
Algorithms Beyond the Worst Case

Bodo Manthey

University of Twente, b.manthey@utwente.nl

Abstract

These notes describe some of the material of the course “Algo-
rithms Beyond the Worst Case”, which is part of the Mastermath and
DIAMANT programs.

Last modified: May 25, 2016.

Contents

1 Some probability theory 3
1.1 Gaussian distributions . 3
1.2 Interval lemmas . 3
1.3 Some useful (in)equalities . 4

2 Smoothed analysis 5
2.1 Introduction . 5
2.2 Two models of smoothed analysis 6

3 2-opt heuristic for the TSP 7
3.1 Smoothed analysis of the running-time 8
3.2 Linked pairs of 2-opt steps . 10
3.3 Smoothed analysis of the approximation ratio 12

4 k-means method for clustering 13
4.1 Smoothed analysis of the k-means method 14
4.2 Dense iterations . 15
4.3 Sparse iterations . 18
4.4 Putting things together . 20
4.5 Approximation ratio of the k-means method 21

5 Flip heuristic for Max-Cut 21
5.1 Difficulties and key idea . 22
5.2 Sketch of the quasi-polynomial bound 24

1

6 Solving knapsack in polynomial time 26
6.1 Pareto curves and the Nemhauser–Ullman algorithm 26
6.2 Probabilistic analysis of the Pareto curve 28

7 Successive shortest path algorithm 32
7.1 Min-cost flows and residual networks 32
7.2 Successive shortest path algorithm 34
7.3 Probabilistic analysis of SSP 35

8 Clustering under approximation stability 40
8.1 Motivation and definition . 40
8.2 Basic properties . 42
8.3 Algorithm . 44

2

1 Some probability theory

Consult any book on probability theory and/or randomized analysis of algo-
rithms for more background. For instance, the book on probability theory
by Durrett [8] is even available online, and the book by Mitzenmacher and
Upfal on probability and algorithms [15] gives a decent background how
algorithms can be analyzed on random inputs.

1.1 Gaussian distributions

The d-dimensional Gaussian distribution with mean µ ∈ Rd and standard
deviation σ has density f with

f(z) =

(
1

σ
√

2π

)d
· exp

(
−‖z − µ‖

2

2σ2

)
.

We denote this distribution by Nd(µ, σ
2). Gaussian distribution have several

nice properties:

• The density is rotation-symmetric around µ.

• Drawing d independent 1-dimensional Gaussians with standard devi-
ation σ in orthogonal directions yields the same distribution.

• Assume that X ∼ Nd(µ, σ
2) for some µ ∈ Rd. Let a1, . . . , ad ∈ Rd

be orthogonal vectors. Then aT1X, a
T
2X, . . . , a

T
dX are all independent

with aTi X ∼ N1(a
T
i µ, ‖ai‖2σ2).

• Sums of Gaussian random variables are Gaussian distributed: if X ∼
Nd(µ, σ

2) and Y ∼ Nd(ν, τ
2), then X + Y ∼ Nd(µ+ ν, σ2 + τ2).

• The density is bounded from above by
(

1
σ
√
2π

)d ≤ (1
2σ

)d
The chi distribution is the distribution of the norm of a d-dimensional

vector drawn according to a Gaussian distribution of mean 0 and standard
deviation 1. Its density is given by

x 7→ 21−
d
2 · xd−1 · exp(−x2/2)

Γ(d/2)
,

where Γ denotes the gamma function.

1.2 Interval lemmas

Lemma 1.1 (interval lemma). Let φ > 0, and let X be a real-valued
random variable with density f : R → [0, φ]. (This means that f is upper-
bounded by φ.) Let t ∈ R, and let ε > 0. Then

P
(
X ∈ (t, t+ ε]

)
≤ εφ.

3

Proof. P
(
X ∈ (t, t+ ε]

)
=
∫ t+ε
t f(x) dx ≤ εφ.

Corollary 1.2 (interval lemma for Gaussians). Let X be distributed
according to a Gaussian distribution with arbitrary mean and standard de-
viation σ > 0. Let t ∈ R, and let ε > 0. Then

P
(
X ∈ (t, t+ ε]

)
≤ ε

2σ
.

The interval lemma can be generalized to higher-dimensional spaces.

Lemma 1.3. Let I ⊆ Rd, and let vol(I) denote the volume of I. Let X
be a random variable with density f : Rd → [0, φ] for some φ > 0. Then
P(X ∈ I) ≤ φ · vol(I).

Corollary 1.4. Let I ⊆ Rd, and let X ∼ Nd(µ, σ
2) for some µ ∈ Rd and

σ > 0. Then P(X ∈ I) ≤ vol(I)
2dσd

.

A consequence of Corollary 1.4 is that the probability that Gaussian
assumes a value in a hyperball of radius r is upper-bounded by (r/σ)d.

Corollary 1.5. Let X ∼ Nd(µ, σ
2), and let H ⊆ Rd be a hyperplane. Then

P
(
dist(X,H) ≤ ε

)
≤ ε

σ
.

Proof. Let v be orthogonal to H with ‖v‖ = 1. Then dist(X,H) ≤ ε only
if the 1-dimensional Gaussian random variable vTX falls into an interval of
size 2ε.

1.3 Some useful (in)equalities

Lemma 1.6 (union bound, Boole’s inequality). Let E1, . . . , Em be m
events with P(Ei) ≤ pi. Then

P
(
at least one Ei occurs

)
≤

m∑
i=1

pi.

Lemma 1.7 (Markov’s inequality). Let X be a random variable that
assumes only non-negative numbers, and assume that the expected value EX
of X exists. Then

P(X ≥ t) ≤ E(X)

t
.

Lemma 1.8 (Jensen’s inequality). Let f : R → R be a convex func-
tion, and let X be a real-valued random variable. Then (assuming that both
expected values exist)

f
(
E(X)

)
≤ E

(
f(X)

)
.

4

Lemma 1.9 (tail bound for Gaussians). Let X ∼ N1(µ, σ
2) for some

µ ∈ R and σ > 0. Then

P(X ≥ µ+ σt) = P(X ≤ µ− σt) ≤ 1

t
√

2π
· exp

(
− t

2

2

)
.

The following lemma shows that a d-dimensional Gaussian vector cen-
tered at the origin and with standard deviation 1 is unlikely to have norm
more than O(

√
d). In particular, we can choose ε = 3, which simplifies the

bound below to
P
(
‖X‖ ≥ 2 ·

√
d
)
≤ 2−d.

Lemma 1.10 (tail bound for d-dimensional Gaussians). Let X ∼
Nd(0, 1). Then, for every ε > 0, we have

P
(
‖X‖2 ≥ (1 + ε) · d

)
≤
(√

1 + ε · exp(−ε/2)
)d
.

Lemma 1.11 (Chernoff bound). Let X1, . . . , Xn be independent random
variables that assume only values in {0, 1}. Let P(Xi = 1) = pi, let X =∑n

i=1Xi, and let E(X) =
∑n

i=1 pi = µ. Then

P
(
X > µ+ a

)
< exp

(
−2a2

n

)
for all a > 0. By symmetry, we have the same bound for P

(
X < µ− a

)
.

There is a huge variety of different Chernoff bounds. For most applica-
tions, it does not matter much which one you use. We only state one version
here for the sake of conciseness.

Lemma 1.12. Let X be a random variable that assumes only values in N
and has finite expected value. Then

E(X) =
∞∑
t=1

P(X ≥ t).

2 Smoothed analysis

2.1 Introduction

Smoothed analysis is a paradigm to analyze the performance of algorithms
with a huge discrepancy between worst-case performance and observed per-
formance. The performance is measured by instances that are neither adver-
sarial nor completely random. In this way, smoothed analysis often yields a
better prediction of the practical performance than worst-case analysis. On
the other hand, the instances considered are not completely random as in

5

average-case analysis. Completely random instances have often very specific
properties, which are exploited in the average-case analysis, but not shared
by typical instances coming from applications.

Smoothed analysis has been introduced by Spielman and Teng to explain
the practical performance of the simplex method [17]. Since then, it has been
applied successfully to a variety of algorithms [12, 13, 18]. We see several
examples in this lecture.

2.2 Two models of smoothed analysis

Before actually analyzing algorithms, let us quickly describe the two “stan-
dard models” of smoothed analysis. For the algorithms we analyze, we will
always briefly describe the probabilistic input model that we use.

Two-step model or classical model. In the classical model, numbers
of the given instances are perturbed by Gaussian distributions. This means
that an adversary specifies an arbitrary instance. And then the numbers
or coefficients (or some of them) are perturbed independently by adding
Gaussian-distributed random variables of mean 0 and standard deviation
σ > 0 to them. The smoothed performance is then the maximum expected
performance, where the maximum is taken over the adversarial choices, and
the expected value is taken over the random perturbation of the adversarial
instance. The parameter σ controls how strongly we perturb the instances.
The smaller σ, then more powerful the adversary, i.e., the closer is the
perturbed instance to the original, adversarial, unperturbed instance.

Instead of Gaussian perturbations, one can also use other probability
distributions. However, it turns out that Gaussian distributions have nice
properties that helps in the analysis.

One-step model. The one-step model, which has been introduced by
Beier and Vöcking [5], allows more general input distributions. Instead of
numbers or coefficients, the adversary specifies probability density functions
for all numbers that should be perturbed. Then all numbers are drawn
independently according to their respective density function.

We have a perturbation parameter φ that controls the power of the
adversary: the adversary can choose any probability density function that is
upper-bounded by φ. This means that the larger φ, the more powerful the
adversary. Roughly speaking, φ corresponds to 1/σ in the two-step model.

Again, we measure the maximum expected performance, where the max-
imum is taken over all choice of the adversary and the expectation is taken
over drawing the numbers according to their density functions.

6

3 2-opt heuristic for the TSP

The 2-opt heuristic is a very simple local search heuristic for the traveling
salesman problem (TSP). Starting with an initial TSP tour, it performs that
following operation until it has converged to a local optimum: let T be the
current TSP tour, and let {y1, y2} and {y3, y4} be two edges of T such that
y1, y2, y3, y4 appear in this order in T . Then we replace these two edges by
{y1, y3} and {y2, y4} if this decreases the tour length.

In practice, the 2-opt heuristic converges quickly to a close-to-optimal
solution. However, there are worst-case examples showing that the conver-
gence can take exponentially long and that the worst-case approximation
ratio is poor.

Theorem 3.1 (Englert et al. [9]). For every n ∈ N, there exists a set in
R2 consisting of 8n point on which 2-opt can make 2n+3 − 14 steps.

The approximation ratio depends heavily on the initial tour. The fol-
lowing statement is a worst-case statement in two senses: first, it assumes a
worst-case point set. Second, it assumes that the initialization is as bad as
possible. For the following theorem and Section 3.3, we need the following
definitions. We call a TSP tour through a point set 2-optimal if it cannot
be shortened by a 2-opt step. For a point set X, we denote by WLO(X) the
length of the longest 2-optimal tour through X. We denote by TSP(X) the
length of the shortest TSP tour.

Theorem 3.2 (Chandra et al. [7]). Fix any d. Let X ∈ [0, 1]d be any set
of n points. Then

WLO(X)

TSP(X)
= O(log n).

There exists a constant c > 0 such that for infinitely many n, there exist a
set X ⊆ R2 of n points such that

WLO(X)

TSP(X)
≥ c · log n

log log n
.

If we examine in particular the worst-case instances for the running-
time closely, we observe that the location of the points must be chosen very
carefully and that a slight random perturbation destroys it.

To do a smoothed analysis in the following, we consider Euclidean in-
stances, where the nodes are from Rd. The dimension d is considered to be
a constant. This means in particular that constants depending only on d
are sometimes hidden in O or Ω.

More specifically, an adversary specifies a set X = {x1, . . . , xn} ⊆ [0, 1]d

of n points. Then we obtain Y = {y1, . . . , yn} ⊆ Rd by adding indepen-
dent Gaussian random variables of standard deviation σ to x1, . . . , xn. This

7

means that yi ∼ Nd(xi, σ
2), where Nd(xi, σ

2) denotes a d-dimensional Gaus-
sian distribution with mean xi and variation σ2. Note that Y is not neces-
sarily a subset of the unit hypercube [0, 1]d. We denote by gi = yi − xi the
independent Gaussian random variables with mean 0 and standard deviation
σ that model the perturbation.

3.1 Smoothed analysis of the running-time

Our smoothed analysis of the running-time is based on ideas by Englert et
al. [9]. We follow the proof of Manthey and Veenstra [14].

The main idea to analyze the number of iterations until 2-opt converges
is to use the current tour length as a potential function. If we can prove

• an upper bound of Linit for the length of the initial tour and

• a lower bound of Imin for the minimal improvement obtained by any
possible iteration (called 2-opt step) of the 2-opt heuristic,

then we obtain an upper bound of Linit/Imin for the number of iteration that
2-opt needs until convergence.

Note that this approach is still quite pessimistic: First, it is unlikely that
we always make the minimal possible improvement. It is more likely that
some iterations cause a much larger improvement. Second, we might often
face the situation that there are several 2-opt steps possible. In this case,
the approach above assumes that we make the worst possible choice.

