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Introduction

The goal ofMathematical Programmings the design of mathematical solution
methods for optimization problems. These methods shoulddmithmicin the
sense that they can be converted into computer programs without much effort.
The main concern, however, is not the eventual concrete implementation of an al-
gorithm but the necessary prerequisit thereof: the exhibition of a solution strategy
that hopefully makes the ensuing algorithm “efficient” in practice. Mathematical
programming thus offers an approach to the theory of mathematical optimization
that is very much motivated by the question whether certain parameters (solu-
tions of an optimization problem or eigenvalues of a matrix) not only exist in an
abstract way but can actually be computed well enough to satisfy practical needs.

Mathematical optimization traditionally decomposes into three seemingly rather
disjoint areasDiscrete(or combinatoria) optimization linear optimizationand
nonlinear optimization Yet, a closer look reveals a different picture. Efficiently
solvable discrete optimization problems are typically those that can be cast into
the framework of linear optimization. And, as a rule of thumb, nonlinear problems
are solved by repeated linear (or quadratic) approximation.

The dominant role of linearity in optimization is not surprising. It has long been
known that much of the structural analysis of mathematical optimization can be
achieved taking advantage of the language of vector spaces (see, for example, Lu-
enberger’s elegant classic treatment [55]). Moreover, it appears to be an empirical
fact that not only computations in linear algebra can be carried out numerically
efficiently in practice but that, indeed, efficient numerical computation is tant-
amount to being able to reduce the computational task as much as possible to
linear algebra.

The present book wants to introduce the reader to the fundamental algorithmic
techniques in mathematical programming with a strong emphasis on the central
position of linear algebra both in the structural analysis and the computational
procedures. Although an optimization problem often admits a geometric picture
involving sets of points in Euclidean space, which may guide the intuition in the
structural analysis, we stress the role of pinesentatiorof a problem in terms of
explicit functions that encode the set of admissible solutions and the quantity to
be optimized. The presentation is crucial for the design of a solution method and
its efficiency.



iv INTRODUCTION

The book attempts to be as much self-contained as possible. Only basic knowl-
edge about (real) vector spaces and differentiable functions is assumed at the out-
set. Chapter 1 reviews this material, providing proofs of facts that might be not
(yet) so familiar to the reader. We really begin in Chapter 2, which introduces the
fundamental techniques of numerical linear algebra we will rely on later. Chap-
ter 3 provides the corresponding geometric point of view. Then linear programs
are treated.

Having linear programming techniques at our disposal, we investigate discrete
optimization problems and discuss theories for analyzing their "complexity” with
respect to their solvability by "efficient” algorithms. Nonlinear programs proper
are presented in the last three chapters. Convex minimization problems occupy
here a position between linear and nonlinear structures: while the feasible sets of
linear programs arénite intersections of half-spaces, convex problems may be
formulated with respect tmfinite intersections of half-spaces. Convex optimiza-
tion problems mark the border of efficient solvability. For example, quadratic
optimization problems turn out to be “efficiently” solvable if and only if they are
convex.

The book contains many items markegk”. These items are intended to provide
both "examples” and "exercises” to which also details of proofs or additional ob-
servations are deferred. They are meant to be an integral part of the presentation
of the material. We cordially invite the interested reader to test his or her under-
standing of the text by working them out in detail .



CHAPTER 1

Real Vector Spaces

This chapter is a brief review of the basic notions and facts from linear algebra
and analysis that we will use as tools in mathematical programming. The reader
is assumed to be already familiar with most of the material in this chapter. The
proofs we sketch here (as well as the exercises) are mainly meant as reminders.

1.1. Linear and Affine Spaces

We discuss mathematical programming problems to a very large extent within
the model of vector spacés (or W etc) over the fieldR of real numbers. The
fundamental operations that define the structure of a vector space are: adding
two vectors and multiplying a vector withsxcalar (here: a real number € R).

So we can carry out algebraic manipulations taking advantage of the following
properties:

e If v, w are elements of the vector spaéethen the sunz = v + w is an
element ofV.

e If ve VisavectorinV andi € R a scalar, them = Av is a vector inV.

e The order in which vectors are added is irrelevant: w = w 4+ v.

These properties reflect teéementary operatiornt® whichall(!) computations in
linear algebra reduce. We note that the vebter0O- v € V is uniquely determined
(and independent of the particular choiceva V).

There are two especially important examples of vector spaces in mathematical
programming:
(1) V = R", the vector space of ati-tuplesx = (X4, ..., X,)' of real num-
bersx; € R. Addition and scalar multiplication of vectorsIRf' is carried
out componentwise.
(2) V =R™", the vector space of allm x n)-matricesA = (a;) of real
numbersa;;, wherei =1,...,m, j=1,...,n. Addition and scalar
multiplication is again componentwise.

REMARK. Having the full fieldR of real numbers available as field of scalars is impor-
tant mainly when we deal witlimits (as they are implicit in the notions ebntinuousor
differentiablefunctions), or when we want to take square roots. In most other cases, it
would suffice to restrict the scalars to the subfi@ld R of rational numbers. Indeed, the
numerical parameters one usually encounters and deals with in the computational practice
are rational numbers. For convenience, we will usually assRrae the underlying field
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2 1.REAL VECTOR SPACES

of scalars.

While theoretical aspects of vector spaces are often fruitfully studied admitting scalars
from the fieldC of complex numbers, this generality is less "natural” in mathematical
programming, where pairs of scalars often must be compared with respect to the order-
ing X < y of the real numbers (which cannot be extended to the complex numbers in an
algebraically "reasonable” fashion).

We think of a vectox € R" usually as aolumn vectari.e., as a(n x 1)-matrix:
X1
Xn
which we often abbreviate as= (x;). Thetransposeof x is the corresponding
row vectorx” = (X, ..., X,) .

A matrix A € R™" can be thought of as either an ordered set oblumn vec-
tors A = (ay,...,amj))’ € R™ or as an ordered set ofi row vectorsA; =
(&1, ..., apn) of length n Alternatively, a matrixA € R™" can be viewed as
a vector withm- n componentsy;, i.e., as an element iR™".

Of particular importance is thelentitymatrix| = (e;) € R™", defined by

1 =
A R

Then column vector®y, ..., e, of | are the so-callednit vectorsof R".

A linear subspacef the vector spac¥ is a (non-empty) subs&V C V that is a
vector space in its own right (relative to the addition and scalar multiplication in
V). We then say thatV is closedwith respect to the operations of adding vectors
and multiplying them by scalars.

Because the intersection of linear subspaces is again a linear subspace, we ob-
serve: For every subs& of the vector spac¥®/, there exists a uniqgue smallest
linear subspace spa) called thespan(or linear hull) of S that containsS.

The vectorz € V is alinear combination of the vectorsvy, ..., v, if there are
scalarsiy, ..., Ax € R such thatz = Aqv; + ... + Akvk. Note that every linear
combination results from a finite sequence of elementary operations:

Zy = MV1, Z=2Z1+ AV2, ..., Zx = Zk_1 + AkVk -

EX. 1.1. Show:spanS consists of all (finite) linear combinations of vectors in S.

If vy, ..., Vv, are the column vectors of the matdxe R™", andx = (Xq, ..., X,)"
is a vector of coefficients;, we describe the resulting linear combination in ma-
trix notation:

AX=XVi+ ...+ %XV, €eR™.
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Inthis case, spafvy,...,Vvy} ={Ax e R™|x € R"} = col A is called thecolumn
spaceof A. Similarly, the linear hull of the row vectors & is therow space
row A. Interchanging the rows and columns/((i.e, passing fromA = (a;) to
its transposeA™ = (@), wherea;; = a;), we have

rowA =col AT .

A non-empty subse® C V of vectors is called (linearlyindependenif no vector
s e Scan be expressed as a linear combination of vecto®,ifs}.

Ex. 1.2. Show:{vy, ..., vk} is independent if and only ¥ivi + ... + Axvk = O implies
Ai=0foralli=1,... k.

A minimal subseB C V such thatv = span B is abasisof V. Note that a non-
empty basis is hecessarily an independent set.dlinensiorof V is the number
of elements in a basiB:

dmV = |B|.

From linear algebra, we know that any two finite bases of a vector space have the
same cardinality. This fact implies that "dik¥ is well-defined and equals the
maximal size of an independent subseVof(There are many interesting infinite-
dimensional vector spaces. For the applications in mathematical programming,
however, we will always be concerned with finite-dimensional vector spaces).

A finite-dimensional vector spadéwith basisB = {vg, ..., v,} can be identified
with R" in the following way. Becaus® is linearly independent, each vector
v € V has a unique representation

V=XVi+...+XVn, wWherex=(Xg,...,%,) €R".

So we can represent the element V by the vectorx € R" of its coordinates
with respect taB. It is not difficult to verify that this representation is compatible
with the operations of adding vectors and multiplying vectors by scalarf.

REMARK. The identification oV with R" depends, of course, on the baBis/e choose
for the representation. Different bases lead to different representations.

In the caseV = R", theunit vectorsey, ..., &, € R" form the so-calledtandard
basis With respect to the latter, a vecter= (X1, ..., X,)" € R" has the repre-
sentation

X=X + ...+ X€ .

An affine subspacéalso called dinear variety) of the vector spac¥ is a subset
L C V such that eitheL. = @ or there exists a vectqr € V and a linear subspace
W C V with the property

L=p+W={p+w|weW}.
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It is easy to verify that the affine subspdce= p’ + W’ equalsL = p + W if and
only if p’ e L andW’' = W. We define thaffinedimension ofL as

dim L — dimw |.f L#4,
-1 ifL=4d.

An affine subspace of dimension 0 is callegaint (and is identified with the
element it contains). Aine is an affine subspace of dimension 1. planeis
an affine subspace of dimension 2. An affine subsgdocef V of dimension
dim H =dimV — 1 is called ahyperplaneof V.

Ex. 1.3. Show:

(a) The linear subspaces are exactly the affine subspaces Owith.
(b) The intersection of affine subspaces is an affine subspace.

A linear combinatiore = A1v1 + ... + AV IS Said to be amffine combinatiomf
Vi, ..., Vg if the scalars,; € R satisfy the conditiorﬁ:‘zl)\i = 1.

EX. 1.4. Show that the subset € V is an affine subspace if and only if L contains all
(finite) affine combinations of elements of L.

For an arbitrary subs&C V, we denote by afSthe set of all finite affine combi-
nations of elements iBand call it theaffine hull(or affine spahof S. By Ex. 1.4,
aff Sis the smallest affine subspace that cont&ns

1.2. Maps and Matrices

Assume thaV andW are vector spaces with bades, ..., v} and{wy, ..., Wn}
respectively. Everyw € V can be uniquely expressed as a linear combination
V = X1V1 + ... + XV, With coefficientsx; € R, and everyw € W as a linear
combinationw = y;w; + ... + YmWp, With coefficientsy; € R.

The mapf : V — Wis said to bdinearif f is“compatible” with the vector space
operations. This means that we have foral € V andx € R:

fu)+ f(v)=fu)+ fv)
f(au) = Af(u).

It follows that the linear mapf is completely determined by the images of the
basis vectors/; and hence by the coefficients that describe these images in
terms of the basis vectorg:

f(Vj) = a1jW1 + W2 + ... + 8mjWn .

So the mapf is "encoded” by thgm x n)-matrix A = (a;): If x is the vector of
coefficients of the vector € V, theny = Ax is the vector of coefficients of the
image f (v) € W. In that sense, a linear map corresponds to a matrix (that also
depends on our choice of bases ¥randW!) Conversely, we can construct a
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linear mapf from a given (n x n)-matrix A as follows. For every basis vectoy,
we define
f(v)) = ajwi + apjWo + ... + amjWn .
Because an arbitrary vectere V can be uniquely expressed as a linear combina-
tionv = x3vq1 + ... 4+ X,Vs, We obtain the well-defined extension

f(v)=x f(v)+ ...+ X F(vn).

