
Chapter 1

Traffic Flows

Consider a directed graph
�
V � E � with given O-D pairs

�
r i � si � . Each O-D pair has

an associated demand di ≥ 0 of flow from ri to si. In the context of traffic flows –
as well as in many other situations – it is natural to investigate flows from r i to si

that decompose into simple ri − si path flows. Thus let us define a traffic flow from
ri to si (of value di) to be a vector x � i � ∈ R

E
+ which can be written as

x � i � =
∑

P∈Pi

�
P P with

�
P ≥ 0 �

∑

P

�
P = di � (1.1)

where Pi is the set of (incidence vectors of) simple directed r i − si paths.

Given traffic flows x � i � ∈ R
E
+ for all O-D pairs, we obtain a corresponding (total)

flow
x =

∑

i

x � i � ∈ R
E
+ �

We denote the set of traffic flows of value di from ri to si by X � i �
di

⊆ R
E and the set

of total flows (relative to a given demand vector d = �
d i � ) by

Xd =
∑

i

X � i �
di �

REMARK. The restriction to traffic flows as opposed to general (non-negative)
flows is partly due to tradition and, in any case, not very essential. Recall that,
in general, a non-negative flow x � i � from ri to si can be decomposed into directed
paths and circuits in the form

x � i � =
∑

P∈Pi

�
P P +

∑

C∈C

�
CC with

�
P � �

C ≥ 0 �

1
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where C is the set of (incidence vectors of) directed circuits in
�
V � E � . The de-

composition, however, is not unique. In particular, a traffic flow x � i � as in (1.1)
is not necessarily acyclic (i.e., it may well happen that x � i ��� 0 on a directed cir-
cuit C ∈ C ). The traffic flows we will be interested in, however, are “essentially
acyclic” (cf. Corollary 1.1).

In the classical traffic flow model due to Wardrop (1952), it is assumed that the
“travel time” (sometimes also referred to as “latency”) along the edge e ∈ E is an
increasing function of the total flow xe =

∑
i

x � i �
e . More precisely, let us assume that

each edge e ∈ E is endowed with a non-negative, continuous and non-decreasing
cost function

ce : R+ → R+ �
Correspondingly, we define the cost (“total travel time”) of a total flow x ∈ Xd as

C
�
x � :=

∑

e

ce
�
xe � xe �

A min cost flow is a total flow x∗ ∈ Xd that minimizes the cost C
�
x � over all x ∈ Xd.

A somewhat different (though related) concept is that of a “Nash equilibrium flow”,
defined as follows. Let x ∈ Xd be a total flow. According to (1.1), x has a path
decomposition

x =
∑

i

∑

P∈Pi

� � i �
P P �

We say that x is a Nash equilibrium or simply a Nash flow if each P ∈ Pi with
� � i �

P
�

0 is a min cost path from ri to si relative to the constant edge costs ce = ce
�
xe � .

Intuitively, imagine that the corresponding traffic flows x � i � are created by a large
number of individual travelers from ri to si. An individual traveler, constituting an
“infinitesimally small” fraction of the flow from r i to si then experiences the edge
costs (travel times) ce = ce

�
xe � caused by the total flow x (of all other travelers). So

he would then decide to switch from its current strategy (“follow P”) to a cheaper
one, unless his current path P is already cost minimal relative to the edge costs ce.
In other words, Nash flows are exactly those total flows that are stable in the sense
that no individual traveller (“player”) has any incentive to switch from its current
path (“strategy”) to another one, given the decisions of the others.

At the first glance, it may seem that the property of being Nash depends on the path
decomposition of x ∈ Xd. However, this is not the case:
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Theorem 1.1 The total flow x ∈ Xd is Nash if and only if x is cost minimal among
all x ∈ Xd relative to the constant edge costs ce = ce

�
xe � .

Proof. Let x ∈ Xd and ce = ce
�
xe � , e ∈ E. A cost minimal flow in Xd relative to the

constant edge costs ce would (due to the absence of capacity constraints) simply
route all the demand di along min cost paths from ri to si. Hence if x is a min cost
flow in Xd relative to the edge costs ce, then x must be Nash. The converse follows
in the same way. 2

In the modern literature, the Nash flow model is also referred to as selfish routing
model. It may be used to model and analyze traffic flows on roads or electronic
networks, assuming the absence of a “government” or “network authority” that
would regulate the traffic by telling all individuals how they should travel between
the various O-D pairs so as to form in total a min cost flow. As a consequence, the
Nash cost, i.e., the cost C

�
x � of a Nash flow x ∈ Xd will in general exceed that of

a min cost flow.

