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Introduction

The goal of Mathematical Programming is the design of mathematical solution
methods for optimization problems. These methods should be algorithmic in the
sense that they can be converted into computer programs without much effort.
The main concern, however, is not the eventual concrete implementation of an al-
gorithm but the necessary prerequisit thereof: the exhibition of a solution strategy
that hopefully makes the ensuing algorithm ”efficient” in practice. Mathematical
programming thus offers an approach to the theory of mathematical optimization
that is very much motivated by the question whether certain parameters (solu-
tions of an optimization problem or eigenvalues of a matrix) not only exist in an
abstract way but can actually be computed well enough to satisfy practical needs.

Mathematical optimization traditionally decomposes into three seemingly rather
disjoint areas: Discrete (or combinatorial) optimization, linear optimization and
nonlinear optimization. Yet, a closer look reveals a different picture. Efficiently
solvable discrete optimization problems are typically those that can be cast into
the framework of linear optimization. And, as a rule of thumb, nonlinear problems
are solved by repeated linear (or quadratic) approximation.

The dominant role of linearity in optimization is not surprising. It has long been
known that much of the structural analysis of mathematical optimization can be
achieved taking advantage of the language of vector spaces (see, for example, Lu-
enberger’s elegant classic treatment [55]). Moreover, it appears to be an empirical
fact that not only computations in linear algebra can be carried out numerically
efficiently in practice but that, indeed, efficient numerical computation is tant-
amount to being able to reduce the computational task as much as possible to
linear algebra.

The present book wants to introduce the reader to the fundamental algorithmic
techniques in mathematical programming with a strong emphasis on the central
position of linear algebra both in the structural analysis and the computational
procedures. Although an optimization problem often admits a geometric picture
involving sets of points in Euclidean space, which may guide the intuition in the
structural analysis, we stress the role of the presentation of a problem in terms of
explicit functions that encode the set of admissible solutions and the quantity to
be optimized. The presentation is crucial for the design of a solution method and
its efficiency.
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iv INTRODUCTION

The book attempts to be as much self-contained as possible. Only basic knowl-
edge about (real) vector spaces and differentiable functions is assumed at the out-
set. Chapter 1 reviews this material, providing proofs of facts that might be not
(yet) so familiar to the reader. We really begin in Chapter 2, which introduces the
fundamental techniques of numerical linear algebra we will rely on later. Chap-
ter 3 provides the corresponding geometric point of view. Then linear programs
are treated.

Having linear programming techniques at our disposal, we investigate discrete
optimization problems and discuss theories for analyzing their ”complexity” with
respect to their solvability by ”efficient” algorithms. Nonlinear programs proper
are presented in the last three chapters. Convex minimization problems occupy
here a position between linear and nonlinear structures: while the feasible sets of
linear programs are finite intersections of half-spaces, convex problems may be
formulated with respect to infinite intersections of half-spaces. Convex optimiza-
tion problems mark the border of efficient solvability. For example, quadratic
optimization problems turn out to be “efficiently” solvable if and only if they are
convex.

The book contains many items marked ”Ex”. These items are intended to provide
both ”examples” and ”exercises” to which also details of proofs or additional ob-
servations are deferred. They are meant to be an integral part of the presentation
of the material. We cordially invite the interested reader to test his or her under-
standing of the text by working them out in detail .



CHAPTER 1

Network Flows

1.1. Graphs

A graph G = �
V � E � is a combinatorial object consisting of a finite set V of

vertices (or nodes) and a finite set E of edges together with an incidence relation
that associates with every edge e ∈ E two endpoints ����� ∈ V . We say that e is
incident with � and � (and vice versa).

It is common to write e = � ������� if e ∈ E has endpoints � and � , although this
notation is somewhat misleading: First, it suggests that an edge is an ordered pair
of nodes, which it is not. (Later we will introduce ”directed” graphs, however,
for which this is well the case!) Second, writing e = � ���	��� does not necessarily
specify the edge e ∈ E uniquely. It is possible that E contains several edges with
the same endpoints � and � . Such edges are said to be parallel. An edge of the
form e = � ���	�
� is called a loop. We will usually consider graphs without loops,
but we do allow parallel edges.

If e = � ������� ∈ E, we call � and � adjacent (or neighbors). We also say that e
joins � and � . The set of edges incident with � ∈ V will be denoted by � � �
� ⊆ E.
The degree of a node � ∈ V , denoted by deg

� �
� , is the number of edges incident
with � .

A path P = � 0 � e1 ��� 1 � e2 �
��������� k is an alternating sequence of vertices and edges
such that edge e j joins the vertices � j−1 and � j. More precisely, we say that P is
a path from � 0 to � k or a � 0 − � k path. P is simple if all vertices � 0 ����������� k are
distinct. We will often identify simple paths with their corresponding edge sets.
So for our purposes, a simple path is a subset P ⊆ E that can be arranged to yield
a � 0 − � k path (or, equivalently, a � k − � 0 path). The number of edges in P is the
length of P.

In the same spirit, we define a circuit to be a subset C ⊆ E consisting of a simple
path P plus an edge e = � � 0 ��� k � joining the two endpoints � 0 and � k of P.

A graph G = �
V � E � is connected if every pair of nodes is joined by a path. A

connected graph containing no circuit is a tree.

EX. 1.1. Prove that a tree with n ≥ 1 nodes has exactly n− 1 edges. Conclude that each
such tree has at least two nodes of degree 1. (Such nodes are called leaves of the tree.)

EX. 1.2. Show that every two nodes of a tree are joined by exactly one path.
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2 1. NETWORK FLOWS

EX. 1.3. Prove that a circuit free graph with n nodes and n− 1 edges is a tree. (What if
circuits may exist?)

A disconnected (i.e., not connected) graph G= �
V � E � decomposes in an obvious

way into a number of “connected components”. In order to define these, we need
to introduce the notion of a ”subgraph”.

A graph G′ = �
V ′ � E′ � is a subgraph of G = �

V � E � if V ′ ⊆ V and E′ ⊆ E (with
incidences as in G). If V ′ ⊆ V we denote by E

�
V ′ � ⊆ E the set of all edges with

both endpoints in V ′. The graph G′ = �
V ′ � E

�
V ′ � � is the subgraph induced by

V ′ ⊆ V , which we denote by G[V ′].

A connected component (or component for short) of G is a (with respect to in-
clusion) maximal connected subgraph. An alternative definition can be given as
follows.

For any U ⊆ V , let � � U � ⊆ E be the set of edges joining nodes in U to nodes in the
complement U = V \U. The set � � U � ⊆ E is called the cut induced by U ⊆ V . A
component of G is then an induced subgraph G[U], where ∅ 6= U ⊆ V is a (with
respect to inclusion) minimal subset of V with � � U � = ∅. The equivalence of these
two definitions is immediate from the following “theorem of the alternative”:

THEOREM 1.1. For each graph G = �
V � E � exactly one of the following is true:

(i) G is connected
(ii) There exists some subset ∅ 6= U 6= V of nodes with � � U � = ∅.

Proof. If (ii) holds, then there can be no path joining a node u ∈ U to a node u ∈
U = V \U. Hence G is disconnected. Conversely, assume G is disconnected and
let u � u ∈ V be two nodes that are not joined by any path. Construct a connected
component G[U] with u ∈ U as follows:

Start with U = {u} and extend U by adding endpoints of edges in � � U � as long
as � � U � 6= ∅. By construction, each node that enters U is connected to u by some
path. Therefore, the construction will stop with � � U � = ∅ for some U 6= V (since
u never enters U).

�

A subtree of G = �
V � E � is a subgraph that is a tree. Again we identify a subtree

with its edge set T ⊆ E. A subtree T ⊆ E is a spanning tree of G if each node of G
is incident with T . Clearly, G admits a spanning tree if and only if G is connected.
In this case, we may construct a spanning tree as follows (cf. the construction used
in the proof of Theorem 1.1):
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Spanning Tree

INIT: U← {u} for some u ∈ V ; T ← ∅.
ITER: WHILE � � U � 6= ∅ DO

BEGIN

Choose e ∈ � � U � .
Extend T by e and U by the endpoint of e that is not in U.

END

The following lemma exhibits a fundamental property of spanning trees.

LEMMA 1.1 (”Exchange Property”). Let T ⊆ E be a spanning tree and e ∈ E \ T
arbitrary. Then T ∪ e contains a unique circuit C. The removal of any edge f ∈ C
yields a spanning tree T ′ = �

T ∪ e � \ f .

Proof. Let P ⊆ T be the unique path joining the two endpoints of e (cf. Ex. 1.2).
Then C = P ∪ e is a circuit. Uniqueness of C follows from the uniqueness of P.
Removal of any f ∈ C destroys the unique circuit C, so T ′ = �

T ∪ e � \ f is circuit
free. Since |T ′| = |T |, T ′ is again a tree (cf. Ex. 1.3). The claim follows.

