
Two Approximation Algorithms

for 3-Cycle Covers

Markus Bläser and Bodo Manthey⋆

Institut für Theoretische Informatik
Universität zu Lübeck

Wallstraße 40, 23560 Lübeck, Germany
blaeser/manthey@tcs.mu-luebeck.de

Abstract. A cycle cover of a directed graph is a collection of node
disjoint cycles such that every node is part of exactly one cycle. A
k-cycle cover is a cycle cover in which every cycle has length at least k.
While deciding whether a directed graph has a 2-cycle cover is solvable
in polynomial time, deciding whether it has a 3-cycle cover is already
NP-complete. Given a directed graph with nonnegative edge weights, a
maximum weight 2-cycle cover can be computed in polynomial time, too.
We call the corresponding optimization problem of finding a maximum
weight 3-cycle cover Max-3-DCC.
In this paper we present two polynomial time approximation algorithms
for Max-3-DCC. The heavier of the 3-cycle covers computed by these
algorithms has at least a fraction of 3

5
− ǫ, for any ǫ > 0, of the weight

of a maximum weight 3-cycle cover.
As a lower bound, we prove that Max-3-DCC is APX-complete, even if
the weights fulfil the triangle inequality.

1 Introduction

A cycle cover of a directed or undirected graph G is a spanning subgraph consist-
ing of node-disjoint cycles. (In the case of undirected graphs, cycle covers are also
called 2-factors.) Cycle covers have been intensively studied for many decades,
see e.g. Lovász and Plummer [12] and Graham et al. [8] and the abundance of
references given there.

A k-cycle cover is a cycle cover in which each cycle has at least length k. Such
cycle covers are also called (k − 1)-restricted. In this paper, we are concerned
with approximating maximum weight 3-cycle covers in complete directed graphs
with nonnegative edge weights. To be specific, we call this problem Max-3-DCC.
As our main contribution, we devise approximation algorithms for Max-3-DCC.
On the other hand, we show that Max-3-DCC is APX-complete.

1.1 Previous Results

The problem of deciding whether an unweighted directed graph has a 2-cycle
cover can be solved in polynomial time by computing a maximum bipartite

⋆ Birth name: Bodo Siebert. Supported by DFG research grant Re 672/3.

9th Int. Works. on Approx. Algo. for Comb. Opt. (APPROX 2002) c© Springer

matching. The corresponding optimization problem Max-2-DCC is polynomial
time computable, too. On the other hand, deciding whether an unweighted di-
rected graph has a 3-cycle cover is already NP-complete. This follows from the
work of Valiant [16] (see also Garey and Johnson [7, GT 13]). Thus, consider-
ing optimization problems, Max-3-DCC is the next interesting problem. If the
given graph has only edge weights zero and one, then there is a 2

3
-approximation

algorithm for finding a maximum weight 3-cycle cover. This algorithm can be
obtained from the algorithm presented by Bläser and Siebert [3] for the mini-
mum weight 3-cycle cover problem with weights one and two by replacing weight
zero with weight two.

What is known for undirected graphs? The problem of finding a 3-cycle cover
in undirected graphs can be solved in polynomial time by Tutte’s reduction [15]
to the classical perfect matching problem in undirected graphs. The classical
perfect matching problem can be solved in polynomial time (see Edmonds [5]).
The corresponding maximization problem can be solved in polynomial time, even
if we allow arbitrary nonnegative weights. Hartvigsen [9] has designed a powerful
polynomial time algorithm for deciding whether an undirected graph has a 4-
cycle cover. He has also presented a polynomial time algorithm that finds 5-cycle
covers in bipartite graphs [10]. Both algorithms also work for the maximization
version, if we only have the two possible edge weights zero and one. On the other
hand, Cornuéjols and Pulleyblank [4] have reported that Papadimitriou showed
the NP-completeness of finding a k-cycle cover in undirected graphs for k ≥ 6.