The composition of two (or more) linear maps corresponds to the product of their
associated matrices. F:V — W andg: W — Z are linear maps represented
by A € R™" resp.B e R*™ (with respect to fixed bases Wy W andZ), then also

gof:V—> Z, where go f(u)=g(f)),

is a linear map. The matri€ = (c;) € R*" describingg o f is the product
C = BA, i.e, the elementg;; are the inner productsf Section 1.3.1) of the
rows of B with the columns ofA:

m
Cj = Bi.A.j = Zb“a” .
=1

REMARK. The product matriXC = BA admits two "dual” points of view:

m m
Cj=BA;j= Za|jBA| and Cj. =BjA = Zb”AI' .
=1 I=1
That is: Thejth columnC.; is the linear combination of the columns Bfaccording to
the coefficients of thgth column ofA. Dually, theith row C;. is the linear combination
of the rows ofA according to the coefficients of tlié row of B. Hence

rowBA CrowA and colBA CcolB.

The Kernel. If f:V — Wis a linear map and. C V is a linear space, then
f(L) C Wis alinear subspace &Y. Similarly, if L C W is a linear space AV,
thenf~1(L)={ve V| f(v) e L}is asubspace of. In particular, thekerneland
theimageof f, defined by

kerf = {veV]|f(v)=0}CV,
imf = f(V\)CW
are subspaces &f resp.W. Their dimensions are relateth
dim kerf +dimim f =dimV .

(To see this, take a basis of kkrextend it to a basis o¥ and verify that the
extension is mapped to a basis of in) Note that we may usually (or "without
loss of generality” — henceforth abbreviatedo.l0.g.”) assume imf =W, i.e,,

f is surjective(otherwise we simply replac& by W' = im f in our reasoning).
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Ex. 1.5. Use the dimension formula to show that a linear mapRf' — R" is surjective

If f:R"— R™isrepresented bjx € R™" with respect to the standard bases in
R" andR", then

fe) =aer+... +amemn=A, .
Hence the vectox = x;e; + ... + X,€, € R" is mapped to

fX)=xf(e)+...+ X () =XA1+...+XA,=AX

and we have imf = col A. The kernel off (x) = Ax is also referred to as the
kernelof A, i.e,,

kerA = {xeR"|Ax=0}.

Now suppose that (x) = Ax is surjectivej.e., col A = R™. ThenA must contain
m columns, sayA 4, ..., A, that form a basis oR™. Letg: R™ — R™ be the
(unique) linear map with the property(A.j) =e;, j=1,..., m. (Note that the
first e; denotes here thgth unit vector inR", while the secona; is the jth unit

vector inR™.) Sogo f(ej) =ej holds forj =1, ..., m. Therefore, if the matrix
B € R™™ represents, i.e., if g(y) = By, we have

(BA)e; =g forj=1,...m

and conclude thaA € R™" must be of the formBA = [I | N] , wherel € R™™
is the identity matrix andN e R™"=™

Ex. 1.6. Verify thatBA = [l | N] is the matrix that represents f with respect to the
standard basis ifR" and the basigA.1, ..., A} in RM,

In the special casen = n, the compositiomo f =id yields the identity map and
BA =1 € R™. The matrixB € R™" is then the so-callethverseof A € R™",
denoted byA~!. SOA~?A = 1. Moreover,f o g(A ;) = f(e;) = A implies that
also f o g =id and, thereforeAA~! = | holds.

In the general cas@a < n, we observe thag : R™ — R™ (defined byg(A.j) = &)
has an inversg= (defined byg=t(e;) = Aj). In particular,B~! € R™™ exists
and we have

Ax=0 = BAx=0 and (BA)x=0 = Ax =B }BA)x=0,
i.e., kerBA = kerA.

REMARK (ELEMENTARY ROW OPERATIONS. By anelementary row operatioan the
matrix A € R™" we understand one of the operations:

e Addition of one row to another row;
e Multiplication of one row by a non-zero scalar;
¢ Interchange of two rows;
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while keeping the other rows fixed. So elementary row operations consist of elementary
operations on the row vectors Af Hence an elementary row operation can be described
by multiplying A from the left with an matrixB € R™™ (see Ex. 1.7). Because an ele-
mentary row operation can be reversed by a similar operaBidgminvertible. Moreover,

row A = row B~1(BA) C row BA C row A

shows rowBA =row A. In other words: the row space Afis invariant under elementary
row operations.

Ex. 1.7. Design the matriB € R> with the property thaBA arises fromA by sub-
tracting 17 times the first row of\ from the fourth row.

Affine Maps. Restricting ourselves directly td = R" and W = R™ and their
standard bases, we defineaifine map f: R" — R™ as a map of the form
f(x) =Ax—b withAeR™ beR™.

Clearly, the image int of an affine map is an affine subspaceRjt and, con-
versely, thenverse image f1(L) = {x e R" | f(x) € L} of an affine subspace
L C R™Mis an affine subspace &". In particular

f7{0) = {x e R"| f(x) =0}

is an affine subspace &". In casef~1({0}) is non-empty, we may chose an
arbitrary elemenp € f~1({0}) and obtain the representation

f71({0}) = p+ kerA (= {p+Xx|x e kerA}) .
If n=mand f(x) = Ax — b is invertible {.e., A~! exists), f is called anaffine
transformation
1.3. Inner Products and Norms

1.3.1. Inner Products. An inner productonR" is a map(-|-) : R"x R" - R
such that for all vectors, y, z € R" and scalarg € R,

(1.1) (Xly) = (yIx)

(1.2) (AX]y) = A {X]y)

(1.3) (X+VYlz2) = (X|2) + (y|2)

(1.4) (X|x) > 0 if x #£ 0.

By (1.1)-(1.3), an inner product issymmetric bilinear fornand, by (1.4) pos-
itive definite We will usually be concerned with the so-callethndard inner
productfor X = (X1, ..., %) " andy = (y1, ..., Yn)', which is a special case of
the matrix product:

n
(xly) =XxTy ="y

=1

Ex. 1.8. Show thatx|y) = x"y defines an inner product dR".
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It is also useful to consider the standard inner product in the vector &j&ce
of (m x n)-matrices. If we think of two matrice& = (&;) andB = (b;;) in R™"

as two vectors of lengtmnin R™", their inner product should be the sum of the
componentwise products. We will denote this inner product by

m n
AOB:ZZaijbij .

i=1 j=1
REMARK. Defining thetrace of a matrixC = (cjj) € R"™" as the sum of all diagonal
elements,
trC= Z Gi ,
i
one obtaingA o B =tr (ATB) (see Ex. 1.9).

Ex. 1.9. Show:AoB =1tr (ATB),AcB=BoA,AoB =10 (ATB). Give an example
of matricesA, B € R"™" such thatAB # BA .

From the fundamental properties of the inner product, we can derive the inequality
of Cauchy-Schwarz

LEMMA 1.1 (Cauchy-Schwarz)Let (-|-) be an inner product ofR". Then all
vectorsx, y € R"\ {0} satisfy the inequality

(Xly)? < (XIx)(yly) -

Equality holds if and only ik is a scalar multiple of.
Proof. We may assume&|x) = (y|y) = 1 w.l.o.g.(otherwise we could scale, say,
x with a nonzero scalax so that(ix|Ax) = 1, which would just multiply both
sides of the inequality with2.) We then find

0 < xX=ylx—y) = XIx)=2(xly) + {yly) = 2—2(x]y)

0 < (x+ylx+y) = XIx)+2(x|y) +(yly) = 2+ 2(x]y) .
So [(X|y)| <1 = (X|x){yly) . By property (1.4) of the inner product, equality can

only holdifx—y =00rx+y =0, i.e, if x=y orx = —y. The claim follows.
&

Inner Products and Positive Definite Matrices. Let (-|-) : R" x R" — R be an
inner product oiR", and fix a basi8 = {vi, ..., vy} of R". Relative toB, we can
describe the inner product via tlBram matrixof inner products

G=G(V1,...,Vn) = (Gj) = {Vvilvy)) .

The symmetry of the inner product means tkais a symmetricmatrix, i.e.,
G = GT (or equivalently,g; = g; for all i, j). If X = (X,..., %) andy =
(Y1, ..., Yn)" are then-tuples of scalars of the linear combinatiams= x;v; +
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oo+ Xovy andw = y1vi + ... + YpVy, then the bilinearity of the inner product
yields

(1.5) (ulw) =x"Gy = > > gixy; -

i=1 j=1
Moreover, ifx # 0, thenu # 0 andx"Gx = (u|u) > O .

Conversely, let us call the symmetric mat€x= (qj) € R™" positive definitef
x"Qx > 0 holds for allx # 0. ThenQ gives rise to an inner productx|y) =
xTQy (with Q as its Gram matrix with respect to the standard basi"in

REMARK. Our discussion exhibits inner products of finite-dimensional vector spaces
and positive definite matrices as manifestations of the same mathematical phenomenon:
The positive definite matrices are exactly the Gram matrices of inner products. In partic-
ular, the standard inner product BA has the(n x n)-identity matrixl as its Gram matrix
relative to the standard bagis, ..., e,}.

Inner Products and Orthogonal Matrices. Given an inner product|-) : R" x
R" —» R, we say that the vectoss y € R" areorthogonalif (x]y) = 0. (See also
Ex. 1.13.) A system of vectofy, ..., v} in R" is calledorthonormalprovided

1 ifi=]j.
Wilvi) = {o ifi;e}.

Consider nowR" with respect to the standard inner producty) = x'y. The
matrixA € R™"is calledorthogonalif ATA =1 (i.e,, if A=t = AT). This property

means that the column vectdks,, ..., A, of A satisfy
1 ifiei
ATA = (Ae) Ae;=g'g = =
0 ifi#j,
i.e, the columndA 4, ..., A, (and then also the rows @&f) form an orthonormal
basis ofR".

Ex. 1.10. Show thatA € R™" is orthogonal if and only ifx"y = (Ax)T (Ay) holds for
all x,y e R". Prove that the vectors of an orthonormal system are linearly independent.

1.3.2. Norms. We can speak reasonably about the "length” of a vect®"in
only relative to a givemormonR", that is, amay - || : R" — R such that for all
vectorsx,y € R" and scalarg € R,

(1.6) IIX]| >0 for x # 0;
(1.7) IAX]] = [A] - IX]I;
(1.8) IX+yll < IIXII + Iyl

Inequality (1.8) is theriangle inequality
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Every inner product-|-) onR" gives rise to a norm (see Ex. 1.Mia

IXI = v(XIx) .

The norm arising from the standard inner productns theEuclidean norm

IX| = VXTX= /X +...+X2.

REMARK. R" admits also horms that do not arise from inner products (see Ex. 1.14). In
case of ambiguity, the Euclidean norm is denoted Xijs.

Ex. 1.11. Let(-|-) be an inner product oiR".

(a) Use the inequality of Cauchy-Schwarz to show tidt = /(x|x) defines a
norm.

(b) Show that the norm defined (a) satisfies the so-callggarallelogram equality
X+ YIIZ+ X =yl = 2[x[I* + 2[ly||? forall x,y € R".

(c) Let] - || be a norm that satisfies the parallelogram equality. Show that

Xly) = 7(Ix+ y|I% — |Ix — y||?) defines an inner product.

Hint for (c): Verify the claim first for vectors with componentsZirand Q. Deduce then
the statement faR from the continuity of the norm (cf. Section 1.4.2 below).

Extending the Euclidean norm of vectors to matrides (a;) € R™", we obtain
the Frobenius norm

(1.9) [Alle =vVAoA =@l
Ex. 1.12. Show for everA € R™" andx € R": ||Ax|l2 < ||Allr]IX|l2.

