: Up to con-
stant factors, they are the same.
Then we study 1-phase protocols, an analogue of 1-round communication
protocols. In such a protocol each bridge node may communicate with
each block only once. We investigate in which order a bridge node should
communicate with the blocks to minimize the loss of information. In par-
ticular, for symmetric functions it is optimal to sort the components by
increasing size. Then we design a 1-phase protocol that for symmetric
functions simultaneously minimizes the loss at all nodes where the min-
imum is taken over all 1-phase protocols.
Finally, we prove a phase hierarchy. For any k there is a function such
that every (k − 1)-phase protocol for this function has an information
loss that is exponentially greater than that of the best k-phase protocol.

? The full version of this work appeared as Rev. 1 of Report 03-071, ECCC, 2003.
?? Work done while at the Institut für Theoretische Informatik, Universität zu Lübeck.

? ? ? On leave from Instytut Informatyki, Uniwersytet Wroc lawski, Poland.
† Supported by DFG research grant RE 672/3.

10th Int. Conf. Cryptology and Inf. Security (ASIACRYPT 2004) c© Springer

1 Introduction

Consider a set of players, each knowing an individual secret. They want to com-
pute some function depending on their secrets. But after the computation, no
player should know anything about the other secrets except for what he is able
to deduce from his own secret and the function value. This is the aim of pri-
vate computation (also called secure multi-party computation). To compute the
function, the players can send messages to each other using secure links.

An example for such a computation is the “secret voting problem”: The
members of a committee wish to decide whether the majority votes for yes or
no. But after the vote nobody should know anything about the opinions of the
other members, not even about the exact number of yes and no votes, except for
whether the majority voted for yes or no.

If no group of at most t players can infer anything about the input bits that
cannot be inferred from the function value and their own input bits, we speak
of t-privacy.

Any Boolean function can privately (in the following we identify privately
with 1-privately) be computed on any 2-connected network. Unfortunately, there
are many Boolean functions, even simple ones like parity or disjunction, that
cannot privately be computed if the underlying network is not 2-connected [5].

However, many real-world networks are not 2-connected and private compu-
tation is not possible. If the players in the network have to compute something
but do not trust each other, there is a natural interest of the players in privacy.
What can we do? We relax the notion of privacy: One cannot require that any
player learns only what he is able to deduce from his own secret and the function
value. Instead we require that any player learns as little as possible about the
secrets of the other players (in an information-theoretical sense) while it is still
possible to compute the function.

Bridge nodes are important when considering non-2-connected networks. For
all non-bridge players we can guarantee that they do not learn anything except
for what they can deduce from their own bit and the function value. Thus, the
bridge players are the only players that are able to learn something more. The
question is now, how much the bridge players need to learn such that the function
can be computed. The simplest setting is a network of two blocks with one bridge
node in common. (A block is a maximal 2-connected subnetwork.) This reminds
one of communication complexity with a man in the middle: Alice (one block)
and Bob (another block) want to compute a function depending on their in-
put while preventing Eve (the bridge node) from learning anything about their
input. Unfortunately, Eve listens to the only communication channel between
Alice and Bob. In terms of communication complexity, this problem had been
examined by Modiano and Ephremedis [13, 14] and Orlitsky and El Gamal [17]
under cryptographic security. In contrast, we deal with information-theoretical
security, i.e. the computational power of the players is unrestricted. Furthermore,
we are not interested in minimizing communication but in minimizing the infor-
mation learned by any player. It turns out that there is a close relation between
communication and privacy, at least in this special case.

1.1 Previous Results

Private computation was introduced by Yao [20]. He considered the problem
under cryptographic assumptions. Private Computation with information-theo-
retical security has been introduced by Ben-Or et al. [3] and Chaum et al. [6].
Kushilevitz et al. [12] proved that the class of Boolean functions that have a
circuit of linear size is exactly the class of functions that can privately be com-
puted using only a constant number of random bits. Kushilevitz [10] and Chor
et al. [7] considered private computations of integer-valued functions. They ex-
amined which functions can privately be computed by two players. Franklin
and Yung [9] used directed hypergraphs for communication and described those
networks on which every Boolean function can privately be computed.

While all Boolean functions can privately be computed on any undirected 2-
connected network, Bläser et al. [5] completely characterized the class of Boolean
functions that can still privately be computed, if the underlying network is con-
nected but not 2-connected. In particular, no non-degenerate function can pri-
vately be computed if the network consists of three or more blocks. On networks
with two blocks, only a small class of functions can privately be computed.