One possibility to obtain approximation algorithms for Max-3-DCC is to
modify algorithms for the maximum asymmetric TSP. Often it is sufficient just
to modify the analysis. Taking the algorithm of Lewenstein and Sviridenko [11],
which is the currently best approximation algorithm for this problem, one gets
a polynomial time 7

12
-approximation algorithm for Max-3-DCC. For undirected

graphs, the algorithm of Serdyukov [14] gives a polynomial time 7
10

-approxima-
tion algorithm for finding a 4-cycle cover of maximum weight.

1.2 Our Results

We present two approximation algorithms for Max-3-DCC. The heavier one of
the cycle covers produced by these algorithms has at least a fraction of 3

5
− ǫ

of the weight of an optimal 3-cycle cover. Thus, combining the two algorithms
yields a

(

3
5
− ǫ

)

-approximation algorithm for Max-3-DCC (for any ǫ > 0) whose
running time is proportional to that of computing a maximum weight bipartite
matching (and is particularly independent of ǫ). This improves the previously
best algorithm for this problem, which achieves a factor of 7

12
. As a lower bound,

we prove that Max-3-DCC is APX-complete.

2 Approximation Algorithms for Max-3-DCC

We present two approximation algorithms for Max-3-DCC. The heavier one of
the 3-cycle covers computed by these algorithms will have at least a fraction of
3
5
− ǫ of the weight of a maximum weight 3-cycle cover.

Input: a complete directed graph G with weight function w

Output: a 3-cycle cover T

1. Compute a maximum weight 2-cycle cover C of G.
2. Discard the lightest edge of each 2-cycle in C to obtain a collection C′ of

node-disjoint edges and of cycles of length at least three. If there is only
one 2-cycle in C, take the lightest edge contained in any of the cycles of
length at least three and discard it, too.

3. Construct a 3-cycle cover T by patching the paths in C′ arbitrarily to-
gether.

Fig. 1. Algorithm 1

To avoid lengthy repetitions, we define some names that we use throughout
this section. The input graph is called G, its node set is denoted by V , and the
cardinality of V is n. Both algorithms start with computing a 2-cycle cover on
the input graph G. We call this cycle cover C. Technically, we treat a cycle cover
as the set of its edges. The cycles in C are C1, . . . , Cℓ. The total weight of C
is denoted by W . Since a 3-cycle cover is also a 2-cycle cover, W is an upper
bound for the weight of an optimum 3-cycle cover. Let I2 ⊆ {1, . . . , ℓ} be the
set of all i such that Ci is a 2-cycle (a 2-cycle is a cycle of length two). For each
i ∈ I2, we choose bi, ci ∈ [0, 1] such that bi · W and ci · W are the weight of the
heavier and lighter edge, respectively, of the 2-cycle Ci. Moreover, b :=

∑

i∈I2
bi

and c :=
∑

i∈I2
ci.

2.1 Algorithm 1

Algorithm 1 is a simple factor 1
2
-approximation algorithm. It starts with com-

puting a 2-cycle cover. Then it discards the lightest edge of each 2-cycle and
patches the obtained edges together to form one big cycle. If there is only one
2-cycle, then also one longer cycle will be broken. The edge of the 2-cycle and the
path obtained from this longer cycle are then patched together to form a cycle
of length at least five. The worst case for Algorithm 1 is b = c = 1

2
. However, if

C contains cycles of length three or more that have a significant portion of the
total weight of C or b is much larger than c, then Algorithm 1 yields a better
approximation ratio. More precisely, the amount of weight contained in C′ is at
least

(

1− c− 1
n

)

·W . The loss of c ·W comes from discarding the lightest edge in
each 2-cycle and the loss of 1

n ·W is incurred when we have to break one cycle of
length at least three. Since all edge weights are nonnegative, we do not loose any
weight when patching the edges and paths together. This proves the following
lemma.

Lemma 1. Algorithm 1 computes a (1 − c − 1
n)-approximation to a maximum

weight 3-cycle cover. ⊓⊔

Input: a complete directed graph G with weight function w

Output: a 3-cycle cover T

1. Compute a maximum weight 2-cycle cover C of G.
2. Define a new weight function w′ on G as follows: for each i ∈ I2 assign both

edges in Ci the new weight zero. All other edges keep their old weight.
3. Compute a maximum weight matching M on G with respect to w′.
4. Let M′ = M\ C.
5. Color the edges of C ∪M′ according to Lemma 2 with two colors.
6. Add each edge e ∈ M \M′ that is not contained in a 2-cycle of C to the

color class that does not already contain e.
7. Patch the paths in the color class with the larger weight arbitrarily to-

gether to obtain a 3-cycle cover T . (If neccessary, break one longer cycle
as in Algorithm 1.)