Ex. 1.13("Theorem of Pythagoras’)Let(-|-) be an inner product o®" with associated
norm ||x]| = 4/{X|X). Say that the vecta is perpendiculato the vectob if the distance
la—b] fromato b is the same as the distanfa — (—b)|| fromato (=b). Show:

(1.10) Jla—b=la—(=b)| & (ab)=0 < Jal®+|bl?>=|la—b|?.

Ex. 1.14. Define for the vectox = (x1, ..., X)) € R",

Xl = [X|+...+ X (“sumnorm”)

Xlloo = max|x;] (“maximum norm”)
1<i<n

Show that both.||1 and||. ||« are norms but dmotarise from inner products.
(Hint: use Ex. 1.11(b))
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1.4. Continuous and Differentiable Functions

1.4.1. Topology ofR". A norm on the vector spade" allows us to measure
the distance between vectors and, therefore, to specify "neighborhetud$t/e
will investigate these concepts with respect to the Euclidean norm and denote
it simply || - || = || - |l2 (unless explicitly specified otherwise). For two vectors
X,y € R" we define thei(Euclidean) distancas|x — y||. In the casen = 1, of
course, we also use the familiar notation of the absolute viaduey|. (For a
general in-depth treatment of the analysi®Rfhand further details we refee.g.
to Rudin [69]).

The set of real numbei® has (by definition) the following so-calledmpleteness
property: A non-decreasing infinite sequence of real numbersr, < ... has a
(unique) limit

r= I!Lrgo reR
if and only if the exists @ound Me R such thatry < M holds for allk. As
a consequence of this properf.(Ex.1.15), every subsed C R has a unique
infimum which is defined as the largest lower bound forsadl S and denoted
by inf S. (If Sis not bounded from below, then il¥§= —oo and if S= @, then
inf S= +o00.) ThesupremunsupSis defined similarly.

Ex. 1.15. Let SC R be non-empty and;s= R be such thats< s for all se S. Define a
sequences;s< s, < ... of lower bounds for S as follows. Giveg we set
[sk+l/k ifsk+1/k < sforallse S

i1 = otherwise

Show: 5= limx, 0 Sk =inf S. (Hint: Use > 2, 1/k=00.)

More generally, we say that a sequeBsgss,, ... of pointss, € R" convergesf
the exists some e R" such that

lim ls—s| = 0,
k— 0o

which is denoted bg = lim,_, ., S Or justs, — s. A subsetS c R" is boundedf
there exists somb®l € R such that|s|| < M holds for allse S. The completeness
property ofR then implies the followingdf. Ex. 1.16):

e Sc R" is bounded if and only if every infinite sequenses,, ... of
pointss, € Sadmits a convergent subsequesges,, - - . -

We refer to the limiS = lim;_, ., S Of a convergent subsequen®R ) as araccu-
mulation pointof S(or the sequenceésy)).

Ex. 1.16. Show: Sc R"is bounded if and only if every infinite sequerigg in S admits
a convergent subsequen(® ).

(Hint: Assume that S is contained in ardimensional cub&), = [—M, M]". Subdivide
Qo into 2" smaller cubes. One of these, say, Qontains infinitely mang. Lets, be the
first ¢ that is contained in @and proceed by subdividing1Q
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An open ball(of radiusr > 0 and centered af € R") is a subset of the form
Ur(Xo) = {xeR"| X=Xl <r}.

A setU C R" is openif U contains with anyg also some open bal; (Xp). (In
other words: An open set is precisely the union of all the open balls it contains.)
A subsetC C R" is closedif R"\C is open.

(Arbitrary) unions of open sets are open and, correspondingly, intersections of
closed sets are closed. In particular, evBr¢g R" has a unique smallest closed
set containingS, namely the intersection @ of all closed sets containing cl S

is the so-callectlosureof S. Similarly, everyS C R" admits a unique maximal
open set intS contained inS, namely the union of all open balls containedSn
theinterior of S.

Theboundaryof SC R" is defined assS=cl S\int S. Equivalently ¢f. Ex. 1.17),
dSconsists of all pointg € R" that are accumulation points of boBandR"\ S.

Ex. 1.17. Show: Ifx e cl S\int S then every Yy(x) (k=1,2,...) intersects both S
andR™S. Letsq € Uy/k(x) N S ands, € Uy/k(x)\S and observe, — x ands, — x.

Ex. 1.18. Show:

(i) Open intervalg(a, b) are open subsets & .

(ii) An open line segmerig, b) = {(1—A)a+ Ab | A € (0,1)} (a,b € R") isnotopen in
R", n> 2.

REMARK (RELATIVE TOPOLOGY). The topological concepts &" carry over to sub-
sets ofR". For our purposes, it suffices to consider affine subspace&". Ifdim L =k,
it is occasionally more "natural” to think df as an "isomorphic” copy oR¥ and define
the relevant notions accordingly ("relative ltd).

A relatively open balls a set of the fornt, (Xo) N L, Xo € L, and therelative interior of
a subset c L is the union of all the relatively open balfcontains.

A subsetS c R" is compact if it is bounded and closed. S®is compact if and
only if every infinite sequencés,) in S has an accumulation poiste S. (The
existence of is equivalent to the boundedness®ands € Sis equivalent to
the closedness @&.) This observation is sometimes referred to asltheorem of
Bolzano-Weierstrass

Ex. 1.19. Let Sc R be compact. Show that inf S and sup S belongto S.

1.4.2. Continuous Functions.Let Sbe a given subset @&". Then the func-
tion f : S— R™Mis said to becontinuousat the pointxy € Sif for everye > 0
there exists somé& > 0 so that

I f(Xo) — f(X)|l2 < ¢ holds whenevex € Sand||Xo — X||» < 8,
or, equivalently,f (Us(Xo) N'S) C U.(f(Xg)). We denote this property by

f(Xo) = Xlig; f(x)
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We say thatf is continuous on § f is continuous at eveny € S.

It is easily verified that sums and products of real-valued continuous functions
are again continuous. Furthermore, compositions of continuous functions are
continuous.

LEMMA 1.2. Let| - || : R" — R be an arbitrary norm oR". Then f(x) = ||x||
is a continuous function.

Proof. We first consideky, = O and letM = n- max; | ;|| (wheree; is the jth unit
vector). Then

IxI = 1 > el < > Il - il < n(maxliey ) (maxix;l) < Miix]l
j i

So||x|l> — Oimplies f (x) —» 0= f(0), i.e., f is continuous ax, = 0. The con-
tinuity of f in general now follows from the observation thxat> Xg is equivalent
with (X — Xg) — 0.

&

If C C R"is compact andf : C — R™ is continuous, then the imagg&(C) is
compact inR™. For a proof of this fact, it suffices to show that every infinite
sequencef (z;), f(z), ... of images has an accumulation poih{z) € f(C).
Now C is compact. So the sequengez,, ... has a subsequeneg, z,, . .. and

a pointz € C such thatzy, — Z. The continuity off guaranteed (z,) — f(2),
which establisheg (z) as an accumulation point ih(C).

As a consequence, we obtain the following existence result which is used repeat-
edly in the analysis of optimization problems.

THEOREM 1.1. (Weierstrass) et C c R" be a nonempty compact set and f
C — R be continuous. Then f attains its maximum and minimum value 0a.C,
there exisixg, X; € C with

f(Xg) < T(X) < T(X1) forall x € C.

Proof.If f:C — Riscontinuous, their = f(C) c Ris compact. Hence irf
R and supF € R exist and belong té-. The Theorem follows.
&

REMARK. Theunit spere S= {x € R" | ||x|l2 = 1} is a compact set. If - || is any norm
onR", then in view of Lemma 1.2

a:=min{||x]| [ xe S >0 and B=maxX]|x||xe S
exist, showing thaj - || is equivalento the Euclidean norni - |2 in the sense that

alxll2 < [IX [l < Blix|l2 forallx e R".

As a consequence, the definition of continuity (as well as the notion of differentiability
below) does not depend on the particular norm we use.
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1.4.3. Differentiable Functions. From a computational point of view, linear
and affine functions are the easiest to deal with. Therefore, we are interested
in the question when a not necessarily linear function can be, at least locally,
approximated by a linear function. Again, we focus right directly on the vector
spacefR" andR™, equipped with the standard inner product and the Euclidean
norm. In each case, we choose as reference the standard basis of unit vectors
e=1(..,0,10,..)".

Let U be an open subset iR". The functionf : U —» R™ is said to bedif-
ferentiableat the pointxy € U if there exists a matriXd € R™" and a function
¢ .U — RMsuch that lim_,o¢(h) =0and

f(Xo+h) = f(Xo) + Ah +|hjje(h) forallxo+heU.
A shorter way of expressing these conditions is offered by the notation
| f(Xo+h) = f(Xo) +Ah +o(||h|]) |

(Recall thato(||h||¥) generally denotes a term of the foih| 5 (h), wheren(h)
is a function satisfyin% Ii(r)n;(h) =0.)

The definition says that the differentiable functibrran be approximated nesy
via the affine function

f(h) = f(xo) + Ah.
The matrixA is called thederivativeof f atxyand is generally denoted B/f (Xo)
(and by f’'(xp) in casen = 1). We call f differentiable on Uif f is differentiable
at everyxo € U. The derivativeV f (Xo) turns out to be nothing but thiacobian
matrix associated with (see p. 17).

Ex. 1.20. Show that f: U — R™ is necessarily continuous at € U provided f is
differentiable atxg.

Derivatives of Functions in One Variable. The analysis of functions of several
variables can often be reduced to the one-dimensional case. Therefore, we briefly
review some basic and important facts for functidng one real variable (with

f” denoting the derivative).

Let f be defined on the open interva, b) C R and differentiable at the point
Xo € (a, b). The following is a key observation for many optimization problems.
LEMMA 1.3.1f f'(Xo) > O, then there exists sonde> 0 such that
f(Xo—h) < f(X) < f(Xg+h) wheneveb < h < §.

Proof. Becausef’(xg) exists, we can write

f(Xo+h) = f(x0) + hf' () + [hle(h)
with limy_0¢(h) = 0. Hence, iff'(Xy) > 0, there exists somg> 0 such that

lp(h)| < f'(x) wheneverh| <4,
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which implies the Lemma.
&

An immediate consequence of Lemma 1.3 is #&xtremum principle If f :
(a, b) —» R is differentiable atx, € (a, b) and if either f (xo) = MaXc(an f(X)
or f(Xo) = MiNyc(ap f(X), then

REMARK. The extremum principle exhibits tlegitical equation f(x) =0 as a neces-
sary (and very usefubptimality conditiorfor f (x): When one searches for a maximizer
or a minimizer off (x), one may restrict one’s attention to the so-catiétical points »
that satisfy the critical equation.

THEOREM 1.2. (Mean Value Theoremet f: [a, b] — R be continuous on the
closed intervala, b] and differentiable on the open intervéd, b). Then there
exists somé € (a, b) such that

f(b)— f(a)=(b—-a)f'(§).

Proof. Defineg(x) = (b—a) f (x) — [ f(b) — f(a)]x and observegy(a) = g(b).
If gis constant ond, b], then every¢ e (a, b) has the claimed property

0=g@=b-a)yf'¢) - f(b+ f@.

Just like f, alsog is differentiable on(a, b) and continuous ong| b]. Hence, if
g is not constant on the compact satlp] C R, there exists somege (a, b) such
that

9§) = maxg(  or  g(&) = min g(x).

xe(a,b)
In either case, the extremum principle yielgi$s) = 0 and the Theorem follows
as before.
&

Ex. 1.21. Show:1+ x < e for x e R.

As an application of the mean Value Theorem we obtain the second Tayler
formula

LEMMA 1.4. Let U= (—tp,tg) € R and assume pU — R is twice differen-
tiable. Then, for any givend U there exist® < 8 < 1, such that

1
p(t) = p(0) +tp'(0) + Etz p’(6t) .