We illustrate the difference between min cost flows and Nash flows with some
examples. The smallest possible nontrivial example is due to Pigou (1920): There
is a single O-D pair

�
r � s � and two links, say, e and f joining r to s. The first link

has constant edge cost ce
�
x � = 1 and the second link has cost c f

�
x � = x.

s

r

x1

Figure 1.1: Pigou’s network

Consider the demand d = 1. So any flow x ∈ Xd would route a certain amount
x f = �

,
� ∈ [0 � 1] on the second link and xe = 1 − �

on the first link, at cost

C
�
x � = 1 · �

1 − � � + � · � = 1 − � �
1 − � � �

Hence the corresponding min cost flow x∗ is given by x∗
e = x∗

f = 1
2 with cost

C
�
x∗ � = 3

4 . The unique Nash flow x, on the other hand, is obtained by xe = 0
and x f = 1, with Nash cost C

�
x � = 1.

The cost of a Nash flow can even be arbitrarily bad, compared to the minimum
cost: Replace the linear cost function c

�
x � = x in Pigou’s network by the “steeper”

nonlinear function c
�
x � = x p, for some p ∈ N.
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s

r

1 x p

Figure 1.2: Pigou’s network (non-linear variant)

The Nash flow x will remain unchanged with cost C
�
x � = 1, whereas the min cost

flow x∗ has x∗
f = �

, x∗
e = 1 − �

, where
� ∈ [0 � 1] is a solution of

C
�
x∗ � = min 1 · �

1 − � � + � p · � = min 1 − � �
1 − � p � �

The solution is
� = p

√
1
� �

p + 1 � , so C
�
x∗ � = 1 − p

√
1
� �

p + 1 � p
p+1 (which tends to

zero as p → ∞).

An interesting and (at the first glance) surprising phenomenon, stipulating again
the different behavior of Nash flows and min cost flows, is described in the next
example. Consider a network as in figure 1.3 below.

1

�

r

c

s

x

x1

u

Figure 1.3: The Braess network

The demand from r to s is d = 1. We investigate how the Nash flow changes with
the constant edge cost c ∈ R on the arc

�
u ��� � . For c = 1

2 , the Nash flow (cf. Ex.
1) x would route half of the demand d = 1 along each of the paths r − u − s resp.
r − � − s. The corresponding Nash cost is C

�
x � = 2 · � 1

2 + 1
4 � = 3

�
2.

For c = 0, however, the unique Nash flow would route all the demand along r −
u − � − s, resulting in a Nash cost of C

�
x � = 2 � So the example, due to Braess
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(1968) shows that decreasing the edge costs may result in an increase of the Nash
cost (Braess’ paradox).

Ex. 1.1 Compute Nash flows and min cost flows in the Braess network (with de-
mand d = 1) for all c ∈ R+.

Ex. 1.2 Compute the Nash flow in the network below for each demand d ≥ 0.

1

r

x

s

x

x1

Remark. As we have seen, Nash flows may be far from optimal in some cases.
In this sense, the examples above (Pigou, Braess) disprove – at least in theory –
the (neo–)liberal claim, stating that a free market would automatically “optimize
itself”. In practice, the discrepancy between Nash flows (”user optimized”) and
min cost flows (”system optimized”) is often further enlarged by the fact that the
network administration and the network users may have a different opinion about
the edge costs ce

�
x � . For example, in a road network, the individual car driver

would probably seek to minimize its travel time, whereas the government might
want to reduce the overall CO2-emission.

1.1 Existence of Nash flows

Here we show that Nash flows always exist and are even unique in some sense
(cf. Theorem 1.4 below). We first review the following basic fact from convex
optimization.