�

After these preliminary observations, we study our first basic combinatorial opti-
mization problem.

The Minimum Cost Spanning Tree Problem. Given a connected graph G =�
V � E � and a cost vector c ∈ RE that associates a cost ce ∈ R with every edge

e ∈ E, the problem is to find a spanning tree T ⊆ E of minimal cost

c
�
T � =

∑

e∈T

ce �

EX. 1.4. Consider a set V of n points (“locations”) in the Euclidean plane R 2 that are to
be connected by some “communication network”. Assume that for a certain set E of pairs���������

of points it is feasible to establish a direct communication link e between
�

and�
at a cost of ce say, proportional to the distance of

�
and

�
. A minimum cost network

connecting all points is then a minimum cost spanning tree.

The problem can be solved by a straightforward adaptation of the algorithm Span-
ning Tree above:
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Min Cost Spanning Tree

INIT: U← {u} for some u ∈ V ; T ← ∅.
ITER: WHILE � � U � 6= ∅ DO

BEGIN

Choose e ∈ � � U � of minimal cost ce.
Extend T by e and U by the endpoint of e that is not in U.

END

THEOREM 1.2. Algorithm Min Cost Spanning Tree computes a spanning tree T
of minimal cost c

�
T � .

Proof. We claim that each current subtree T ⊆ E can be extended to some min
cost spanning tree T∗ ⊇ T . This is clearly true for T = ∅. Assume inductively
that T∗ ⊇ T is a min cost spanning tree and T is extended by e ∈ � � U � in the next
step.

If e ∈ T∗, there is nothing left to show. If e 6∈ T ∗, let C be the unique circuit in
T∗ ∪ e. The path P = C \ e connects a node in U to a node outside U. So P must
contain an edge f ∈ � � U � . Clearly, f ∈ C and f 6= e. Since e ∈ � � U � is cost
minimal,

�
T∗ ∪ e � \ f is again a min cost spanning tree and extends T ∪ e, which

proves the claim.
�

Running Time. An algorithm for solving a special type of problems (such as the
min cost spanning tree problem) proceeds by performing a series of “elementary
operations”, e.g., comparing two numbers, adding or labeling an edge etc. until
the problem (more precisely the problem instance) at hand is solved. The running
time estimates the number of operations necessary to solve a problem instance of
a given size. (We discuss these notions in detail in Chapter 8.) For example,
measuring the size of a graph G = �

V � E � in terms of n = |V | and m = |E|, we
obtain the following straightforward bound on the number of operations for the
min cost spanning tree algorithm: There are n− 1 tree extension steps. Each step
finds the min cost edge e ∈ � � U � by comparing | � � U � | ≤ m numbers. So the total
number of operations is bounded by a constant times m · n. (The constant accounts
for “implementational details”, e.g., the data structures we use for accessing the
edges incident with a vertex.) We express this fact by saying that the algorithm
has running time O

�
n m � = O

� |V | |E| � . (Cf. p. ?? for a formal definition of the
“big O” notation.)

REMARK. The bound O �
n m

�
can be improved by using clever data-structures to speed

up the the “minimum search” in each extension step. For example, a running time of
O
�
m log n

� = O
�
m log m

�
can be achieved this way (see, e.g., [12]).
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1.1.1. Directed Graphs. Loosely speaking, a “directed graph” is obtained
from a graph G = �

V � E � by giving a “direction” to each edge e ∈ E. We de-
note the resulting directed graph (again) by D = �

V � E � and call G its underlying
(undirected) graph. More precisely, a directed graph D = �

V � E � consists of a
finite set V of vertices and a finite set E of directed edges (or arcs) together with
an incidence relation that assigns to each directed edge e ∈ E two distinguished
endpoints in V : The tail of e and the head of e.

Directed edges with the same endpoints are called parallel or antiparallel, ac-
cording to whether or not they have the same head (or tail). We denote directed
edges again as ordered pairs e = � ����� � , where now the ordering indicates that �
is the tail and � is the head of e. We say that e is directed from � to � or that e
leaves � and enters � .

A set S ⊆ E of directed edges in the directed graph D = �
V � E � is a path (circuit,

tree), if this is true for the corresponding set of undirected edges in the underlying
graph G. Similarly, we say that D is connected, if G is connected.

When we traverse a simple r− s path P ⊆ E in a directed graph from r to s, we
traverse each edge e = � ����� � ∈ P in either the forward direction (i.e., from � to
� ) or backward direction (i.e., from � to � ). Correspondingly, the r− s path P is
partitioned into a set P+ of forward edges and a set P− of backward edges. P is
a directed r− s path if P = P+.

P+

sr

P− P+P+ P−

FIGURE 1.1. Forward and backward edges of P

Similarly, if C ⊆ E is a circuit, we may fix one of the two possible orientations
of C, thereby splitting C into a set of forward edges C+ and a set of backward
edges C−. (With respect to the opposite orientation, the roles of C+ and C− are
interchanged.) The circuit C is directed if C = C+ (or C = C−).

A similar partition can be defined for a tree T ⊆ E by specifying a root node r of
T . With respect to a fixed root r, a tree T splits into a set T+ of forward edges
(those pointing away from r) and a set T− of backward edges (those pointing
towards r). We call T a directed tree (rooted at r) if T = T+.

The directed graph D = �
V � E � is called strongly connected , if any two nodes

����� ∈ V are joined by directed paths (one from � to � and one from � to � ).

EX. 1.5. Show that a directed graph D = �
V
�
E
�

is strongly connected if and only if it is
connected and each edge is contained in a directed circuit.
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T+ T−

r

T− T+ T−

FIGURE 1.2. Forward and backward edges of a rooted tree

To derive a directed analogue of Theorem 1.1, we also partition cuts into forward
and backward parts as follows. For U ⊆ V and U = V \U, let

� + � U � =
{

e ∈ E | e = �
u � u � for some u ∈ U � u ∈ U

}

�
� − � U � =

{

e ∈ E | e = �
u � u � for some u ∈ U � u ∈ U

}

�

THEOREM 1.3. For the directed graph D = �
V � E � exactly one of the following

is true:

(i) D is strongly connected.
(ii) There exists some subset ∅ 6= U 6= V of nodes with � + � U � = ∅.

Proof. Similar to the proof of Theorem 1.1.
�

1.1.2. Incidence Matrices. Combinatorial problems on graphs, directed
graphs and other “incidence structures” can often be formulated as (integer)
linear programming problems. Basically, such formulations are obtained by rep-
resenting sets via corresponding “incidence vectors” and incidence relations via
corresponding “incidence matrices”.

If S is a finite set, we denote by RS the set of real vectors with coordinates in-
dexed by the elements of S (as we had already done in the min cost spanning tree
problem). Hence RS ∼= R|S|. If T is another finite set then RS×T denotes the set of
real matrices with rows and columns indexed by elements from S resp. T . Hence
RS×T ∼= R|S|×|T |.

REMARK. We do not need to assume any (implicit) ordering of the elements in S or T
for the following reason: Even without such an ordering, operations like vector addition,
matrix multiplication etc. are defined in the obvious way.
For example, if A= �

ast
� ∈ RS×T and x ∈ RT , then y= Ax ∈ RS has coordinates defined

by

ys =
∑

t∈T

astxt
�
s ∈ S

���
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Let D = �
V � E � now be a directed graph without loops. The incidence matrix of

D is the matrix A = �
a � e � ∈ RV×E defined by

a � e =







−1 if � is the tail of e
+1 if � is the head of e

0 otherwise.

For each edge e = �
u ���
� of D, the sum of the entries in the column A·e of the

incidence matrix A is aue + a � e = 0. So the sum of all rows is the zero vector
0T ∈ RE, which implies rank A ≤ |V | − 1.

We introduce incidence vectors of paths, circuits and trees analogously. If P ⊆ E
is a simple path and P+ (P−) is the set of forward (backward) edges, then the
incidence vector of P is the vector x ∈ RE given by

xe =







+1 if e ∈ P+

−1 if e ∈ P−

0 otherwise.

The incidence vectors of circuits and trees (relative to a given root node) are
defined similarly.

EX. 1.6. Let A ∈ RV×E be the incidence matrix of D = �
V
�
E
�

and x ∈ RE the incidence
vector of a circuit. Show: Ax = 0. Similarly, if x ∈ RE is the incidence vector of an
r − s path, show: Ax = b, where b ∈ RV has components br = −1, bs = +1 and b � = 0
otherwise.

Ex. 1.6 indicates how incidence matrices can be used to translate combinatorial
problems into linear programming problems. To study this relation in more detail,
we need to identify those submatrices of A that are column bases, i.e., generate
the column space col A.