Fig. 2. Algorithm 2

2.2 Algorithm 2

In Algorithm 2, we pay special attention to the 2-cycles. Like Algorithm 1,
Algorithm 2 starts with computing a maximum weight cycle cover C and then
transforms it into a 3-cycle cover. To this aim, we define a new weight function
w′ by setting the weight of the edges of every 2-cycle to zero. Then we compute
a maximum weight matching M with respect to the new weight function. That
means, we replace the two edges between each pair of nodes by an undirected
edge with weight equal to the maximum of the weight of the two replaced edges.
Then we compute a matching of maximum weight on that graph. Finally, we
translate everything back into the directed world by replacing each undirected
edge by the directed one for which the maximum was attained (breaking ties
arbitrarily). Then we color the edges of M and C with two colors in such way
that each color class forms a collection of node disjoint paths and cycles of length
at least three. This is the reason why we give the edges of the 2-cycles weight
zero under w′. Otherwise, we could get triple edges and would consequently need
three colors instead of two. Then we take the color class with larger weight and
patch the paths arbitrarily together to obtain a 3-cycle cover. If this color class
contains only one path and this path has length one, then we have to break one
of the cycles.

The next lemma shows that the coloring described always exists. To apply
this lemma, we temporarily remove all edges from M that are also edges in C.
Call the resulting set M′ = M\C. The graph (V,M′ ∪C) fulfills the premise of
the lemma. Thus, we can color the edges in M′ ∪ C with two colors. Thereafter,
we deal with the edges in M\M′ that are not part of a 2-cycle. These edges are
already in one color class (because of their occurrence in C) and can be safely
placed into the other color class, too, without creating any 2-cycles. Edges in

Fig. 3. The two ways how a 2-cycle can interact with the other edges. (Solid edges are
edges from the graph G, dashed edges represent the resulting edges in H .)

M\M′ that are part of a 2-cycle in C are ignored, since we only consider the
modified weight w′(M).

Lemma 2. Let G = (V, E) be a directed loopless graph such that

1. every node in V has indegree at most two,

2. every node in V has outdegree at most two, and

3. every node in V has total degree at most three.

Then the edges of G can be colored with two colors such that each color class

consists solely of node-disjoint paths and cycles of length at least three.

Proof. To be specific, we call the colors red and blue. We construct an auxiliary
undirected graph H = (E, Z) whose nodes are the edges of G. There is an edge
{e, f} in Z iff there are nodes u, v, and x in V such that e = (u, x) and f = (v, x)
or e = (x, u) and f = (x, v), in other words, if e is red, then f has to be blue
and vice versa. By assumption, every node in H has degree at most two. Hence,
H consists solely of simple cycles and paths. By construction, all cycles in H
have even length. This is due to the fact that an edge in Z corresponds to the
event that either the heads or the tails of two edges from E meet in one node in
G. This already shows that we can color the edges of G with the colors red and
blue such that each of the two color classes consists of node-disjoint paths and
cycles. We just color the edges of each path and cycle in an alternating way.

But each class could still contain 2-cycles which we now have to eliminate.
Note that for each cycle and each path in H , there are two possible colorings and
we can choose one of them arbitrarily. This is the key to eliminate the 2-cycles.

Figure 3 shows how a 2-cycle in G can interact with the other edges in G. Due
to the degree restrictions in G, either of the two nodes of a 2-cycle can only have
at most one other edge. The case depicted on the left-hand side also includes the
case where both edges not in the 2-cycle are reversed. The right-hand side also
treats the case where one or two edges are missing. The solid edges are edges in

the graph G. The dashed edges are the edges in H connecting the edges of G,
i.e, the nodes of H .

The case on the right-hand side in Fig. 3 is easy, here we have in H one long
path and one single node which is one of the edges of the 2-cycle. Since we can
choose its color arbitrarily, we color this single node in H red if the other edge
of the 2-cycle is colored blue and vice versa.