For simplicity, we make the following assumptions:

• We measure distances between points by the squared Euclidean dis-
tance between them. Only at the end we give a result for Euclidean
distances (without squaring), but without proof details.

• We assume that σ ≤ 1
2
√
n lnn

. This is not a severe restriction as already

such small σ suffice to prove a polynomial bound for the smoothed
number of iterations. We note that the analysis can be done also
for larger values of σ, but this does not provide too much additional
insight and only makes the analysis slightly more technical.

• We assume that d = 2. We give a general result for larger values of d
at the end. Furthermore, we assume that n ≥ 3.

Let us first bound Linit.

Lemma 3.3. We have Linit ≤ 18n with a probability of at least 1− 1
n! .

Proof sketch. If Y ⊆ [−1, 2]d, then the longest distance between any two
points in Y (measured in squared Euclidean distance) is at most 18. Thus,
any tour has a length of at most 18n in this case.

8

If Y 6⊆ [−1, 2]2, then there exists an i such that ‖gi‖∞ ≥ 1. Thus, there
must exist an i ∈ {1, . . . , n} and a direction j ∈ {1, . . . , j} such that the
absolute value of the j-th entry of gi is at least 1. We use Lemma 1.9 with
σ ≤ 1

2
√
n lnn

and t = 1/σ. This yields that the probability for a single entry

to be of absolute value at least 1 is bounded from above by

1√
2πn lnn

· exp
(
−2n lnn

)
≤ n−2n ≤ (n!)−2.

A union bound over the choices of i and j and the poor bound 2n ≤ n!
yields the lemma.

Let ∆min be the smallest improvement by any possible 2-opt step.
In the rest of this section, let ∆a,b(c) = ‖c − a‖2 − ‖c − b‖2. For the

analysis of ∆min, the following lemma is useful.

Lemma 3.4. Let a, b ∈ R2 with a 6= b, and let c ∈ R2 be drawn according to
a Gaussian distribution with standard deviation σ. Let I ⊆ R be an interval
of length ε. Then

P
(
∆a,b(c) ∈ I

)
≤ ε

4σ · ‖a− b‖2
.

Proof. Since Gaussian distributions are rotationally symmetric, we can as-
sume without loss of generality that a = (0, . . . , 0) and b = (δ, 0, . . . , 0) with
δ = ‖a− b‖2. Let c = (c1, c2)

T. Then ∆a,b(c) = c21 − (c1 − δ)2 = 2c1δ + δ2.
Thus, ∆a,b(c) ∈ I if and only if c1 falls into an interval of length ε

2δ . Since
c1 is a 1-dimensional Gaussian random variable with a standard deviation
of σ, the lemma follows from Corollary 1.2.

Lemma 3.5. P(∆min ≤ ε) = O
(
n4ε
σ2

)
.

Proof. Consider any four points y1, y2, y3, y4 ∈ Y and the 2-opt step, where
the two edges {y1, y2} and {y3, y4} are replaced by {y1, y3} and {y2, y4}. We
prove that the probability that this is a 2-opt step that yields an improve-
ment of at most ε is bounded by O(ε/σ2). Then the lemma follows by a
union bound over the choices of the four points y1, y2, y3, y4.

The improvement caused by the 2-opt step described above is equal
to ∆y2,y3(y1) − ∆y2,y3(y4). If we fix y2, y3, and y4 arbitrarily, then the
improvement is only in the interval (0, ε] if ∆y2,y3(y1) falls into an interval
of size ε. The probability that this happens is bounded from above by

ε
4σ·‖y2−y3‖ . according to Lemma 3.4.

Let f be the probability density function of δ = ‖y2 − y3‖. Then the
probability that the 2-opt step considered yields an improvement of at most
ε is bounded from above by ∫ ∞

δ=0

ε

4σδ
· f(δ) dδ.

9

Now we observe that the distribution of 1/δ is stochastically dominated by
1/X, where X is chi-distributed. From this observation, we obtain that
we can replace f by the density function of the chi distribution to get an
upper bound for the probability that we have an improvement of at most ε.
Solving the resulting integral

Theorem 3.6. Let Y ⊆ R2 be obtained as described above, and let σ ≤
1/(2
√
n lnn). Then the maximum number of iterations that the 2-opt heuris-

tic needs to compute a locally optimal TSP tour with respect to squared Eu-
clidean distances is bounded from above by O(n6 log n/σ).

Proof. If 2-opt runs for at least t steps, then we must have Linit ≥ 18n or
∆min ≤ 18n/t. The probability that any of these events happens is bounded
from above by

1

n!
+O

(
n5

σt

)
.

Since no TSP tour shows up twice in any run of 2-opt, we know that the
number of iterations is upper-bounded by n!. Let T be the random variable
that is the maximum possible number of iterations that 2-opt can need on
the (random) point set Y . Then

E(T) =
n!∑
t=1

P(T ≥ t) ≤
n!∑
t=1

1

n!
+O

(
n5

σt

)
= O

(
n6 log n

σ

)
.

3.2 Linked pairs of 2-opt steps

The idea of analyzing linked pairs of 2-opt steps is from Englert et al. [9].
A linked pair of 2-opt steps is a pair of two 2-opt steps that share an edge
that is inserted in one and removed in the other 2-opt step. Depending on
the number of nodes involved, we distinguish 2-opt steps of types 0, 1a, 1b,
and 2. One of the two 2-opt steps will be replacing the edges {y1, y2} and
{y3, y4} by {y1, y3}, {y2, y4}. The other 2-opt step is as follows:

Type 0: {y1, y3}, {y5, y6} are replaced by {y1, y5}, {y3, y6}. In total, six
different nodes are involved.

Type 1a: {y1, y3}, {y2, y5} are replaced by {y1, y5}, {y2, y3}. In total, five
different nodes are involved.

Type 1b: {y1, y3}, {y2, y5} are replaced by {y1, y2}, {y3, y5}. In total, five
different nodes are involved.

Type 2: {y1, y3}, {y2, y4} are replaced by {y1, y4}, {y2, y3}. In total, only
four different nodes are involved.

10

Because in type 2 pairs, only four nodes are involved, this type is difficult to
analyze. However, in any sufficiently long sequence of 2-opt steps, we find
enough disjoint pairs of linked 2-opt steps of types 0, 1a, and 1b according to
the following lemma. Roughly speaking, in every sequence of t consecutive
2-opt steps with t ≥ cn2 for sufficiently large c, we find at least c′t disjoint
pairs of linked 2-opt steps for some constant c′ > 0.

Lemma 3.7. Every sequence of t consecutive 2-opt steps contains ≥ t
6 −

7n(n−1)
24 disjoint pairs of linked 2-opt steps of types 0, 1a, or 1b.

Let ∆linked
min be the smallest improvement by any possible pair of linked

2-opt steps of type 0, 1a, or 1b.

Lemma 3.8. P(∆linked
min ≤ ε) = O

(
n6ε2

σ4

)
.

Theorem 3.9. Let Y ⊆ R2 be obtained as described above, and let σ ≤
1/(2
√
n lnn). Then the maximum number of iterations that the 2-opt heuris-

tic needs to compute a locally optimal TSP tour with respect to squared Eu-
clidean distances is bounded from above by O(n4/σ2).

Proof. Let T be the random variable that is the maximum possible num-
ber of iterations that 2-opt can need on the (random) point set Y . By
Lemma 3.7, there exist constants c, c′ > 0 such that every sequence of at
least t iterations contains at least c′t disjoint pairs of linked 2-opt steps.

Then T ≥ t only if t ≤ cn2 or if Linit ≥ 18n or if there is a pair of linked
2-opt steps of type 0, 1a, or 1b that yields an improvement of at most 18n

c′t .
Thus, there exist constants c′′, ĉ > 0 such that, by Lemma 3.8, we have

E(T) ≤ cn2 +
∑
t≥cn2

P(T ≥ t)

≤ cn2 +
∑
t≥cn2

min

{
1, c′′ · n

8

t2σ4

}

≤ ĉ · n
4

σ2
+

∑
t≥ĉn4/σ2

c′′ · n
8

t2σ4
= O

(
n4

σ2

)

A smoothed analysis of the number of iterations is also possible if we
make the (more natural) choice of measuring distances between points by
their Euclidean distance. The analysis becomes more technical. We state
the following theorem without a proof.

Theorem 3.10. Let Y ⊆ R2 be obtained as described above, and let σ ≤
1/(2
√
n lnn). Then the maximum number of iterations that the 2-opt heuris-

tic needs to compute a locally optimal TSP tour with respect to Euclidean
distances is bounded from above by O(n4/σ4).

11

3.3 Smoothed analysis of the approximation ratio

In this section, we use the (standard) Euclidean distances to measure the
tour length. We call a TSP tour through a point set 2-optimal if it cannot
be shortened by a 2-opt step. For a point set Y , we denote by WLO(Y)
the length of the longest 2-optimal tour through Y . We denote by TSP(Y)
the length of the shortest TSP tour. The idea of lower-bounded TSP(Y)
and upper-bounding WLO(Y) is by Englert et al. [9]. They have used it to
analyze the approximation ratio in a more general probabilistic model. We
follow the proof of Künnemann and Manthey [11] for Gaussian noise.

The worst-case approximation ratio of O(log n) for the 2-opt heuristic
has been proved by Chandra et al. [7].

Our goal here is to prove a smoothed approximation ratio of O(1/σ).
This means that E(WLO(Y)/TSP(Y)) = O(1/σ). The idea to prove this is
as follows:

• Prove that TSP(Y) = Ω(σ · n1−
1
d) in expectation and with high prob-

ability.

• Prove that WLO(Y) = O(n1−
1
d) in expectation and with high proba-

bility.

• Because both bounds hold with high probability, we can divide the
expected values. If one of the statements does not hold, we use the
worst-case upper bound for the expected value, which is O(log n).

The following lemma is given without a proof. Part of the proof is left
as an exercise.

Lemma 3.11. There exist constants cd and c′d, depending only on d, such
that

• E(TSP(Y)) ≥ cd · σn1−
1
d and

• TSP(Y) ≥ cd · σn1−
1
d with a probability of at least 1− exp(−c′dn).

Chandra et al. [7] proved the following bound on the length of any 2-
optimal tour. We only sketch their proof.

Lemma 3.12. Let X ⊆ [a, b]d be a set of n points, and let T be any 2-
optimal tour through X. Then the length L(T) of T is bounded from above

by O
(
(b− a) · n1−

1
d

)
.

The same upper bound as in Lemma 3.12 holds also for partial 2-optimal
tours, where a partial 2-optimal tour is a subset of edges of a 2-optimal tour.

Combining Lemma 3.12 with the fact that not too many points can be
too far outside of the unit hypercube, we obtain the following lemma.

12

Lemma 3.13. For d ≥ 2, constants cd, c
′
d > 0, and all σ ≤ 1, the following

holds: The probability that there exists a partial 2-optimal tour T through Y
that has a length of more than cd · n1−

1
d is bounded by exp(−c′d

√
n).

Theorem 3.14. Fix d ≥ 2. Let Y ⊆ Rd be obtained as described above.
Then

E
(

WLO(Y)

TSP(Y)

)
= O

(
1

σ

)
.

We note that the upper bound of Theorem 3.14 can be improved to
O
(
log(1/σ)

)
. This seems to be an almost optimal bound, as there exist

instances X of n points such that

E
(

WLO(Y)

TSP(Y)

)
= Ω

(
log n

log log n

)
for σ = O(1/

√
n) [11]. The idea to prove this smoothed lower bound for the

approximation ratio is to show that the lower bound example of Theorem 3.2
can be made stable for perturbations with σ = O(1/

√
n).

4 k-means method for clustering

k-means clustering. Given a set X ⊆ Rd of n points, the goal of k-
means clustering is to partition the n points into clusters C1, . . . , Ck and to
compute cluster centers c1, . . . , ck ∈ Rd such that

k∑
i=1

∑
x∈Ci

‖x− ci‖2

is minimized. Note that the cluster centers are not necessarily points in X
and that the number k of clusters is given as part of the input.

If we have to cluster centers, then this specifies (up to tie-breaking) a
clustering: every point x is assigned to the cluster whose center is closest
to it. The other way round, if we have clusters C1, . . . , Ck, then the cluster
center ci should be chosen as the center of gravity of Ci. This follows from
the following lemma. In the following, let cm(C) = 1

|C| ·
∑

x∈C x denote the
center of mass of a finite set C of points.

Lemma 4.1. Let C ⊆ Rd be a finite set of points, and let z ∈ Rd be arbitrary.
Then ∑

x∈C
‖x− z‖2 =

∑
x∈C
‖x− cm(C)‖2 + |X| · ‖ cm(C)− z‖2.

13

k-means method. The k-means method is a simple local improvement
heuristic for finding k-means clusterings. It alternates between optimizing
the clustering based on the given centers and optimizing the centers based
on the given clustering. Its worst-case running-time is exponential in the
number k of clusters [19]. We can choose k = Θ(n), which shows that the
worst-case number of iterations can be exponential. This holds even for
d = 2.