THEOREM 1.4. Let A ∈RV×E be the incidence matrix of D= �
V � E � and let F ⊆

E. Then the set A·F of columns of A corresponding to F is linearly independent
if and only if F contains no circuit. Hence, if D is connected, the column bases
of A are exactly the submatrices A·T where T ⊆ E is a spanning tree.

Proof. If F ⊆ E contains a circuit C with incidence vector x ∈ RE, then Ax = 0
(cf. Ex. 1.6). So the column set A·C (and hence A·F) is not independent.

Conversely, if F does not contain any circuit, then there exists a node � ∈ V that
is incident with exactly one edge f ∈ F (why?). Consequently, the submatrix A·F
has a unique non-zero entry in row � , namely in the column A· f . Assuming in-
ductively that the columns corresponding to F \ { f } are independent, we conclude
that also the columns in A·F are independent, which proves the first statement.

Since spanning trees are the maximal circuit free edge sets in connected graphs,
also the second statement follows.

�
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EX. 1.7. Let D = �
V
�
E
�

be a connected graph with incidence matrix A ∈ RV×E. Show:
rank A = |V | − 1.

EX. 1.8. Reprove Lemma 1.1 with Theorem 1.4 and linear algebra.

COROLLARY 1.1. Assume D is connected and r � s are two different nodes. Define
b ∈RV by br =−1, bs =+1 and b � = 0 otherwise (cf. Ex. 1.6). Then the vertices
(basic solutions) of Ax = b, x ≥ 0 are exactly the incidence vectors of directed
simple r− s paths.

Proof. Let x ∈ RE be a basic solution of Ax = b, x ≥ 0. By definition, this means
that there exists some column basis A·T of A such that xe = 0 for all e ∈ E \ T
(cf. p.??). Since these requirements uniquely determine x ∈ RE, we conclude that
x must be the incidence vector of the unique r − s path P ⊆ T (since this also
satisfies these requirements (cf. Ex. 1.6)).

Conversely, assume that x ∈ RE is the incidence vector of a simple directed r− s
path P ⊆ E. Extend P to a spanning tree T ⊇ P. Since Ax = b and xe = 0 for
e ∈ E \ T , x is a basic solution corresponding to the column basis A·T .

�

1.2. Shortest Paths

Given a graph G = �
V � E � and two nodes r � s ∈ V , the shortest path problem asks

for an r− s path P ⊆ E of minimum length (= number of edges). This minimum
length is denoted by d

�
r � s � and is called the distance between r and s. Note that

such a path of minimum length will necessarily be simple. In the following we
will assume without loss of generality that G is connected. (Otherwise we restrict
ourselves to the component containing r.)

The shortest path problem can be solved in a straightforward way by Dijkstra’s
algorithm [17]. Start with U0 = {r} and then determine the set Uk ⊆ V of nodes
at distance k from r recursively:

Uk+1 = { � ∈ V\
k
⋃

i=0
Ui |

�
u ���
� ∈ E for some u ∈ Uk} �

Once the distances of all nodes � ∈ V from r are computed, the corresponding
shortest paths can be easily deduced from that information.

Alternatively, one may keep track directly of the necessary information while
computing the distances: Whenever a node � ∈ V enters Uk+1, label one of the
edges

�
u �	�
� with u ∈ Uk. The set of labeled edges will then finally form a span-

ning tree T ⊆ E with the property that each r− � path P ⊆ T is a shortest r− �
path. Such a tree is called a shortest path tree (relative to r).

REMARK. If we are only interested in a shortest r − s path, we can of course stop as
soon as s enters some Uk. In the worst case, however, the node s may happen to be the
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last one we reach. So the running time of our algorithm can only be bounded by the time
needed to construct the full shortest path tree.
Note that the computation of Uk+1 scans each edge incident with a node in Uk at most
once. Counting such an edge scan as an elementary step, we obtain a running time of
O
� |E| � for Dijkstra’s algorithm.

The same method works for directed graphs and shortest directed r − s paths.
Again, we assume that each node � ∈ V can be reached from r along a directed
path. So each node � ∈ V will have a well-defined (finite) distance y � ∈ Z+ from r,
which we compute as above by setting y � = k if � ∈ Uk. Once we have computed
the complete distance vector y = �

y � � ∈ ZV
+, we again recover shortest directed

r− � paths for all � ∈ V and compute a directed shortest path tree T ⊆ E, i.e., a
directed spanning tree rooted at r such that each r− � path P ⊆ T is shortest.

Computing shortest paths and distances are, in some way, “equivalent” tasks. Let
us investigate their mutual relationship in more detail. Consider an arbitrary vec-
tor y ∈ RV . To be a distance vector, y must at least satisfy

(1.1) y � ≤ y � + 1 for all e = � ������� ∈ E �

The relation between shortest paths and distances is as follows.

LEMMA 1.2.

min {|P| | P is a directed r− s path} = max {ys − yr | y ∈ RV satisfies (1.1)}
Proof. Assume P ⊆ E is a directed r − s path (which we assume to exist) and
y ∈ RV satisfies (1.1). Then ”min ≥ max” follows from the observation

|P| =
∑

e∈P

1 ≥
∑

� ��� ��� ∈P

y � − y � = � s− yr �

Equality is achieved when we take P as a shortest r − s path and y ∈ RV as the
distance vector.

�
The above min-max relation will be studied again later in a more general setting.
In particular, we shall see that it is just a very special instance of linear program-
ming duality. (This is why we denote distance vectors by y ∈ RV .) For the time
being, note that the maximization problem in Lemma 1.2 is a linear program
which is always feasible (take y = 0) and bounded (since we assume r− s paths
exist). So optimal solutions y ∈ RV exist. Given any optimal solution y ∈ RV , we
can immediately read off shortest r− s paths: We let

E∗ = {e = � ����� � ∈ E | y � = y � + 1} �
Then a directed r − s path P ⊆ E is a shortest r − s path if and only if P ⊆ E∗

(cf. the proof of Lemma 1.2).

Let us illustrate the use of this fact by proving the following (intuitively obvious?)
result.
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LEMMA 1.3. Let D = �
V � E � be a directed graph, r � s ∈ V and P ⊆ E be a

shortest directed r − s path. Extending E by edges that are antiparallel to edges
in P does not create any new r− s path of length ≤ |P|.

Proof. Let y be an optimal solution of the maximization problem with respect to
D = �

V � E � and consider E∗ ⊆ E as defined above. Then, if e = � ����� � ∈ E∗, we
have y � = y � − 1 � y � + 1.

So y satisfies (1.1) even when we extend E by edges that are antiparallel to edges
in E∗ (and hence to the shortest r− s path P ⊆ E∗). Since ys− yr = |P|, y is also
an optimal solution of the max problem with respect to the extended graph. Since
none of the new edges enters E∗ in the extended graph, the shortest r− s paths in
the extended graph are exactly the original shortest paths.

�

EX. 1.9. Prove Lemma 1.3 “directly” (i.e., without ”distances” and Lemma 1.2).

The general shortest path problem allows a weight vector c ∈ RE that associates
a cost ce with every edge e ∈ E. We now search for an r− s path P of minimal
cost (i.e., weighted length)

c
�
P � =

∑

e∈P

ce �

The unweighted shortest path problem corresponds to c = 1.

The principle of Dijkstra’s algorithm for the unweighted shortest path applies
equally to the case of nonnegative costs ce ≥ 0. With the understanding c � � =
+∞ if

� ������� �∈ E, one easily sees that y � is the distance from r to � in the sub-
graph G[U ∪ � ] in each stage of the following algorithm:

Min Cost Paths under Nonnegative Costs (Dijkstra)

INIT: U← {r}; yr← 0; y � ← cr � for all � ∈ V \U.
ITER: WHILE V \U 6= ∅ DO

BEGIN

Choose � ∈ V \U with y � minimal and extend U by � .
Update y � ← min{y � � y � + c � � } for all � ∈ V \U.

END

The most general setting allows cost coefficients to be also negative, i.e., to model
“gains” along edges. Algorithms for this problem will again compute minimum
cost (directed) paths trees T ⊆ E, consisting of min cost paths from r to all nodes.

Before turning to the general minimum cost path problem in detail, let us see
whether it is well-defined. Observe first that the case of undirected graphs is just
a special case of the directed version. (Just replace each undirected edge by two
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antiparallel arcs of the same cost). Thus we consider right away a directed graph
D = �

V � E � and c ∈ RE. As before, we assume that directed r− � paths exist for
all � ∈ V .

