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CHAPTER 1

Multicommodity Flows

Many flow optimization problems we encounter in real life are more complex than
the ordinary min cost flow problem we studied in the last chapter. In particular,
quite often we have to deal with a number of “overlapping” flows simultaneously.
For example, in an electronic network, there are several data streams to be routed
through the network simultaneously. Similarly, in a traffic network, we usually
have a number of source-sink or origin-destination pairs (O-D pairs) and traffic
flows between them. Thus let us assume that, instead of a single source-sink
pair

�
r � s � , we are given a finite number of O-D pairs

�
rk � sk � , k = 1 ��������� K. For

each O-D pair there is a corresponding demand dk ≥ 0 of flow from rk to sk.
For example, in an electronic network, dk would specify the amount of data to
be routed from rk to sk. Correspondingly, we introduce flow variables x � k � ∈ R

E,
k = 1 ��������� K, with each x � k � being a flow value dk from rk tp sk. The goods
(data, traffic) to be routed between the various O-D pairs are treated as different
commodities. So we also refer to x � k � as a flow of commodity k, k = 1 �	������� K. This
explains the term multicommodity flows. As in the ordinary (single commodity)
case, each edge e ∈ E has an associated cost for sending one unit of flow through
e. These edge costs may depend on the commodity. So let us assume that we are
given edge costs c � k � ∈ R

E, k = 1 ��������� K.

The flows x � k � give rise to a total flow x =
∑

k
x � k � in the network. Assuming

capacities u ∈ R
E, the total flow is subject to capacity constraints x ≤ u. (This is

what causes the additional difficulty. If there were separate capacities u � k � for each
commodity k, our problem would decompose into K independent min cost flow
problems.) These capacity constraints

∑
k

x � k � ≤ u are also referred to as bundle

constraints.

Summarizing, the min cost problem for multicommodity flows can be stated as

(1.1)

z∗ = min
∑

k
c � k � x � k �

Ax � k � = b � k �
∑

k
x � k � ≤ u k = 1 ��������� K

x � k � ≥ 0 �
1
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where b � k � ∈ R
V has components dk in position sk and −dk in position rk and is

zero elsewhere. (To simplify the notation, we write c � k � x � k � instead of
�
c � k � � Tx � k � .)

EX. 1.1. Consider the network consisting of 3 nodes and 6 edges as in figure
1.1 below. There are 3 O-D pairs

�
rk � sk � . All capacities are equal to 1 and

edges costs are equal to 3 on the direct links
�
rk � sk � and 1 otherwise (for each

commodity).

r1 = s2

r3 = s1 r2 = s3

FIGURE 1.1. Three O-D pairs
�
rk � sk � .

Solve the corresponding min cost multicommodity flow problem.

Of course, 1.1 could be solved directly as an LP. In practice, however, at least for
large instances with many O-D pairs, this approach is computationally infeasible.
Alternative solution methods have been proposed, taking advantage of the special
(network) structure of the constraints. We present some of them in the following.

Remark. In contrast to the single commodity case, the existence of integral op-
timum flows x � k � in 1.1 is no longer guaranteed by the integrality of the problem
data u and dk (cf. Ex 1.1). Indeed, computing integral solution of (1.1) turns out
to be NP-hard.

1.1. Capacity Allocation

Assume we split the total available capacity u ∈ R
E into K capacity vectors r � k � ≥

0, one for each commodity k:

(1.2) u = r � 1 � + ����� + r � k � �
Allocating capacity r � k � ∈ R

E to commodity k decomposes the corresponding min
cost problem into K independent min cost flow problems
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(1.3)
zk

(
r � k �

)
:= min c � k � x � k �

Ax � k � = b � k �
0 ≤ x � k � ≤ r � k �

So a capacity allocation r =
(
r � 1 � ������� � r � K �

)
results in a corresponding total cost

(1.4) z
�
r � =

∑

k

zk

(
r � k �

)
�

Problem (1.1) is now equivalent to the minimization of z
�
r � subject to (1.2). The

function z
�
r � is a piecewise linear convex function (cf. Ex. 1.2), so we may apply

the subgradient method (cf. Appendix) to solve the minimization problem. The
subgradients of z can essentially be read off from the dual in (1.3), as explained
below.

EX. 1.2. Show that z :
�
R

E � k → R defined by (1.4) is a piecewise linear convex
function.