Chaum et al. [6] proved that any Boolean function can privately be computed,
if at most one third of the participating players are dishonest, i.e. they are
cheating. We consider the setting that all players are honest, i.e. they do not
cheat actively but try to acquire knowledge about the input bits of the other
players only by observing their communication. For this model, Ben-Or et al. [3]
proved that any n-ary Boolean function can be computed

⌊
n−1

2

⌋
-private. Chor

and Kushilevitz [8] showed that if a function can be computed at least n
2 -private,

then it can be computed n-private as well.
The idea of relaxing the privacy constraints has been studied to some extend

in a cryptographic setting. Yao [20] examined the problem where it is allowed
that the probability distributions of the messages seen by the players may differ
slightly for different inputs, such that in practice the player should not be able
to learn anything. Leakage of information in the information-theoretical sense
has been considered only for two parties yet. Bar-Yehuda et al. [2] studied the
minimum amount of information about the input that must be revealed for
computing a given function in this setting.

1.2 Our Results

We study the leakage of information for multi-party protocols, where each player
knows only a single bit of the input. Our first contribution is the definition of lossy
private protocols, which is a generalization of private protocols in an information-
theoretical sense (Section 2.2). Here and in the following, private always means
1-private. Throughout this work, we restrict ourselves to non-2-connected (in the
sense of non-2-vertex-connected) networks that are still 2-edge-connected. Every
block in such a network has size at least three and private computation within
such a block is possible. We measure the information any particular player gains
during the execution of the protocol in an information-theoretical sense. This

is the loss of the protocol to the player. The players are assumed to be honest
but curios. This means that they always follow the protocol but try to derive as
much information as possible.

We divide lossy protocols into phases. Within a phase, a bridge player may
exchange messages only once with each block he belongs to. Phases correspond
to rounds in communication complexity but they are locally defined for each
bridge player.

In the definition of lossy protocols, the loss of a protocol to a player is merely
the logarithm of the number of different probability distributions on the com-
munication strings a player can observe. We justify this definition in Section 3:
For a protocol with minimum loss to a player P and any particular content of
P ’s random tape, the support of any two probability distributions is disjoint.
Thus, in order to gain information, P can distinguish the distributions from the
actual communication he observes and does not need to sample.

The simplest non-2-connected network consists of two blocks that share one
bridge node. In Section 4 we show that the communication complexity of a
function f and the loss of a private protocol for f are intimately connected: Up
to constant factors, both quantities are equal.

Then we study 1-phase protocols. We start with networks that consist of
d blocks that all share the same bridge player P . In a 1-phase protocol, P
can communicate only once with each block he belongs to. However, the loss
of the protocol may depend on the order in which P communicates with the
blocks. In Section 5, we show that the order in which P should communicate
with the blocks to minimize the loss equals the order in which d parties should
be ordered on a directed line when they want to compute the function with
minimum communication complexity. Particularly for symmetric functions, it
is optimal to sort the components by increasing size. Then we design a 1-phase
protocol (Theorem 9), which has the remarkable feature, that it achieves minimal
loss at any node for symmetric functions. Hence, it simultaneously minimizes the
loss for all nodes where the minimum is taken over all 1-phase protocols.

In Section 6, we prove a phase hierarchy. For any k there is a function for
which every (k−1)-phase protocol has an exponentially greater information loss
than that of the best k-phase protocol.

1.3 Comparison of Our Results with Previous Work

One of the important features of the two-party case is that at the beginning each
party has knowledge about one half of the input. In the multi-party case each
player knows only a single bit of the input.

Kushilevitz [10] examined which integer-valued functions can privately be
computed by two players. He showed that requiring privacy can result in expo-
nentially larger communication costs and that randomization does not help in
this model. Chor et al. [7] considered multi-party computations of functions over
the integers. They showed that the possibility of privately computing a function
is closely related to its communication complexity, and they characterized the
class of privately computable Boolean functions on countable domains. Neither

Kushilevitz [10] nor Chor et al. [7] examined the problem how functions that
cannot privately be computed can still be computed while maintaining as much
privacy as possible.

Leakage of information in the information-theoretical sense has been consid-
ered only for two parties, each holding one n-bit input of a two-variable function.
Bar-Yehuda et al. [2] investigated this for functions that are not privately com-
putable. They defined measures for the minimum amount of information about
the individual inputs that must be learned during the computation and proved
tight bounds on these costs for several functions. Finally, they showed that sac-
rificing some privacy can reduce the number of messages required during the
computation and proved that at the costs of revealing k extra bits of informa-
tion any function can be computed using O(k · 2(2n+1)/(k+1)) messages.

The counterpart of the two-party scenario in the distributed setting that we
consider is a network that consists of two complete networks that share one node
connecting them. Simulating any two-party protocol on such a network allows the
common player to gain information depending on the deterministic communica-
tion complexity of the function that should be evaluated. Hence and in contrast
to the two-party case, increasing the number of bits exchanged does not help
to reduce the knowledge learned by the player that is part of either block. An
important difference between the two-party scenario, where two parties share
the complete input, and a network consisting of two 2-connected components
connected via a common player (the bridge player) is that in the latter we have
somewhat like a “man in the middle” (the bridge player) who can learn more
than any other player, since he can observe the whole communication.