It may now happen that some directed circuit C ⊆ E has negative cost

c
�
C � =

∑

e∈C

ce � 0 �

In the presence of such a negative circuit C, obviously, the cost of a path that
traverses C arbitrarily often will tend to ”−∞”. Therefore, we explicitly assume
for the following discussion that negative circuits do not occur. This condition
will automatically be checked by the algorithms for computing min cost paths, as
we shall see below. Note that a min cost path P can be assumed to be simple if no
negative circuits exist (as the removal of any ’non-negative’ circuit from P cannot
increase the cost.)

REMARK. One may wonder why we do not generally, i.e., when negative circuits may
occur, look for min cost simple directed paths. The latter problem, however, turns out to
be NP-hard. Indeed, with c =−1, we would actually look for a longest simple r− s path,
which is at least as difficult to find as a Hamiltonian circuit (cf. Chapter ??)

Let us now see how to construct minimum cost r− s paths algorithmically in the
general case (with possibly some negative edge costs). As before, we compute
for all nodes � ∈ V their distance y � , i.e., the cost of a min cost r − � path. The
following algorithm, due to Bellman [5] and Ford [23], aims at computing all
distances in n = |V | rounds. In the k-th round

�
k = 1 �
������� n � the vector y

�
k � ∈ RV

represents the “distances” with respect to paths of length at most k.

Min Cost Path (Bellman-Ford)

INIT: y
�
0 �

r ← 0 � y
�
0 �

� ←+∞ � � ∈ V\{r}
ITER: FOR k = 1 �
������� n = |V | DO

y
�
k �� ← min

{

y
�
k−1 �� � min

{

y
�
k−1 �

� + ce | e =
� ���	��� ∈ E

}}

THEOREM 1.5. Let y
�
k � (k = 0 �
������� n) be the sequence of vectors computed by

the Bellman-Ford algorithm. Then y
�
n � = y

�
n−1 � if and only if negative circuits do

not exist. In this case, y = y
�
n−1 � is the distance vector.

Proof. It is straightforward to see (by induction on k) that y
�
k � ∈ RV indeed speci-

fies the distances with respect to min cost r− � paths of length at most k. In case
negative circuits do not exist, simple min cost paths (of length k ≤ n− 1) exist.
This observation proves the “if” case and the second statement.
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To prove the converse implication, assume y
�
n � = y

�
n−1 � . Suppose for a moment

that we would continue to compute y
�
k � as in the Bellman-Ford algorithm for k =

n+ 1 � n+ 2 �
����� . It is immediate from the recursive definition that y
�
n � = y

�
n−1 �

implies y
�
k � = y

�
k−1 � for all k ≥ n. If there were negative circuits, then at least one

component of y
�
k � would tend to ”−∞” as k→∞. So no negative circuit exists.

�

EX. 1.10. How can one identify negative circuits with the Bellman-Ford algorithm?

EX. 1.11. Show that the Bellman-Ford algorithm runs in time O
� |V | |E| � .

EX. 1.12. Assuming that negative circuits do not exist, how can one determine a min
cost r − s path, given the distance vector y = y

�
n � as computed by the Bellman-Ford

algorithm? Show that such a path can be found in time O
� |E| � .

The essential ingredient of the Bellman-Ford algorithm is the modification of the
current “tentative” distance vector y ∈ RV (partly defined by y

�
k−1 � and partly by

y
�
k � ) by decreasing a component y � with positive slack y ��� y � + ce relative to

some edge e = � ������� . In case negative circuits do not exist, we eventually end in
a situation where

(1.2) y � ≤ y � + ce for all e = � ������� ∈ E

holds and no further modifications are carried out. This idea also motivates a
version of the (linear programming) simplex algorithm for solving min cost path
problems, which we investigate next.

1.2.1. The Simplex Algorithm for Min Cost Paths. We will formulate the
min cost path problem as a linear program and adjust the simplex algorithm to
solve it. The result will be an algorithm for min cost paths that is somewhat
different from the Bellman-Ford method.

Let A ∈ RV×E be the incidence matrix of D = �
V � E � and let b ∈ RV be defined

by br = −1 � bs = +1 � b � = 0 otherwise (cf. Corollary 1.1). Consider the pair of
mutually dual linear programs

�
P � min cTx

s � t � Ax = b
x ≥ 0

and
�
D � max yTb

s � t � yTA ≤ cT �

By Corollary 1.1, the feasible basic solutions of
�
P � are the incidence vectors of

directed r − s paths. So an optimal basic solution of
�
P � gives a min cost r − s

path. As we shall see, the dual program
�
D � is suited for computing the distance

vector.

A vector y ∈ RV is often referred to as a node potential or simply a potential in
this context. (This terminology originates from electric network theory, where
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distances correspond to potential differences and costs are interpreted as resis-
tances.) If y ∈ RV is a potential, the linear combinations yTA and yTb = ys − yr

remain unchanged when we add (or subtract) a constant vector to y. Thus, with
respect to

�
D � , we may restrict ourselves to potentials y ∈ RV that are normalized

in the sense that yr = 0.

Consider a column basis of A, which (by Theorem 1.4) is a submatrix A·T arising
from a spanning tree T ⊆ E. Assume that T is actually a directed tree rooted at r
(which we assume to exist). Then the corresponding primal basic solution x ∈ RE

of Ax = b is the incidence vector of the unique directed r − s path P ⊆ T and
hence a feasible primal solution, i.e., x ≥ 0 with cost cTx. A corresponding dual
basic solution is a potential y ∈ RV such that yTA·e = ce for e ∈ T , i.e.,

(1.3) y � = y � + ce for all e = � ������� ∈ T �

The equations (1.3) determine a unique normalized potential y ∈ RV , which can
be easily computed “along the directed paths” in T , starting in r with yr = 0. For
� ∈ V , y � is the cost of the unique r− � path in T . In particular, ys = ys− yr = yTb
equals the cost of the unique r− s path P ⊆ T . So cTx= yTb and hence by linear
programming duality we conclude that both x and y are optimal solutions to our
problems (P) and (D) if and only if y is feasible for (D).

What if y is not feasible? Then some edge e = � ���	��� ∈ E \ T must be infeasible
in the sense that

y � � y � + ce �
In this case we modify the directed tree T to the directed tree (see Ex. 1.13)

T ′ = �
T ∪ e � \ f

where f ∈ T is the unique edge in T with head � .

e
�

f�

T ′2

FIGURE 1.3. Moving from T to T ′ = �
T ∪ e

� \ f

EX. 1.13. Show that T ′ is again a directed tree unless the unique circuit C ⊆ T ∪ e
is a negative directed circuit (in which case we stop since a negative circuit has been
detected).
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The normalized potential y′ ∈ RV corresponding to T ′ can easily be obtained by
updating y ∈ RV as follows. The removal of e splits T ′ into two components T ′1
and T ′2. One of these, say T ′1, contains the root r and the other does not. By
definition, the old potential y ∈ RV satisfies all edge constraints (1.3) for edges
in T ′1 ∪ T ′2 with equality. Hence the new potential y′ ∈ RV is obtained when we
decrease y on all nodes in T ′2 by an amount of

� = y � − y � − ce � 0 �
(Note the difference to the Bellman-Ford algorithm: Here we decrease y on all
nodes in T ′2 simultaneously.)

The move T → T ′ corresponds exactly to one iteration in the simplex algorithm
as we replace one column A· f in the basis A·T by the column A·e from outside.
Such a move may leave the primal solution x ∈ RE unchanged (in case the unique
r− s path P⊆ T does not contain the leaving edge f ). In particular, the objective
value cTx = bTy may remain unchanged. Yet we do make a measurable progress
in each step: The sum of all y � ( � ∈ V), i.e., the sum of all costs of directed
paths in T decreases strictly. Hence, in particular, cycling can not occur and the
algorithm terminates.

Our description of the above simplex algorithm does not specify the infeasible
edge to choose in each step. Specific rules for choosing the entering edge e lead
to different variants of the simplex algorithm. One of them is as follows:

We let the simplex algorithm proceed in rounds. In each round we scan all vertices
� ∈ V once (in some order). When scanning � ∈ V , we check whether there are
any infeasible edges entering � . In case there are such edges, we choose the
“most infeasible” edge e = � ���	��� (i.e., the edge which maximizes � ) to enter T .

EX. 1.14. Show that this variant of the simplex algorithm for shortest paths terminates
after at most n rounds. As a consequence, conclude that its running time is O

�
n3 � .

(Hint: Show that, after k rounds, the potential y ∈ RV satisfies y ≤ y
�
k � , where y

�
k � is the

potential computed by Bellman-Ford.)

1.2.2. Applications. Min cost path problems mainly occur as subproblems in
more complex optimization problems related to traffic routing or communication
network management. Sometimes, however, one also encounters them as stand-
alone problems – and quite often in “disguise”. The following two examples are
also cited in [2].