The only known worst-case upper bound for the number of iterations
is n3kd. This upper bound is based on the trivial fact that the number of
different clusterings is an upper bound for the number of iterations. The
non-trivial part of this upper bound is to prove that the number of possible
clusterings of n points in d-dimensional space into k clusters is bounded
from above by n3kd.

In contrast to the poor worst-case performance, the k-means method is a
very popular, if not the most popular, clustering algorithm, and the reason
for the its popularity is its speed in practice. In order to explain this speed,
we analyze its running-time in the framework of smoothed analysis.

4.1 Smoothed analysis of the k-means method

The smoothed analysis that we present uses a combination of ideas by Arthur
and Vassilvitskii [2] and Arthur et al. [1]. We only prove a bound polynomial
in nk and 1/σ. It covers the main ideas of analyzing the k-means method.
We note that the exponent k can be removed at the expense of a more
technical analysis.

Model and idea. The model that we use for the smoothed analysis is
the same as for the 2-opt heuristic: an adversary specifies a set X ⊆ Rd
of n points. Then these points are perturbed by independent Gaussian
distributions of standard deviation σ. We call the resulting point set Y , and
we run the k-means method on this point set Y . We restrict our analysis to
the case σ ≤ 1. The upper bound for σ = 1 holds also for larger values of σ
(see exercises). In the following, we also make the (natural) assumption that
k, d ≤ n. In many applications, k and d are even considered to be constant.
Using the upper bound of n for k and d sometimes simplifies bounds.

The main idea is similar to the 2-opt heuristic: We use the objective
function as potential and show that it has to decrease sufficiently quickly.
There are two issues that make this more difficult than for the 2-opt heuris-
tic: First, for the 2-opt heuristic, four points suffice to describe exactly what
happens. This allowed us to analyze single 2-opt steps and to apply a union
bound. In contrast, such a compact description of iterations does not seem
to exist for the k-means method. Second, it can apparently happen that
there are iterations in which the objective function decrease only by a neg-
ligible amount. (This is only seems likely, we do not have a formal prove

14

for this.) This makes it necessary to consider longer sequences of iterations,
similar to the analysis of linked pairs of 2-opt steps.

Decrease of the objective function. Lemma 4.1 also implies that mov-
ing a cluster center ci by a distance of ε to the center of mass of its point
set Ci decreases the objective value by ε2 · |Ci| ≥ ε2.

For a hyperplane H and a point z, we denote by dist(z,H) the distance
of z to H. For analyzing the decrease of the objective value caused by
reassigning a point, the notion of a bisecting hyperplane is needed: for two
points x, y ∈ Rd with x 6= y, we call a hyperplane H the bisector of x and y
if H is orthogonal to x− y and dist(x,H) = dist(y,H). This implies

H =
{
z ∈ Rd | 2zT(x− y) = (x+ y)T(x− y)

}
.

Lemma 4.2. Let ci and cj be two cluster centers with bisector H, and let
y ∈ Ci. If ‖y−cj‖ < ‖y−ci‖, then reassigning y to Cj decreases the objective
value by

2 · dist(y,H) · ‖ci − cj‖.

Proof. The decrease is given by

‖ci − y‖2 − ‖cj − y‖2 = cTi ci − 2yTci − cTj cj + 2yTcj

= (cj − ci)T(2y − cj − ci).

Let v =
cj−ci
‖cj−ci‖ . Then (2y − cj − ci)

Tv = 2(y − cj+ci
2)Tv = 2 dist(y,H),

which implies the lemma.

The rough idea for the smoothed analysis is as follows: if many points are
reassigned to a new cluster (called a dense iteration), then it is unlikely that
all of them are close to the hyperplane separating the cluster from which
they come and the cluster that they join. If only few points are reassigned
(called a sparse iteration), then we hope to be able to prove that at least
one cluster center must move significantly. This hope turns out to wrong
for a single iteration, but in any short sequence of sparse iterations (called
an epoch), this is likely to happen.

4.2 Dense iterations

We call an iteration a dense iteration if there is at least one cluster that
gains or loses in total at least 2kd points.

We call the point set Y ε-separated if, for all hyperplanes H ⊆ Rd, there
are less than 2d points y ∈ Y with dist(y,H) ≤ ε.

Lemma 4.3. If Y is ε-separated, then the potential decreases by at least
2ε2/n in every dense iteration.

15

Proof. Since the iteration is dense, there must be a cluster Ci that exchanges
at least 2kd points with other clusters in this iteration. Hence, there must
be another cluster Cj with which Ci exchanges at least 2d+ 1 points. Since
Y is ε-separated, at least one point y ∈ Y that switches between Ci and Cj
is at a distance of at least ε from the hyperplane bisecting ci = cm(Ci) and
cj = cm(Cj).

In order to bound the decrease of the objective value from below by
2ε2/n, we need a lower bound of ε/n for ‖ci−cj‖. There exists a hyperplane
H ′ (the bisector from the previous iteration) that separates Ci from Cj .
Among all at least 2d+1 points that want to switch in the current iteration,
at least one point y must be at a distance of at least ε from H ′ since Y is
ε-separated. Assume without loss of generality that y ∈ Ci. Then, since
|Ci| ≤ n, we have ε

n ≤ dist(ci, H
′) ≤ ‖ci − cj‖.

Lemma 4.4. The probability that Y is not ε-separated is at most n2d ·
(
2dε
σ

)d
.

Proof. According to Lemma 4.5 below, it suffices to show that the proba-
bility that there are two sets P and P ′ consisting of d points of Y each such
that all points of P ′ are (2dε)-close to the hyperplane through P is bounded

by n2d ·
(
2dε
σ

)d
.

Fix any P and P ′. The probability that all points of P ′ are within dis-
tance 2dε of the hyperplane through P is at most (2dε/σ)d by independence
of the perturbation of the points. The lemma follows by a union bound over
the at most n2d choices for P and P ′.

Lemma 4.5. Let P ⊆ Rd be any finite set of at least d points, and let
H ⊆ Rd be an arbitrary hyperplane. Then there exists a hyperplane H ′ ⊆ Rd
that contains at least d points of P such that

max
p∈P

(
dist(p,H ′)

)
≤ 2d ·max

p∈P

(
dist(p,H)

)
.

Proof. By shifting both P and H, we can assume without loss of generality
that 0 ∈ P . Let ` = maxp∈P dist(p,H). For p ∈ P , let π(p) be the projection
of p onto H.

Let V = {π(p)− π(0) | p ∈ P}. The set V lies in a (d− 1)-dimensional
affine subspace of Rd. According to Lemma 4.6 below, there exists a subset
V0 ⊆ V with |V0| ≤ d − 1 such that all points in V can be written as
linear combinations of vectors in V0 such that the coefficients involved have
absolute values of at most 1.

Let Q = {p ∈ P | π(p) − π(0) ∈ V0}. If there are several points p with
the same π(p)− π(0), then we select one such point arbitrarily. In this way,
we have |Q| ≤ d− 1. Let H ′ be the hyperplane through 0 and Q.

We have ‖p− π(p)‖ = dist(p,H) ≤ ` for all p ∈ P by the definition of π
and `. For all q ∈ Q ∪ {0}, we have q ∈ H ′ by the choice of H ′. These two
observations imply dist(π(q), H ′) ≤ ‖q − π(q)‖ ≤ `.

16

Finally, we have to show that dist(p,H ′) ≤ 2d` for all p ∈ P . We have

dist(p,H ′)

≤ ‖p− π(p)‖+ dist(π(p), H ′) (triangle inequality)

≤ `+ dist(π(p), H ′) (reasoning above)

≤ `+ dist(π(0), H ′) + dist(π(p)− π(0), H ′) (triangle inequality)

≤ 2`+ dist(π(p)− π(0), H ′) (since dist(π(q), H ′) ≤ `)

≤ 2`+ dist

∑
q∈Q

cq
(
π(q)− π(0)

)
, H ′

 (properties of Q)

≤ 2`+
∑
q∈Q

dist
(
cq
(
π(q)− π(0)

)
, H ′

)
(triangle inequality)

≤ 2`+
∑
q∈Q

dist
(
π(q)− π(0), H ′

)
(0 ∈ H ′ and |cq| ≤ 1)

≤ 2`+
∑
q∈Q

dist
(
π(q), H ′) + dist(π(0), H ′

)
(0 ∈ H ′, triangle inequality)

≤ 2`+ 2|Q|` ≤ 2d`.

Lemma 4.6. Let V ⊆ Rd be a finite set of vectors. Then there exists a
subset V0 ⊆ V with |V0| ≤ d such that, for all v ∈ V ,

v =
∑
u∈V0

cuvu

with |cuv| ≤ 1.

Proof. Without loss of generality, we assume that span(V) = Rd. Other-
wise, we consider a lower-dimensional subspace. Choose u1, . . . , ud ∈ V that
maximize | det(u1, . . . , ud)|, i.e., the determined by considering u1, . . . , ud as
the columns of a square matrix. We break ties arbitrarily. This implies that
span(u1, . . . , ud) = Rd. Let V0 = {u1, . . . , ud}.

Hence, we can write v ∈ V as v =
∑

i=1d ciui with

ci =
det(u1, . . . , ui−1, v, ui+1, . . . , ud)

det(u1, . . . , ud)

according to Cramer’s rule. By the choice of u1, . . . , ud, the absolute value
of the denominator is not smaller than the absolute value of the numerator,
which proves the lemma.

By combining Lemmas 4.3 and 4.4, we obtain the following result.

17

Lemma 4.7. For d ≥ 3, the probability that there exists a dense iteration
in which the potential decreases by less than ε is bounded from above by(

dn2.5
√
ε

σ

)d
≤
(
n3.5
√
ε

σ

)d
.

4.3 Sparse iterations

We call an iteration an `-sparse iteration if every cluster gains and loses in
total at most ` points.

Let Cti be the set of points in the i-th cluster in iteration t of the k-
means method. We define an epoch to be a sequence of consecutive iterations
t, t+ 1, . . . , t+ ` in which no cluster center assumes more than two different
point sets. This means that |{Cai | t ≤ a ≤ t+`}| ≤ 2 for all i ∈ {1, 2, . . . , k}.

The length of every epoch is bounded by 3. This means that after the
fourth iteration, either the k-means method has terminated, or at least one of
the clusters assumes a third point set. To prove a bound that is polynomial
in nk and 1/σ, the following (weaker) observation suffices.

Lemma 4.8. The length of every epoch is bounded by 2k.

Proof. After 2k iterations, at least one cluster must have assumed a third
set of points. Otherwise, a clustering would show up a second time. This is
not possible as the objective value strictly decreases in every iteration.

We call a set Y ⊆ Rd of data points (η, `)-coarse for some numbers
η > 0 and c ∈ N if, for all triples P1, P2, P3 ⊆ Y of different subsets with
|P14P2| ≤ ` and |P24P3| ≤ `, we have ‖ cm(Pi) − cm(Pi+1)‖ > η for at
least one i ∈ {1, 2}. Here, “4” denotes the symmetric difference of two sets.

Lemma 4.9. Assume that Y is (η, `)-coarse, and consider a sequence of 2k

consecutive iterations of the k-means method. If each of these iterations is
`-sparse, then the potential decreases by at least η2.

Proof. After 2k iterations, at least one cluster has assumed a third config-
uration (Lemma 4.8). Since the iterations are `-sparse and the instance is
(η, `)-coarse, the cluster center of this center must have moved in at least one
iteration by at least η. This decreases the potential by at least η2 according
to Lemma 4.1.

Lemma 4.10. The probability that Y is not (η, `)-coarse is at most (7n)2` ·
(2n`η/σ)d.

Proof. Let P1, P2, P3 ⊆ Y be three sets with |P14P2| ≤ ` and |P24P3| ≤ `.
Let A = P1∩P2∩P3, and let B1, B2, and B3 be sets such that Pi = A∪Bi for
i ∈ {1, 2, 3} and B1, B2, and B3 are disjoint to A. We have |B1∪B2∪B3| ≤ 2`
and B1 ∩B2 ∩B3 = ∅.

18

We perform a union bound over the choices of for the sets B1, B2, and B3.
The number of possible choice for these sets is upper-bounded by 72` ·

(
n
2`

)
≤

(7n)2`: We select 2` elements of Y . Then we choose for each element in
which of the three sets it should belong. None of these elements belongs
to all sets, but there can be elements that belong to no set. We need this
possibility since we can have |B1 ∪B2 ∪B3| < 2`.

For i ∈ {1, 2, 3}, we have

cm(Pi) =
|A|

|A|+ |Bi|
· cm(A) +

|Bi|
|A|+ |Bi|

· cm(Bi).

Hence, for i ∈ {1, 2}, we can write cm(Pi)− cm(Pi+1) as

cm(Pi)− cm(Pi+1) =

(
|A|

|A|+ |Bi|
− |A|
|A|+ |Bi+1|

)
· cm(A) (1)

+
|Bi|

|A|+ |Bi|
· cm(Bi)−

|Bi+1|
|A|+ |Bi+1|

· cm(Bi+1).

We distinguish two cases. The first case is that |Bi| = |Bi+1| for some
i ∈ {1, 2}. Then (1) simplifies to

cm(Pi)− cm(Pi+1) =
|Bi|

|A|+ |Bi|
· cm(Bi)−

|Bi|
|A|+ |Bi|

· cm(Bi+1) (2)

=
1

|A|+ |Bi|
·

 ∑
y∈Bi\Bi+1

y −
∑

y∈Bi+1\Bi

y

 .