Proof. Assumew.l.0.g. thatt > 0 and consider, fo € R (to be defined below)
the twice differentiable functiog : [0, t] — R defined by

1
g(r) == p(t) — [p(0) + tp'(0) + zfza] .
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Theng(0) =0, g(0) = 0 anda can be chosen so thgtt) = 0. We are left to
show that this choice yields = p”(6t) for some 0< 6 < 1.

Sinceg(0) = g(t) = 0, the Mean Value Theorem yields some= (0, t) with

g'(t1) = 0. Applying the Mean Value Theorem tpwith g'(0) = g'(t;) = 0, we
find somet, € (0, t;) such thay’(t,) = 0. Hence

0=g"(tz) = p'(t2) — «

and the claim follows witlot = t,.
&

Directional Derivatives and the Gradient. A function f : U — R™ assigns to
each vectok € U a vector

fX) = (f10), ..., fm(x)T € R™.

It follows from the definition thatf is differentiable ak, if and only if each of
the real-valued component functioris: U — R is differentiable atx,. So we
may restrict our attention to the case= 1.

Consider the differentiable real-valued function U — R at the pointxp € U
and fix a “direction”d € R". Then f induces locally a function
Pa(t) = f(Xo+td)
of the real parametdr Moreover, the representation
f(Xo+1td) = f(Xo) +tV f(xo)d + |[td ] ¢(td)
immediately shows that the derivatipg(0) exists. In fact, letting(t) = ||d|l¢(td),
we have
Pa(t) = pa(0) +tV f(Xp)d + [t|@(t)
and hencgy(0) = Vf(xp)d.
Choosing the directiod as a unit vectoe;, we recognize what the derivative
matrix V f(Xo) = (ay, ..., a,) € R" actually is and how it can be computed.

Recall first that thgartial derivativedf/ox; of f atx is defined to be the deriv-
ative pgj (0) of the functionpe, (t) = f(Xo +te;) , which implies

af (X
a; = Vf(xo)e = a(ij) :

Hence, the derivative of : U — R is given by
of (Xo) of (xo)]

aXl T aXn

Vi) = [
and is called thgradientof f atXx,.

Ex. 1.22.Let f:R? — R be given by tx, y) = x-y. Showv f (x, y) = (Y, X).
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In general, we note fopy(t) = f (X + td) the formula for thedirectional deriv-
ative of f atxp with respect ta:

0 of
(111) Ph(0) = Vi = > 00
|

i=1

d;

Formula (1.11) allows us to determine the direction with respect to whitfiers
the largest marginal changexat With pq(t) defined as before, we want to solve
the optimization problem

Lng |py(0)| subjectto||d| = 1.

We assumé’ f (xo) # 0'. Applying the Cauchy-Schwarz inequality to (1.11), we
deduce

P50 < [VExo)ll - lIdll = IV f(xo)
with equality if and only ifd™ = AV f (Xo) for somel € R. Hence we find that the
gradientV f (xq) yields the directiord into which f exhibits the largest marginal
change atk,. Depending on the sign of, we obtain the direction of largest
increase or largest decrease.

Moreover, we have the geneitremum principlelf xq € U is alocal minimizer
or maximizerof f in the sense that for somse> O

f(x0) = onax fox) or f(x)= i fx),

the one-dimensional extremum principle says that @,(0) = V f(xo)d must
hold for all directiongd, which implies thak, must be aritical point, i.e., satisfy
thecritical equation

(1.12) Vf(x) =0T

For generalf : U — R™, the same reasoning as in the case 1 shows that the
derivativeV f (Xo) has as rows exactly the gradients of the component functions
f; of f. Hence the derivativ& f (xg) of f atxg is theJacobianmatrix

Vixo) = (822(_0)) e R™",
J

Ex. 1.23. Show that an affine function(X) = Ax + b has the derivativé/ f (x) = A at
everyx. In particular, a linear function gx) = c"x has gradientvg(x) = c'.

Let Q be a symmetric matrix and consider theadratic functiorg(x) = x" Qx. Show
that Vg(x) = 2x"Q holds for allx.

The existence of the Jacobiadif (x) (i.e., the existence of the partial derivatives
of; (x)/0x;) alone does not necessarily guarantee the differentiability af x.

A sufficient — and in practice quite useful — condition is the continuity of the
(generally non-linear) map+— V f (x).
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LEMMA 1.5. Let U C R" be open and £ U — R™ have continuous partial
derivative functionx — afi(x)/ox; foralli =1...,mand j=1,...,n (i.e,
the functiorx — V f (x) exists and is continuous). Then f is differentiable on U.

Proof. As noted above, it suffices to assume= 1. Givenxg € U and the vector
d=(di,...,dy)T € R", we let

Xk =Xo+dier+...+dee fork=1,...,n.

For ||d| sufficiently small, we have, € U forallk=1,...,nand

n

fo+d) — fxo) = D [F(x) — Fxi)].

k=1
Applying the Mean Value Theorem to the functiagns> f (xx_1 + £e), we obtain
numberss, € (0, dy) such that

O f (X1 + Ex&)

f(x) — F(Xeo1) = di %

whence we deduce
Idle(d) = f(Xo+d)— f(Xo) = VTf(xo)d
_ idk[af(xk—l-i-ék@)_af(xo)] .

X Xy

k=1
Becausd|d|~* - |d| < 1 and limy_,o(Xk_1 + £&) = Xo, continuity of the partial
derivatives finally implies

n

. . If (Xk—1 +&k&)  9f(Xo)
lim llp(d)ll < L'L“ok; -

Xk X

=0.

o

If f:U — R™ has continuous partial derivatives, we célla C*-function In
general,C¥ denotes the class of functions with continuous partial derivatives up
to orderk (cf. Section1.4.4 below).

The Chain Rule. Let U C R" and SC R™ be open sets and assume that the
function f : U — Sis differentiable ako € U. If g: S— RX is differentiable at

yo = f(Xo), the composite functioh : U — RX, given byh(x) = g(f(x)), can

be linearly approximated at by the composition of the respective derivatives.

More preciselyh = go f is differentiable ak, and the Jacobian dfatx, equals
the matrix product of the Jacobian matricesfadtx, andg atyo:

(1.13) | Vh(xo) = Vg(yo)V f (Xo) |

Formula (1.13) is known as thahain rulefor differentiable functions. To verify
it, it suffices to assumk = 1. Writing A = V f(Xo) andB = Vg(yy) for ease of
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notation, the differentiability off andg provides us with functiong andy such
thate(d) - Oasd — Oandy(d) — 0 asd — Oand

f(Xo+d) = f(Xo) +Ad + [[d]le(d)
9(Yo+d) = g(yo) + Bd + [[d][y(d).
With d = Ad + ||d||¢(d), we then obtain for aktl + 0,
h(xo+d) = g(f(x0) +d)
= g(f (x0)) + Bd + [|d|y(d)
= g(f (X)) + BAd + BJ|d]l¢(d) + [|d]|(d)

I

= h(xo) + BAd + ||d|| (Bw(d) + wl/f(a))-

By the choice ofp and the continuity of the linear maps— Ax, andy — By,
we have botBg(d) — 0 andy(d) —» 0asd — O.

In order to establish the differentiability &f= go f and the chain rule, it now
suffices to show that the quotie||rfﬂ||/||d|| is bounded ad — 0. From Ex. 1.12,
however, we knowAd|| < ||A]|¢|/d|. In view of the triangle inequality (1.8), we
therefore conclude

Idi/ildl < 1A + )],
which is bounded ad — 0.

The Product Rule. The chain rule is an often very useful tool for the computation
of derivatives. Let, for exampldy, f,: (a, b) — R be differentiable on the open
interval (a, b) C R and consideh(t) = fi(t) - fo(t).

With F(t) = (fi(t), f2(t))T andH(x, y) = xy, we haveh(t) = H(F(t)). So

VE@®) = ( %Eg ) and VH(X, y) = (Y, X)

yield
h'(t) = VH(f1(1), f2(t)) VF() = (f2(D), fl(t))( EEB )

h'(t) = f2(t) (1) + f2(0) f5(0)

Ex. 1.24. Let f;, fo: (a,b) » R be differentiable and assume(f) £ 0 for all t

(a, b). Derive for h(t) = f1(t)/f2(t) thequotient rule

fa(t) f1(1) — fa(t) f5(1)
f2(t)

h(t) =
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1.4.4. Second Derivatives and Taylor's Formula.The differentiable func-
tion f : U — R gives rise to the functio’vVf : U — R" via the assignment
x> [VF(X)]". Let us assume that al$of (x) is differentiable. Then the partial
derivatives of the partial derivatives df exist and define the second derivative

matrix ,
V2 (x) = (a f(x)) ,

X 8Xj

called theHessianmatrix of f atx € U.

REMARK. If all second partial derivatives are continuouslyi.e., f is aC?-function,
one can show for akt € U and alli, j,

Pfx)  Pfx)
0% 0X; - 0X;j0Xi ’

which means that the Hessi&R f (x) is symmetric.

Ex. 1.25.LetVf :U — R" be differentiable. Show that the functiop(p = f (xg +tu)
is twice differentiable atgt if Xg + tou € U, and satisfies

. 92 f (Xo + tou)
Pl (to) = ZZ aaxUY

i=1 j=

Consider the case where all second partial derivativek eXist and are contin-
uous. Then Lemma 1.5 tells us tHaf is differentiable. By Ex. 1.25, we know
that py(t) = f(Xo + tu) is twice differentiable.

In the subsequent discussion, we consider veatotd unit length |ju|| = 1.
Lemma 1.4 guarantees the existence of soreet) < 1, such that

2

t
Pu(t) = pu(0) + p,(0)t + Epﬁ (Out) ,

provided|t| > O is so small thatJ;;(Xo) € U. We want to derive an analogous
representation fof .

Givene > 0, the assumed continuity of the Hessian maW# (x) allows us to
choosdt| > 0 so small that for every € U with ||xq — X|| < |t],

#f(xo)  #f(x)
X 8Xj X 8Xj

Recallingp[/(t) = uTV?f (xo + tu)u and observinguu;| < ||u||> = 1 for every
two componentsi; andu; of u, we obtain

1Pl (0) — pl(But)] < e,

which is valid for alld = tu whenever the nornjjd|| = |t| is small enough (in-
dependent of the unit directiam). With p(0) = Vf(xo)u, we thus arrive at
Taylor’s formulafor real-valued functions in several variables:
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f(xo+d) = f(x0)+ Vf(xo)d+ 3d"V?f(x0)d + o(l|d]|?)

or with somer € (0, 1):

f(xo+d) = f(Xo)+ VF(xo)d+ 2dTV2f (%o + zd)d

21






CHAPTER 2

Linear Equations and Linear Inequalities

While Chapter 1 reviews general structural aspects of real vector spaces, we now
discuss fundamentabmputational techniques for linear systemshis chapter.

For convenience of the discussion, we generally assume that the coefficients of
the linear systems aneal numbers. It is important to note, however, that in
practical computations we mostly deal wititional numbers as input parameters.

We therefore point out right at the outset tladit the algorithms of this chapter
(Gaussian elimination, orthogonal projection, Fourier-Motzkin elimination) will
compute rational output quantities if the input parameters are rational numbers,
as the reader can easily check.

2.1. Gaussian Elimination

Let A = (a;) € R™" be an(m x n)-matrix andb = (b;) € R™ a vector. Can we
represenb as a linear combination of the column vectorg\&f And if yes, how?
To answer this question, we must find a vectet (X;) € R" such thatAx = b
holds,i.e., such that

anXs + aXe + ... + amX = by
2.1) aZ.lxl + axX + ... + axnX = b,
amX: + amXe + ... + ampXn = bm
We refer to (2.1) as aystem of linear equations variablesx, ..., X,. A vector

X = (X;) € R" satisfying (2.1) is callefeasibleor asolutionfor (2.1). The system
is infeasibleif no solution exists.