Approximating Piecewise Linear Functions. Let x0 � x1 � ����� � xn be n+ 1
real numbers and f : [x0 � xn]→ R a piecewise linear function that is linear on
each of the intervals [xi−1 � xi], i = 1 �
������� n. If n is large, storing all information
about f is very expensive. Therefore one might wish to approximate f by another
piecewise linear function f̂ that equals f in x0 = x j0 � x j1 �
������� x jk = xn.
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x1x0 xn−1 xn

FIGURE 1.4. Approximating a piecewise linear function

Assume for example that we measure the approximation error e
�

f̂ � by

e
�

f̂ � =
n

∑

i=0

[

f
�
xi � − f̂

�
xi �

]2
�

Assume, furthermore, that storing an approximating function f̂ costs � · k, where
k is the number of linear pieces of f̂ and � � 0 is the fixed cost of storing one
linear piece (i.e., storing the endpoints and the slope of f̂ in this interval).

The total “cost” of the approximation function f̂ that agrees with f on x0 =
x j0 ��������� x jk = xn is then

c
�

f̂ � =
n−1
∑

i=1

[

f
�
xi � − f̂

�
xi �

]2
+ � k �

Minimizing c
�

f̂ � can be formulated as a shortest path problem as follows: Let
V = {0 � 1 ��������� n} and let G be the complete graph on V . Define costs on the
directed edges

�
i � j � with i � j by

ci j =
j

∑

s=i

[

f
�
xs � − f̂i j

�
xs �

]2
+ �

where f̂i j is the linear function which coincides with f in xi and x j. Then there is
a one-to-one correspondence between shortest 0− n paths and optimal approxi-
mations f̂ .

Allocating Inspections on a Production Line. A production line consists of an
entry node M0 and a sequence of n production (manufacturing) nodes M1 ��������� Mn,
each of which may be followed by a potential inspection.

MnM1M0

FIGURE 1.5
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We assume that the product leaves node M0 (and enters node M1) in batches
of size B

�
0 � ≥ 1. As a batch moves through the production line, the various

operations performed on its items may render some of the items defective. The
probability that a particular item is ruined in production phase Mi is say pi ≥ 0.
Thus, if a batch with B

�
i− 1 � non-defective items enters node Mi, the expected

number of non-defective items leaving Mi in this batch is
�
1− pi � B

�
i− 1 � .

If we decide to install an inspection station after a node M j, then we will inspect
all items leaving M j and remove those which are defective from the batch. The
cost of such an inspection depends on the last inspection having taken place be-
cause we have to look for all possible defects that have been introduced since
then. Suppose gi j is the cost of inspecting a single item after node M j given that
the last check on it took place after node Mi. Furthermore, suppose that there is
a fixed (“set up”) cost si j for inspecting a batch after M j, given that it was last
inspected after Mi. This cost is independent of the current number of items in
the batch. (Think of the cost for removing the batch from the line and getting the
necessary inspection tools ready.) Finally, suppose that the production cost in Mi

is ci per item in the batch that enters Mi.

There are two conflicting objectives. On the one hand, we try to avoid production
costs incurred by further processing items that are ruined. In the extreme case,
this objective would require to install an inspection station after each Mi. On the
other hand, we try to keep the inspection cost low. In the extreme case, the latter
objective would result in carrying out no inspections at all. (Usually, however,
there is at least one final inspection prescribed to take place after Mn.)

The problem of finding an optimal inspection policy (minimizing the expected
total cost) can be formulated as a shortest path problem. First, recall that the
expected number of non-defective items in a batch leaving node j equals

B
�
j � = B

�
j− 1 � � 1− p j � = ����� = B

�
0 �

j
∏

k=1

�
1− pk ���

Construct now the graph D = �
V � A � with V = {0 �
������� n} and arcs

�
i � j � for all

i � j. Introduce edge costs according to

ci j = si j+ B
�
i � gi j + B

�
i �

j
∑

k=i+1

ck �

Then ci j equals the total expected cost incurred in phases i + 1 through j if in-
spections are done after i and j (and none in between). Solving the shortest path
problem in D (for r = 0 and s = n) is equivalent with minimizing the total ex-
pected production/inspection cost.
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1.3. Maximum Flow

A network (in the simplest case) is given by a directed graph D = �
V � E � with an

(upper) capacity vector u ∈ RE
+ associating a capacity ue with every edge e ∈ E.

Furthermore, there are two distinguished nodes: The root node r ∈ V (also called
source ) and the sink s ∈ V . In this section we again assume that D is connected.

REMARK. One may imagine the edges to represent (unidirectional) pipelines. As much
flow as possible is to be sent from r to s, respecting the edge capacities as upper bounds
on the maximum throughput (per time unit). This way we would obtain the standard
maximum flow problem as discussed below. In Section 1.4, we generalize this model,
allowing in addition each edge e ∈ E to be assigned a cost ce ∈ R for sending one unit of
flow through e.

We give a formal definition of the max flow problem. ”Flows” are certain vectors
x ∈ RE, specifying the amount xe of flow on each edge e ∈ E. When we send a
flow from r to s then in each node � ∈ V\{r � s}, the total flow into � should equal
the total flow out of � . Formally, a flow is therefore defined to be a vector x ∈ RE

such that
∑

e∈ � + � � �
xe =

∑

e∈ � − � � �
xe for all � ∈ V\{r � s} �

A flow x ∈ RE is feasible if 0 ≤ x ≤ u. With our general shorthand notation (cf.
p. 6), we define the outflow and the inflow of � ∈ V (relative to x) as

x
� � + � �
� � =

∑

e∈ � + � � �
xe and x

� � − � �
� � =
∑

e∈ � − � � �
xe �

Their difference is the net outflow of � ∈ V , denoted by

fx
� �
� = x

� � + � �
� � − x
� � − � �
� � �

In terms of the incidence matrix A ∈ RV×E of D = �
V � E � , we have

fx
� �
� = −A � · x

� � ∈ V �
where A � · denotes the row of A corresponding to � ∈ V .

Our max flow problem can now be formally stated as the linear program

(1.4) max
0≤x≤u

fx
�
r � s.t. A � · x = 0 for all � ∈ V\{r � s}

The net outflow fx
�
r � of the root r is called the value of the flow x. The constraints

A � · x = 0 are called the flow constraints. As mentioned earlier, they ensure that
no flow is added or lost at any node � ∈ V \ {r � s}. Intuitively, it is clear from these
constraints that the net outflow of the root equals the net inflow (inflow minus
outflow) of the sink. More generally, we note

LEMMA 1.4. If x ∈ RE is a flow and R ⊆ V \ {s} such that r ∈ R, then

fx
�
r � = x

� � + � R � � − x
� � − � R � ���

In particular, if x is feasible, then fx
�
r � ≤ u

� � + � R � � .
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Proof. We have

x
� � + � R � � − x

� � − � R � � =
∑

e∈ � + � R �
xe −

∑

e∈ � −
�
R �

xe =
∑

� ∈R

(

∑

e∈ � + � � �
xe −

∑

e∈ � −
� � �

xe

)

since the contributions of those edges e having both endpoints in R cancel out.

The first claim now follows from the assumption that all nodes � ∈ R\{r} have
net outflow zero. The second claim is an immediate consequence of the condition
0 ≤ x ≤ u.

�
If the subset R ⊆ V contains r but not s, we say that R induces an r − s cut
� � R � ⊆ E and we call

cap
�
R � = u

� � + � R � � =
∑

e∈ � +
�
R �

ue

its capacity. With this terminology, Lemma 1.4 says that the maximum value
fx
�
r � of a feasible flow x is less than or equal to the minimum capacity of an r− s

cut. The so-called Max Flow–Min Cut Theorem of the network pioneers Ford and
Fulkerson [24] states that, in fact, equality holds.

THEOREM 1.6 (Ford and Fulkerson). The maximum flow value equals the mini-
mum capacity of an r− s cut. Moreover, if all capacities ce (e ∈ E) are integral,
then an integral maximum flow x ∈ ZE

+ exists.

The proof of Theorem 1.6 is constructive, i.e., we will describe an algorithm for
constructing a feasible flow with value equal to some cut capacity. The underlying
idea is to increase a current feasible flow x ∈ RE along “augmenting paths” as
follows. Suppose x ∈ RE is a feasible flow (initially, x = 0). Let

E+ = {e ∈ E | xe � ue} and E− = {e ∈ E | xe � 0}
be the sets of edges on which x can (still) be increased or decreased without vio-
lating the capacity constraints. If 0 � xe � ue, then e is, by definition, contained
in both E+ and E−.