Since Bi 6= Bi+1 and |Bi| = |Bi+1|, there exists a point y ∈ Bi \Bi+1.
We use the principle of deferred decisions. We first fix all points in

(Bi∪Bi+1)\{y} arbitrarily. Then ‖ cm(Pi)−cm(Pi+1)‖ ≤ η is equivalent to
the event that y assumes a position in a hyperball of radius (|A|+ |Bi|) ·η ≤
nη. The probability that this happens is bounded from above by (nη/σ)d ≤
(2nη`/σ)d by Corollary 1.4.

The second case is that |B1| 6= |B2| 6= |B3|. We denote by B(c, r) = {x ∈
Rd | ‖x− c‖ ≤ r} the hyperball of radius r around c. For i ∈ {1, 2}, let

ri =

(
|A|

|A|+ |Bi|
− |A|
|A|+ |Bi+1|

)−1
and

Zi =
|Bi+1|

|A|+ |Bi+1|
cm(Bi+1)−

|Bi|
|A|+ |Bi|

cm(Bi).

We observe (see (2)) that the event ‖ cm(Pi)− cm(Pi+1)‖ < η is equivalent
to the event that cm(A) ∈ Bi = B(riZi, |ri|η). Consequently, a necessary
condition that the event ‖ cm(Pi)−cm(Pi+1)‖ < η occurs for both i ∈ {1, 2}
is that the hyperballs B1 and B2 intersect.

19

The two hyperballs intersect if and only if their centers are at a distance
of at most (|r1|+ |r2|) · η of each other. Hence,

P
(
‖ cm(P1)− cm(P2)‖ ≤ η and ‖ cm(P2)− cm(P3)‖ ≤ η

)
≤ P

(
‖r1Z1 − r2Z2‖ ≤

(
|r1|+ |r2|

)
η
)

Some tedious, not very insightful calculations show that the latter prob-
ability can be upper-bounded by (2n`η/σ)d.

The main technical problem in the proof of Lemma 4.10 is that we cannot
control the position of cm(A). The reason is that there are too many possible
choices for points in A. Because of this, we cannot simply apply a union
bound over all possibilities for A.

The first case in the proof of Lemma 4.10 shows that for the case that the
same number of points leaves and enters a cluster, it is already quite likely
that the potential decreases significantly. In this case, no epochs are needed.
The reason is that the influence of cm(A) cancels out in cm(Pi)− cm(Pi+1)
if |Bi| = |Bi+1|. In this way, the difficulty that we have to say something
about cm(A) disappears.

If |Bi| 6= |Bi+1|, then cm(A) shows up with different coefficients in
cm(Ci) and cm(Ci+1). Hence, cm(A) shows up with a non-zero coefficient
in cm(Pi) − cm(Pi+1). This implies that for any position of cm(Bi) and
cm(Bi+1), we can choose cm(A) such that cm(Pi) and cm(Pi+1) are close.
However, this is only possible if cm(A) assumes a position in some hyperball
of a certain radius. The center of this hyperball depends only on cm(Bi)
and cm(Bi+1). We conclude that we can only have ‖ cm(P1)− cm(P2)‖ ≤ η
and ‖ cm(P2) − cm(P3)‖ ≤ η simultaneously if these hyperballs intersect.
We can upper-bound the probability that these hyperballs intersect by only
considering the points in B1 ∪ B2 ∪ B3. Thus, considering three different
sets instead of only two different sets allows us to remove the necessity to
take the possibilities to choose A into account.

Lemma 4.11. The probability that there is a sequence of 2k consecutive
sparse iterations that decrease the potential by less than ε is at most

(7n)4kd ·
(

4nkd
√
ε

σ

)d
≤

(
cksparsen

4k+3√ε
σ

)d
for some sufficiently large constant csparse.

4.4 Putting things together

Lemma 4.12. Let D = 10
√
kd lnn. Then P(Y 6⊆ [−D,D]d) ≤ n−3kd.

A consequence of the lemma above is that after the first iteration, the
potential is bounded by ndD2 = cinitnd

2k lnn ≤ cinitn
5 for some constant

cinit. (The upper bound of cinit is very poor, but simplifies the bounds.)

20

Theorem 4.13. The smoothed number of iterations of the k-means method
is bounded by O(2kn14k+12/σ2).

Proof. We choose ε = σ2 · n−14k−7. By Lemma 4.7, the probability that
there is a dense iteration that decreases the potential by at most ε is at
most cn−3kd for some constant c > 0. By Lemma 4.11, the probability
that there is a sequence of 2k consecutive sparse iterations that decrease the
potential by at most ε is also at most c′n−3kd for some constant c′ > 0. By
Lemma 4.12, the probability that the initial potential is more than O(n5) is
also at most n−3kd.

If any of these events happens nevertheless, we bound the number of
iterations by its worst-case bound of n3kd. This contributes only O(1) to
the expected value. Otherwise, the number of iterations is bounded by
O(2kn14k+12/σ2).

We observe that the bound obtained in Theorem 4.13 is still quite poor.
In particular, it has the number k of clusters in the exponent. We remark
that it can be shown that the smoothed number of iterations of k-means is
bounded by a polynomial in n and 1/σ (without k or d in the exponent).
The idea for this improved analysis is to refine the partitioning of iterations,
not only into sparse and dense iterations [1].

4.5 Approximation ratio of the k-means method

The approximation performance of the k-means method is not very good.
Of course, it heavily depends on the initialization. In fact, the main reason
why the k-means method is so popular is its speed. This allows us to run it
many times on the same data set with different initializations. The hope is
that for at least one initialization, we get a good clustering.

5 Flip heuristic for Max-Cut

Max-Cut is the following optimization problem: we are given an undirected
graph G = (V,E) with edge weights w = (we)e∈E . The goal is to find a
set C ⊆ V of vertices that maximize the total weight w(C) of edges with
exactly one endpoint in C:

w(C) =
∑

u∈C,v/∈C,{u,v}∈E

we.

We call C a cut. Max-Cut is NP-hard. A simple local search heuristic for
Max-Cut is the so-called flip heuristic: Assume that we have some cut C.

• If there is a vertex v ∈ C with w(C \ {v}) > w(C), then replace C by
C \ {v}.

21

• If there is a vertex v ∈ V \ C with w(C ∪ {v}) > w(C), then replace
C by C ∪ {v}.

The flip heuristic seems to converge quickly in experiments, but its worst-
case running-time is exponential. A trivial upper bound on the number of
iterations that it requires is 2n with n = |V | since every cut is visited at
most once during the execution of the algorithm.

Our goal is again a smoothed analysis of the running-time of the flip
heuristic. To do this, we consider the following probabilistic input model:

• An adversary specifies the graph G = (V,E) and one probability den-
sity functions fe : [0, 1]→ [0, φ] for each edge e ∈ E.

• We draw the weight we of edge e independent of the weights of the
other edges according to the probability density function fe.

While being a very simple local search algorithm, the flip heuristic re-
sisted a smoothed analysis for quite a while. The reason is that the improve-
ment caused by flipping a single vertex depends not only on the vertex itself,
but on the positions of all of its neighbors. (We see in the exercises an exam-
ple of a smoothed analysis of the flip heuristic that depends exponentially
on the maximum degree of the given graph.)

We want to sketch a proof of the following theorem by Etscheid and
Röglin [10].

Theorem 5.1. The smoothed number of iterations of the flip heuristic is
bounded from above by a polynomial in nlogn and φ.

(Running-times of the form nlog
c n for some c > 0 or, equivalently, 2log

c n

for some c > 1 are sometimes called quasi-polynomial.)

5.1 Difficulties and key idea

As said above, the main challenge is that there does not seem to be a compact
description of what happens in an iteration, as we had it for the 2-opt
heuristic. Therefore, we have to consider sequences of iterations. Consider
the smallest improvement caused by any sequence of ` consecutive iterations.
If we consider all such sequences, we have roughly 2nn` possibilities: there
are 2n possibilities for the initial cut, and then we have to choose ` vertices
to be flipped in the ` iterations.

Consider a fixed sequence of ` iterations. From this sequence, we obtain
a system of ` different linear combinations of edge weights with integer co-
efficients. The improvement caused by this sequence is at most ε only if all
linear combinations assume a value in the interval (0, ε]. Let r denote the
rank of this set of linear combinations. It can be shown that the probability
that all linear combinations fall into (0, ε] is bounded from above by (φε)r

22

according to the following lemma. (This is not trivial, but also not impossi-
ble to prove. We refer to Etscheid and Röglin [10, Lemma A.1]. It is crucial
that the coefficients are integers.)

Lemma 5.2. Let X1, . . . , Xm be independent, real-valued random variables,
where the density of Xi is bounded by φ. Let a1, . . . , ak ∈ Zm be linearly
independent row vectors. Let X = (X1, . . . , Xm)T, and let Yi = aiX. Then

P
(
Y1, . . . , Yk ∈ (0, ε]

)
≤ (εφ)k.

If there exists a constant α > 0 such that the linear combinations of every
sequence of ` consecutive iterations have a rank of at least α`, then we would
obtain a polynomial bound for the smoothed running-time according to the
following lemma.

Lemma 5.3 (useless lemma). Assume that there exists a constant α > 0
such that the linear combinations of every sequence of ` consecutive itera-
tions have a rank of at least α`, then the expected number of iterations of
the flip heuristic is bounded from above by O(n3+

1
αφ).

Proof. We choose ` = n. Fix any sequence of n iterations. Their linear
combinations have a rank of at least αn by the assumption of the lemma.
Hence, the probability that all of them yield an improvement of at most ε is
bounded from above by (εφ)αn by Lemma 5.2. By a union bound over 2nnn

possibilities, we obtain that the probability that any sequence of n iterations
yields an improvement of at most ε is at most p = (2nεαφα)n.

We choose ε = (4n)−1/α/φ. Then p = 2−n. Since the weight of the cut is
initially at least 0 and in the end at most n2, the number of iterations is at
most n3/ε with a probability of at least 1−2−n. Since the worst-case number
of iterations is upper-bounded by 2n, the expected number of iterations is
at most n3/ε+ 1 = O(n3+

1
αφ).

While the lemma is true, it is useless since its assumption about the rank
is false. In fact, if only a few nodes change multiple times, then the rank
can be significantly smaller than linear in the length of the sequence.

The following is the key observation to prove Theorem 5.1: Let v ∈ V be
a node that moves at least twice. We consider the two linear combinations
of edge weights of two consecutive moves of node v (note that these moves
do not have to be consecutive among all moves) and sum them up. Let L be
the result. We observe now that L contains only edge weights with non-zero
coefficient of edges connecting v to a node u that has moved an odd number
of times between the two moves of v. This reduces the factor incurred by the
union bound from 2n for the initial configuration to 2`, namely the positions
of the nodes that are involved in the sequence of iterations that we consider.
Note that this is only an improvement if we consider sequences of length
much smaller than n.

23

We call a sequence of ` consecutive iterations a k-repeating sequence if at
least d`/ke distinct nodes move at least twice in this sequence. It turns out
that the rank of the set of linear combinations obtained from a k-repeating
sequence of ` iterations is sufficiently large to prove our bound.

5.2 Sketch of the quasi-polynomial bound

The proof proceeds in three steps:

(i) Prove that the linear combinations obtained from a k-repeating se-
quence of length ` have a sufficiently large rank.

(ii) Prove that any k-repeating sequence of length ` is unlikely to yield
only a small improvement.

(iii) Prove that it suffices to consider k-repeating sequences of length ` to
get a lower bound on the smallest improvement caused by any sequence
of length `.

The following lemma, whose proof we omit, shows that the rank of the
linear combinations obtained from a k-repeating sequence of ` iterations is
large. It answers Item (i) of the list above.

Lemma 5.4. Consider an arbitrary k-repeating sequence of ` consecutive
iterations of the flip heuristic. Consider the set of linear combinations of
edge weights obtained by adding the linear combinations of two consecutive
moves of the same node. Then the rank of this set of linear combinations is
at least

⌈
`
2k

⌉
.

Using Lemma 5.4, we can show that the probability that there exists
some k-repeating sequence of length ` that yields only a small improvement
is small. This yields Lemma 5.5 below, which addresses Item (ii) from the
list above. In the following, let r =

⌈
`
2k

⌉
. Let ∆`,k denote the smallest

improvement caused by any k-repeating sequence of length `.
We call a node v ∈ V active in a sequence of iterations if v is moved at

least once in this sequence.

Lemma 5.5. P
(
∆`,k ≤ ε

)
≤ (2n)` · (2φε)r.

Proof. There are at most n` choices for the ` nodes that move in the con-
secutive iterations of a k-repeating sequence of length `. Furthermore, there
are 2` possible starting configurations of the at most ` active nodes in this
sequence. Thus, with a union bound over (2n)` possibilities, it suffices to
consider any fixed k-repeating sequence of length `.

Consider a node v ∈ V that moves at least twice, and consider lin-
ear combinations L1 and L2 corresponding to two consecutive moves of v.
Then, as argued above, L = L1 + L2 contains only weights belong to edges

24

connecting v to active nodes. For such nodes, we have fixed the starting
configuration.