In the case on the left-hand side, we have two paths in H whose end-nodes
are the edges of the 2-cycle in G. To ensure that these two end-nodes get different
colors, we “connect” these end-nodes in H , i.e., we add the additional edge {e, f}
to the edges of H , where e and f denote the two edges of the 2-cycle. This can
of course create new cycles in H . But whenever we add such an edge {e, f},
then either two tails or two heads are connected. It follows that all the newly
generated cycles have even length. Thus, we can color the edges of G with the
colors red and blue such that each of the two color classes consists of node-
disjoint paths and cycles of length at least three. ⊓⊔

In order to estimate the approximation performance of Algorithm 2, we have
to bound the weight of the matching M. This is done in the following lemma.

Lemma 3. Let Topt be a maximum weight 3-cycle cover on G and let w(Topt) =
L. Let I ′2 ⊆ I2 be the set of all 2-cycles C of C such that C and Topt have

a common edge. Furthermore, set b′ =
∑

i∈I′

2

bi and c′ =
∑

i∈I′

2

ci. Then the

weight of the matching M computed by Algorithm 2 with respect to w′ is at least

w′(M) ≥ 1
2
· L − 1

6
· W + 1

6

(

c′ − 2b′
)

· W .

Proof. We divide the cycles of Topt into two sets S and S = Topt \ S. The set
S contains all cycles that have an edge with a 2-cycle from C in common. With
respect to w′, Topt has weight at least L− b′ ·W , since a cycle of length at least
three can run through only one edge of a 2-cycle. On the other hand, the total
weight of the cycles in S is at most (1− c′− b′) ·W . Otherwise we could add the
cycles Ci with i ∈ I ′2 to S and would obtain a cycle cover of weight more than
W , contradicting the optimality of C. Let D := w(S). (Note that also D = w′(S)
holds.) With respect to w′, S contains weight w′(S) ≥ L − b′ · W − D.

We now construct a matching N with w′(N) ≥ 1
2
·L− 1

6
·W + 1

6
(c′−2b′) ·W .

This implies the assertion of the lemma. We can color the edges of S with three
colors such that each color class forms a (partial) matching. The worst-case for
S is a collection of 3-cycles. Let N2 be the color class with maximum weight,
breaking ties arbitrarily. We have w′(N2) ≥ 1

3
D. Since all cycles in S have one

edge of weight zero under w′, we can color the edges with nonzero weight of S
with two colors such that each color class forms a (partial) matching. Let N1

be the color class of larger weight. We have w′(N1) ≥
1
2
(L − b′ · W − D). Then

N = N1 ∪ N2 has weight at least

w′(N) ≥ 1
2
· L − 1

2
b′ · W − 1

6
D

≥ 1
2
· L − 1

6
· W + 1

6

(

c′ − 2b′
)

· W ,

where the last inequality follows by plugging in D ≤ (1 − c′ − b′) · W . ⊓⊔

The next lemma bounds the approximation performance of Algorithm 2.

Lemma 4. Let b′ and c′ be defined as in Lemma 3. Algorithm 2 computes a

(2
3

+ 1
12

(c′ − 2b′) − 1
n)-approximation to a maximum weight 3-cycle cover of G.

Proof. After step 6 of Algorithm 2, both color classes together contain all edges
from C and those edges from M that are not part of any 2-cycle of C. Thus, the
total weight in both color classes is at least w(C) + w′(M). We have w(C) = W .
The weight contained in M with respect to w′ is w′(M) ≥ 1

2
·L− 1

6
·W + 1

6
(c′−

2b′) · W by Lemma 3. In step 7, we perhaps loose weight at most 1
n · W . Thus

the total weight of the heavier color class is at least

1
2

(

W + 1
2
· L − 1

6
· W + 1

6

(

c′ − 2b′
)

· W
)

− 1
n · W

≥ 2
3
· L + 1

12

(

c′ − 2b′
)

· L − 1
n · L ,

because W ≥ L and the sum of the coefficients of W is positive. ⊓⊔

2.3 Combining the Algorithms

The final algorithm runs Algorithm 1 and 2 on G and returns the heavier 3-cycle
cover.