2 Preliminaries

For i, j ∈ N, let [i] := {1, . . . , i} and [i..j] := {i, . . . , j}. Let x = x1x2 . . . xn ∈
{0, 1}n be a string of length n. We often use the string operation xi←a defined
for any i ∈ [n] and a ∈ {0, 1} by x1 . . . xi−1 a xi+1 . . . xn. For a function f :
{0, 1}n → {0, 1}, an index i ∈ [n], and a ∈ {0, 1}, fi←α : {0, 1}n−1 → {0, 1}
denotes the function obtained from f by specialising the position i to the value
given by a, i.e. for all x = x1x2 . . . xn−1 ∈ {0, 1}n−1,

fi←a(x) = f(x1, . . . , xi−1, a, xi, . . . xn−1) .

An undirected graph G = (V,E) is called 2-connected, if the graph obtained
from G by deleting an arbitrary node is still connected. For a set U ⊆ V , let
G|U := (U,E|U) be the graph induced by U . A subgraph G|U is called a block,
if G|U is 2-connected and no proper supergraph G|U is 2-connected. A block of
size two is called an isthmus. A graph is called 2-edge-connected if after removal
of one edge, the graph is still connected. A graph is 2-edge-connected if it is
connected and has no isthmi. A node belonging to more than one block is called
a bridge node. The other nodes are called internal nodes. The blocks of a graph
are arranged in a tree structure. For more details on graphs, see e.g. Berge [4].

A Boolean function is symmetric, if the function value depends only on the
number of 1s in the input. See Wegener [19] for a survey on Boolean functions.

2.1 Private Computations

We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on a
network of n players. In the beginning, each player knows a single bit of the
input x. Each player has a random tape. The players can send messages to
other players using secure links where the link topology is an undirected graph
G = (V,E). When the computation stops, all players should know the value
f(x). The goal is to compute f(x) such that no player learns anything about the
other input bits in an information-theoretical sense except for the information
he can deduce from his own bit and the result. Such a protocol is called private.

Definition 1. Let Ci be a random variable of the communication string seen by
player Pi. A protocol A for computing a function f is private with respect to
player Pi if for any pair of input vectors x and y with f(x) = f(y) and xi = yi,
for every c, and for every random string Ri provided to Pi,

Pr[Ci = c|Ri, x] = Pr[Ci = c|Ri, y] ,

where the probability is taken over the random strings of all other players. A
protocol A is private if it is private with respect to all players.

In the following, we use a strengthened definition of privacy: We allow only
one player, say Pi, to know the result. The protocol has to be private with
respect to Pi according to Definition 1. Furthermore, for all players Pj 6= Pi, for
all inputs x, y with xj = yj , and for all random strings Rj we require Pr[Cj =
c|Rj , x] = Pr[Cj = c|Rj , y]. Thus, all other players do not learn anything. This
definition does not restrict the class of functions computable by private protocols
according to Definition 1. To achieve this additional restriction, Pi generates a
random bit r. Then we use a private protocol for computing r ⊕ f(x).

2.2 Information Source

The definition of privacy basically states the following: The probability that a
player Pi sees a specific communication string during the computation does not
depend on the input of the other players. Thus, Pi cannot infer anything about
the other inputs from the communication he observes.

If private computation is not possible since the graph is not 2-connected, it is
natural to weaken the concept of privacy in the following way: We measure the
information player Pi can infer from seeing a particular communication string.
This leads to the concept of lossy private protocols. The less information any
player can infer, the better the protocol is.

In the following, c1, c2, c3, . . . denotes a fixed enumeration of all communica-
tion strings seen by any player during the execution of A.

Definition 2. Let Ci be a random variable of the communication string seen by
player Pi while executing A. Then for a, b ∈ {0, 1} and for every random string
Ri provided to Pi, define the information source of Pi on a, b, and Ri as

SA(i, a, b, Ri) := {(µx(c1), µx(c2), . . .) | x ∈ {0, 1}n ∧ xi = a ∧ f(x) = b}

where µx(ck) := Pr[Ci = ck|Ri, x] and the probability is taken over the random
strings of all other players.

Basically SA(i, a, b, Ri) is the set of all different probability distributions on
the communication strings observed by Pi when the input x of the players varies
over all possible bit strings with xi = a and f(x) = b. The loss of a protocol A
on a, b with respect to player Pi is

` = max
Ri

log |SA(i, a, b, Ri)| .

Thus the protocol looses ` bits of information to Pi. We call such a protocol
`-lossy on a, b with respect to Pi.

If a uniform distribution of the input bits is assumed, then the self-informa-
tion of an assignment to the players P1, . . . , Pi−1, Pi+1, . . . , Pn is n − 1 [18]. In
this case the maximum number of bits of information that can be extracted by
Pi is n−1. If A is 0-lossy for all a, b ∈ {0, 1} with respect to Pi, then we say that
A is lossless with respect to Pi. A is lossless to Pi iff A is private to Pi. Thus
the notion of lossy private protocols generalizes the notion of private protocols.