Theorem 1.2 Let f : R
n → R be a differentiable convex function. Then

f
�
x � ≥ f

�
x � + ∇ f

�
x � �

x − x �

holds for any two points x � x ∈ R
n. In particular, if X ⊆ R

n is a convex set, then
x ∈ X is a minimizer of f on X if and only if
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∇ f
�
x � �

x − x � ≥ 0 ∀x ∈ X �

Proof. Convexity of f implies for (small) t ∈ [0 � 1]

t f
�
x � + �

1 − t � f
�
x � ≥ f

�
x + t

�
x − x � �

= f
�
x � + t∇ f

�
x � �

x − x � + o
�
t � �

Subtracting f
�
x � on both sides, we obtain

t
�

f
�
x � − f

�
x � � ≥ t∇ f

�
x � �

x − x � + o
�
t �

and the claim follows by letting t → 0. 2

There is a general phenomenon, known as variational principle, which is observed
in many places in physical or social sciences, stating that equilibrium states of
a given system can alternatively be characterized as those states that minimize a
certain quantity like, e.g., energy or tension. This principle also applies in our
case: Consider the function N : R

E
+ → R defined by

N
�
x � =

∑

e∈E

∫ xe

0
c

�
t � dt �

Remark. The value N
�
x � may be interpreted as follows. Imagine the flow x ∈ Xd

being formed by a large number of travelers, each contributing a small amount
�
� 0 to one of the path flows in x. Assume that the travelers enter the network

one after the other. When a particular traveler enters, there is a current flow x ′ ≤ x
formed by the previous travelers. So he experiences a cost of

� ∑

e∈P

ce
�
x′

e � ≈

∑

e∈P

∫ x′
e+ �

x′
e

c
�
t � dt

along his path P. In this sense, N
�
x � equals the (infinite) sum of the travel costs

experienced by the individuals, as they enter the network (in some order). In con-
trast to C

�
x � , the value N

�
x � thus neglects the impact that a particular traveler has

on the costs for the “previous” travelers (cf. also Ex. 1.6).

The function N : R
E
+ → R is convex (cf. Ex. 1.3) and differentiable with gradient

∇N
�
x � = c

�
x � = �

ce
�
xe � � e∈E �
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Theorem 1.3 A flow x ∈ Xd is Nash if and only if x is a minimizer of N on Xd. In
particular, Nash flows exist.

Proof. By Theorem 1.2, x ∈ Xd is a minimizer of N if and only if

∇N
�
x � �

x − x � = c
�
x − x � ≥ 0 ∀x ∈ Xd

where ce = ce
�
xe � , e ∈ E. This amounts to saying that x is cost optimal relative to

the constant edge costs ce. So the claim follows from Theorem 1.1, observing that
the (continuous) function N must achieve its minimum on the compact set Xd in
some point x ∈ Xd. 2

Ex. 1.3 Show that N
�
x � is convex. (Hint: Recall that a differentiable function

f : R → R is convex if and only if f ′ is non-decreasing.)

Ex. 1.4 Show that c̃e
�
x � = 1

x

x∫
0

ce
�
t � dt is convex. Moreover, x ∈ Xd is Nash relative

to the cost functions ce
�
x � iff x is cost minimal relative to the edge costs c̃e

�
x � .

Corollary 1.1 Acyclic Nash flows always exist.

Proof. Assume x =
∑

i
x � i � is Nash, but not acyclic, i.e., there exists a directed

circuit C1 ⊆ E with x � i � � 0 on C1 for some i. Let

�
1 := min

e∈C1

x � i �
e
� 0 �

Then x � i � − �
1C1 is an ri − si flow of value di. Continuing this way, “removing”

directed circuits from x � i � , one at a time, we eventually end up with a acyclic (and
hence a traffic) flow x � i � −

∑
k

�
kCk. Thus x̃ = x −

∑ �
kCk ∈ Xd, and since x̃ � x,

we also have N
�
x̃ � ≤ N

�
x � by definition of N . So x̃ must be Nash as well. This

shows that an acyclic Nash flow can be constructed from x by simply removing
directed circuits in finitely many steps. (Note that each time we remove a directed
circuit some nonzero component of some x � i � is decreased to zero.) 2

Nash flows are not necessarily unique. Yet, the edge costs ce = ce
�
xe � of a Nash

flow turn out to be unique and independent of the Nash flow x. As a consequence
of this, also the Nash cost C

�
x � is unique:

Theorem 1.4 Any two Nash flows x � x ∈ Xd induce identical edge costs ce
�
xe � =

ce
�
xe � , e ∈ E, and identical Nash costs C

�
x � = C

�
x � .
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Proof. Let ce = ce
�
xe � and ce = ce