If both L1 and L2 assume a value in (0, ε], then L assumes a value in
(0, 2ε]. By Lemma 5.4, the rank of all linear combinations constructed like
L is at least r. Hence, we can apply Lemma 5.2.

Finally, Item (iii) remains to be addressed. This is done in the following
lemma, the proof of which we omit. For the following lemma, we fix k =
d5 log2 ne.

Lemma 5.6. Let ∆ = min1≤`≤5n ∆`,d5 log2 ne. Then ∆ is a lower bound for
the improvement caused by any sequence of 5n steps.

Now we can put everything together to prove Theorem 5.1.

Proof of Theorem 5.1. The weight of every cut is in the interval [0, n2]. Let
T be the maximum number of iterations that the flip heuristic can need on
the given (random) instance. Then T ≥ 5nt only if the minimum improve-
ment caused by any sequence of 5n iterations is at least ∆ with ∆ = n2/t.

By Lemma 5.6, it suffices to consider ∆`,k for ` ∈ {1, . . . , 5n} to get a
lower bound for ∆. By Lemma 5.5, we have

P
(
∆ ≤ ε

)
≤

5n∑
`=1

(2n)` · (2φε)r ≤
5n∑
`=1

(
(2n)2k · (2φε)

)r
.

Let ζ = 2φn2(2n)2k. Hence,

P
(
T ≥ 5nt

)
≤

5n∑
`=1

(
(2n)2k · (2φn2/t)

)r
=

5n∑
`=1

(
ζ

t

)r
.

We set ti = i · ζ. Then, using r = d`/(2k)e, we obtain

P
(
T ≥ 5nti

)
≤

5n∑
`=1

(
1

i

)⌈ `
2k

⌉
≤
∞∑
`=1

2k ·
(

1

i

)`
=

2k

i− 1
.

Combining this with the trivial upper bound of 2n for the number of itera-
tions, we obtain

E
(
T

5nζ

)
≤ 1 +

2n∑
i=2

P
(
T ≥ 5nti

)
≤ 1 +

2n∑
i=2

2k

i− 1
= O(kn).

Hence, the expected number of iterations is bounded from above by

5kn2ζφ = φ · nO(logn).

25

6 Solving knapsack in polynomial time

The knapsack problem is the following optimization problem: we are given
n items 1, . . . , n with non-negative weights w1, . . . , wn and profits p1, . . . , pn
and a capacity t. The goal is to find a subset I ⊆ {1, . . . , n} of the items
that weighs at most t at maximizes the profit. This means that we want to
maximize

∑
i∈I pi such that

∑
i∈I wi ≤ t. We identify subsets I ⊆ {1, . . . , n}

with binary vectors x ∈ {0, 1}n in the obvious way: xi = 1 if and only if
i ∈ I. In this way, the knapsack problem becomes a very simple integer linear
programming problem: maximize pTx subject to wTx ≤ t and x ∈ {0, 1}n.

The knapsack problem is NP-hard. Still, even large practical instances
of the knapsack problem can be solved in practice in reasonable time. The
results of this section are by Beier et al. [4].

6.1 Pareto curves and the Nemhauser–Ullman algorithm

We can view the knapsack problem as a bi-criteria optimization problem:
we simultaneously want to maximize the profit and to minimize the weight.

However, with more than one objective function, we cannot directly
compare solutions. There might be a more valuable solution that is heavier
than another, less valuable solution. When we try to optimize weight and
profit, it is unclear which solution is preferable. To transfer the concepts of
“better” and “optimal” to multi-criteria problems, we introduce the concepts
of domination and Pareto curves.

Let x, y ∈ {0, 1}n be two binary vectors. We say that x dominates y if
wTx ≤ wTy and pTx ≥ pTy and at least one of the two inequalities is strict.

A binary vector x ∈ {0, 1}n is called Pareto-optimal if there is no other
vector in {0, 1}n that dominates x. The Pareto curve (also known as Pareto
set or efficient set) is the set of all vectors from {0, 1}n that are Pareto-
optimal.

In the following, for x ∈ {0, 1}n, we denote by xi=1 the vector obtained
from x by setting the i-th entry of x to 1 and by xi=0 the vector obtained
from x by setting the i-th entry of x to 0.

The idea of the Nemhauser–Ullman algorithm (NUA) is to compute the
Pareto curve iteratively by considering the items 1, . . . , n one by one: in
the k-th step we look at item k and the set of all Pareto-optimal solutions
Pk−1 of items 1, . . . , k − 1. We compute the Pareto-optimal solutions that
we obtain by combining each solution from Pk−1 with item k.

The NUA is given as Algorithm 1. The following lemma shows that it
correctly computes the set Pn of all Pareto-optimal solutions. This implies
that it solves the knapsack problem correctly.

Lemma 6.1. For all k ∈ {0, . . . , n}, the set Pn computed by the NUA is the
set of Pareto-optimal solutions that use items 1, . . . , k.

26

Algorithm 1 Nemhauser–Ullman algorithm.

input: weights w1, . . . , wn, profits p1, . . . , pn, capacity t
1: P0 ←

{
(0, . . . , 0)T

}
2: for k ← 1 to n do
3: P ′k ← Pk−1 ∪ {xk=1 | x ∈ P (k − 1)}
4: remove all dominated items from P ′k to obtain Pk
5: end for

output: x = argmax{pTy | y ∈ Pn, wTy ≤ t}

Proof. Let Qk be the (true) set of Pareto-optimal solutions of items 1, . . . , k.
We need the following claim.

Claim 6.2. If x ∈ Qk, then xk=0 ∈ Qk−1.

Proof of Claim 6.2. We show that xk=0 /∈ Qk−1 implies x /∈ Qk. Assume
that there is some y with yk = . . . = yn = 0 that dominates xk=0. If xk = 0,
then x = xk=0 is dominated by y. Hence, x /∈ Qk. If xk = 1, then x is
dominated by yk=1. Hence, x /∈ Qk.

The proof is by induction. The lemma clearly holds for k = 0. Now
assume that Pk−1 = Qk−1.

We first prove Qk ⊆ Pk. Let x ∈ Qk be arbitrary. Then xk=0 ∈ Qk−1 =
Pk−1 by Claim 6.2 and the induction hypothesis. Thus, x ∈ P ′k. If x /∈ Pk,
then there is some solution y ∈ P ′k that dominates x. This contradicts
x ∈ Qk.

Finally, since Qk ⊆ Pk and Pk does not contain any dominated items,
we have Pk = Qk.

If the elements of Pk−1 are sorted in ascending order according to their
weights, then Pk can be computed easily in linear time, and the elements
are also sorted in ascending order. This yields the following lemma.

Lemma 6.3. Let qk = |Pk| for k ∈ {1, . . . , n}. Then the Nemhauser–Ullman
algorithm runs in time

O

(
n∑
i=1

qi

)
.

This means that the running-time is linear in the size of the Pareto curve.
Our goal in the following is to show that E(qk) is bounded by a polynomial,
which implies that the expected running-time of the NUA is also polynomial.
In the worst-case, the size of the Pareto curve and the running time of the
NUA are exponential.

27

6.2 Probabilistic analysis of the Pareto curve

We only perturb the weights, not the profits. The results that we obtain
also hold if only the profits are perturbed or of both profits and weights are
perturbed independently, but they no longer hold if profits and weights are
not independent.

Following the one-step model (see Section 2.2), we use the following
probabilistic input model: Let φ ≥ 1 be the perturbation parameter. An
adversary specifies density functions f1, . . . , fn with fi : [0, 1] → [0, φ] and
profits p1, . . . , pn ∈ [0, 1]. Then we obtain an instance of the knapsack
problem by drawing w1, . . . , wn independently according to the densities
f1, . . . , fn, respectively.

Our goal is to prove the following result.

Theorem 6.4. Let p1, . . . , pn ∈ [0, 1] be arbitrary profits, let f1, . . . , fn :
[0, 1] → [0, φ] be arbitrary density functions bounded by φ ≥ 1, and let
w1, . . . , wn be weights drawn according to f1, . . . , fn respectively. Let P = Pn
be the set of Pareto-optimal solutions, and let q = qn = |Pn|. Then

E(q) ≤ φn2 + 1.

Proof. As w1, . . . , wn ∈ [0, 1], the weight of each solution in P is in the
interval [0, n]. For any two x, y ∈ {0, 1}n with x 6= y, we have wTx 6= wTy.

We partition (0, n] into k small intervals Mk
1 , . . . ,M

k
k of size n/k each,

where Mk
i =

(n(i−1)
k , nik

]
. If the size of these intervals is sufficiently small,

then the weight of any Pareto-optimal solution falls into a unique interval.

Claim 6.5. We have

E(q) = 1 + lim
k→∞

k∑
i=1

P
(
∃x ∈ P : wTx ∈Mk

i

)
. (3)

The 1 comes from the fact that there is no randomness in the solution
(0, . . . , 0), which is Pareto-optimal with a probability of 1. Weight 0 is
excluded from the other, pairwise disjoint intervals Mk

i and from (0, n].

Proof of Claim 6.5. For any k, we have

E(q) = 1 +
k∑
i=1

E
(∣∣∣{x ∈ P | wTx ∈Mk

i

}∣∣∣)
≥ 1 +

k∑
i=1

P
(
∃x ∈ P | wTx ∈Mk

i

)
,

which proves one direction. For the other direction, we estimate the proba-
bility that there exists an i ∈ {1, . . . , k} such that the weight of at least two

28

different Pareto-optimal solutions x, y ∈ {0, 1}n fall into the same interval
Mk
i . Let d = x − y 6= 0. Assume without loss of generality that d1 = 1.

Given w2, . . . , wn, there is an interval of length at most n
k for w1 such that

x and y fall into the same interval. Then, by letting an adversary choose
w2, . . . , wn and applying the principle of deferred decisions and for some
appropriately chosen number z, we have

P
(
∃i : wTx,wTy ∈Mk

i

)
≤ P

(
w1 ∈

(
z, z +

n

k

])
≤ φn

k

by Lemma 1.1. By a union bound, the probability that there exist two
solutions in {0, 1}n \ {(0, . . . , 0)} that are both Pareto-optimal and fall into
the same interval is bounded from above by

22n · φn
k
.

If this happens, we use the trivial upper bound of 2n for the number of
Pareto-optimal solutions. Thus, we have

E(q) ≤ 1 +

k∑
i=1

P
(
∃x ∈ P | wTx ∈Mk

i

)
+ 22n · φn

k
· 2n.

We observe that limk→∞ 22n · φnk · 2
n = 0, which yields the other direction

and completes the proof.

To analyze the right-hand side of (3), we want to bound

P
(
∃x ∈ P : wTx ∈ (t, t+ ε]

)
for any t ∈ [0, n] and ε > 0. To do this, we define the notions of winner and
loser. A solution x? is called a winner if x? is the most valuable solution
that satisfies the weight bound:

x? = argmax
{
p?Tx | x ∈ {0, 1}?, wTx ≤ t

}
.

For any t ≥ 0, such a solution x? exists since wT0 = 0 ≤ t.
A solution x is a loser if pTx > pTx? and wTx > t. Losers are all

solutions that more valuable than a winner x?, but are not eligible as a
winner since they violate the weight constraint. We denote by x̂ the loser of
the smallest weight:

x̂ = argmin
{
wTx | x ∈ {0, 1}?, pTx > pTx?

}
.

If such an x̂ does not exist, we define x̂ = ⊥. We now define

Λ(t) =

{
wTx̂− t if x̂ 6= ⊥ and

⊥ if x̂ = ⊥.

29

Claim 6.6. For every t, the following two statements are equivalent:

(i) There exists a solution x ∈ P with wTx ∈ (t, t+ ε].

(ii) Λ(t) ≤ ε.

Claims 6.5 and 6.6 together yield the following:

E(q) = 1 + lim
k→∞

k−1∑
i=0

P
(

Λ

(
ni

k

)
≤ n

k

)
.

The probability P(Λ(t) ≤ ε) remains to be analyzed. To do this, we
introduce auxiliary random variables. For i ∈ {1, . . . , n} and j ∈ {0, 1}, we
define

• Sxi=j = {x ∈ {0, 1}n | xi = j},

• x?,i = argmax{pTx | x ∈ Sxi=0 ∧ wTx ≤ t}, and

• x̂i = argmin{wTx | x ∈ Sxi=1 ∧ pTx > pTx?,i}.

The vector x?,i is the winner among all solutions that do not contain the
i-th item and x̂i is the loser among those that do contain the i-th element.
If no such x̂i exists, we set x̂i = ⊥.

We define Λi by using x?,i and x̂i in a similar way as we defined Λ:

Λi(t) =

{
wTx̂i − t if x̂i 6= ⊥ and

⊥ otherwise.

The difference of Λi compared to Λ is that the winner x?,i does not contain
the i-th element, but the loser x̂i does. The following claim relates Λ to
Λ1, . . . ,Λn. After that, we will bound the probability that Λ is small by the
probability that some Λi is small.

Claim 6.7. For all w, p, and t, either Λ(t) = ⊥ or there exists an i ∈
{1, . . . , n} with Λ(t) = Λi(t).