From a structural point of view, our problem is the following. We are given the
linear functionf : R" — R™ via f(X) = Ax, and a vectob € R™. We are to
determine a vector in the “solution space” oAx = b, i.e., in the affine subspace
(cf. Section 1.2)

S=f1({b}) ={xeR"|Ax =b} CR".

In the computational approach to the problem, we try to transform the system
(2.1) of linear equalities via elementary vector space operations that leave the
solution spaces unaltered until the system has attained an equivalent form from
which a solution can be easily inferred.

23
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If all coefficients occurring with the variabbe are zero, the column is irrelevant

for any linear combination and we are reduced to solving the subsystem involving
only the variablesc,, ..., X,. Gaussian elimination wants to achieve a similar
reduction even when some (or all) coefficients occurring wjthre non-zero.

Assume, for example, that; # 0. Then

1
(22) X1 = — (bl —QioXo — ... — QnXn) .
a1

We can substitute this expression farin all other equations and obtain a new
systemA’x’ = b’ that involves only the variables, ..., X,. In this sense, the
variablex; has been “eliminated”.

The system#®x = b andA’x’ = b’ of linear equations are very closely related.
Each solutiork = (X1, X, ..., Xn) " for Ax = b yields a solutionx’ = (X2, ..., X1)"
for A’x’ = b’ (we just omit the variable; in x). Conversely, each solutiofi for
A’x’ = b’ can be extended to a soluti@n= (X, X, ..., X,) T for AX = b by com-
puting the value ok; via backward substitutiomccording to the formula (2.2)
fromx = (Xp, ..., X)) ".

REMARK. From a geometrical point of view, passing from the solution spacé#
Ax = b to the solution spac& of A’X’ = b’ amounts to projecting the vectoxs=
(X1, X2, ..., Xn) € StoxX' = (X2,..., X%Xn) € S.

We next eliminate another variable, sgy from the systemi\’x’ = b’ in the same
way etc until all variables have been eliminated. Going all the way back, we
can compute a solution for the original systé&x = b via repeated backward
substitution.

What does it mean in terms of algebraic operations to “eliminat@i the system

Ax = b? It turns out that there is no need to actually removiom the system.

The elimination process comes down to a suitable sequence of “pivoting” opera-
tions that successively transform our original system into a completely equivalent
system which, however, has the virtue of being easily solvable.

Given a pair(i, j) of row and column indices such that # O, let us call the
following operation aGaussiani, j)-pivot (with pivot row i andpivot column
on the rows (equations) of the systém = b:

(GP) Forall rowsk > i : Add (—aya;") x (rowi) to rowk.

Ex. 2.1. Assume thaAx = b arises fromAx = b via a Gaussiar(i, j)-pivot. Show that
both systems have the same solution space S.

Ex. 2.2. Show that the syste'x’ = b’ in the Gaussian elimination step with respect
to x; and a1 # 0is exactly the subsystem we obtain when we first apply &)-pivot to
Ax = b and then remove colurmhand row1 from the system.
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Recall that a matris = (m;) is said to bdower triangularif m; = 0 whenever
I < ], andupper triangularif m; = 0 whenever > j.

Ex. 2.3. LetAx = b be the system arising froAx = b via a Gaussiari, j)-pivot. Show
that there exists an invertible lower triangular matik e R™M sych thatA = MA and
b=Mb.

By interchanging rows if necessary in order to obtain a non-zero pivot element,
we can transform\x = b into upper triangular form with Gaussian pivots:

Gaussian Elimination

INIT: Setj=1,i=1.
ITER: WHILEi <mandj <nbDO
(1) Find arow index > i such thaty; # 0;
If no suchk exists, then) « j+1,G0oT0 (1);
Interchange row and rowk;
Perform a Gaussiaf, j)-pivot;
Updatej « j+1 and i« i+1;

REMARK. Step (1) of the Gaussian Elimination algorithm does not specify whictkrow

to choose in case several candidates are available. There are examples demonstrating that
the numerical stability (with respect to rounding errors) of the algorithm very much de-
pends on a good pivot choice. Practical experience shows very good re&u#€ifosen

as to maximize the absolute val{gg;| of the pivot element . This rule is callgzhrtial

pivoting (Complete pivotingries to enhance the numerical stability of the computations

by allowing also column permutations in the search for a maximal pivot element. The
result, however, is usually not worth the extra computational effort of complete pivoting).

Note that this Gaussian elimination algorithm does not necessarily “eliminate” all
variables but just achieves an upper triangular form of the system of equations.
If (1,]1),@2,j2),...,(r =21, j._1), (r, j;) is the sequence of pivots during the
algorithm, the final systerAx = b of equations will have the form

é-ljlxj1+ éljzsz‘i‘ éljr_lxjr_l-l— alerjr-l- e = E)l
észij-l- ézjr_lxj'r_l-l- ézerjr-l- .. = by

&-1j_ Xjat oo 1 Xt . = B

by

B, X e =
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This final form of a system of linear equations is also knowiHasmite normal
form (or row echelon formof the system.

The Gaussian Elimination algorithm impligs = 0 whenevet > r. So there can-
not be any solution foAx = b if there exists somg; # 0 with t > r. Otherwise,
because all pivot elemends;  are non-zero, we can easily compute a solution for
Ax = b by backtracking the pivots and performing backward substitution:

Xjr = Br/a"lr
Xj,_y = (Or—1 — &—1j,X},) /&c—1j,_,

Xjr—2 = (br—z - é"_zl.r—lxjr—l - ér—erXjr)/ér—er_z

r
Xj, = (by — Zéljpxjp)/éljl
p=2
while the other variablex; are set to zero. This procedure is correct because
the operations during Gaussian Elimination leave the solution spaté&x = b
unaltered.

REMARK [RECOVERING ALL SOLUTIONS]. The solution ofAx = b just computed is

a special ("basic”) solution in the sense that all non-pivot variakjese set to zero. The
backward substitution process can easily be generalized by first assigning arbitrary values
to the non-pivot variableg; and then computing (unique) corresponding values for the
remaining variables recursively. This way one can, in principle, genexatg/feasible
solution of Ax = b.

The Gaussian elimination algorithm has some important matrix-theoretic impli-
cations. Recall that the matri® = (p;j) € R™™ is a permutation matrixif

pi; € {0, 1} and each row and each columnPontains exactly one coefficient 1.
Note thatP™P = | holds for every permutation matrix which impliesP~! = PT

for the inverse matri®~* of P.

EX. 2.4. LetP = (pjj) be a(m x m)-permutation matrix. Show for the matixe R™":
Row i of PA equals row j ofA if and only if pj = 1. (In other words:P permutes the
rows of A according to the coefficients;.)

THEOREM 2.1. For every matrixA € R™", there exists atim x m)-permutation
matrix P and an invertible lower triangular matrid € R™™ such that) = MPA
is upper triangular.

Proof. Run the Gaussian algorithm on the ma#and record all the row permu-
tations that occur in the permutation matfdxThen we obtain the same final up-
per triangular matri if we perform Gaussian Elimination on the matfx= PA
without any row permutation®enote byM 4, ..., M, the matrices describing the
Gaussian pivots.
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By Ex. 2.3, eaclM; is an invertible lower triangular matrix. Hence also the prod-
uctM = MM, _; ---Mis an invertible lower triangular matrix and we obtain for
U=A: i i
U=A=MA=MPA.
<o

COROLLARY 2.1(LU-factorization) For every matrixA € R™", there exists an
(m x m)-permutation matrix?, and matriced. € R™™, U € R™" such that. is
invertible and lower triangulanJ is upper triangular, and

LU =PA.

Proof. With the matricedM; as in the proof of Theorem 2.1, we take= M~ =
M1t.--M L L is lower triangular (because it is the inverse of a lower triangular
matrix), andLU = M~*MPA = PA follows.

&

REMARK. If an LU-factorizationLU = PA of A is known, the systemx = b can be
solved in three steps:

(1) Computeb :=Pb;

(2) Computey as a solution ofy = b ;

(3) Computex as a solution oUx =y .
Step (2) can always be carried out sihces invertible so thay = L ~1b. Step (3) can be
successfully performed if and onlyAfx = b has a solution at all. Sindeis triangular, it
is usually more efficient not to determihe? explicitly but to compute botbk andy by
backward substitution.

COROLLARY 2.2(Gale’s Theorem)Exactly one of the alternatives is true:

(a) The systerdx = b has a solution.
(b) There exists a vectgre R™ such thaty" A = 0" andy'b ## 0.

Proof. Becausey'Ax = y'b, (a) and (b) cannot hold simultaneously. Assume
now thatAx = b has no solution. We show that then (b) is true.

N O R
P NN
PR w

Ex. 2.5. Compute an LU-factorization for matribA = (

Consider the final systeﬁnx = b computed by Gaussian Elimination frofx =
b, whereA = MPA andb = MPb. The system is infeasible if and only if there
is some row index > r, such thaO' is theith row of A andb; # 0.

Lety' be theith row vector of the matritP. Theny A yields theith row vector

of A, while y™b yields theith componenb; of b, and the Corollary follows.
&

Let us take a vector space point of view at Gaussian Elimination with respect to
the linear equality systerAx = b. Therow space V= row A of A is the linear
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hull of the row vectors oAA. By rankA we denote theank of the matrixA, i.e.,
the maximal number of linearly independent rowshofSo rankA = dim row A.

Since pivot operations are, in particular, sequences of elementary vector space
operations on the row vectors, the space rowill stay the same after each
Gaussian pivot. From the upper triangular form of the final mahrix follows
immediately that ranld = r, wherer is the total number of Gaussian pivots.
Hence

r = rankA = rankA .

So Gaussian Elimination provides a fast algorithm for computing a basis of the
space rowA.

We emphasize that treolumn spaceol A = row AT doeschange when we ap-
ply (row) pivots toA. Note, however, that the set of columfss,, ..., a;} of

A is linearly independent if and only if the corresponding coluraps.. ., §;,

of the transformed matriA (obtained fromA by row pivots) are linearly inde-
pendent. So, in particular, Gaussian Elimination reveals that the 'pivot columns’
aj,, ..., a; form a basis of the column space and we observe that

r =rankA = dim (col A) = dim (row A) .

2.1.1. Gauss-Jordan Elimination.From a conceptual point of view, one
might want to strengthen the Gaussian pivoting r@d>j to

(GJP) Forall rowsk #i: Add (—akjaijl) x (rowi) to rowk ,
which transforms also the matrix elements above the pivot elements to zero.

If one applies the elimination algorithm witksQJ P) instead of G P), one obtains
a systemAx = b of equations with each pivot colun#;, of A having a unique
nonzero entry in the corresponding pivot positién j).

While this form of the system of equations would make backward substitution
even easier, the elimination algorithm itself requires more computational effort.
Therefore, Gauss-Jordan Elimination offers no practical advantage over Gaussian
Elimination. Its virtues are more to be seen in being a theoretical tool for algo-
rithmic analysis (see, for example, the simplex algorithm for linear programs in
Chapter 4).

Ex. 2.6. Assume that the matrik e R™" satisfiegrankA = n. Show that Gauss-Jordan
Elimination transformsA into a diagonal matrixA all of whose diagonal elements are
non-zero.

2.1.2. Determinants.Let = be a permutation of tha distinct elements
1,2,...,n. With = we associate the permutation matfx= (p;;), where
Pi =1 0 otherwise.
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When we run Gaussian Elimination & the algorithm will only carry out row
permutations (and thus will transforiinto the (n x n)-identity matrixl). Sup-
poses = s(xr) is the number of proper row interchanges in the course of the
algorithm. Then the number

sgnw = (—1)°™
is thesignof the permutationr. Depending on its signs is called eitheevenor
odd

Given the permutation, let 7= be the inverse permutatior(i) — i,i=1,...,n.