�
xe � . As ce

�
x � is non-decreasing, we have�

ce − ce � �
xe − xe � ≥ 0 for each e ∈ E. Hence

�
c − c � T �

x − x � =
∑

e∈E

�
ce − ce � �

xe − xe � ≥ 0 �

Equality can hold only if ce = c for each e ∈ E. (Note that xe = xe implies ce = ce.)
Hence, to establish the first claim, it suffices to show that

�
c − c � T �

x − x � ≤ 0. But
this follows directly from the Nash property: Since x is Nash, we have (cf. Theorem

1.1) cT �
x − x � ≤ 0 and, similarily, c

T �
x − x � ≤ 0. Hence

�
c − c � T �

x − x � = c
�
x − x � + c

�
x − x � ≤ 0 �

The second claim follows from the fact that both x and x are min cost flows relative
to the same cost function c = c, so cTx = c

T
x must hold. 2

1.2 Nash Flows versus min cost flows

In this section we answer the question “how bad” selfish routing can be, i.e., how
large the Nash cost C

�
x � can be compared to the minimum cost C

�
x∗ � . Basically, it

turns out that the answer to this question depends only on the kind of cost functions
we allow rather than on the network structure. For example in the case of linear cost
functions ce

�
x � = � ex + �

e, the worst case, i.e., the minimum ration C
�
x∗ � � C

�
x �

can be shown to be 3
�
4, which is already attained in Pigou’s two link network (cf.

Figure 1.1). Similarily, if we allow polynomial cost functions of degree at most p,
then, again the worst case ratio C

�
x∗ � � C

�
x � is already attained in Pigou’s two link

network as in Figure 1.2.

We first analyze the case of linear cost functions ce
�
x � = � ex + �

e
�

� e ≥ 0 � �
e ≥ 0 � ,

as this case is particularly simple. First observe that

∇N
�
x � = c

�
x � T = �

� exe + �
e � e∈E

and

∇C
�
x � = �

2 � exe + �
e � e∈E �

So ∇N
�
x � = ∇C

� x
2 � holds. This remarkable (cf. also Ex 1.5 below) relation is

characteristic for the linear case and leads to a fairly simple proof of

Theorem 1.5 In the case of linear cost functions, the minimum ration C
�
x∗ � � C

�
x �

(min cost to Nash cost) is at least 3/4 in any network.
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Proof. Convexity of C yields

C
�
x∗ � ≥ C

� x
2

� + ∇C
� x
2

� �
x∗ −

x
2

�

= C
� x
2

� + ∇N
�
x � �

x∗ − x
2

�

= C
� x
2

� + ∇N
�
x � �

x∗ − x � + ∇N
�
x � x

2

≥ C
� x
2

� +
1
2

C
�
x � �

due to the Nash condition ∇N
�
x � �

x − x � ≥ 0 and ∇N
�
x � = c

�
x � .

We are left to check that C
� x

2 � ≥ 1
4 C

�
x � :

C
� x
2

� =
∑

e∈E

�
� e

xe

2
+ ��� � xe

2
≥

∑

e∈E

�
� e

xe

2
+

�
e

2
� xe

2
=

1
4

C
�
x � �

2

Ex. 1.5 Show that (in case of linear edge costs) x ∈ Xd is Nash if and only if
x
�
2 ∈ Xd

�
2 is cost minimal.

Non-linear edge costs. In the following we present a result of Roughgarden (2002)
stating that also for non-linear edge costs ce

�
x � , Pigou’s network already provides

the worst case (in a sense to be specified below). We need to restrict ourselves,
however, to cost functions ce

�
x � that are standard in the sense that ce

�
x � is differ-

entiable and ce
�
x � · x is convex. (The latter amounts to say that the cost function

C
�
x � is convex on R

E
+, so that computing a min cost flow is a convex problem.)

This assumption is not very restrictive. Indeed quite often even the cost functions
ce

�
x � itself are convex.

Ex. 1.6 Show (in the case of standard cost functions) that x ∈ Xd is cost minimal
relative to the edge costs ce

�
x � iff x is Nash relative to the edge costs c̃e

�
x � =

c′
e

�
x � + ce

�
x � .

Let c
�
x � be a standard cost function. Relative to a given demand d ≥ 0 we define a

corresponding Pigou network for c
�
x � to be a network consisting ot two links from

r to s, one with cost function c
�
x � , and the other with constant cost c

�
d � .