Proof. Since wTx̂ > wTx?, there is an i ∈ {1, . . . , n} such that x̂i = 1 and
x?i = 0. We have x? = x?,i since x? ∈ Sxi=0. We have x̂ = x̂i by the choice
of i. Hence, Λ(t) = Λi(t).

Claim 6.8. For all i ∈ {1, . . . , n}, ε > 0, and t, we have

P
(
Λi(t) ∈ (0, ε]

)
≤ φε.

30

Proof. We assume that all weights except for wi are fixed arbitrarily. This
fixes the weight of all solutions in Sxi=0. Thus, x?,i is determined without
revealing wi.

As the weight wi affects all solutions in Sxi=1 equally, the loser x̂i does
not depend on wi: There is no randomness in the condition that candidates
for x̂i must be more profitable than x?,i, and we seek the lightest of those
solutions. Thus, x̂i is also determined without revealing wi. Hence, Λi(t) ∈
(0, ε] is equivalent to wTx̂i − t ∈ (0, ε]. This is equivalent wi ∈ (z, z + ε] for
some z ∈ R. The lemma now follows from Lemma 1.1.

Using a union bound, we obtain

P
(
Λ(t) ≤ ε

)
≤ P

(
∃i ∈ {1, . . . , n} : Λi(t) ∈ (0, ε]

)
≤

n∑
i=1

P
(
Λi(t) ∈ (0, ε]

)
≤ φnε.

Putting everything together finishes the proof:

E(q) = 1 + lim
k→∞

k−1∑
i=0

P
(

Λ

(
ni

k

)
≤ n

k

)

≤ 1 + lim
k→∞

k−1∑
i=0

φn2

k
= 1 + φn2.

Combining Lemma 6.3 and Theorem 6.4 yields the following bound for
the running-time of the Nemhauser-Ullman algorithm.

Corollary 6.9. Let p1, . . . , pn be arbitrary profits and wi, . . . , wn be drawn
according to densities f1, . . . , fn : [0, 1]→ [0, φ] for φ ≥ 1. Then the expected
running-time of the Nemhauser-Ullman algorithm is O(φn3).

Proof. For all i ∈ {1, . . . , n}, the expected size qi of the restricted Pareto
curve Pi is bounded from above by 1 + i2φ by Theorem 6.4. By linearity
of expectation, this yields

∑n
i=1 qi ≤ n3φ + n ∈ O(n3φ). The result follows

from Lemma 6.3.

We remark that Theorem 6.4 is tight in terms of the dependency on n:
if we draw the n weights uniformly and independently, then the expected
size of the Pareto curve is Ω(n2).

31

7 Successive shortest path algorithm

7.1 Min-cost flows and residual networks

Minimum-cost flows. The minimum-cost flow problem (MCF) is a stan-
dard optimization that includes several other optimization problems (such
as maximum flow or matching in bipartite graphs) as special cases. We are
given a graph G = (V,E), two special nodes s, t ∈ V called source and sink,
respectively, edge costs c = (ce)e∈E , edge capacities u = (ue)e∈E , and a
budget b. For the rest of this section, we have n = |V | and m = |E|.

The goal is to ship b units of flow from s to t in the cheapest possible
way. MCF can be written as a linear optimization problem as follows:

minimize c(f) =
∑
e∈E

cefe

such that
∑

u:e=(v,u)∈E

fe −
∑

u:e=(u,v)∈E

fe =


−b if v = t,

b if v = s, and

0 otherwise,

0 ≤ fe ≤ ue for all e ∈ E.

(4)

The first type of constraints are called flow constraints, the second type are
the capacity constraints.

If f satisfies all constraints of (4) for some value b, then we call f a
feasible b-flow. We denote by |f | = b the amount of flow that is shipped
from s to t. Let

bmax = max
{
b | there exists a feasible b-flow

}
.

We denote by c(f) the costs of the flow f . Let C : [0, bmax] → R be the
function that maps some value b to the costs of a feasible b-flow of minimum
costs:

C(b) = min
{
c(f) | f is a feasible b-flow

}
. (5)

We call a feasible b-flow of costs C(b) an optimal feasible b-flow. We denote
by fmax an optimal feasible bmax-flow.

We remark that there are more general settings of MCF, where all nodes
v ∈ V have a budget bv with

∑
v∈V bv = 0. We restrict ourselves to one

source and one sink for the sake of simplicity, although the successive short-
est path algorithm and its smoothed analysis can be extended to the general
case.

Residual networks. For an edge e = (u, v), we denote by e−1 = (v, u)
the corresponding edge in the reverse direction.

Let f be some flow. The residual network Gf = (V,Effor ∪ E
f
back) is the

following graph:

32

• For every edge e ∈ E with fe < ue, we have e ∈ Effor with a capacity

of ufe = ue − fe and costs ce. These edges are called forward edges.

• For every edge e ∈ E with fe > 0, we have e−1 ∈ Efback with a capacity

of uf
e−1 = fe and costs −ce. These edges are called backward edges.

(There is some ambiguity in the definition above in the case that both
(u, v), (v, u) ∈ E. This ambiguity does not cause any severe technical prob-
lems, but it would require notational overhead to avoid them.) The capaci-
ties of the edges in the residual network are also called residual capacities.

Let E−1 = {e−1 | e ∈ E}. For a subset F ⊆ E ∪ E−1 of edges, let
F−1 = {e−1 | e ∈ F}. Let c(F) =

∑
e∈F ce =

∑
e∈F∩E ce −

∑
e∈F\E ce−1 be

the costs of F . We have c(F−1) = −c(F).
Crucial for min-cost flows and the SSP algorithm is the notion of aug-

menting a given flow f along a path or a cycle: Let F ⊆ Effor ∪ E
f
back such

that F is either a direction s-t path in Gf or a directed cycle in Gf . We can
augment f along F as follows:

• δ = min
{
ufe | e ∈ F

}
is the minimum residual capacity of all edges

of F . By construction of Gf , we have δ > 0.

• If e ∈ F ∩ Effor, then f ′e = fe + δ.

• If e ∈ F ∩ Efback, then f ′e−1 = fe−1 − δ.

• For all e ∈ E with e, e−1 /∈ F , we have f ′e = fe.

(The above case distinction does not cover the case that e, e−1 ∈ F . In this
case, f ′e = fe as δ is both added and subtracted.) The new flow f ′ has the
following properties:

• f ′ is a feasible flow.

• If F is a directed cycle, then |f ′| = |f |.

• If F is a directed s-t path, then |f ′| = |f |+ δ.

• c(f ′) = c(f) + δ · c(F).

In particular, if F is a directed cycle with c(F) < 0 and f is a b-flow, then
f ′ is a cheaper b-flow. Instead of adding or subtracting δ, we can add or
subtract any other value η ∈ [0, δ]. We say that we augment f along F by η.

The following theorem characterizes optimal flows. A proof can be found
in many books on the topic.

Theorem 7.1. Let f be a feasible b-flow. Then f is an optimal feasible
b-flow if and only if c(C) ≥ 0 for all directed cycles C in Gf .

33

Algorithm 2 Successive shortest path algorithm.

input: directed graph G = (V,E) with s, t ∈ V ; edge capacities u =
(ue)e∈E , edge costs c = (ce)e∈E , budget b

1: start with the empty flow f0 = 0
2: for j = 1, 2, . . . do
3: if Gfj−1

does not contain a (directed) s-t path then
4: output that there does not exist a flow with value b
5: end if
6: find a shortest s-t path Pj in Gfj−1

with respect to the edge costs
7: augment the flow along path Pj to obtain a new flow fj
8: end for
9: choose j such that |fj−1| ≤ b ≤ |fj |

10: augment fj−1 along Pj by b− |fj−1| to obtain f?

11: output f?

7.2 Successive shortest path algorithm

There exist many different algorithms with different worst-case running-
times for MCF. The problem can be solved in time O

(
m log n(m+n log n)

)
using the enhanced capacity scaling algorithm [16].

An algorithm that works very well in practice for solving MCF is the suc-
cessive shortest path algorithm (SSP). Its worst-case running-time is only
pseudo-polynomial, and there exist instances on which SSP needs an expo-
nential number of iterations to compute a minimum-cost flow [20]. However,
SSP outperforms some polynomial-time algorithms in practice, and SSP is
appealing because of its simplicity. SSP is given as Algorithm 2.

We note the following: In the main loop of the algorithm, the budget b
is ignored. We augment until we have a bmax-flow. In practice, one would
of course stop if |fj | ≥ b. In this case, we would not add or subtract the
maximum possible value to the edges of Pj , but only the flow that remains
to obtain a feasible b-flow (Lines 9 to 11).

Notation and remarks. Let Fc = {f0, f1, . . .} be the set of all flows that
SSP computes in its for loop. Note that this set depends on c. This super-
script is important as we consider modified edge costs in the probabilistic
analysis.

Let bj = |fj |. The flow f0 is called the empty flow. If jmax is the last
flow computed in the for loop of SSP, then fmax = fjmax is a maximum s-t
flow of minimum costs. SSP needs jmax iterations.

Note that we did not specify a tie-breaking rule for the case that there
are multiple paths with the same costs. This is not important for the prob-
abilistic analysis, as all paths will have different costs with a probability
of 1.

34

Let fj−1 and fj be two flows encountered by SSP, and let Pj be the path
along which SSP augmented fj−1 to obtain fj . We call Pj the next path of
fj−1 and the previous path of fj . These terms become important when we
reconstruct flows without knowing all edge costs.

Let f be some flow. We say that an edge e ∈ Effor∪E
f
back is empty in Gf

• e ∈ Effor and fe = 0 or

• e ∈ Efback and fe−1 = ue−1 .

Correctness and properties. The SSP algorithm correctly computes a
flow of minimum costs according to the following theorem.

Theorem 7.2. The flows fj computed by SSP are optimal feasible bj-flows,
and f? is an optimal b-flow.

The following lemma is a crucial not only for the correctness of SSP, but
also for the probabilistic analysis in the next section.

Lemma 7.3. Let P1, P2, . . . be the paths that SSP constructs. Then c(Pj) ≤
c(Pj+1) for all j.

7.3 Probabilistic analysis of SSP

The results of this section are by Brunsch et al. [6].

Probabilistic model. We use the one-step model to analyze the SSP: An
adversary specifies

• the graph G = (V,E) as well as s, t ∈ V ,

• the edge capacities u = (ue)e∈E ,

• the budget b (although this does not influence the analysis, as we will
see), and

• density functions ge : [0, 1]→ [0, φ] for the edge costs for all e ∈ E.

We obtain our MCF instance by drawing ce independently according to ge.
Note that we only perturb the objective function. The solution space,

namely the flow polytope specified by the graph and the capacities, remains
adversarial.

35

Outline. We identify iteration j of SSP and a flow fj computed by SSP
with the costs c(Pj) of the previous path of fj . In this way, we obtain a
sequence (c(P1), c(P2), . . .) of real numbers. This sequence is monotonically
increasing by Lemma 7.3. It is even strictly monotonically increasing since
all paths have pairwise different costs with a probability of 1 since the costs
come from a continuous probability distribution. All numbers c(Pj) come
from the interval [0, n] as all paths are simple and the edge costs are from
[0, 1]. (The residual networks can contain edges of negative costs, but Gf0
contains only edges of non-negative costs and path costs cannot decrease by
Lemma 7.3.

In the same way as for the knapsack problem, we partition the interval
(0, n] into k small intervals of size n/k. Then we estimate the probability
that SSP encounters a path with costs in a certain interval. For sufficiently
large k, there is at most one path in every interval (d, d+ ε] for ε = n/k.

Assume that `j ∈ (d, d+ ε] for some j. If there is at most one path with
costs in this interval, then `j−1 ≤ d. We show that the path Pj along which
we augment to obtain fj must contain an empty edge e. We show that we
can reconstruct fj−1 without knowing the costs ce of e. Assume that we
know e = (u, v). This allows us to apply the principle of deferred decisions:
First, we reveal the costs of all edges except for e. This allows to identify
Pj : the flow fj−1 specifies Gfj−1

, then Pj consists of a shortest s-u path in
Gfj−1

followed by e = (u, v) followed by a shortest v-t path in Gfj−1
.

The costs c(Pj) can fall into (d, d + ε] only if ce falls into some interval
of size ε, which happens with a probability of at most εφ.

Since we do not know which edge e is the empty edge of Pj , we take a
union bound over the 2m possible choices for e. This yields an upper bound
of 2mεφ for the probability that SSP encounters a path with costs in the
interval (d, d+ ε].

Preparation. Before starting the actual analysis, we set up some more
notation and collect a few properties of the flow network, the paths encoun-
tered by SSP, and the function C.

With a probability of 1, we have the following properties:

• All paths have pairwise different costs.

• SSP uses every path at most once.

• For all flows f , the residual network does not contain a directed cycle
of costs 0.

These properties imply the following observations:

1. For every b ∈ [0, bmax], there is a unique optimal feasible b-flow.

2. c(Pj) < c(Pj+1) for all j, where Pj and Pj+1 are paths constructed by
SSP (this is a small but crucial strengthening of Lemma 7.3).