Definition 3. A protocol A computing a function f in a network G is `A-lossy,
with `A : [n] × {0, 1}2 → R+

0 , if `A(i, a, b) = maxRi
log |SA(i, a, b, Ri)|. Let f be

an n-ary Boolean function. Then for every network G = (V,E) with |V | = n,
define `G : [n]× {0, 1}2 → R+

0 by

`G(i, a, b) := min
A
{ `A(i, a, b) | A is an `A-lossy protocol for f in G} .

The loss of a protocol A is bounded by λ ∈ N, if `A(i, a, b) ≤ λ for all i, a,
and b. `G(i, a, b) is obtained by locally minimizing the loss to each player Pi

over all protocols. It is a priori not clear whether there is one protocol with
`G(i, a, b) = `A(i, a, b) for all i, a, b. We show that this is the case for symmetric
functions and 1-phase protocols (as defined in Section 2.3).

We also use the size of the information source, defined by sA(i, a, b, Ri) =
|SA(i, a, b, Ri)| and sA(i, a, b) = maxRi

sA(i, a, b, Ri) for a given protocol A. By
definition, `A(i, a, b) = log sA(i, a, b). If the underlying protocol is clear from
the context, we omit the subscript A. Let f be an n-ary Boolean function. For
a network G = (V,E) with |V | = n, we define sG(i, a, b) := minA sA(i, a, b).
If a player Pi is an internal node of the network, then it is possible to design
protocols that are lossless with respect to Pi (see Section 3). Players Pi that are
bridge nodes are in general able to infer some information about the input.

2.3 Phases in a Protocol

We say that a player Pq who corresponds to a bridge node makes an alternation
if he finishes the communication with one block and starts to communicate with
another block. During such an alternation, information can flow from one block
to another. We partition a communication sequence c = d1d2 . . . of Pq into a

minimal number of disjoint subsequences (d1, . . . , di1), (di1+1, . . . , di2), . . . such
that each subsequence is alternation-free (i.e. Pq makes no alternation during the
corresponding interval). To make such a partition unique assume that each subse-
quence (maybe except for the first one) starts with a non-empty message. We call
these subsequences block sequences of c and define blockj(c) := (dij−1+1, . . . , dij

)
with i0 = 0. Next we partition the work of Pq into phases as follows. Pq starts at
the beginning of the first phase and it initiates a new phase when, after an alter-
nation, it starts to communicate again with a block it already has communicated
with previously in the phase.

A protocol A is a k-phase protocol for a bridge node Pq if for every input
string and contents of all random tapes, Pq works in at most k phases. A is
called a k-phase protocol if it is a k-phase protocol for every bridge node.

The start and end round of each phase does not need to be the same for
each player. Of particular interest are 1-phase protocols. In such a protocol,
each bridge player may only communicate once with each block he belongs to.
Such protocols seem to be natural, since they have a local structure. Once the
computation is finished in one block, the protocol will never communicate with
this block again.

For k-phase protocols we define `kG(i, a, b) and sk
G(i, a, b) in a similar way as

`A and sG in the general case, but we minimize over all k-phase protocols.
During each phase a player communicates with at least two blocks. The order

in which the player communicates within a phase can matter. The communica-
tion order σq of a bridge node Pq specifies the order in which Pq communicates
with the blocks during the whole computation. Formally, σq is a finite sequence
of (the indices of) blocks Pq belongs to and the length of σq is the total number
of alternations made by Pq plus one. We say that a protocol is σq-ordered for Pq

if for all inputs and all contents of the random tapes, the communication order of
Pq is consistent with σq. Let Pq1 , . . . , Pqk

with q1 < q2 < . . . < qk be an enumer-
ation of all bridge players of a network G and σ = (σq1 , . . . , σqk

) be a sequence of
communication orders. We call a protocol σ-ordered if it is σqj -ordered for every
Pqj . Finally, define sG(i, a, b, σ) := min{sA(i, a, b) | A is σ-ordered for f on G}.

2.4 Communication Protocols

For comparing the communication complexity with the loss of private protocols,
we need the following definitions. Let f : {0, 1}m1 × {0, 1}m2 → {0, 1} be a
Boolean function and B be a two-party communication protocol for computing
f . Let y1 ∈ {0, 1}m1 and y2 ∈ {0, 1}m2 be two strings as input for the two parties.
Then CCB(y1, y2) is the total number of bits exchanged by the two parties when
executing B.

CC(B) is the maximum number of bits exchanged by executing B on any
input. Analogously, CS(B) is the number of different communication strings that
occur. (We simply concatenate the messages sent.) Finally, we define CC(f) =
minB for f CC(B) and CS(f) = minB for f CS(B).

CC(f) and CS(f) are the communication complexity and communication
size, respectively, of the function f . CC(B) and CS(B) are the communication

complexity and communication size for a certain protocol B. The communication
size is closely related to the number of leaves in a protocol tree, usually denoted
by CP (B). In the definition of CS, we do not care about who has sent any bit,
since we concatenate all messages. In a protocol tree however, each edge is labeled
by the bit sent and by its sender. The bits on a path from the root to a leaf form
a communication string. Usually, the messages sent in a communication protocol
are assumed to be prefix-free. In this case, we can reconstruct the sender of any
bit from the communication string. If this is not the case, then we can make a
particular communication protocol prefix-free by replacing the messages sent in
each round by prefix-free code words. The complexity is at most doubled.