An augmenting path (relative to the current flow x) is an r − s path P ⊆ E with
P+ ⊆ E+ and P− ⊆ E−. Given such a path P ⊆ E, we augment x along P, i.e.,
we increase x on P+ and decrease x on P− until some edge e ∈ P becomes tight,
i.e., x reaches its upper bound ue (in case e ∈ P+) or x reaches its lower bound 0
(in case e ∈ P−):

Augment x along P
Increase x on P+ and decrease x on P− by an amount of

� = min{min
e∈P+

ue − xe � min
e∈P−

xe} � 0 �



1.3. MAXIMUM FLOW 19

Augmenting along P results in a feasible flow x′ with larger flow value fx′
�
r � =

fx
�
r � + � .

EX. 1.15. Show that augmenting paths can be computed by applying a shortest path
algorithm. (Reverse edges in E−.)

Augmenting Path Algorithm

INIT: x = 0

ITER: WHILE there exists an augmenting path P DO

augment x along P

LEMMA 1.5. Assume that the current flow x ∈RE does not allow any augmenting
path. Then x is maximal and its flow value fx

�
r � equals the capacity of an r − s

cut.

Proof. In view of Lemma 1.4, it suffices to prove the second part of the claim. To
this end, consider the way we search for augmenting paths. Starting with R0 = {r},
we successively construct the sets Rk (k ≥ 0) of nodes that can be reached from
r along “augmenting paths” of length k, i.e., r− � paths P ⊆ E with |P| = k and
P+ ⊆ E+ and P− ⊆ E−. After at most n steps we either end up with s ∈ Rk for
some k ≤ n (in which case an augmenting path is found) or we get stuck with a
node set

R =
k

⋃

i=0

Ri such that

{

x = u on � + � R �
x = 0 on � − � R ���

i.e., the value of the current flow x equals the capacity of the r− s cut induced by
R.

�
REMARK. Consider the network as indicated in Figure 1.6. The augmenting path
method could start with x = 0 and alternatingly augment x along the paths r− � − � − s
and r− � − � − s. A maximum flow would be found after 2100 iterations.
This example shows that without further specifications, the augmenting path method is
not “efficient”. The situation is even worse. If we allow arbitrary real capacities, one
can design networks on which the above algorithm may perform an infinite number of
iterations. The corresponding sequence of feasible flows will of course converge (as the
flow values increase), but even the limiting flow might be suboptimal. (Details can be
found in [2] or [54].) So the augmenting path algorithm as described above is not an
algorithm in the strict sense. In particular, we have not yet proved the Max Flow–Min
Cut Theorem 1.6 (except in the case of integral capacities; in this case the proof follows
by noticing that the value of the flow must increase at least by 1 in each step).
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r

�

�

u = 1 s

u = 2100

u = 2100u = 2100

u = 2100

FIGURE 1.6. A simple max flow problem

According to the preceding Remark, an algorithm based on the construction of
augmenting paths may be extremely inefficient. Fortunately, the way we search
for augmenting paths (cf. Ex. 1.15 or the proof of Lemma 1.5) actually provides
us with shortest augmenting paths in each step. Using shortest augmenting paths,
we would find a maximum flow for the network in Figure 1.6 after only two(!)
augmentations. In general, augmentation along shortest paths results in an effi-
cient algorithm.

Shortest Augmenting Path Algorithm

INIT: x = 0

ITER: WHILE augmenting paths exist DO

Augment x along a shortest augmenting path

The following result together with Lemma 1.5 finally establishes the Max Flow–
Min Cut Theorem 1.6.

THEOREM 1.7. The shortest augmenting path algorithm computes a maximum
flow (for arbitrary real capacities) after at most nm augmentations, where n= |V |
and m = |E|.
Proof. The crucial point is to analyze how shortest augmenting paths change from
one iteration to the next. Assume that x ∈ RE is the current feasible flow with a
shortest augmenting path P of length |P| = k. We will show that after at most m
augmenting steps the length of shortest augmenting paths must increase. Since a
shortest augmenting path has length at most n− 1, the Theorem then follows.

Consider the current flow x. Any augmenting path with respect to x corresponds
to a directed r− s path P→ in

E→ = E→
�
x � = E+ ∪ { � � ���
� | � ���	��� ∈ E−} �

Let F→ ⊆ E→ be the union of all (currently) shortest r− s paths P→ ⊆ E→ (of
length k). When we augment x along P→ ⊆ F→, at least one edge e ∈ P becomes
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tight and leaves F→. As the flow changes along P, new edges (antiparallel to
edges in P→) may enter E+ or E−. None of these, however, enters F→ (cf.
Lemma 1.3). Hence |F→| decreases by at least one in each step until E→ contains
no longer any directed r− s path of length k (or less).

�
1.3.1. Applications. To illustrate the scope of the network flow model, we

give two examples of combinatorial problems that can be solved with the aug-
menting flow algorithm.

Maximum Bipartite Matching. Given two disjoint (node) sets U and W and a
set E of (undirected) edges joining elements in U with elements in W , we are to
find the maximum number of pairs

�
u ����� ∈ E that can be formed in such a way

that each u ∈U and each � ∈ W occurs in at most one pair. We can formulate this
problem as a max flow problem as follows. First, orient all edges from U towards
W . Then add a source r and sink s as indicated below. All edges have capacity 1.

s

U W

r

FIGURE 1.7. The corresponding network

EX. 1.16. Show that the value of a maximum flow in the network described above equals
the maximum number of pairs we are looking for. (Use the integrality of the solution
guaranteed in Theorem 1.6.)

Scores in Sports Competitions. Consider the following problem (a simplified
version of which is mentioned in [12]). There are sports teams T0 �
������� Tn playing
matches against each other during one season according to a fixed schedule. After
each match, two scores are distributed among the participants; 2 : 0 scores for the
winner and 1 : 1 in case of a tie. At a certain point in time during the season,
one may ask whether a team, say T0, has still a chance of ending up first. More
precisely, assume that Ti has current score si ∈ Z+ (i = 0 ��������� n). Assume that
T0 wins all his remaining matches, resulting in a final score s0 ∈ Z+ (and current
score si for Ti, i 6= 0). We then ask whether the other teams T1 ��������� Tn can possibly
end up with all having final scores si ≤ s0 (i = 1 �
������� n), i.e., each Ti collects at
most ui = s0 − si additional scores in the remaining matches, say M1 �
������� Mk.

We obtain a max flow model as follows. Each team Ti (i = 1 �
������� n) and each of
the remaining matches M j is represented by a node. Each node corresponding to
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a match has two entering arcs coming from the two teams playing against each
other in this match. Finally, we add a source and sink.

r s

T1

M1

Tn

Mk

FIGURE 1.8. The corresponding network

Each edge from r to Ti has capacity ui. All other edges have capacity 2.

EX. 1.17. Show that there is a possibility for the teams T1
� � � � �

Tn to finish the season so
that each Ti collects at most ui additional score points if and only if the above network
has a max flow of value 2k. (As in Ex. 1.16, use the integrality property in Theorem 1.6).

REMARK. This approach fails for soccer competitions under the FIFA rules allowing
3 : 0 for the winner and 1 : 1 in case of a tie. Indeed, passing from 2 : 0 to 3 : 0 makes the
problem NP-hard (cf. [48]).

1.4. Min Cost Flows

We will now extend our network model by allowing a cost vector c ∈ RE, where
the cost ce of an edge e ∈ E is interpreted as the cost of sending one unit of
flow through this edge. (Negative edge costs are permitted). The Min Cost Flow
Problem asks for an r− s flow x of prescribed value f = fx

�
r � ≥ 0 that minimizes

the total cost
∑

e∈E

ce · xe = cTx �

With b ∈ RV defined by br =− f , bs =+ f and b � = 0 else, we can write the Min
Cost Flow Problem as

�
P � min cTx s.t. Ax = b � 0 ≤ x ≤ u �

REMARK. Note the similarity with the min cost path problem
�
P
�

on p. 12. Indeed, for
f = 1 (which we can achieve by scaling x and u if we want), problem

�
P
�

here can be
viewed as a “min cost path problem with capacity bounds”.
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We start our investigations with some simplifying assumptions. First note that we
may remove all edges e with capacity ue = 0. Furthermore, let us assume (cf.
Ex. 1.18) that every � ∈ V can be reached from r along a directed path. So we
assume that our network contains a directed spanning tree T ⊆ E rooted at r and
that ue � 0 holds for all e ∈ E.

EX. 1.18. Let S ⊆ V \ {r} be the set of vertices that cannot be reached from r along
a directed path. Hence

� − � S � = ∅. Show that the min cost flow problem decomposes
into a min cost flow problem on D[V \ S] with value f and min cost flow problems on
the strongly connected components in D[S] with value 0 (with sources and sinks chosen
arbitrarily in each component).