36

The optimality of the flows computed by SSP yields the following facts
about the function C defined in (5)):

1. The function C is continuous, piecewise linear, and monotonically in-
creasing.

2. C is convex. This follows from c(Pj−1) ≤ c(Pj) for all j.

3. If C is not differentiable at some point b, then b = bj for some j.

4. Between bj−1 and bj , the function C is linear with slope c(Pj).

5. Since c(Pj−1) < c(Pj) with a probability of 1, the points where C is not
differentiable are exactly b1, b2, We call the points the breakpoints
of C.

Similar to the analysis of the size of the Pareto curve in Section 6.2, we
analyze the number of iterations that SSP needs by analyzing the probability
that there exist paths that SSP uses in certain small intervals. Since all paths
encountered by SSP are simple, the costs of all paths fall into the interval
[0, n]. With a probability of 1, we do not have a path of costs 0. We split

(0, n] into k intervals Mk
i =

(n(i−1)
k , nik

]
of size n/k in the same way as we

did it in the analysis of the knapsack problem.
Let T be the (random) number of iterations that SSP needs. Then we

obtain

E(T) = lim
k→∞

k∑
i=1

P
(
∃j : c(Pj) ∈Mk

i

)
. (6)

(The proof that both sides are indeed equal is quite similar to the proof
that (3) holds. We bound the probability that there are two paths in any
residual network that fall into the same interval of size n/k and use a trivial
upper bound in terms of n and m in case that two paths do fall into the
same interval.)

For a feasible flow f (encountered by an execution of SSP), let `c−(f)
be the costs of the path along which we augmented to get f , and let `c+(f)
be the costs of the shortest s-t path in the residual network Gf . We set
`c−(f0) = 0, where f0 is the empty flow, and `c+(fmax) =∞. The superscript
c is important here, as we will use modified cost functions in the analysis.

We have c(Pj−1) = `c−(fj−1) ≤ `c+(fj−1) = `c−(fj) = c(Pj). The inequal-
ity is strict with a probability of 1.

Analysis. The following observation is crucial for applying the principle
of deferred decisions: every path used by SSP contains at least one empty
edge. This edge can be a forward edge or a backward edge of the residual
network. In the analysis, we fix the costs of all other edges and only use the
randomness of the costs of this empty edge.

37

Lemma 7.4. With a probability of 1, the following holds: For all j, the path
Pj computed by SSP contains at least one empty edge.

Proof. We prove a slightly stronger statement: in all residual graphs Gfj
encountered by SSP, all s-t paths contain an empty edge. All edges in Gf0
are empty. Hence, the lemma holds for j = 1.

Consider any path P in the residual network Gfj for some arbitrary j.
We have c(P) > c(Pj) with a probability of 1. Assume to the contrary that
P does not contain any empty edge. This means that Gfj contains all edges
of P in both directions. Let Q = P−1 ∪ Pj . If an edge occurs in both P−1

and Pj , then it is contained twice in Q. The set Q forms a (not necessarily
simple) cycle with c(Q) < 0. We can decompose Q into simple cycles. At
least one of these simple cycles has negative costs. This contradicts the
optimality of fj by Theorem 7.1.

Lemma 7.5. Let f ∈ Fc with f 6= fmax be a flow computed by SSP with
`c−(f) < `c+(f). Let d ∈ [`c−(f), `c+(f)] be arbitrary. Let e be an empty edge
of the next path of f . Define edge costs c′ as follows:

• c′e = 1 if e ∈ Effor.

• c′e = 0 if e ∈ Efback.

• All other edge costs are the same as in c.

Then f ∈ Fc′ and `c
′
−(f) ≤ `c−(f) ≤ d < `c+(f) <≤ `c′+(f).

Proof. Let C and C′ be the cost functions mapping budgets b to the costs of
an optimal b-flow under c and c′, respectively. We define an auxiliary cost
function C̃ depending on whether e ∈ Effor or e ∈ Efback.

If e ∈ Effor, then C̃ = C′. Since we only increase the costs of e, we have

C̃(b) ≥ C(b) for all b. As fe = 0, we have C̃(|f |) = C(|f |).
If e ∈ Efback, then we define C̃ by C̃(b) = C′+ue−1ce−1 . The function

C̃ is piecewise linear and has the same breakpoints and the same slopes as
C′. Since the flow on edge e−1 is between 0 and ue−1 , reducing the edge
costs ce−1 to ce−1 = 0 reduces the costs of flows by an amount between 0
and ue−1ce−1 . Hence, C̃(b) ≥ C(b) for all b. Since fe−1 = ue−1 , we have
C̃(|f |) = C(|f |).

By construction, the left-hand derivative of C̃ is at most the left-hand
derivative of C, and the right-hand derivative of C̃ is at least the right-hand
derivative of C. We conclude that f ∈ Fc′ .

The inequalities stated in the lemma follow from their correspondence
to slopes of C and C̃.

Lemma 7.6. Let f ∈ Fc, and let e be an empty edge of the next path of f .
Let d ∈ [`c−(f), `c+(f)]. Then Reconstruct(e, d) outputs f .

38

Algorithm 3 Reconstruction algorithm.

Reconstruct (e, d)
input: e (with e ∈ E or e−1 ∈ E); d ∈ [0, n]

1: if e ∈ E then
2: change costs of e to 1
3: else if e−1 ∈ E then
4: change costs of e to 0
5: end if
6: run SSP on this modified instance; stop when the costs of the path P

computed by SSP exceeds t
7: output the flow before augmenting along P

Proof. Using Lemma 7.5 yields f ∈ Fc′ and `c
′
−(f) ≤ d < `c

′
+(f). By the

monotonicity of the costs of the paths encountered by SSP, this shows that
the reconstruction algorithm stops once it encounters f and outputs f .

Lemma 7.7. Fix any d ≥ 0 and ε > 0. The probability that there exists a
flow f ∈ Fc \ {f0} with `c−(f) ∈ (d, d+ ε] is bounded from above by 2mεφ.

Proof. Among all flows f with previous path costs `c−(f) ∈ (d, d + ε], let f̂

be the flow with smallest value `c−(f̂). Let f? be the flow preceding f̂ . The

flow f? exists because f̂ is not the empty flow.
By the choice of f̂ and f?, we have

`c−(f?) ≤ d < `c−(f̂).

The shortest path in the residual network Gf? contains at least one empty
edge e = (u, v) according to Lemma 7.4. Applying the reconstruction algo-
rithm (Algorithm 3) with input e and d yields f? according to Lemma 7.6.

The shortest s-t path in the residual network Gf? is equal to `c−(f̂). It
consists (given that it uses the empty edge e) of a shortest s-u path followed
by e follows by a shortest v-t path.

Let z be the costs of the shortest s-u path plus the costs of the shortest
v-t path in Gf? . Then `c−(f̂) ∈ (d, d+ ε] only if c(e) ∈ (d− z, d− z+ ε]. The
probability of this event is bounded from above by εφ.

Since we do not know the edge e, we take a union bound over the 2m
possible choices of e ∈ E ∪ E−1.

Theorem 7.8. The smoothed number of augmentation steps that SSP per-
forms is bounded from above by 2mnφ.

Proof. Since all paths encountered by SSP are simple, their costs increase
monotonically, and the edge costs are from [0, 1], all paths have costs from
the interval [0, n].

39

Let T be the number of augmentation steps that SSP needs. We have

E(T) = lim
k→∞

k∑
i=1

P
(
SSP encounters a flow of costs in Mk

i

)
≤ lim

k→∞

k∑
i=1

2mφn

k
= 2mnφ

by Lemma 7.7.

Corollary 7.9. The smoothed running-time of the SSP algorithm is at most
O(mnφ(m+ n log n)).

Proof. The most expensive operation in each iteration is computing the
shortest paths. This can be done in time O(m + n log n). (Note that edge
costs can be negative in residual graphs, but there are no cycles of negative
costs by Theorem 7.1 and 7.2. Because of this, we can maintain node poten-
tials π : V → R such that the costs c′e = ce − π(u) + π(v) are non-negative
for each edge e = (u, v) of the residual network. Modifying the edge costs
in this way does not change the shortest path.)

Theorem 7.10. For given positive integers n and m ∈ {n, . . . , n2} and φ ≤
2n, there exists a minimum-cost flow network with O(n) nodes and O(m)
edges and random edge costs drawn according to density functions bounded
by φ on which SSP requires Ω(mφmin{n, φ}) iterations with a probability
of 1.

8 Clustering under approximation stability

8.1 Motivation and definition

In this section, which is based on work by Balcan, Blum, and Gupta [3],
we do not do smoothed analysis, but consider a completely different concept
called “approximation stability”. Approximation stability is an example of a
property of instances that allows us to find good solutions. The main idea of
approximation stability applied to clustering is as follows: although we try to
optimize an objective function when clustering, we are not really interested
in this objective function. Instead, we would like to get a clustering that
is close to the “true” clustering of that data. Since we do not know this
true clustering, we use an objective function as a proxy. The hope is that if
clustering is good under the objective function, then it is close to the true
clustering.

We consider clustering with k-median objective: We are given n data
points X ⊆ Rd and a k ∈ N. Our goal is to find a clustering C consisting of

40

k clusters C1, . . . , Ck that partition the data points X together with cluster
centers c1, . . . , ck such that

w(C) =
k∑
i=1

∑
x∈Ci

‖x− ci‖ (7)

is minimized.
We assume that there is an underlying target clustering CT with clusters

CT
1 , . . . , C

T
k , which we do not know. Our goal is to find a clustering C that

is as close as possible to CT. Thus, we have to define what “close” means.
Let C and C′ be two clusterings with clusters C1, . . . , Ck and C ′1, . . . , C

′
k,

respectively. Then we define

dist(C, C′) = min
π∈Sk

1

n
·
k∑
i=1

∣∣Ci \ C ′π(i)∣∣, (8)

where Sk denotes the set of all permutations of {1, . . . , k}. We call C and C′
ε-close if dist(C, C′) < ε.

If C and C′ are ε-close and |Ci| ≥ 2εn for all i ∈ {1, . . . , k}, then we have

|Ci − Cπ(i)| ≥ |Ci| − (εn− 1) ≥ 1

2
· |Ci|

for the permutation π that minimizes in (8). In this case, π is unique, and
we call π the optimal permutation. We say that C and C′ agree on x ∈ X if
x ∈ Ci ∩ Cπ(i) for some i. Otherwise, we say that C and C′ disagree on x.

In the following, we denote by C? a clustering that minimizes (7). We call
C? an optimal clustering. It has clusters C?1 , . . . , C

?
k and centers c?1, . . . , c

?
k.

Definition 8.1. We say that X is (c, ε)-approximation stable with respect
to CT if all clusterings C satisfy the following condition: If w(C) ≤ c ·w(C?),
then dist(C, CT) < ε.

Note that the distance is measured to CT and the objective value is com-
pared to C?. Note also that if we have a polynomial-time c-approximation
algorithm for our clustering problem, then we can use it to compute a clus-
tering that is ε-close to CT. Thus, the interesting case is if we can compute a
clustering C that is ε-close to CT in the case that there is no polynomial-time
c-approximation algorithm.

In the following, we often write c = 1 + α and consider implications of
(1 + α, ε)-approximation stability in terms of α and ε. We also often drop
the reference to CT.

We remark that ε, α, and k do not need to be constants for our algorithms
to run in polynomial time. All three parameters can also depend on the
number n of data points.

41

8.2 Basic properties

The two clusterings CT and C? do not have to be identical, but we make the
following observations. In the following, let ε? = dist(C?, CT).

Observation 8.2. If X is (c, ε)-approximation stable, then

(i) ε? < ε and

(ii) X is (c, ε+ ε?)-approximation stable with respect to C?.

Also the following observation is simple but useful.

Observation 8.3. Let C and C′ be clusterings such that C′ is obtained from
C by assigning ` points to a different cluster. Then we have the following
properties:

(i) dist(C, C′) ≤ `/n.

(ii) If |Ci| ≥ 2` for all i ∈ {1, . . . , k}, then dist(C, C′) = `/n.

The fact that Part (ii) of Observation 8.3 does not hold without the
lower bound on the size of the clusters makes it more difficult to analyze
implications of (c, ε)-approximation stability in the presence of small clus-
ters. To keep it simple, we restrict ourselves to the case that all clusters are
large, but postpone the exact definition of large.

We define w(x) = mini∈{1,...,k} ‖x − c?i ‖ to be the distance of x to its
closest cluster center. This means that w(C?) =

∑
x∈X w(x). We define

w2(x) to be the distance of x to its second-closest cluster center. If w2(x) =
w(x), then there are two cluster centers that are closest to x. Let

wavg =
1

n
·
∑
x∈X

=
w(C?)
n

be the average of the closest distances.
The quantity w2(x) − w(x) is of particular interest: if it is too small,

then we can reassign x without incurring too high costs. If w2(x)− w(x) is
small for too many x, then we can reassign many points without increasing
the costs by much. The following lemma bounds the number of points for
which this quantity is small.

Lemma 8.4. Assume that X is (1 + α, ε)-approximation stable and that
|C?i | ≥ 2εn for all i ∈ {1, . . . , k}. Then we have the following properties:

(a) Less than (ε − ε?) · n points x ∈ X on which CT and C? agree satisfy
w2(x)− w(x) <

αwavg

ε .