We also consider multi-party communication with a referee. Let f : {0, 1}m1×
{0, 1}m2 × . . . × {0, 1}mk → {0, 1} be a function. Let A1, . . . , Ak be k parties
and R be a referee, all with unlimited computational power. For computing f
on input ~x1, . . . , ~xk, the referee cooperates with A1, . . . , Ak as follows:

– Initially, ~x1, . . . , ~xk are distributed among A1, . . . , Ak, i.e. Ai knows ~xi. The
referee R does not have any knowledge about the inputs.

– In successive rounds, R exchanges messages with A1, . . . , Ak according to a
communication protocol. In each round R can communicate (i.e. receive or
send a message) only with a single party.

– After finishing the communications, R eventually computes the result of f .

Let B be a communication protocol for computing f . Denote by cR
B (~x1, . . . , ~xk)

the whole communication string of R after protocol B has been finished. More
precisely, cR

B (~x1, . . . , ~xk) is a concatenation of messages sent (to or from R) on
input ~x1, . . . , ~xk with additional stamps describing the sender and the receiver
of each message. For b ∈ {0, 1} let

CSR
B (b) = {cR

B (~x1, . . . , ~xk) | ∀i ∈ [k] : ~xi ∈ {0, 1}mi and f(~x1, . . . , ~xk) = b} ,
CSR(B) = CSR

B (0) ∪ CSR
B (1) ,

CSR
B (b) = |CSR

B (b)| , CSR(B) = |CSR(B)| ,
CSR(f, b) = minB for f CSR

B (b) , and CSR(f) = minB for f CSR(B) .

3 The Suitability of the Model

We observe that it suffices to consider bridge players when talking about the loss
of a protocol. More precisely, any protocol can be modified such that the loss to
all internal players is zero, while the loss to any bridge player does not increase.

All Boolean functions can be computed by using only three players [3]. Thus,
it is possible to compute functions privately within any block, since the networks
we consider are isthmus-free. This holds even if some of the players know a subset
of the input bits and the result consists of a binary string.

Finally, in optimal protocols, the probability distributions observed by any
player have pairwise fidelity 0. Thus, any player can easily distinguish the dif-
ferent probability distributions he observes.

We consider arbitrary 1-connected networks. Let f be a Boolean function
and A be a protocol for computing f on a 1-connected network G. Let Pq be a
bridge player of G, a, b ∈ {0, 1}, and Rq be the random string provided to Pq.
We define X := {x ∈ {0, 1}n | xq = a ∧ f(x) = b} and, for any communication
string c, ψ(c) := {x ∈ X | µx(c) > 0}, where µx(c) = Pr[Cq = c|Rq, x]. For every
communication string c that can be observed by Pq on some input x ∈ X, Pq

can deduce that x ∈ ψ(c). If sA(q, a, b) = sG(q, a, b) = 1, then we have either
ψ(c) = X or ψ(c) = ∅. Thus Pq does not learn anything in this case.

Theorem 4. If sG(q, a, b) > 1, then for any protocol A and every communica-
tion string c that can be observed by Pq on x ∈ X, ψ(c) is a non-trivial subset
of X, i.e. ∅ 6= ψ(c) (X, and there exist at least sG(q, a, b) different such sets.

Hence, from seeing c on x ∈ X, Pq always gains some information and there are
at least sG(q, a, b) different pieces of information that can be extracted by Pq

on inputs from X. To prove this, we show that for each distribution we can find
one representative string that can be used in the communication protocol.

The next result says that sG(q, a, b) is a tight lower bound on the number of
pieces of information: the lower bound is achieved when performing an optimal
protocol on G. Let µ and µ′ be two probability distributions over the same set
of elementary events. The fidelity is a measure for the similarity of µ and µ′ (see
e.g. Nielsen and Chuang [15]) and is defined by F (µ, µ′) =

∑
c

√
µ(c) · µ′(c).

Theorem 5. If A is an optimal protocol for Pq on a and b, i.e. sA(q, a, b) =
sG(q, a, b), then for all random strings Rq and all probability distributions µ 6= µ′

in SA(q, a, b, Rq) we have F (µ, µ′) = 0.

4 Communication Complexity and Private Computation

In this section, we investigate the relations between deterministic communication
complexity and the minimum size of an information source in a network with
one bridge node. To distinguish protocols in terms of communication complexity
and protocols in terms of private computation, we will call the former commu-
nication protocols. From the relation between CP and CC (see e.g. Kushilevitz
and Nisan [11, Sec. 2.2]), we get 1

2 log(CS(f)) ≤ CC(f) ≤ 3 · log(CS(f)). Making
a communication protocol prefix-free yields the extra factor 1

2 .
Now we investigate the relations between communication size and the size of

an information source on graphs that consist of two blocks sharing one bridge
node Pq. In the model of private computation the input bits are distributed
among n players whereas the input bits in a communication protocol are dis-
tributed among the two parties. Alice and Bob correspond to the first and second
block, respectively, while both know the bridge player’s bit.