For the analysis, we skip the terms 1
n ·W . We will pay for this at the end of the

analysis by subtracting an arbitrarily small constant ǫ > 0. The approximation
factor of the combined algorithm can be bounded as follows:

minimize max{1 − c, 2
3

+ 1
12

(c′ − 2b′)}

subject to 0 ≤ c′ ≤ b′ ,
c′ + b′ ≤ 1 ,

0 ≤ c ≤ 1
2
(1 − b′ + c′) .

Some simple calculations show that the above minimum is 3
5
. It is attained for

b′ = 3
5

and c = c′ = 2
5
.

Theorem 1. For any ǫ > 0, there is a factor
(

3
5
− ǫ

)

-approximation algorithm

for Max-3-DCC running in polynomial time. ⊓⊔

The running time of the above algorithm is dominated by the time needed to
compute a maximum weight cycle cover. This time is proportional to the time
needed to compute a maximum weight bipartite matching. Hence it is O(n3) or
O(n5/2 log(nB)) where B is the largest weight in the given graph (see Ahuja et
al. [1]).

3 Max-3-DCC is APX-complete

In this section we prove that Max-3-DCC is APX-complete. For this purpose we
reduce E3-Max-Cut to Max-3-DCC. An instance of Max-Cut is an undirected

(a) (b)

ein

i

f out

j,2 f in

j,2

f out

j,1f in

j,1

vi

uj

ci

eout

i

Fig. 4. (a) The node gadget Xi representing the node xi. All edges drawn have weight 2.
(b) The edge gadget Zj representing edge zj ∈ Z. The thick edges have weight 11

6
, all

other edges drawn have weight 2. Edges left out in the figures have weight 1.

graph H = (X, Z). The goal is to find a subset X̃ ⊆ X of nodes such that the
number of edges connecting X̃ and X \ X̃ is maximized. In the following, we
denote the set of edges between X̃ and X \ X̃ by cut(X̃). The problem Max-Cut
is known to be APX-complete, even if restricted to cubic graphs (see Alimonti
and Kann [2]). We call Max-Cut restricted to cubic graphs E3-Max-Cut.

We present an L-reduction (see Papadimitriou and Yannakakis [13] for a
definition) from E3-Max-Cut to Max-3-DCC to prove the APX-hardness of Max-
3-DCC.

Let H = (X, Z) be an instance for E3-Max-Cut, i.e., an undirected cubic
graph. Let X = {x1, x2, . . . , xn} be the set of nodes and Z = {z1, z2, . . . , zm} be
the set of edges. Since H is a cubic graph, we have n = 2

3
· m.

Let us now construct a directed edge weighted graph G = (V, E) as an
instance for Max-3-DCC. For each xi ∈ X create a node vi ∈ V . This node vi is
connected with a cycle ci of length 3 (see Fig. 4a). Furthermore, there is an edge
eout

i starting at vi and an edge ein
i ending at vi. Such a subgraph is called node

gadget Xi for xi. For each edge zj ∈ Z create an edge gadget Zj as depicted in
Fig. 4b.

The gadgets and the nodes are connected as follows. We order the nodes
incident with an edge arbitrarily. Analogously, we order the edges incident with
a node arbitrarily. Assume that zj , zj′ , and zj′′ are the first, second, and third
edge, respectively, incident with a node xi. If xi is the first node of edge zj then
eout

i and f in
j,1 are identical, if xi is the second node of zj then eout

i and f in
j,2 are

identical. The corresponding outgoing edge of Zj is identical with one incoming
edge of Zj′ depending on whether xi is the first or the second node of zj′ . The
gadgets Zj′ and Zj′′ are connected in a similar manner. Finally, one of the edges
fout

j′′,1 and fout
j′′,2 is identical with ein

i . Figure 5 shows an example of a graph H
and the corresponding graph G.