Then we apparently have

sgnz = sgnr .

With the (n x n)-matrix A = (&;), one associates itleterminants the number

(2.3) detA = Z(Sgnn)alyr(l) A27(2) * * * Bnw(ny >

4
where the sum is taken over all permutationsr of the indices 12, ..., n.
EX. 2.7. Show:detA = detAT. (Hint: sgnz = sgnz—Y).

REMARK. Occasionally, it is helpful to think of dét not just as a real parameter asso-
ciated with a matrixA but to interpret det R"*" — R as a real-valued function on the
n?-dimensional vectors ilR™. The expression (2.3) shows that Heis a sum of prod-
ucts of components of = (x;j) and hence clearly is a continuous (in fact, differentiable)
function.

REMARK. Itis well-known that def admits an intuitive interpretation as the change in
volume of a bodyK C R" under the influence (“deformation”) of the linear map> Ax:

(2.4) vol A(K) = |detA| - vol K .

From the definition (2.3), it follows directly that
(2.5) detA = a;18- - - @

must hold ifA is (upper or lower) triangular. One can, furthermore, deduce the
determinant multiplication ruléor all A, B € R"™":

(2.6) detAB = detA - detB .

Ex. 2.8.

(a) LetP be the permutation matrix for the permutatien
Show:sgnr = detP.

(b) Use the determinant multiplication rule to show:Af is the matrix obtained
from A by performing a Gaussiaf, j)-pivot, thendetA’ = detA.
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Ex. 2.8 indicates that dét can be efficiently computed via the Gaussian elimi-
nation algorithmA is transformed into the triangular mat#x= (&;) and, there-
fore

(2.7) detA = (—1)%811822- - - &nn ,

wheresis the number of proper row interchanges during the run of the algorithm.
Ex. 2.9. Show:detA # 0if and only if all rows ofA are linearly independent.

Cramer’s Rule. Consider the systeix = b whereA € R"*" satisfies deA # 0.
Cramer’s ruleprovides a determinant formula for computing each comporent
of the (unique) solution vector.

detAi
detA ’

whereA,; is the matrix we obtain fron& upon replacing thé&h column ofA by
the vector.

(2.8) Xi =

The validity of Cramer’s rule is not difficult to check directly in the case whre

is a diagonal matrix. In the general case, Gauss-Jordan Elimination will transform
A into diagonal form if deA # O (see Ex. 2.6). Since the pivots will leave the
determinants de; and defA unchanged (see Ex. 2.8), the validity of Cramer’s
rule follows.

REMARK. Cramer’s rule is only of theoretical value. Gaussian Elimination will com-
pute a solution faster. The merit of (2.8) lies in the fact that it provides a means to estimate
the numerical size of the solution vectoi theoretical algorithmic analysis (see Corol-
lary ?7?).

2.1.3. Symmetric and Positive Semidefinite MatricesRecall that the ma-
trix A € R™" is said to be symmetric ih = AT. We denote the set of (real)
symmetricn x n matrices byS™". We want to apply Gaussian Elimination to
the rowsandto the columns of the symmetric matr& = (a;;) with the goal of
retaining symmetry after each elimination step. Thereby, we take advantage of
the fact that matrix multiplicatiofrom the lefthas the same effect on thaws of
a matrix as multiplication with thé&ransposednatrix from the righthas on the
columnsof a matrix.

Assume firsta;; # 0. Then we can perform a Gaussian pivot with respeet; 10
on the symmetric matriA. If this pivot is described by the matrM ;, say, then

A’ =M1AM |

is again a symmetric matrix. (Note thiet; AM | = (M;A)M] can be interpreted
as the result of the symmetric Gaussian pivot with respeet toelative to the
columns ofM;A).



2.1. GAUSSIAN ELIMINATION 31

If the diagonal elemerdy,, of M;AM ] is non-zero, we can pivot od,, in the
same way to obtain the symmetric matrix

M2(MiAM M = (MoM)A(MoM )T
and continue.

A problem occurs ifa;; (or any subsequent diagonal elemantequals zero. So
assume that - aftar— 1 pivots - we havey; = 0. If a;, = 0 for all k,| > i, we

are done (the matrix is diagonalized). Hence assume this is not the case. If a
diagonal elemendy, # 0 (k > i) exists, we may resolve the problem by simply
permuting rows andk and columns andk, so as taswitch g, # O into position

(i,1). If all diagonal elements;, with k > i are zero, let,, = a; # 0 for some

| > k >i. We then add row to row k and column to columnk so as to obtain

ay + ay = 2a # 0 in position(k, k) and then switch andk as before.

Let us refer to this operation asvitching a nonzermto position(i, i). We may
then state the algorithm transforming a symmetric ma&rixS"™*" into a diagonal
matrix as follows.

Diagonalization

FORIi=1,...,nDO
Switch a nonzero into positiofi, i) if necessary;
(If this is not possiblei.e., a,;, = 0 fork, | > i: STOP)
Perform a Gaussiafi, i )-pivot on the rows;
Perform a Gaussiafi, i)-pivot on the columns;
NEXT i.

THEOREM 2.2. LetA € S™" be a symmetric matrix. Then there exists an inver-
tible matrixQ € R™" such that

D=QAQ"
is a diagonal matrix.

Proof. By construction, algorithm Diagonalization will produce a diagonal ma-
trix. Moreover, each of the row operations performed by the algorithm can be
described via multiplication by a suitable invertible matvxfrom the left. Sym-
metrically, the corresponding column operation is given by the multiplication
from the right with the transposed mathk'.

LetQ be the product of these matridéls Then Diagonalization transformsinto
the diagonal matrixQAQT. Because each of the row operatidvisis invertible,
Q isinvertible.

<&



32 2.LINEAR EQUATIONS AND LINEAR INEQUALITIES

Ex. 2.10. Find an invertible matrixQ e R*** such thatQAQ is diagonal, where

0 1 3 2
1 -1 10
A=13 112
2 020

Relaxing the notion opositive definiteneswe know from inner products and
Gram matrices, we say that the symmetric makix= (a;) € S™" is positive
semidefinit€“p.s.d.”), denoted by > 0, if for everyx = (x4, ..., X,)" € R,

n n
(2.9) XTAX = ZZa”xixj > 0.

i=1 j=1
HenceA is positive definite (denoted b& = 0) if A = 0 andx"Ax = 0 holds
only forx = 0.

COROLLARY 2.3. LetA be a symmetric matrix an@ an invertible matrix such
thatD = QAQT is diagonal. Then

(a) Ais p.s.d. if and only if all diagonal elements@fare non-negative.
(b) A is positive definite if and only if all diagonal elementdoére strictly
positive.

Proof. Sincex = QTy defines a 1-1 correspondence betweenR" andy € R",
we conclude from

n
x"Ax =y'QAQ"y =y'Dy = > diy’
i=1

thatA is p.s.d. if and only iD is. The latter however is equivalent & > O for
i=1,...,n. (If d <Otheny =g, theith unit vector, yields/"Dy = d; < 0.)
&

Corollary 2.3 is algorithmically very important. It implies that there is an efficient
way of deciding whether a given matrix is positive (semi-)definite. One only
needs to run the Diagonalization algorithm on the matrix and then read the result
off the diagonalized matrix.

Furthermore, Corollary 2.3 explains how positive semidefinite matrices are con-
structed from other matrices. L&t € R™" be an arbitrary matrix. Then the
symmetric(m x m)-matrixS= AAT is p.s.d.. This is easily seen: We jet R™

be arbitrary and considgr= ATx. Then

X'Sx=x"AATx=y'y > 0.

Conversely, ifS is symmetric, we can find some invertible mat@xsuch that

D = QSQ' is diagonal. IfSis in addition p.s.d., Corollary 2.3 says that the
elements oD are non-negative. So we may forfD, the diagonal matrix whose
diagonal elements are the square roots of the elemers afid set

A=QWD.
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ThenAAT = (Q 1H)vV/DVD(Q HT=QID(QHT =S. So we arrive at

COROLLARY 2.4. LetSbe a symmetric matrix. Then

(a) Sis p.s.d. if and only if there is a matri& such thatS= AAT.
(b) Sis positive definite if and only if there is an invertible matAxsuch
thatS= AAT.

o

Ex. 2.11. Prove part(b) of Corollary 2.4. Moreover, show: If the matri is positive
definite, therA~1 exists and is positive definite.

REMARK [INNER PrODuUCTY. Recall form Section 1.3 that each inner prod¢¢t
onRR" is defined by its values relative to the standard bgsis. . ., e,} and the (positive
definite) Gram matrixG, where

G = ((elej) .
If X,y € R", then

(xly) =x"Gy .
Writing G = ATA, we obtain
(2.10) (xly) =xT(ATA)Y = (Ax) T (Ay) .

Thus every inner product reduces to the standard Euclidean inner prodicsuitable
transformatiorx — AX.

REMARK. Corollary 2.4 may bdalseif we restrict ourselves to rational numbers! The
reason is that we have to take square roots of numbggs.for example, is not irQ.
So the rational positive definite (4 1)-matrix S = [2] cannot be expressed in the form
S = AAT with a rational matrixA.

Ex. 2.12. LetA = (a;) € S™" be a positive definite matrix.

(a) Show that the diagonal elementgsaf A are strictly positive.
(b) Show that the Diagonalization algorithm will always maintajn O.

REMARK [CHOLESKY FACTORIZATION]. As a consequence of Ex. 2.12, one finds that
Diagonalization only performs Gaussian pivots when applied to a positive definite matrix
A. In particular, the matrix@ produced by Diagonalization is lower triangular. Se=
Q1D yields aLU-factorization withU = LT, the so-calle€Cholesky factorization

(2.11) A=LLT.
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2.2. Orthogonal Projection and Least Square Approximation

Given an inner product|.) on R", we define for every,y € R" their distance
via the norm

(2.12) IX=Yll =V {X=YyIX=y).

REMARK. Although (2.12) involves the square root, none of the computations below
would lead us outside the fiel@ of rational numbers since we actually work with the
squareddistance.

Given the vectoix € R" and a linear subspad® C R", we want to find the
projection ofx onto W, i.e., a vectork € W such that

(2.13) X —X|| =min|x—y] .
yeW

The optimization problem (2.13) is equivalent with
(2.14) IX — K[> = min|x — y||*.
yeW

Problem (2.13) is often called tHeast square approximatioproblem (see also
the next subsection). Its solution is based on the following observation.

LEMMA 2.1. Assume that’ € W is such that the vector— x’ is orthogonal with
everyw € W. Therk = X’ is the unique optimal solution of (2.13).

Proof.Lety € W be an arbitrary vector and consider= x’ —y. Becausav e W,
the Theorem of Pythagoras can be applied and yields

2 2 2 2
IX = YII* =[x = X"+ W[|* =[x = X[|* + [[w]|*.

Hencey is optimal for (2.13) if and only ifv = O.
&

It is not difficult to compute a vectot satisfying the hypothesis of Lemma 2.1 if
we know a basi¢a,, . .., an} for W. Writing

X'=zia1+ ...+ Znam Withz e R,

observe first that — X’ is orthogonal with every basis vectrof W exactly when
foralli=1,..., m,

(2.15) (x—X'|a) = (X|a) — (X'|a) =0.