Secondly, note that
�
P � may be infeasible (in case the maximum r− s flow value

is strictly less than f ). We circumvent this problem by applying the following
simple trick: We introduce an artificial edge from r to s with capacity f and large
cost c � 0, large enough to make sure that a min cost flow of value f will use this
artificial edge only if necessary, i.e., only if the original network has maximum
r− s flow less that f . For example, it suffices to take

c �
∑

e∈E

|ce| �

(The artificial edge may be parallel to some existing edge.) In the following, we
will assume that such an (artificial) edge is present in E.

Our next step characterizes basic feasible solutions. We shall see that these are
exactly the tree solutions, where a feasible solution x ∈ RE of

�
P � , i.e., a feasible

flow x of value f , is a tree solution if there exists a (not necessarily directed)
spanning tree T ⊆ E such that xe = 0 or xe = ue for each non-tree edge e 6∈ T .
Equivalently, the set F = {e ∈ E | 0 � xe � ue} ⊆ E is circuit free (and can thus
be extended to a spanning tree).

For example, setting xe = f on the artificial edge and xe = 0 on all other edges
yields a tree solution x ∈ RE that equals zero on all edges of the directed spanning
tree T rooted at r (whose existence we assume) and equals its lower or upper
bounds outside T . This tree solution will be used as the initial solution in the
algorithm described later.

LEMMA 1.6. A feasible solution x of the linear program
�
P � is a vertex (basic)

solution if and only if x is a tree solution.

Proof. Recall that the vector x ∈ RE is a vertex solution (cf. p. ??) of the system

Ax = b � −x ≤ 0 � x ≤ u

if and only if the rows A � ·, � ∈ V , and the unit vectors ±ei ∈ RE, i ∈ I ⊆ E,
that correspond to relations satisfied with equality contain a basis of RE. Since
rank A = |V | − 1 (cf. Ex. 1.7), this is equivalent with saying that

xi = 0 or xi = ui for i ∈ I , with |I| = |E| − |V | + 1
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r

s

FIGURE 1.9. The initial tree T

and the columns A·i with i
�∈ I form a column basis of A. By Theorem 1.4, the

latter is equivalent with the fact that the A·i, i
�∈ I, correspond to a spanning tree.

�

EX. 1.19. Suppose x ∈ RE is a feasible solution of
�
P
�

but not a tree solution. So there
exists a circuit C ⊆ {e ∈ E | 0 � xe � ue} with incidence vector, say, z ∈ RE. Show that
x is a proper convex combination of the feasible solutions x+ � z resp. x− � z, ��� 0 (and
consequently, x is not a vertex).

Next we characterize optimal tree solutions. As in the case of min cost paths, we
consider the dual program and node potentials. Here, our dual pair of programs is

�
P � min cTx

s � t � Ax = b
x ≤ u
x ≥ 0

and
�
D � max yTb − zTu

s � t � yTA − zT ≤ cT

z ≥ 0 �

Apart from the additional edge variables ze, corresponding to the capacity con-
straints xe ≤ ue, the dual problem (D) looks like the dual of the min cost path
problem (which is not surprising). In some sense, the new dual variables ze play
only a secondary role: If y ∈ RV is any given node potential, there is a unique
“optimal” choice for a corresponding z ∈ RE such that

�
y � z � is dually feasible.

Since u � 0, we want to choose each ze ≥ 0 as small as possible so as to maximize
the dual objective function. In view of the constraints yTA− z ≤ cT we therefore
choose z ∈ RE according to

(1.5) ze =
{

0 if yTA· e ≤ ce

yTA· e − ce otherwise.

As in the case of min cost paths, we may always restrict ourselves to normalized
node potentials y ∈ RV , satisfying yr = 0.
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Let now x ∈ RE be a feasible tree solution of
�
P � . The corresponding tree T ⊆ E

uniquely determines a normalized potential y ∈ RV satisfying yTA· e = ce for all
e ∈ T , i.e.,

(1.6) y � − y � = ce for all e = � ������� ∈ T �

As before, we can easily compute y along paths in T , starting with the root r
and yr = 0. Note that these paths are in general not directed since T need not be
directed. If � ∈ V and P� ⊆ T is the unique r− � path in T , then P� = P+� ∪ P−� ,
where P+� is the set of edges directed from r towards � and P− is the set of
oppositely directed edges. Computing the y-values along P� , we find

y � = c
�
P+� � − c

�
P−� ���

The node potentials y � can be interpreted as follows. Suppose our current T and
corresponding tree solution x are such that we could (still) send additional flow
from r to each node � ∈ V along the unique r− � path P� ⊆ T without violating
the capacity constraints. In other words, suppose

x � u on T+ and x � 0 on T− �

In this case, T and x are called strongly feasible. (Note that our initial T and x
are strongly feasible since T = T+ and x = 0 on T (cf. Figure 1.9)). To send
additional flow from r to � along P� , we would increase x on P+ and decrease x
on P−. Sending one unit of flow from r to � this way would therefore increase
the total cost by y � = c

�
P+� � − c

�
P−� � . In this sense, y � can be interpreted as the

“current cost of one unit flow” at � ∈ V .

Having computed the potential y ∈RV corresponding to T via (1.6), we determine
the corresponding z ∈ RE according to (1.5). Since x and

�
y � z � are primally

resp. dually feasible, we obtain the following weak duality inequality:

(1.7) cTx ≥ �
yTA− zT � x = yTAx− zTx ≥ yTb− zTu

with equality if and only if x and
�
y � z � are optimal.

Consider (1.7) in more detail. The second inequality in (1.7) can only be strict if
we have ze � 0 and xe � ue for some e ∈ E. Since z= 0 holds on T (by definition
of y and z), this can only happen for e ∈ E\T . Furthermore, ze � 0 is equivalent
to yTA· e � ce. Summarizing, the second inequality in (1.7) is strict if and only if
there is some e = � ����� � ∈ E\T with

y � � y � + ce and xe � ue �

The first inequality in (1.7) is strict if and only if xe � 0 and ce � yTA· e− ze holds
for some e ∈ E. In view of (1.5) and (1.6), the latter can occur only if e ∈ E \ T
and ze = 0. So the first inequality in (1.7) is strict if and only if there is some
e = � ������� ∈ E\T with

y � � y � + ce and xe � 0 �
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Summarizing, we have deduced the following characterization of optimal solu-
tions.

THEOREM 1.8. Let x be a feasible tree solution corresponding to T and let
�
y � z �

be defined by (1.5) and (1.6). Then x and
�
y � z � are optimal for (P) and (D)

if and only if each non-tree edge e = � ������� ∈ E\T satisfies the following two
conditions:

(i) y � � y � + ce ⇒ xe = ue

(ii) y � � y � + ce ⇒ xe = 0.

�

These optimality conditions fit our interpretation of y � as the cost of one unit of
flow at � nicely: If flow is more expensive at � as compared to the cost at � plus
the cost of transporting it from � to � along e, then we should send as much
flow as possible through e. In the opposite case we should send the least possible
amount (namely 0) through e.

The same intuition also tells us what to do in case x and
�
y � z � are not yet optimal.

Suppose e ∈ E\T violates either (i) or (ii) of Theorem 1.8. We then call e an
infeasible edge of TYPE 1 resp. TYPE 2. So an infeasible edge e = � ������� ∈ E\T
yields one of the following (recall that x = u or x = 0 outside T):

TYPE 1: y � � y � + ce but xe = 0
TYPE 2: y � � y � + ce but xe = ue.

In the first case, we try to increase xe. In the second case, we try to decrease xe.
Let C ⊆ T ∪ e be the unique circuit oriented such that e ∈ C+ if e is of TYPE 1
and e ∈ C− if e is of TYPE 2. Increasing x along C means to increase x on C+ and
decrease x on C− by some amount � ≥ 0 until some edge h ∈ C becomes tight,
i.e., x reaches its upper capacity bound xh = uh or lower capacity bound xh = 0
on h. This adjustment results in a new tree solution x′ with tree T ′ = �

T ∪ e � \h.

Passing from a basic feasible solution x corresponding to the tree T to a “neigh-
boring” basic feasible solution x′ corresponding to T ′ = �

T ∪ e � \h is a step in
the simplex algorithm. Therefore, the algorithm proceeding this way is called the
Network Simplex Algorithm for min cost flow. We summarize it as follows:
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Network Simplex Algorithm

INIT: Start with the initial tree T = T+ and corresponding tree
solution x (with x = 0 on T , cf. Figure 1.9).
Compute the potential y corresponding to T .

ITER: WHILE an infeasible e ∈ E\T exists DO

BEGIN

Increase x on C ⊆ T ∪ e (by an amount � ≥ 0)
until some h ∈ C becomes tight.
Replace T by

�
T ∪ e � \h and update y.