Subgradient Computation. In order to apply the subgradient method for min-
imizing z

�
r � , subject to (1.2), we must be able to compute subgradients of z re-

stricted to the affine space

H := {r =
(
r
�
1 � ��������� r � K �

)
| u =

∑

k

r � k � } ⊂
�
R

E � K �

Given r ∈ H with finite z
�
r � ∈ R (i.e., assuming that all problems (1.3) are feasible

for r = r), we are thus to compute a vector p ∈
�
R

E � K such that

z
�
r � ≥ z

�
r � + pT � r − r � ∀r ∈ H �

Such a subgradient p is easily obtained from an optimum dual solution, as we will
see. First note that, by LP duality,

z
�
r � = min

∑

k

c � k � x � k � = max
∑

k

b � k � y � k � − r � k � w � k �

Ax � k � = bk

0 ≤ x � k � ≤ r � k �
y � k � A − w � k � ≤ c � k �

w � k � ≥ 0

If y =
�
y � 1 � ������� � y � K � � and w =

�
w � 1 � ��������� w � K � � are optimum dual solutions, we

thus find (with b =
�
b � 1 � ������� � b � K � � )

z
�
r � = bTy − rTw �

Since
�
y � w � is dually feasible for any r ∈ H, we see that

z
�
r � ≥ bTy − rTw � r ∈

�
R

E
+ � K �
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Hence

z
�
r � ≥ z

�
r � − wT � r − r ��� r ∈

�
R

E
+ � K �

Showing that −w is a subgradient of z :
�
R

E
+ � K → R. We claim that a subgradient

of z|H at r can be obtained by projecting w onto the subspace H0 ≤
�
R

E � K corre-
sponding to H. Indeed, let p ∈ H0 denote the projection of −w on H0, i.e., there
exists some q ∈

�
R

E � K such that −w = p + q and q ⊥ H0. Then for any r ∈ H
we have r − r ∈ H0 and hence qT � r − r � = 0, i.e., −wT � r − r � = pT � r − r � . So,
indeed

z
�
r � ≥ z

�
r � + pT � r − r ��� r ∈ H �

as claimed.

Remark. Recall that the dual variables w � k � can be interpreted as marginal costs,
i.e., w � k �e is the prize we would be willing to pay for increasing r � k �e by one unit.
The subgradient method proceeds by moving from a current r into the direction
of the negative subgradient to a new capacity allocation r′

= r +
�
p for some

stepsize
���

0. So it seeks to move as close as possible (subject to p ∈ H0) into
direction w =

�
w � 1 � �	������� w � k � � .

1.2. Dualizing the bundle constraints

Lagrangian relaxation provides another way of decomposing (1.1) into K inde-
pendent subproblems. Dualizing the bundle constraints with Lagrangian multi-
pliers w ∈ R

E
+, we arrive at the relaxation

L
�
w � := min

∑

k

�
c � k � + wT � x � k � − wTu(1.5)

Ax � k � = b � k �
x � k � ≥ 0

For given w ≥ 0, problem (1.5) is equivalent to K independent min cost path
problems, relative to the modified edge costs c̃ � k � = c � k � + w. So L

�
w � is easy to

compute, given w ≥ 0. The function L : R
E
+ → R is a piecewise linear concave

function (cf. Ex 1.3). So, again, the optimum z∗ of (1.1) can be found by solving
a convex minimization (concave maximization) problem, the Lagrangian dual

(1.6) z∗ = max
w≥0

L
�
w ���

And, again, the subgradient technique is the right choice for solving (1.6).

EX. 1.3. Show that L : R
E
+ → R is a piecewise linear concave function.
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Subgradient computation. Given w ≥ 0, we compute corresponding optimal
solutions x � k � of (1.5), so that

L
�
w � =

∑

k

c � k � x � k � + wT � ∑

k

x � k � − u ���

For arbitrary w ≥ 0 we have, by definition of L
�
w � ,

L
�
w � ≤

∑

k

c � k � x � k � + wT � ∑

k

x � k � − u ���

Hence

L
�
w � ≤ L

�
w � +

� ∑

k

x � k � − u � T � w − w ���

revealing d =
∑

k
x � k � − u as a subgradient of the concave function L at w. The

subgradient method for maximizing the concave function L would (essentially)
move from the current w into direction d =

∑
x � k � − u. Interpreting � e ≥ 0

as an additional edge cost (toll) on edge e ∈ E, the subgradient method would
thus increase the current edge toll � e ≥ 0 in case e is overloaded, i.e.,

∑
x � k �e

�

ue and decrease the current edge toll � e
�

0 whenever the edge capacity is not
completely used up by the current flows x � k � .