Theorem 6. If a function f has communication complexity c then there exists
a protocol for computing f with loss bounded by 2c. On the other hand, if f
can be computed by a protocol with loss bounded by λ, then the communication
complexity of f is bounded by 6λ+O(1).

We can generalize the results obtained for the relation two-party communication
and private computation to obtain similar results for the relation of multi-party
communication with a referee and private computation as follows: For a, b ∈
{0, 1} we have sG(q, a, b) = CSR(fq←a, b).

5 1-Phase Protocols

We start our study of 1-phase protocols with considering networks that consist
of one bridge player who is incident with d blocks. For the case that the order
in which the bridge player communicates with the blocks is fixed for all inputs,
we show a relationship between the size of the information source of 1-phase
protocols and communication size of multi-party 1-way protocols. Furthermore,
we prove that for every symmetric Boolean function 1-phase protocols can mini-
mize the loss of information when the bridge player sorts the blocks by increasing
size. Then we present a simple 1-phase protocol on arbitrarily connected net-
works that is optimal for every symmetric function.

5.1 Orderings

A natural extension of the two-party scenario for 1-way communication is a
scenario in which the parties use a directed chain for communication: d parties
A1, . . . , Ad are connected by a directed chain, i.e. Ai can only send messages
to Ai+1. For a communication protocol B on G and i ∈ [d] let S 7→i (B) be the
number of possible communication sequences on the subnetwork of A1, . . . , Ai.
Each communication protocol B can be modified without increasing S 7→i (B) in
the following way: Every party Ai first sends the messages it has received from
Ai−1 to Ai+1 followed by the messages it has to send according to B. In the
following we restrict ourselves to communication protocols of this form.

If the network G consists of d blocks Bi with i ∈ [d] and one bridge player Pq

we consider a chain of d parties A1, . . . , Ad. For a σ-ordered 1-phase protocol A,
we assume that the enumeration of the blocks reflects the ordering σ. We have
to determine the input bits of the parties in the chain according to the input bits
of the players in the protocol. In the following we will assume that Ai knows the
input bits of the players in Bi. Thus, each party Ai has to know the input bit
xq of the bridge player Pq. Therefore, we will investigate the restricted function
fq←a whenever we analyse the communication size of a communication protocol.

For a σ-ordered protocol A define S [i]
A (q, a, b, Rq) = {µ̂x | xq = a ∧ f(x) = b},

where µ̂x(ĉk) denotes the sum of the probabilities Pr[Cq = c | Rq, x] over all c
with ĉk = block1(c) . . .blocki(c) and ĉ1, ĉ2, ĉ3, . . . is a fixed enumeration of all
strings describing the communication of Pq in the first i block sequences.

Lemma 7. Let A be a σ-ordered 1-phase protocol for computing f on a network
as described above. Then for every a ∈ {0, 1} and every content Rq of Pq’s
random tape there exists a 1-way communication protocol B for computing fq←a

such that for all i ∈ [d− 1], we have

S 7→i (B) ≤ |S [i]
A (q, a, 0, Rq) ∪ S [i]

A (q, a, 1, Rq)| .

Let us now focus on the structure of the possible communication sequences of
an optimal communication protocol on a chain. In such a protocol, the message
sent from Ai to Ai+1 has to specify the subfunction obtained by specifying the
input bits of the first i blocks according to their input. Hence, the number of
possible communication sequences on the network A1, . . . , Ad is at least the
number of different sequences of subfunctions that can be obtained in this way.

The knowledge about these sequences must also be provided to the bridge
player. Hence, for every fixed Rq and b ∈ {0, 1} the number of distributions in
S [d−1]
A (q, a, b, Rq) is at least the number of different sequences f1,x, . . . , fd−1,x for

inputs x with xq = a and f(x) = b. This implies the following lemma.

Lemma 8. For a ∈ {0, 1}, let B be a communication protocol for computing
fq←a on a chain network. Then there exists a σ-ordered 1-phase protocol A for
f such that for all i ∈ [d−1] and every content Rq of Pq’s random tape, we have

S 7→i (B) = |S [i]
A (q, a, 0, Rq) ∪ S [i]

A (q, a, 1, Rq)| .

Furthermore, for any b ∈ {0, 1}: If we restrict the inputs to x ∈ {0, 1}n−1 with
fq←a(x) = b, the number of possible communication sequences on the subnetwork
A1, . . . , Ai+1 is |S [i]

A (q, a, b, Rq)|.

We can show that there exist functions, for which no ordered 1-phase protocol
minimizes the size of the bridge players’ information source. Thus, we generalize
the class of ordering that we consider to achieve such a property.