END

Cycling and Finiteness. As in the case of min cost path (or general linear pro-
gramming) problems, also a network simplex step can be degenerate in the sense
that it does not necessarily change the current primal solution x. This situation
occurs when some edges of C are already tight for � = 0. Such edges are called
blocking edges as they prevent us from increasing x along C by a positive amount.

In practice, degenerate steps occur quite often when solving min cost flow prob-
lems. Although almost never observed in practice, it is theoretically not impossi-
ble that we return to the same tree T ⊆ E after a sequence of degenerate simplex
steps. In such a case of cycling, the Network Simplex Algorithm would iterate
indefinitely. (Hence it is not an ”algorithm” in the strict sense!)

Theoretically, cycling could be avoided, for example, with the lexicographic pivot
rule (cf. Chapter ??). Alternatively, we may choose the leaving edge h ∈ C in
each iteration according to the so-called leaving arc rule we discuss below. This
simple rule not only prevents cycling but also ensures that strong feasibility of x
and T is maintained in each step. To derive this rule, let us look at an iteration
T → �

T ∪ e � \h as indicated in Figure 1.10 below.

=⇒

r

�

C

�

e
�

hC

r

�

C

�

e
�

h

FIGURE 1.10. TYPE 1 infeasibility
�
y � � y � + ce

�
xe = 0

�



28 1. NETWORK FLOWS

=⇒

r

�

C

�

e
�

C

r

�

C

�

e
�

h h

FIGURE 1.11. TYPE 2 infeasibility
�
y � � y � + ce

�
xe = ue

�

Let � C denote the vertex of C in which the two paths from r to the endpoints of e
split (cf. Figure 1.10). When we try to increase x along C, a number of edges on
C may become tight at the same time. So the question arises which of these we
should chose as the leaving edge h ∈ C.

A moment’s thought reveals that if we want to maintain strong feasibility of x and
T , then there is a unique choice for the tight edge h ∈ C leaving T :

• We must choose h to be the first tight edge we encounter
when traversing C according to its orientation, starting in � C.

This is exactly the leaving arc rule.

EX. 1.20. Show that the Network Simplex Algorithm with the leaving arc rule maintains
strong feasibility in each step. (Note that when passing from T to T ′, some edges in C
that are forward edges in T become backward edges in T ′ and some backward edges in
T may become forward edges in T ′ (which ones?))

To show that the leaving arc rule also prevents cycling, consider a degenerate
step T → T ′ = �

T ∪ e � \h. Let P denote the path we traverse when we follow C
according to its orientation, starting in � C until we arrive at e. Since the current
flow x and T are strongly feasible, none of the edges on P can be blocking. So h
is the first blocking edge we encounter on C after traversing e. (In the situation
indicated in Figure 1.10 we would have xh = 0.) In particular, the new tree T ′ =�
T ∪ e � \h contains P.

The node potential y′ corresponding to T ′ can be obtained by updating y as fol-
lows. Removing e = � ������� splits T ′ into two components T ′1 and T ′2. One of
them, say T ′1, contains the root and the other does not. In view of (1.6), we find
that y′ is obtained by increasing or decreasing y simultaneously on all nodes of
T ′2 until the resulting y′ satisfies y′� = y′� + ce. Since P ⊆ T ′1, we see that � ∈ T ′1
and � ∈ T ′2 in case e is a TYPE 1 infeasible edge and � ∈ T ′1, � ∈ T ′2 in case e
is a TYPE 2 infeasible edge (cf. Figures 1.10 and 1.11). Hence in both cases,
y′ is obtained by decreasing the y-values on T ′2 by |y � − y � − ce| � 0. So each
degenerate step decreases some node potentials. Therefore cycling cannot occur.
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As a consequence of the finiteness of the Network Simplex Algorithm we are lead
to the following integrality result.

THEOREM 1.9. Consider the min cost flow problem
�
P � min cTx s � t � Ax = b � 0 ≤ x ≤ u �

If
�
P � is feasible and u and b (i.e., the prescribed flow value f ) are integral, then�

P � has an integral optimal solution x ∈ ZE.

Proof. The initial solution is integral and the Network Simplex Algorithm main-
tains integrality if all capacity bounds are integral.

�
REMARK. The Network Simplex Algorithm is perhaps the most popular algorithm for
solving min cost flow problems in practice. We should point out, however, that it is not
theoretically efficient (in the sense of ”polynomiality” within the complexity models we
discuss in Chapter ??). Several special polynomial time algorithms for min cost flow
problems have been designed, but their treatment falls outside the scope of this book.
The interested reader may consult [2] or [12].

The Assignment Problem. The best-known application of the min cost flow
model is the assignment problem. Consider two disjoint sets I and J consisting
of n elements each. We are to assign the elements in I to those in J in such a
way that each i ∈ I is assigned to exactly one j ∈ J and each j ∈ J is assigned to
exactly one i ∈ I. Assigning i ∈ I to j ∈ J costs a certain amount ci j. We want
an assignment that minimizes the total cost. Such an assignment can be found as
a min cost flow as follows. We introduce directed edges

�
i � j � for i ∈ I and j ∈ J.

Then we add a root r and sink s as we did for the maximum bipartite matching
problem.

J

r s

I

FIGURE 1.12. The corresponding network

The edges from I to J have edge costs ci j. All other edges have cost zero. Each
edge has upper capacity u = 1.

The Network Simplex Algorithm can then be used to compute a cost minimal
flow of value n = |I| = |J|. The solution x will be integral (cf. Theorem 1.9), i.e.,
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each edge has flow xe = 0 or 1. Those edges from I to J which carry a flow of 1
correspond to an optimal assignment.



List of frequently used Symbols

R set of real numbers
N � Z � Q set of natural, integer, rational numbers
Rn Euclidean n-space
Rn
+ set of non-negative vectors in Rn

RE set of real vectors indexed by the set E
Rm×n set of real m× n matrices
Sn×n set of real symmetric n× n matrices
x ∈ Rn column vector with components x1 �
������� xn

‖x‖ Euclidean norm
U �

�
x � � -neighborhood of x

e1 ��������� en standard unit vectors in Rn

〈x|y〉 inner product
xTy standard inner product in Rn

A = �
ai j � ∈ Rm×n real

�
m× n � matrix

AT transpose of A
Ai· � A· j row vectors, column vectors of A
A ◦B =

∑

i

∑

j ai jbi j “inner product” of matrices

‖A‖F =
√

A ◦A Frobenius norm of the matrix A.
A � 0 positive semidefinite matrix (p.s.d.)
A � 0 positive definite matrix
A � B A−B is positive semidefinite
I unit matrix
diag

�
d1 ��������� dn � diagonal matrix

α vector with all components equal to � ∈ R

span A linear hull (span) of a set A
aff A affine hull (affine span) of a set A
cone A convex cone of a set A
conv A convex hull of a set A
cl C closure of a set C
int C interior of a set C
L⊥ orthogonal complement of L
C0 dual cone of C
Ppol polar of P

31



32 LIST OF FREQUENTLY USED SYMBOLS

[x � y] line segment between x � y ∈ Rn

P
�
A � b � polyhedron of solutions of Ax ≤ b

ker A kernel of the matrix A

∇ f
�
x � =

( � f
�
x �

� x1
�
�������

� f
�
x �

� xn

)

gradient of f : Rn→ R at x (row vector)
[∇ f

�
x � ]T or ∇T f

�
x � transpose of the gradient (column vector)

∇ f
�
x � =

( � fi
�
x �

� x j

)

Jacobian of f : Rn→ Rm at x
[∇ f

�
x � ]T or ∇T f

�
x � transpose of the Jacobian

∇xg
�
x � y � partial derivative with respect to the x-variable

∇2 f
�
x � Hessian of f : Rn→ R at x

�
f
�
x � subdifferential of f : Rn→ R at x

log logarithm to base 2
ln natural logarithm

〈q〉 size of q ∈ Q

〈x〉 size of x ∈ Qn

〈I〉 size of a problem instance I
[ � ] nearest integer
d � e, b � c smallest integer ≥ � resp. largest integer ≤ �

� � l � o � g � without loss of generality
⊆ containment
⊂ proper containment



Bibliography

[1] A.V. Aho, J.E. Hopcraft and J.D. Ullman, The design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, (1974).

[2] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice Hall, New Jersey,
(1993).

[3] Atkinson K.E., Numerical Analysis, Wiley, New York, (1988).
[4] A. Bazaraa, H. Sherali and C. Shetty, Nonlinear Programming, John Wiley, New York,

(1993).
[5] R.E. Bellman, On a routing problem, Quarterly of Applied Mathematics, 16, 87-90, (1958).
[6] R.C. Bland, New finite pivoting rules for the simplex method, Mathematics of Operations

Research, 2, 103-107, (1977).
[7] L. Blum, F. Lucker, M. Shub and S. Smale, Complexity and Real Computation, Springer,

(1997).
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