The Nash flow x in the Pigou network for c
�
x � and demand d ≥ 0 routes all the

demand along the link with cost c
�
x � , so the Nash cost is C

�
x � = dc

�
d � . The min
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s

r

c � x �c � d �

Figure 1.4: Pigou network for c and demand d ≥ 0.

cost flow x∗ routes a certain amount
�

d along the c
�
x � cost link and

�
1 − � � d along

the constant cost link. So

C
�
x∗ � = min� ∈[0 � 1]

�
1 − � � dc

�
d � + �

dc
� �

d � �
The Pigou ratio � �

c � is defined to be the minimum ratio C
�
x∗ � � C

�
x � , where the

minimum is taken over all Pigou networks for c, i.e., over all demands d ≥ 0:

� �
c � = min

d≥0
min� ∈[0 � 1]

1 − � + �
c

� �
d � � c

�
d � �

(In case c
�
d � = 0, i.e., when the Nash cost C

�
x � is equal to 0, we interprete

c
� �

d � � c
�
d � as 1.)

For a concrete cost function c
�
x � , the Pigou ratio � �

c � is usually easy to compute.
Note that for fixed d ≥ 0, the inner minimization problem is convex and can be
solved by differentiation.

Ex. 1.7 Let c
�
x � = xk . Then

� �
c � = min

d≥0
min� ∈[0 � 1]

1 − � + � k+1

= min� ∈[0 � 1]
1 − � + � k+1 �

The minimum is achieved in
� = k

√
1
� �

k + 1 � , yielding a Pigou ratio � �
c � = 1 −

k
√

1
� �

k + 1 � k
� �

k + 1 � , as in the nonlinear variant of Pigon’s network, cf. Figure
1.2.

Theorem 1.6 In a traffic network with standard edge cost functions ce
�
x � , e ∈ E,

the min cost to Nash cost ratio can be bounded from below as follows:

C
�
x∗ � � C

�
x � ≥ min

e∈E
� �

ce � �



1.2. NASH FLOWS VERSUS MIN COST FLOWS 11

Proof. Let us introduce for the moment the following notation: For x ∈ R
E and

λ ∈ [0 � 1]E we define λx ∈ R
E to be the vector with components

�
exe, e ∈ E.

Now let x ∈ Xd be Nash and λ ∈ [0 � 1]E (to be determined below). Convexity of
C

�
x � yields

C
�
x∗ � ≥ C

�
λx � + ∇C

�
λx � �

x∗ − λx � �
� ∗ �

The eth component of ∇C
�
λx � is

� ∇C
�
λx � � e = ce

� �
exe � + c′

e
� �

exe � �
exe �

If
�

e = 0 resp.
�

e = 1, the eth component of ∇C
�
λx � equals ce

�
0 � ≤ ce

�
xe � resp.

ce
�
xe � + c′

e
�
xe � xe ≥ ce

�
xe � . So we can find λ ∈ [0 � 1]E such that

∇C
�
λx � =

(
ce

�
xe �

)
e∈E

[
= c

�
x �

]
�

Substituting ∇C
�
λx � = c

�
x � in

� ∗ � yields

C
�
x∗ � ≥ C

�
λx � + c

�
x � T �

x∗ − λx �
≥ C

�
λx � + c

�
x � T �

x − λx � �

since x is cost optimal relative to c = c
�
x � . So

C
�
x∗ � ≥

∑

e∈E

ce
� �

exe � �
exe + �

1 − �
e � ce

�
xe � xe

=
∑

e∈E

[
ce

� �
exe �

ce
�
xe �

�
e + 1 − �

e

]
ce

�
xe � xe

≥
∑

e∈E

� �
ce � ce

�
xe � xe ≥ min

e∈E
� �

ce � C
�
x � �

2

Ex. 1.8 Show that if all edge costs ce, e ∈ E are polynomials of degree at most k,
then the ration C

�
x∗ � � C

�
x � is bounded from below by � �

xk � . (Hint: Replace an
edge e ∈ E with cost ce

�
x � = � kxk + � � � + � 0 by a path of length k + 1 with edge

costs � kxk � � � � � � 0 resp.)