We call a protocol A quasi-ordered if for every a, b ∈ {0, 1}, for every content
Rq for Pq’s random tape, and for every distribution µ ∈ SA(q, a, b, Rq) there
exists a 1-phase ordering σ such that every communication string c with µ(c) > 0
the string c is σ-ordered. Note that this ordering is not necessarily the same for
all inputs. However, given any input, the ordering is fixed.

We can prove that among all 1-phase protocols for a given function, there
always exists a quasi-ordered protocol that minimizes the loss to Pq.

5.2 Orderings for Symmetric Functions

For symmetric Boolean functions, we can show even more. Arpe et al. [1] have
proved the following for symmetric Boolean functions with a fixed partition of
the input bits: for all i, S 7→i (B) is minimal, if the number of bits known by the
parties in the chain corresponds to the position of the party, i.e. the first party
knows the smallest number of input bits, the second party knows the second
smallest number, and so on. This observation also holds, if we count the number
of communication sequences in a chain network for inputs x with f(x) = 1 and
the number of communication sequences in a chain network for inputs x with
f(x) = 0. Together with Lemma 8, we obtain the following: Let G be a connected
network with one bridge player Pq and d blocks. Let σ be a one phase ordering
that enumerates the blocks of G according to their size. Then for every ordered
1-phase protocol A′ there exists a σ-ordered 1-phase protocol A such that for

all a, b ∈ {0, 1}, for all i ≤ d − 1, and every content Rq of P ′q random tape

|S [i]
A (q, a, b, Rq)| ≤ |S [i]

A′(q, a, b, Rq)|.
This result can be generalized to networks with more than one bridge player.

Let G1, . . . , Gk be the connected subgraphs obtained by deleting the bridge
player Pq with |Gi| ≤ |Gi+1|. We say that Pq works in increasing order, if
it starts communicating with G1, then with G2 and so on. We call a 1-phase
protocol A increasing-ordered, if every bridge player works in increasing order.

For a graphG let G = {G1 = (V1, E1), . . . , Gh = (Vh, Eh)} be the set of blocks
and Q = {q1, . . . , qk} be the set of bridge nodes of G. Every graph G induces a
tree TG = (VG, EG) defined as follows: VG = VQ ∪ VG with VQ = {u1, . . . , uk}
and VG = {v1, . . . , vh} and EG = {{ui, vj} | qi ∈ Vj}.

For every 1-phase communication order σ = (σq1 , . . . , σqk
) and every bridge

node qi the order σqi
defines an ordering of the nodes vj ∈ VG adjacent to the

tree-node ui. Let Gσqi
(1), . . . , Gσqi

(ki) denote the ordering of blocks adjacent to qi
with respect to σqi and rootσ(ui) := vσqi

(ki). If σ is an increasing communication
order, then there exists a single tree-node vj ∈ VG , such that vj = rootσ(ui) for
all ui ∈ VQ adjacent to vj . Let us call this node the root of TG. For a tree-node
w ∈ VG let TG[w] denote the subtree of TG rooted by w and let V [w] denote the
nodes of G located in the blocks Gj with vj ∈ TG[w].

For computing a symmetric function f we use the following protocol. Let σ
be an increasing communication order. Then for an input x every bridge player qi
computes a sequence of strings ~y1, . . . , ~yki−1 as follows: LetXj =

⋃
e∈[j] V [vσqi

(e)]
and `j = |Xj |. Then ~yj ∈ {0, 1}`j such that for all j ≤ ki−1 the function obtained
from f by specialising the positions in Xj to ~yj is equal to the function obtained
from f by specialising the positions to xXj

, where xI for I ⊆ [n] denotes the
input bits with indices in I. Finally, a node of the block that corresponds to
the root of TG computes the result f(x). This can be implemented such that no
player gains any additional information except for ~y1, . . . , ~yki−1 learned by the
bridge nodes qi.

Theorem 9. Let G be a 2-edge-connected network and f be a symmetric Bool-
ean function. Then for every 1-phase protocol A′ computing f on G there exists
an increasing-ordered 1-phase protocol A for f on G such that for every player
Pi and for all a, b ∈ {0, 1}, we have sA(i, a, b) ≤ sA′(i, a, b).

Thus, the protocol presented in this section is optimal for 1-phase computa-
tions of symmetric functions with respect to the size of the information source.

6 A Phase Hierarchy

In this section we show that there are functions for which the size of the infor-
mation source of some player for a (k− 1)-phase protocol is exponentially larger
than for a k-phase protocol. The natural candidate for proving such results is
the pointer jumping function pj : Our network G has two blocks A and B, one
of size n log n and the other of size n log n + 1, sharing one bridge player Pi.

For simplicity we assume that A and B are complete subgraphs. The input bits
represent two lists of n pointers, each of length log n bits. The input bit of Pi

belongs to the list of the smaller component. Starting with some predetermined
pointer of A, the task is to follow these pointers, find the jth pointer and output
the parity of the bits of the jth pointer. Define CSj and CCj in the same manner
as CS and CC, but by minimizing over j-round communication protocols instead
of arbitrary communication protocols.