(b) At most tεn
α points x ∈ X have w(x) ≥ αwavg

tε .

42

Proof. We first prove (a). Assume to the contrary that there are at least
(ε−ε?)·n points x on which CT and C? agree such that w2(x)−w(x) <

αwavg

ε .
By taking C? and reassigning these points to the cluster with their second-
closest center increases the costs by at most

αwavg

ε · (ε− ε?) ·n ≤ αw(C?), we
obtain a clustering C′. We have dist(CT, C′) = ε by Observation 8.3(ii) and
since CT and C? agree on all points that we reassign. This new clustering
contradicts (1 + α, ε)-approximation stability.

Part b follows by Markov’s inequality.

In the following, let dcrit =
αwavg

5ε . A point x ∈ X is called good if
w(x) < dcrit and w2(x) − w(x) ≥ 5dcrit. Else, x is called bad. Let Yi ⊆ C?i
be the set of good points in the i-th cluster of C?, and let B = X \

(⋃k
i=1 Yi

)
be the set of bad points. There cannot be too many bad points according
to the following lemma.

Lemma 8.5. Assume that X is (1 + α, ε)-approximation stable and that
|CT
i | ≥ 2εn for all i ∈ {1, . . . , k}. Then |B| ≤ (1 + 5

α) · εn.

Proof. By Lemma 8.4(a), there are less than (ε− ε?) · n points x on which
CT and C? agree with w2(x) − w(x) < 5dcrit. There are at most ε?n points
on which CT and C? disagree. Using Lemma 8.4(b) with t = 5 bounds the
number of points x with w(x) ≥ dcrit by 5ε

α · n.

The τ -threshold graph Gτ = (X,Eτ) has the data points X as nodes,
and {x, y} ∈ Eτ if ‖x− y‖ < τ . We have the following property.

Lemma 8.6. Let X be (1 + α, ε)-approximation stable, and let τ = 2dcrit.
Then the τ -threshold graph Gτ has the following properties:

(i) For all i ∈ {1, . . . , k} and x, y ∈ Yi, we have {x, y} ∈ Eτ .

(ii) For all i, j ∈ {1, . . . , k} with i 6= j and all x ∈ Yi and y ∈ Yj, we have
{x, y} /∈ Eτ . Furthermore, x and y do not have any common neighbors
in Gτ .

Proof. By the triangle inequality and because x and y are good, we have
‖x− y‖ ≤ ‖x− c?i ‖+ ‖y − c?i ‖ < 2dcrit, which shows Part (i).

To see Part (ii), we observe that the distance of x to any cluster center
of C? other than c?i is at least 5dcrit. This holds in particular for c?j . Fur-
thermore, ‖y − c?j‖ < dcrit since y is good. Thus, by the triangle inequality,
we have

‖x− y‖ ≥ ‖x− c?j‖ − ‖y − c?j‖ ≥ 5dcrit − dcrit = 2τ.

Since each edge in Gτ connects points at a distance of less than τ , the two
points x and y cannot have any common neighbors.

43

Let Nτ (Yi) denote all nodes incident to at least one node in Yi. The
graph Gτ has a simple structure:

(P1) Each Yi is a clique.

(P2) Nτ (Yi) \ Yi ⊆ B, i.e., the neighbors of Yi outside of Yi lie entirely in
B.

(P3) Nτ (Yi) ∩ Nτ (Yj) = ∅ for i 6= j because nodes from Yi and Yj do not
share any neighbors.

8.3 Algorithm

We now describe an algorithm to find a clustering that is ε-close to CT. We
do this in two steps. First, we assume that the algorithm knows wavg. After
that, we describe how to get rid of this assumption.

Lemma 8.7. There is a polynomial-time algorithm that does the following:
Let X be (1 + α, ε)-approximation stable, and let τ = 2dcrit. Let b ∈ N with
b ≥ |B| and |Yi| ≥ b+ 2 for all i ∈ {1, . . . , k}. Then the algorithm computes
a k-clustering C with each Yi contained in a distinct cluster.

Proof. We construct an auxiliary graph H = (X,E) with {x, y} ∈ E if x
and y have at least b common neighbors. in Gτ . By Lemma 8.6(1) and since
|Yi| ≥ b+ 2 for all i, we have {x, y} ∈ E for all i and x, y ∈ Yi.

Fix any i ∈ {1, . . . , k} and consider any x ∈ Yi ∪ Nτ (Yi) and y /∈ Yi ∪
Nτ (Yi). By (P3), all common neighbors of x and y lie in B. Since at least
one of x and y lies itself in B, the two nodes x and y have at most b − 1
common neighbors. This implies that {x, y} /∈ E.

We conclude that each Xi lies in a distinct component of H. Such
components can also contains points from B. There can also be components
consisting solely of points from B. Since |Yi| > |B| for all i, we can obtained
the clustering claimed by taking the largest k components of H as the k
clusters and adding all remaining points arbitrarily to one of the clusters.

Now we are prepared to find a clustering that is ε-close to CT, given that
all clusters of CT are sufficiently large and that we know wavg.

Theorem 8.8. There is a polynomial-time algorithm that does the following:
given a (1+α, ε)-approximation stable X such that |CT

i | ≥ (3+ 10
α)·εn+2 for

all i ∈ {1, . . . , k} and wavg, it computes a clustering C̃ with dist(C̃, CT) < ε.

Proof. We define b = (1+ 5
α)·εn. Then |CT

i | ≥ 2b+εn+2 for all i ∈ {1, . . . , k}
by assumption. Since dist(C?, CT) = ε? < ε, we have |C?i | ≥ 2b + 2 for all
i ∈ {1, . . . , k}. By Lemma 8.5, we have |B| ≤ b. We conclude that

|Yi| = |C?i \B| ≥ b+ 2

44

for all i ∈ {1, . . . , k}.
Given wavg, we construct Gτ for τ = 2dcrit (the value of dcrit can be

determined using wavg). By Lemma 8.7, we can compute a clustering C
such that each Xi is contained in a distinct cluster of C. This clustering C
differs from C? only in B. Hence, by the triangle inequality,

dist(C, CT) ≤ ε? +
|B|
n

= O
(
ε+

ε

α

)
.

We have to modify the clustering slightly to obtain a clustering C̃ that is
ε-close to CT.

We call a point x “red” if w2(x)−w(x) < 5dcrit. We call x “yellow” if x
is not red and w(x) ≥ dcrit. We call x “green” if x is neither red nor yellow.
This means that x is green if x is contained in some Yi, and B is partitioned
into yellow and red nodes.

We know that C agrees with C? on the green points. Without loss of
generality, we assume that Yi ⊆ Ci. We construct a new clustering C̃ that
agrees with C?also on the yellow points. To do this, let dj(x) be the median
of the distances of x to all points in Cj . Then insert x into C̃i if i =
argminj∈{1,...,k} dj(x). Now consider any point x that is either green or
yellow. Since x is not red, we have w2(x)− w(x) ≥ 5dcrit.

Assume that x ∈ C?i . For every green point g1 ∈ C?i , we have ‖x− g1‖ ≤
w(x)+dcrit. For every green point g2 /∈ C?i , we have ‖x−g2‖ ≥ w2(x)−dcrit ≥
w(x) + 4dcrit. Hence, ‖x − g1‖ < ‖x − g2‖ for all such green points g1 and
g2. Since each cluster of C has a strict majority of green points (even with
x removed), dj(x) is determined by the distance of x to a green point of Cj .
This means that C̃ and C? agree on all green and yellow points.

There are less than (ε − ε?)n red points on which CT and C? agree by
Lemma 8.4(a). The two clusterings CT and C̃ might disagree on all of them.
Hence,

dist(C̃, CT) < (ε− ε?) + ε? = ε.

Now we explain how to get rid of the assumption that we know wavg.
The price we have to pay is a slightly larger lower bound for the size of all
clusters CT

1 , . . . , C
T
k .

Theorem 8.9. There is a polynomial-time algorithm that does the following:
given a (1+α, ε)-approximation stable X such that |CT

i | ≥ (4+ 15
α)·εn+2 for

all i ∈ {1, . . . , k} and wavg, it computes a clustering C̃ with dist(C̃, CT) < ε.

Proof. We run the algorithm described in the proof of Theorem 8.8 with
different “guesses” of wavg, starting with wavg = 0 (in this case, Gτ does
not contain any edges). In every iteration, we increase wavg to the smallest

45

value such that the corresponding Gτ contains at least one new edge. Thus,
we have at most O(n2) iterations.

In every iteration, we construct H as in the proof of Theorem 8.8 with
the current guess of wavg. We use the current value of wavg as the true value
if the following conditions are satisfied:

• The k largest components of H contain all but at most b = (1+ 5
α) ·εn

nodes.

• Each of the k largest components has size at least b+ 1.

We observe that our guess of wavg is either correct or too small, but not
too large. This means that the graph H obtained from our guess can only
have fewer edges than the “true” graph as in the proof of Theorem 8.8. But
since the largest k components miss at most b points, each Yi is contained in
its own component. Hence, we classify all good points correctly. We might
misclassify all bad points, but there are at most b such bad points, and we
might fail to classify at most b points from Yi’s, which do not lie in the
largest k components. Still, each cluster contains at least b + 2 correctly
clustered green points (in the terminology of the proof of Theorem 8.8) and
at most b misclassified points. Hence, by running the final step, we obtain
a clustering the correctly clusters all non-red points.

References

[1] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of
the k-means method. Journal of the ACM, 58(5), 2011.

[2] David Arthur and Sergei Vassilvitskii. Worst-case and smoothed anal-
ysis of the ICP algorithm, with an application to the k-means method.
SIAM Journal on Computing, 39(2):766–782, 2009.

[3] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clustering
under approximation stability. Journal of the ACM, 60(2):8, 2013.

[4] René Beier, Heiko Röglin, and Berthold Vöcking. The smoothed num-
ber of Pareto optimal solutions in bicriteria integer optimization. In
Matteo Fischetti and David P. Williamson, editors, Proc. of the 12th
Int. Conf. on Integer Programming and Combinatorial Optimization
(IPCO), volume 4513 of Lecture Notes in Computer Science, pages 53–
67. Springer, 2007.

[5] René Beier and Berthold Vöcking. Random knapsack in expected poly-
nomial time. Journal of Computer and System Sciences, 69(3):306–329,
2004.

46

[6] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, Heiko Röglin, and
Clemens Rösner. Smoothed analysis of the successive shortest path
algorithm. SIAM Journal on Computing, 44(6):1798–1819, 2015.

[7] Barun Chandra, Howard Karloff, and Craig Tovey. New results on the
old k-opt algorithm for the traveling salesman problem. SIAM Journal
on Computing, 28(6):1998–2029, 1999.

[8] Richard Durrett. Probability: Theory and Examples. Cambridge Uni-
versity Press, 2013.

[9] Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and
probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica,
68(1):190–264, 2014.

[10] Michael Etscheid and Heiko Röglin. Smoothed analysis of local search
for the maximum-cut problem. In Proc. of the 25th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 882–889. SIAM, 2014.

[11] Marvin Künnemann and Bodo Manthey. Towards understanding the
smoothed approximation ratio of the 2-opt heuristic. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann,
editors, Proc. of the 42nd Int. Coll. on Automata, Languages and Pro-
gramming (ICALP), volume 9134 of Lecture Notes in Computer Sci-
ence, pages 859–871. Springer, 2015.

[12] Bodo Manthey. Smoothed analysis of local search algorithms. In Frank
Dehne, Jörg-Rüdiger Sack, and Ulrike Stege, editors, Proc. of the 14th
Algorithms and Data Structures Symposium (WADS), volume 9214 of
Lecture Notes in Computer Science, pages 518–527. Springer, 2015.

[13] Bodo Manthey and Heiko Röglin. Smoothed analysis: Analysis of algo-
rithms beyond worst case. it – Information Technology, 53(6):280–286,
2011.

[14] Bodo Manthey and Rianne Veenstra. Smoothed analysis of the 2-Opt
heuristic for the TSP: Polynomial bounds for Gaussian noise. In Leizhen
Cai, Siu-Wing Cheng, and Tak-Wah Lam, editors, Proc. of the 24th
Ann. Int. Symp. on Algorithms and Computation (ISAAC), volume
8283 of Lecture Notes in Computer Science, pages 579–589. Springer,
2013.

[15] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[16] James B. Orlin. A faster strongly polynomial minimum cost flow algo-
rithm. Operations Research, 41(2):338–350, 1993.

47

[17] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of al-
gorithms: Why the simplex algorithm usually takes polynomial time.
Journal of the ACM, 51(3):385–463, 2004.

[18] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: An at-
tempt to explain the behavior of algorithms in practice. Communica-
tions of the ACM, 52(10):76–84, 2009.

[19] Andrea Vattani. k-means requires exponentially many iterations even
in the plane. Discrete and Computational Geometry, 45(4):596–616,
2011.

[20] Norman Zadeh. A bad network problem for the simplex method
and other minimum cost flow algorithms. Mathematical Programming,
5:255–263, 1973.

48