From the linear expansiofX'|a)) = z;(a1|&) + ... + Zn(aml|a), we see that the
equalities (2.15) give rise to the system of linear equations

(ala)zs + ... + (amlag)zm = (X[ag)
(@la)zs + ... + (aml@a2)Zn = (X|a)

@lanz + ... + (@olamzn = (Xlan),
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which we can express more compactly with the help of the Gram m@&trx
((ajla)) e R™™Mas

(2.16) Gz=b),

wherez = (z, ..., zn)" e RMandb = ((X|ay), ..., (X|]am))" € R™ Because the
Gram matrixG is positive definite, the inverse matrx—! exists and yields an
explicit formula for the solution

(2.17) z=Gb.
Let us consider the case of the standard inner progijgt = x'y. We form the
matrix A € R™M with columnsa;. Then
W={yeR"|ly=Az,ze R"} =colA,
and we can write the least square approximation problem (2.14) in the form
min ||x — Az||?.
zeRM
Here we haves = ATA andb = ATx. So formula (2.17) implies for the orthog-
onal projectiork of x ontoW:
(2.18) x=Az=AATA)Ib=AATA)ATX.
The same computational approach works when the linear sub$gaceR" of

interest is given as therthogonal complement \At U+ of the linear subspadé
generated by the columas, ..., a, of A, i.e,

W={weR"|a'w=0fori=1,...,m)=kerAT .
Letx’ be the orthogonal projection &fe R" ontoU. Then
(2.19) X=X—X

is the projection ok ontoW. By construction, namely is orthogonal with every
vector inU, which mean& € W. Moreover,x — X = X’ € U is orthogonal with
everyw € W. So, by Lemma 2.1X is indeed the desired projection.

According to (2.19) and (2.18), the orthogonal projectkoof the vectorx € R"
ontoW = kerAT is the vector

(2.20) x=x—AATA)ATX.

Gradient Projection. To illustrate the usefulness of the concept of an orthogonal
projection, let us consider the differentiable functibn R" — R at the point

Xo € R"with V f (xg) # 0T. We have seen in Section 1.4.3 that the gradient vector
c =[Vf(X)]" points into the direction of the largest marginal increasd @it

Xo.
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Suppose we are interested in finding the directiarf largest marginal increase
under the additional constrainte W, whereW is a fixed linear subspace &f'.
This amounts to solving the problem

(2.21) max{c'ulue W, |ul| =1} .

Let ¢ be the orthogonal projection ofontoW (and assumé # 0). We claim that
G = ¢&/||C|| solves the optimization problem (2.21). Indeedy i€ W, thenu is
orthogonal withc — €. Hence

clu=@c-¢6"u+e'u==2"u.

By the inequality of Cauchy-Schwarz, the latter is maximized exactly whisn
a scalar multiple o€, which establishes the claim.

2.2.1. Least Square Approximation.A linear modeltries to relate a vector
y € R™of moutput parameterg to a vectoix € R" of input parameters; via the
relationy = Ax, where the matriXA € R™" represents the structure of the linear
model.

Suppose that upon the unknown inpuin the model the outpuy is observed.
Then we can try to determineby solving the systemx =y. Often, however,

this system will have no solution (for example, because of measurement errors)
and we will, more generally, content ourselves with an optimal soliifor the
problem

(2.22) min||y — Ax||?,
XeR"

which can be solved by the method described in the previous section.

Best Fit. For illustration, assume that some quantyty= y(t) is a function of
some real parametér We do not know the function explicitly. As an approxi-
mation, we model it as a polynomial of degnesvith n+ 1 unknown structural
parametersy, a;, ..., a, :

y(t) = ag+ ait + at® + ... + at" .

If we have the data ofn > n+ 1 measurements of the outpytrelative to the
inputt;, 1 <i < m, at our disposal, we can form the measurement matrixith
rows (1, t,t3,...,t") . We now wish to estimat& = (ag, aj,...,a,)" as the
solution that “fits best” the observed relation

y=Mx wherey=(Yi,...,¥m)" .

REMARK. We should be aware that the important question whether (2.22) is indeed
an appropriate measure for “best fit” cant be decided by mathematics but must be
answered by the person who sets up the mathematical model for a concrete physical
situation.

Ex. 2.13. Find the line \(t) = a+ bt in the planeR? that provides the best least square
fit to the observed data(§) = —1, y(1) = 2, and ¥2) = 1.
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Quadratic Optimization. As a second example, consider theadratic opti-
mization problem under linear equality constraints

n n
(2.23) min X'Qx=>">"qg;xx; st. Ax=bh,

i=1 j=1
whereQ = (g;;) € R™", A e R™", andb € R™ are given problem parameters.
If the matrixQ is positive definite, we can solve (2.23) with the methods of this
chapter in the following way. We define for aryy € R" a Q-inner product and
aQ-norm:

Xly)o=x"Qy and |xlq=+/(XIX)q-

With this terminology, (2.23) asks for an element with minirgghorm in the
affine subspace = {x € R" | Ax = b}.

If we now compute a feasible solutigme R" for Ax = b, we obtain a represen-
tationL = p + kerA. Minimizing || x| o over L becomes equivalent with

(2.24) min {||p —w|lq|W € kerA},

which is a particular case of (2.13) and can be solved by computin@the
orthogonal projectiofig of p ontoW = kerA.

The quadratic optimization problem (2.23) occurs, for example, as a subprob-
lem that has to be solved repeatedly during so-céi€Ralgorithms (see Chap-

ter 12). Another application arises from the fundame@aliss-Markownodel

in the theory of statistical inference, which we briefly describe (e&g,[67] for

more details).

The Gauss-Markov Model. We generalize the linear modgk Ax by allowing
for random noise in the measurements. We assume not only that the petfit
depends linearly on the inpute R" through the matribA € R™" but also that
each componeny of y is disturbed by some random variabjewhich we express
in matrix notation as

(2.25) y=AX+e¢.

The model assumes that the noisgbave expected valug(s;) = 0, areuncor-
related i.e., satisfyE(eiej) = 0 fori # j, and have the same (usually unknown)
variances? = E(¢?) > 0.

We seek an estimatefor the unknowrk that
(a) isunbiasedli.e., satisfiesE(X) = X,
(b) depends linearly on the observatipni.e., X = Zy for some suitable
matrixZ € R™™ (to be determined),
(c) minimizesE(||X — X||?).

Because of the linearity of the expectation (which meansHhiata linear func-
tion), we have

E(X) = E(Zy) = E(ZAX) + E(Ze) = ZAX .
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By (a), we wantE(X) = x. SoZ should be ayeneralized inversef A, i.e., satisfy
ZA = 1. In view of (c),Z should minimize the variance of the estim&tdJsing
again the linearity of expectation, we deduce

E(IX —x|I*) = E(|Zy — x[|?) = E(|Ze||*) = E(e'Z27Ze) =0%Z 0 Z,

where the last equality follows from our assumptideie;) = 0 fori # j via

E(e'27Ze) = Z(Z Zkzj) E(gig)) = Z(Z Ziz) E(gig)) = 0% ZoZ .
K K

i, i

Because? is fixed (although unknown), the problem of determining an unbiased
linear estimator with least variance in the Gauss-Markov model reduces to mini-
mizing the Frobenius noriZ | = +/Z o Z of the matrixZ. So we want to solve

the minimum norm problem

(2.26) I‘)pi[lHXH,: , where L={XeR™™|XA=1}.

Identifying X with its n- m-dimensional vectotx; ), this is a quadratic problem
(with Q =) of type (2.23).

EX. 2.14. Observe that the constrain¥.A = ' are “independent” of each other and
conclude that (2.26) decomposes into n independent subproblems of type (2.23), each of
dimension m.

2.2.2. The Algorithm of Gram-Schmidt. Projections onto a subspaééC
R" are particularly easy to compute whéh= col B, whereB = [a,, ..., ay] is
such that the Gram matri@ = B'B = ((aj|a;)) is diagonal. Then formula (2.17)
yields the coefficientg; = (aj|a;)~1(x|a;), i = 1, ..., m, for the projectionk of
xeR" e,

m m
(2.27) K= za = (ala) (xla)a .

i=1 i=1
Let noway, ..., an € R" be arbitrary linearly independent vectors. We will con-
struct vectord,, . .., by, that are pairwise orthogonal (in the sense thgb;) =0

if i #])suchthatfok=1,...,m,
Vk = span{ay, ..., a} = span{by, ..., by} .

The procedure is straightforward. We start woth= a;. Assume we have already
constructedby, ..., b,. We then compute the projectidi,, of ax.; onto Vi
and takeby,; = ax.1 — a1. Since thebg, ..., by are pairwise orthogonal, the
projectionay.; is easy to compute according to (2.27).
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Gram-Schmidt
b, =a; andk =1;
WHILE K < mDO

Dit1 = 1 — Z:(zl(bi Ibi) (@ s1lbi)bi ;
K—k+1;

Ex. 2.15. Show (by induktion on k) that Gram-Schmidt produces pairwise orthogonal
vectorsby, ..., by so that \{ = span{by, ..., by} fork=1,..., m. Show furthermore:
(blbk) < (aklak) fork=1,..., m.

Ex. 2.16. Extend the Gram-Schmidt algorithm to possibly linearly dependent vectors
ai,...,an. (Hint: If axy 1 € Vi, setbyy1 =0.)

It is instructive to look at the Gram-Schmidt algorithm from the point of view of
matrix operations. LeA € R™" be the matrix with rows], ..., al. The algo-
rithm of Gram-Schmidt then (just as Gaussian elimination) performs elementary
row operations o\ of the type

e Add (subtract) multiples of rows,1.., kto rowk + 1.

Hence each iteratiok = 1, ..., m of Gram-Schmidt is achieved by multiplying
A (from left) with a lower triangulakm x m)-matrix M with all entries 1 on the
diagonal. LettingM denote the product of the matricklk;, we obtain

B=MA =Mp...MA,

whereB has rowsbI, ..., bl that are pairwise orthogonal. Note that eddh

has determinant 1. So the determinant multiplication rule says thatvalsas
determinant 1. In the case whef¢.) is the standard inproduck|y) = X'y,

this observation allows us to deduce the following estimate on the determinant of
positive (semi-)definite matrices.

PROPOSITION 2.1(Hadamard’s Inequality)LetA € R™" be a matrix with row
vectorsa'. Then

0<detAAT) <[]a'a .
i=1

Proof. If the rows ofA are linearly dependent, we have dét"™ = 0 and there
is nothing to show. Otherwise we apply Gram-Schmidt to obBata MA with
detM =detMT = 1 Hence

detAAT = detMAA "M T = detBB".
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B has pairwise orthogonal rovi . So the matrixBBT is a diagonal matrix with
diagonal elements'b; > 0. Hence ¢f. Ex. 2.15),

m m
0<detBB = Hbini < HaiTai .
i=1 i=1
&

2.2.3. Eigenvalues of Symmetric MatricesLet A € R™" be a square ma-
trix. The numberx € R is called aneigenvalue ofA if there exists a vector
x € R™\ {0} such that

AXx = AX (i.e, x e ker(A — xl)) .

In other words is an eigenvalue oA if det(A — Al) = 0. The nonzero vectors

x € ker(A — Al) are theeigenvectorgorresponding ta. Clearly,x is an eigen-
vector if and only ifx’ = || x| ~x is an eigenvector. So we can restrict our attention
to eigenvectors of unit lengthx| = 1.

Interest in eigenvalues and eigenvectors arises from the following consideration.
Suppose there exists a basts, . . ., X,} of R" with pairwise orthogonal eigenvec-
tors of A of length|x;|| = 1. SettingQ = [Xy, ..., Xp], the orthogonality relations
meanQ'Q =1, i.e, QT = Q~1, while the eigenvalue property yields the diago-
nalizationAQ = QD or

QTAQ =D, whereD =diag (i1, ...,4n) .

REMARK. [SPECTRAL DECOMPOSITION. The eigenvector basi® implies in partic-
ular the so-calledpectral decomposition

n
i=1

of A as a (weighted) sum of the p.s.d. matrigeg’ € R"™" of rank 1. The equality in
(2.28) is straightforward to verify by checking for each basis vector

n n
AXG = Ajxj = D aaxi O X)) = (D X )x;
i=1 =1

REMARK. Although eigenvalues are quite "natural” matrix parameters, not every (real)
matrix admits (real) eigenvalues. Moreover, even when eigenvalues exist, thegt can
be calculated with elementary linear-algebraic operations and fall outside the realm of
Gaussian elimination type methods. Already with positive definite matrices we face qua-
dratic optimization problems subject to the nonlinear constigifit= 1 (see (2.29) be-

low). In this sense, Theorem 2.3 below is an "existence result”. In practice, the numerical
computation of eigenvalues is not exact.