EX. 1.4. Analyze how the subgradient method proceeds to solve the problem from
Ex. 1.1, starting with w � 0 � = 0 and step sizes

�
t → 0,

∑
t

�
t = ∞.

1.3. Path Decomposition (Simplex Method with Column
Generation Technique)

Let Pk denote the set of (incidence vectors of) directed rk − sk paths. As we
assume c � k � ≥ 0, the flow x � k � solving (1.1) can be assumed to be acyclic and
hence decompose into simple path flows

x � k � =
∑

P∈Pk

�
P P �

(Recall that we use P to denote both a path P ⊂ E and its incidence vector in
{0 � ±1}E.)

We may thus restate (1.1) as follows
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(1.7)

min
∑

k

∑

P∈Pk

�
Pc � k � � P �

∑

k

∑

P∈Pk �
P3e

�
P ≤ ue � e ∈ E

∑

P∈Pk

�
P = dk � k = 1 ������� � K

�
P ≥ 0

The problem formulation (1.7) is an LP with only m + K constraints – as opposed
to m + n K constraints in (1.1). On the other hand, (1.8) involves a huge number
of variables

�
P ≥ 0. Correspondingly, the dual of (1.7) has a huge number of con-

straints, one for each path P ∈ ∪P , and a small number m + K of variables. Let
us denote the dual variables corresponding to the demand constraints in (1.7) by�

k, k = 1 ������� � K and the dual variables corresponding to the capacity constraints
by � e ≥ 0, e ∈ E. The dual of (1.7) then becomes

(1.8)

max
∑

k

dk
�

k − uTw

�
k − w

�
P � ≤ c � k � � P � � P ∈ Pk � k = 1 ��������� K �

w ≥ 0

Remark. Just like in 1.2, the � e ≥ 0 may be interpreted as edge tolls. The
variables �

k, as we shall see, represent min path costs, relative to the modified
edge weights c̃ � k � = c � k � + w.

The important observation to make is that we can check dual feasibility of
�
γ � w �

very easily by solving K min cost path problems relative to the modified edge
costs c̃ � k � . This allows us to implement the Simplex Method for solving (1.7)
rather efficiently in practice.

To work this out in detail, assume
� �

P � is a current feasible basic solution of (1.7).
Then

� �
P � satisfies some of the capacity constraints, say, those corresponding to

e1 ��������� et, t ≥ 0, with equality. Being a basic solution,
�

then has at most K + t
nonzero components, say,

�
P ≥ 0 for P ∈ B = ∪Bk ⊆ ∪Pk �

�
P = 0 for P �∈ B �

with |B | = K + t.

We find a complementary dual solution
�
γ � w � by setting � e = 0 for e ∈ E\{e1 ��������� et}

and computing the remaining K + t dual variables � e1 �	������� � et and �
1 �	������� �

K so
that
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�
k − w

�
P � = c � k � � P ��� P ∈ Bk � k = 1 ��������� K �

In other words, all dual constraints corresponding to basic variables
�

P ≥ 0, P ∈

B , are satisfied with equality. Due to complementarity, the primal
� �

P � and the
dual

�
γ � w � then have the same objective value (cf. Ex 1.5). So in case

�
γ � w � is

dually feasible, we have arrived at a primal-dual pair of optimal solutions.

To check dual feasibility, it suffices to check the dual path constraints
�

k − w
�
P � ≤ c � k � � P ��� P ∈ Pk �

Indeed, assume that
�
γ � w � satisfies all these path constraints, but some � e are

negative. Then increasing these negative � e to 0 would result in a dually feasible
solution

�
γ � w′ � with an even larger objective value, which is impossible.

Hence, in case
�
γ � w � is not dually feasible, we can easily detect a violated path

constraint

�
k − w

�
P � � c � k � � P �

for some P ∈ Pk by min cost path computations. We then add P to the current
basis B and proceed to a new basis B ′ = B + P (in case the corresponding basis
solution

� � ′
P � satisfies t + 1 capacity constraints with equality) or to B ′ = B +

P − P′, where the path P′ that is to leave the current basis is determined in the
usual way.

Remark. The constraint matrix of (1.8) essentially has columns corresponding to
the paths P ∈ P . The advantage of the Simplex approach described above is due
to the fact that a Simplex step can be carried out without maintaining the (huge)
matrix explicitely. Rather, in each step we only maintain the current basis B and
generate a new path P (a new column) to enter the basis. For this reason, the
above approach is an instance of Simplex Method with Column Generation.

EX. 1.5. Show that the primal
� �

P � and the corresponding complementary dual�
γ � w � yield the same objective value.