We call a cycle cover C of G consistent with a subset X̃ ⊆ X , if the following
properties hold:

1. All edge gadgets are traversed as depicted in Fig. 6.

2. If xi ∈ X̃ then both ein
i and eout

i are in C and ci forms a cycle of length 3. If
xi /∈ X̃ then vi and ci form a cycle of length 4.

x2

H

Z2 Z3

v3 v4G

z2

z3z1

x1 x4

x3

Z1

v1 v2

Fig. 5. A graph H and the corresponding graph G. For the sake of readability H is not
cubic. The edge gadgets are symbolized by triangles, the cycles of the node gadgets are
left out. The node x2 is the second node of z1 and the first node of both z2 and z3.

(b) (c) (d)(a)

Fig. 6. Consistent traversals of the gadget Zj representing the edge zj = {xi, xi′}. (a)
only xi is in X̃, (b) only xi′ is in X̃, (c) both xi and xi′ are in X̃, (d) neither node of
zj is in X̃.

We call a cycle cover C consistent if there exists a subset X̃ such that C is
consistent with X̃.

The weight of a node in V with respect to a cycle cover C is the sum of
half the weight of its incoming edge plus half the weight of its outgoing edge.
The weight w(Zj) of the edge gadget Zj is the sum of the weights of its nodes.
Likewise, the weight w(Xi) of the node gadget Xi is the sum of the weights of
its nodes. Assume that zj = {xi, xi′}. Then we call

b(Zj) := w(Zj) + 1
3
· (w(Xi) + w(Xi′))

the burden of Zj . We have

w(C) =
m

∑

j=1

w(Zj) +
n

∑

i=1

w(Xi) =
m

∑

j=1

b(Zj) .

In a cycle cover consistent with X̃ we have w(Xi) = 8 for all i. For every
edge gadget Zj , we have either w(Zj) = 12 and b(Zj) = 104

6
if zj ∈ cut(X̃) or

w(Zj) = 71
6

and b(Zj) = 103
6

if zj /∈ cut(X̃). Thus, we have the following lemma.

Lemma 5. Let C be the cycle cover consistent with X̃. Then w(C) = 103
6

· m +
1
6
· |cut(X̃)|. ⊓⊔

Consider an arbitrary cycle cover C of G with weight w(C) = 103
6

·m + 1
6
· γ.

We describe how to construct a subset X ′ with the property that if b(Zj) > 103
6

then zj ∈ cut(X ′). Thus, |cut(X ′)| ≥ γ.
In the following, assume that zj = {xi, xi′}. If a node gadget Xi is inconsis-

tent then we have w(Xi) ≤
15
2

. If an edge gadget Zj is inconsistent then we have
w(Zj) ≤

23
2

. Hence, if the edge gadget Zj or one of the node gadgets Xi or Xi′

is inconsistent, we have b(Zj) ≤
103
6

.
Let us now consider all edge gadgets Zj with burden b(Zj) > 103

6
. Due to

the considerations above, all these edge gadgets are consistent. Furthermore, if
b(Zj) > 103

6
then both Xi and Xi′ are consistent. Thus, all edge gadgets with

b(Zj) > 103
6

are consistent and fulfil b(Zj) = 104
6

. If we can find a subset X̃

fulfilling cut(X̃) ⊇ {zj | b(Zj) = 104
6
}, we are done.

An edge gadget Zj with b(Zj) = 104
6

is called a witness for xi ∈ X̃, if it is

traversed as shown in Fig. 6a or 6c. Otherwise, it is called a witness for xi /∈ X̃.
Likewise, we call Zj a witness for xi′ ∈ X̃ if it is traversed as shown in Fig. 6b

or 6c, and for xi′ /∈ X̃ , otherwise.
Assume that for some node xi we have two edge gadgets Zj and Zj′ such that

Zj is a witness for xi ∈ X̃ and Zj′ is a witness for xi /∈ X̃ . Since both gadgets are
consistent, zj and zj′ are the first and the third edge, respectively, of xi or vice
versa. But this implies, that the node gadget Xi cannot be consistent. Hence,
b(Zj) ≤

103
6

and b(Zj′) ≤
103
6

, a contradiction.
The witnesses induce a partition X∈, X/∈, X? of X , such that all nodes in X∈

have only witnesses for x ∈ X̃, all nodes in X/∈ have only witnesses for x /∈ X̃,
and all nodes in X? do not have any witness. Due to the construction, there are at
least γ edges between X∈ and X/∈. Choose X̃ arbitrarily with X∈ ⊆ X̃ ⊆ X∈∪X?.
Then |cut(X̃)| ≥ γ. Hence, we have proved the following lemma.