Ex. 1.9 Derive Theorem 1.5 from Theorem 1.6.
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1.3 Monotonicity properties

Here we assume for simplicity that each edge cost ce
�
x � is strictly increasing. As

a consequence, N
�
x � is strictly convex and hence, for each demand d ≥ 0 there is

a unique Nash flow x = x
�
d � . We want to analyse x = x

�
d � as a function of d.

Theorem 1.7 The Nash flow x = x
�
d � is a continuous function of d.

Proof. Let d ≥ 0 and dk → d. We are to show that x
�
dk � → x

�
d � . Assume w.l.o.g.

that ‖dk − d‖ ≤ 1 for all k. Then

X =
⋃

d′:‖d−d′‖≤1

Xd′

is compact and hence x
�
dk � contains a converging subsequence. We are to show

that each such converging subsequence converges to x
�
d � .

Fix a converging subsequence of x
�
dk � . For notational convenience, assume w.l.o.g.

that x
�
dk � itself is convergent. For each dk, we can construct a flow xk ∈ Xdk from

x
�
d � by (small) flow augmentations resp. reductions on the various O-D pairs�

ri � si � (depending on whether the ith component of dk is larger or smaller than the
ith component of d). These flows xk ∈ Cdk then converge to x

�
d � . From the Nash

property of the flows x
�
dk � we conclude that

N
�
x

�
dk � � ≤ N

�
xk � for all k �

Taking the limit k → ∞, we thus obtain

N
�

lim
k→∞

x
�
dk � � ≤ N

�
x

�
d � � �

and since N
�
x

�
d � � is the unique minimizer of N on Xd, actually lim

k→∞
x

�
dk � = x

�
d �

must hold. 2

We next ask the question how x
�
d � changes “qualitatively” if we vary the demand

vector d ≥ 0. Intuitively, we would expect that increasing the demand d i would
increase the “travel time” from ri to si (i.e. the length of a min cost path from ri to
si) in the Nash equilibrium. This is indeed true (cf. Theorem 1.8 below).

For simplicity, we restrict ourselves to the case of a single O-D pair
�
r � s � . For a

given demand d ≥ 0, define the node potentials y j to be the length of a min cost
path from r to j relative to the edge costs c induced by x. We claim that ys increases
with d. First note that

yk ≤ y j + ce � e = �
j � k � ∈ E
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holds by definition of the node potentials y j. Moreover, equality must hold when-
ever xe

� 0. (Recall that x routes all the demand along min cost paths from r to
s.)

Now assume that, relative to a larger demand d̃ � d we have a Nash flow x̃ with
associated edge costs c̃ and corresponding node potentials ỹ j. We are to show that
ỹs ≥ ys holds. To prove this, first observe that x̃ is an r − s flow of value d̃ � d, so
there must be an augmenting path relative to x, i.e., an r − s path P such that

x̃ � x on P+ and x̃ � x on P− �

We show that ỹ j ≥ y j holds for all nodes on P. This is certainly true for j = r (as
ỹr = yr = 0.) We proceed by induction along the path P. Let j be some node on P
and let k be the next node on P (in direction towards s). If e = �

j � k � is a forward
edge (e ∈ P+), then x̃e

� xe implies both c̃e ≥ ce and x̃e
� 0. This yields

ỹk = ỹ j + c̃e ≥ y j + ce ≥ yk �

Similarly, if e = �
k � j � is a backward edge, then xe

� x̃e implies xe
� 0 and ce ≥ c̃e.

Hence

yk = y j − ce ≤ ỹ j − c̃e ≤ ỹk �

completing the inductive proof.

As mentioned above, this result can be generalized to the case of multiple O-D
pairs as follows:

Theorem 1.8 The travel time from ri to si at Nash equlibrium is a non-decreasing
function of di (assuming all other components of d are fixed).

2

We like to stress that nothing can be said in general about the travel times between
other O-D pairs. Indeed it may happen that increasing d i may result in a decrease
of the travel times between other O-D pairs

�
rk � sk � , k 6= i (cf. Ex 1.10 below).
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Ex. 1.10 Consider the network below with two O-D pairs and cost functions as
indicated. Compute a Nash flow x for d = �

0 � 1
�
5 � and explain what happens if d1

or d2 is increased.

r2

x

s2

4x

r1

0

4x 1

s1

1

0

Ex. 1.11 Prove or disprove: In a single O-D pair network, replacing an edge cost
function ce

�
x � by c̃e

�
x � ≥ ce

�
x � may result in a decrease of the travel time.