Theorem 10. For any protocol A for computing p2k−1, we have sk−1
A (i, a, b) =

2Ω(n/(k log k)) for all a, b. For p2k−1, sk
G(i, a, b) = 2O(k log n) for all a, b.

The lower bound follows from work by Nisan and Wigderson [16].

7 Conclusions and Open Problems

We have considered distributed protocols in “non-private” environments: net-
works that are connected but not 2-connected. Since private computation of
arbitrary Boolean functions is impossible on such networks, we have introduced
a measure for the information that can be inferred by any player and discussed
some general properties of protocols with respect to this measure. A natural
question is finding optimal protocols for some concrete functions.

For threshold (fn0(x1, . . . , xn) = 1 iff
∑n

i=1 xi ≥ n0) and counting modulo p
(gp(x1, . . . , xn) = 1 iff

∑n
i=1 xi ≡ 0 (mod p)), the information loss to any player

does not depend on the ordering in which a 1-phase protocol computes any of
these functions, if each block has size at least n0 and p, respectively. If we have
blocks of less than p−1 nodes, there can be a slight difference in the size of Pq’s
information source depending on the order.

In general, the size of the information source while communicating in one
order can be exponentially larger than the size obtained by communication in
another order. This holds even in case of symmetric functions.

For 1-phase protocols for symmetric Boolean functions, we have been able to
minimize the number of bits a player learns for all players simultaneously. An
obvious question concerns minimizing the loss of more than one bridge player
simultaneously for general functions. For 1-phase protocols, the answer is neg-
ative: There are functions, for which no protocol exists that minimizes the loss
to all players simultaneously.

It is open whether there exist functions and networks that do not allow to
minimize the loss to each bridge player simultaneously. For such functions, we
have to generalize our measure. Two simple examples one might want to examine
is the sum of the loss to each player and the maximum loss to any player.

References

1. Jan Arpe, Andreas Jakoby, and Maciej Lískiewicz. One-way communication com-
plexity of symmetric boolean functions. In A. Lingas and B. J. Nilsson, editors,
Proc. of the 14th Int. Symp. on Fundamentals of Computation Theory (FCT), vol-
ume 2751 of Lecture Notes in Computer Science, pages 158–170. Springer, 2003.

2. Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. Privacy,
additional information, and communication. IEEE Transactions on Information
Theory, 39(6):1930–1943, 1993.

3. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proc. of the 20th
Ann. ACM Symp. on Theory of Computing (STOC), pages 1–10. ACM Press, 1988.

4. Claude Berge. Graphs. North-Holland, 1991.
5. Markus Bläser, Andreas Jakoby, Maciej Lískiewicz, and Bodo Siebert. Private

computation — k-connected versus 1-connected networks. In M. Yung, editor,
Proc. of the 22nd Ann. Int. Cryptology Conf. (CRYPTO), volume 2442 of Lecture
Notes in Computer Science, pages 194–209. IACR, Springer, 2002.

6. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols. In Proc. of the 20th Ann. ACM Symp. on Theory of Computing
(STOC), pages 11–19. ACM Press, 1988.

7. Benny Chor, Mihály Geréb-Graus, and Eyal Kushilevitz. Private computations
over the integers. SIAM Journal on Computing, 24(2):376–386, 1995.

8. Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM
Journal on Discrete Mathematics, 4(1):36–47, 1991.

9. Matthew Franklin and Moti Yung. Secure hypergraphs: Privacy from partial broad-
cast. In Proc. of the 27th Ann. ACM Symp. on Theory of Computing (STOC),
pages 36–44. ACM Press, 1995.

10. Eyal Kushilevitz. Privacy and communication complexity. SIAM Journal on Dis-
crete Mathematics, 5(2):273–284, 1992.

11. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

12. Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear size
circuits in terms of privacy. Journal of Computer and System Sciences, 58(1):129–
136, 1999.

13. Eytan H. Modiano and Anthony Ephremides. Communication complexity of secure
distributed computation in the presence of noise. IEEE Transactions on Informa-
tion Theory, 38(4):1193–1202, 1992.

14. Eytan H. Modiano and Anthony Ephremides. Communication protocols for se-
cure distributed computation of binary functions. Information and Computation,
158(2):71–97, 2000.

15. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information, chapter 9. Cambridge University Press, 2000.

16. Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited.
SIAM Journal on Computing, 22(1):211–219, 1993.

17. Alon Orlitsky and Abbas El Gamal. Communication with secrecy constraints.
In Proc. of the 16th Ann. ACM Symp. on Theory of Computing (STOC), pages
217–224. ACM Press, 1984.

18. Claude Elwood Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3, 4):379–423 & 623–656, 1948.

19. Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.
20. Andrew Chi-Chih Yao. Protocols for secure computations. In Proc. of the 23rd

Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pages 160–164.
IEEE Computer Society, 1982.