Lemma 6. Given an arbitrary cycle cover C with weight w(C) = 103
6
·m+ 1

6
·γ we

can construct a consistent cycle cover C′ with weight w(C′) ≥ w(C) in polynomial

time. ⊓⊔

Now we can prove the main theorem of this section.

Theorem 2. Max-3-DCC is APX-complete.

Proof. We show that the reduction presented above is an L-reduction.
We denote the size of the maximum cut of H with opt(H) and the weight of

the maximum cycle cover of G with opt(G).
For any graph H = (X, Z) there exists a subset X̃ of X such that |cut(X̃)| ≥

m
2

. Thus, opt(H) ≥ m
2

and opt(G) ≤ 104
6

· m ≤ 104
3

· opt(H).
On the other hand, given a cycle cover C with weight w(C) = 103

6
· m + 1

6
· γ

we can construct a subset X̃ of X with |cut(X̃)| ≥ γ in polynomial time, see
Lemma 6. Thus, the following holds:

∣

∣opt(H) − |cut(X̃)|
∣

∣ = 6 ·
∣

∣opt(G) −
(

103
6

· m + 1
6
· |cut(X̃)|

)∣

∣

≤ 6 ·
∣

∣opt(G) − w(C)
∣

∣ .

This proves that the reduction presented is an L-reduction. Since E3-Max-Cut
is APX-complete and Max-3-DCC is in APX, the theorem is proved. ⊓⊔

4 Open Problems

A problem that remains open is the approximability of computing minimum
weight 3-cycle covers. Without any restrictions, this problem is NPO-complete.
With the triangle inequality, we can perform two iterations of the algorithm
of Frieze, Galbiati, and Maffioli [6] for the asymmetric TSP. This yields an
approximation factor of two. It seems to be a challenging problem to improve
this factor of two, since this could also yield new insights into the approximability
of the asymmetric TSP.

Another open problem is the status of maximum weight undirected 4-cycle
covers. The question is whether this problem can be solved in polynomial time
or has at least a polynomial time approximation scheme, provided that P 6= NP.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

2. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. The-
oret. Comput. Sci., 237(1-2):123–134, 2000.

3. M. Bläser and B. Siebert. Computing cycle covers without short cycles. In Proc.
9th Ann. European Symp. on Algorithms (ESA), volume 2161 of Lecture Notes in
Comput. Sci., pages 368–379. Springer, 2001.

4. G. P. Cornuéjols and W. R. Pulleyblank. A matching problem with side conditions.
Discrete Math., 29:135–159, 1980.

5. J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

6. A. M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some
algorithms for the traveling salesman problem. Networks, 12(1):23–39, 1982.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

8. R. L. Graham, M. Grötschel, and L. Lovász, editors. Handbook of Combinatorics,
volume 1. Elsevier, 1995.

9. D. Hartvigsen. An Extension of Matching Theory. PhD thesis, Carnegie-Mellon
University, 1984.

10. D. Hartvigsen. The square-free 2-factor problem in bipartite graphs. In Proc.
7th Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO),
volume 1620 of Lecture Notes in Comput. Sci., pages 234–241. Springer, 1999.

11. M. Lewenstein and M. Sviridenko. A 5/8 approximation algorithm for the asym-
metric maximum TSP. Manuscript, 2002.

12. L. Lovász and M. D. Plummer. Matching Theory. Elsevier, 1986.

13. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. Comput. System Sci., 43(3):425–440, 1991.

14. A. I. Serdyukov. An algorithm with an estimate for the traveling salesman problem
of the maximum. Upravlyaemye Sistemy, 25:80–86, 1984. (in Russian).

15. W. T. Tutte. A short proof of the factor theorem for finite graphs. Canad. J.
Math., 6:347–352, 1954.

16. L. G. Valiant. The complexity of computing the permanent. Theoret. Comput.
Sci., 8(2):189–201, 1979.