We want to show that evergymmetricmatrix A € S™" admits an orthogonal
basisQ of eigenvectors. Observe first that the number

(2.29) A1 = min X"AX
Ixll=1
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is well-defined since the continuous functidiix) = x"Ax attains its minimum
on the compact sé¢k € R" | ||x|| = 1} (cf. Theorem 1.1). So there exists a vector
X1 € R", [Ix1]| = 1, such that; = x{Ax;. By definition of »;, we havex™ (A —
rl)x > Oforallx e R, i.e,

(A —xql) is positive semidefinite andx{ (A — A11)x; =0.
Expressing the p.s.d. matrix As— 1,1 = CTC (cf. Corollary 2.4), we find
0= X1 (A — A1)X1 = (Cx1) " (Cx1) = [|Cxy)?

and henceCx; = 0. SoCT'Cx; = 0 or, equivalently,(A — 111)x; =0, i.e, X1 is
an eigenvector of with corresponding eigenvalue.

Starting with the eigenvectoy corresponding ta.; we successively compute an
orthonormal basis of eigenvecta@= [X4, ..., Xy] as follows. We (arbitrarily)
extendx; to an orthonormal basi®; = [X1, 02, .. ., Qn] and observe that

OT
QIAQ: = [ e }

with a matrixA, e S"Yx"-L  The same argument exhibits some orthogonal

= =T — Ao OT 1 0" .
matrix Q, with Q,A,Q, = [ 02 As } HenceQ, = [ 0 0, ] yields
A2 0 O
Q;Q{AQ:Q;=| 0 4, OT
0 0 A

After (at most)n steps, the desired diagonalization is obtained by the orthogonal

matrixQ = Q1 - - - Qn.

Summarizing, we have derived the following "spectral theorem”.

THEOREM 2.3 (Spectral Theorem for Symmetric Matricet)et A € S™" be a
symmetric matrix. Then there exists a ma@ix R"™" and eigenvalues,, ..., A,
of A such that

Q'Q=1 and QTAQ =diag(i,...,An).
<o

REMARK. Our discussion exhibits the eigenvalugof the symmetric matriA as the
optimal solution of the optimization problem

(2.30) minx st. A—Aal = 0.

This problem can in principle be solved approximately by using the Diagonalization al-
gorithm (f. Section 2.1.3): Suppose we have initial lower and upper bounds; fae.,
A < A1 < A. We then approximatg; by binary search
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WHILE A — A > & DO
BEGIN
Letr:= (A +1)/2.
Check whetheA — Al is p.s.d.
If yes, update. := A, otherwiser := A .

END

In practice, other methods are more efficiemg( the Q R-algorithmcf. [33]).

2.3. Integer Solutions of Linear Equations

Often one may want to have solutions for systems of linear equations with each
coordinate being an integer. This extra requirement adds some difficulty to the
problem of solving linear equations. Consider, for example, the equation

33X —2% = 1.

Gaussian Elimination will produce the rational solutioq, x,) = (1/3,0) (or
(X1, X2) = (0, —1/2) if we re-order the variables) and miss the integral solution
(X1, X2) = (1, 1). Moreover, the example

2x=1

shows that a linear equation may well have a rational solution while being infea-
sible with respect to the integer requirement. So we must approach the problem
differently.

We assume that all coefficients of the linear equations we consider are rational.
Hence we can multiply the equations by suitable integers so that we obtain an
equivalent system with integral coefficients. The important point to make now
comes from the following observation. For evety x, € Z and

b = aix; + axXz,

each divisor the integeis anda, have in common must also divide or, to put
it differently, b is an integral multiple of the greatest common divisoagpfand
a,. In fact, we have

LEMMA 2.2 (Euclid’s Algorithm). Let c= gcd(a;, a2) be the greatest common
divisor of the integers aand &. Then
L(ai, &) :={a1A1+ @i | A1, Ao € Z} = {CA|AL € Z} = L(C).

Proof. We have already observed that everg L(a;, a,) must be a multiple of
C = gcd(ay, ap). So it suffices to show € L(ay, &), i.e,, it suffices to derive an
explicit integer representation

C = i+ arsy.
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We solve the latter problem witBuclid’s Algorithm The algorithm is based on
the simple observation that, for akye Z, we have
gcd(ay, ax) = gcd(ay, ay —ay) = ... = gcd(ay, a, — kay) .

Givenay, ap, we determine go@y, a,) as follows. Assuminga;| < |ay|, we first
try c = a; as a candidate and check whether the quotieata,/c = a,/a; is an
integer. If yes, clearly ga@y, a;) = |c| = |a;| holds and the algorithm stops.

If A ¢ Z, we let [A] € Z denote the integer nearestit@nd write

a = [A]ag + pay,
noting

lul=12—[2]1<1/2 and pay=a—[rAJaeZ.
According to the basic observation above, it now suffices to determine
gcd(ay, par) = geday, a — [A]ay) -

Becauséua;| < |a;|/2, we tryc = pa; as the next candidate for a greatest com-
mon divisor and proceed as before until the curvesttisfies. € Z (and hence
u = 0).
Since the absolute value| of our current candidate for g¢ah, a,) is reduced by
at least 50% in each iteration, the algorithm will stop after at mosfaggsteps
(log always denotes the logarithm to base 2) and output from the cuoriet
result

cl = gcd(ay, &) -
It is easy to update an expression for the curpesis an integer combination

C=aiA; + aAr

of the originala; anda, because the parameters in each iteration are simple in-
teger combinations of the parameters of the previous iteration and, hence, of the
originala; anda,.

&

Euclid’s Algorithm allows us to solve the integer equation
A1 Xo + arXo = b

in a straightforward way. We first compute an integer representation for the great-
est common divisoc of a; anday,:

C=ajA1+aiy,.
If » =c b ¢ Z, then the equation does not have an integer solution. Otherwise
the choicex; = Ax, andx, = A, yields a solution.

We now generalize Euclid’s Algorithm with the goal of solving systems of linear
equations in integer variables. To be specific, we assume that we arergiven
integral vectorsy, ..., a, € Z™ together with a prescribed right-hand-side vector
b € Z™ and we want to find integeps € Z such that
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(2.31) aXit+axXo+...+a.x,=Db
or assert that no integral solution of the system (2.3 bhear equations exists.

REMARK. Seemingly more generally, we could admit rational @gtd € Q™ for (2.31)
as well. Multiplying then each equation in (2.31) by a suitable denominator, we easily
obtain an equivalent problem with integral parameters.

Without loss of generality, we furthermore assume that the system (2.31) has full
rankm (remove redundant equations) and that we have labeledl i such a
way that the firstnvectorsay, ..., a, € Z™ are linearly independent.

Consider the sdt of all feasible right-hand-sidésfor (2.31),i.e., all vectors that
can be expressed as integral linear combinations of the vesgtars , a,:

n
L=L(a.....a) = {D>_ajrj|rj€Z} CR™.
j=1
L is said to be théattice generated by the vectoass, ..., a,. It may happen that
L(a;,...,am) IS a proper subset df(ay, ..., a,). Nevertheless, it turns out that
one can findnlinearly independent vectors, ...,cn € L(a, ..., a,) such that

L(Cy,....Cm) = L(@1,...,an) .

Such a se€C = {cq, ..., ¢y} Will be called alattice basisfor L(ay, ..., a,). The
key to our algorithmic approach for solving the system (2.31) will be the con-
struction of a lattice basis.

Thinking of C as a matrixC with columnsc;, we note that (2.31) has an integral
solution if and only ifo € L(cy, ..., cy), i.e, ifand only if A = C~'b € Z™.

If b =CA\is arepresentation @fas an integral linear combination of thés, and
if we know how to express eaahas an integral linear combination of the vectors
a, ..., a, we can immediately compute an explicit integral solutidor (2.31).

The algorithm below constructs a lattice basis iteratively. In each iteration, we
will be able to maintain an integral representation of the curcgmnin terms of

the originala;’s. The next lemma is straightforward from the definitions. It tells
us how to check whethdcy, ..., ¢y} is a lattice basis.

LEMMA 2.3. Letcy,...,Ch€ L(ay,...,ay) be given vectors and considér=
[Ci,...,Cm]. Then L(cy,...,Cn) = L(ay, ..., a,) holds if and only if for all j=
1,...,n, the linear equation

CA\= aj
has an integral solution.

O

The condition in Lemma 2.3 is easy to checKifields a basis oR™ (and thus is
invertible): We simply have to verify the prope®'a; € Z™forall j=1,...,n.
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The algorithm for constructing a lattice basis now iterates two steps. The first
step checks whether the current candidate basis is good. If€otfaghas a non-
integral component, we modify our current basis in a second step similar to the
adjustment of the candidatan Euclid’s Algorithm and return to the first step.

Lattice Basis

INIT: C=[cCy,...,Cnl =[a1,...,an];
ITER: ComputeC~1;
If C'a; e Z™for j=1,...,n, thensToR,
If A= C~ta; ¢ Z™ for somej, then
Letaj = CA =>_", Aic; and compute
c=>" (ki —[ADe =a;— X[
Letk be the largest indexsuch that.; ¢ Z ;
UpdateC by replacinge, with ¢ in columnk;
NEXT ITERATION

Let us take a look at an iteration of the algorithm Lattice Basisg,If. ., c, are
elements of the lattické(ay, ..., a,), it is clear thatc will also be a member of
L(as,...,ay). Moreover, if we have recorded how to express each of the vectors
¢ as an integral linear combination &f, ..., a,, then we can obtain such an
explicit representation faz as well.

From these remarks, itis apparent that we can solve (2.31) if the algorithm Lattice
Basis ever stops: We compuye= C~'b and check whethey € Z™. If yes,
substituting the;’s for thec;’s in b = Cy will produce the desired representation.

REMARK. In practical computation, it is preferable to so®@a = a; by Gaussian Elim-
ination rather than to compute the inve3e! explicitly.

It remains to show that the algorithm is finite. In order to estimate the number of
iterations of Lattice Basis, we follow the quantity

A(Cy,...,Cn) = |detC|

in each iteration.C will always be a basis oR™ and thus yieldg detC| > O.
Since all coefficients iiC are integers, we havaletC| € N and hence conclude
|detC| > 1.

Describing the replacement step in an iteration by matrix operations, we see that
the update o€ amounts to the computation of the matrix

C=CM,
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whereM = (uj;) € R™™ is the matrix with
1 ifi=j)#Kk
wij = 1 Ai—[A] if j=kandi <k
0 otherwise.

Hence we obtain
|detC| = |detM| - |detC| = |A — [A4]| - |detC| < %A(cl, .ee,Cm)
and thus conclude afté4 iterations
1< A, ....Cn) <2 KA, ...,an),
which implies the bound on the number of iterations:

K <logA(a,...,am) .

Ex. 2.17. Compute integers,¥, z € Z that solve the following system of linear equa-
tions:

2x + 5y + 3z = 3

X + 2y + z = -7

The existence of lattice bases implies an integer analogue of Gale’s Theorem for
linear equations (see p. 27):

THEOREM 2.4. LetA € Z™" and b € Z™ be given. Then exactly one of the
following statements is true:

(a) There exists somee Z" such thatAx = b.
(b) There exists somee R™ such thaty"A € Z" andy™b ¢ Z.

Proof. If (a) is true, theny™b = y"Ax for somex € Z". Soy'A e Z" implies
y'b € Z, i.e., (b) cannot be true.

If (a) is not true, therC~1b ¢ Z™, where we assume without loss of generality that
A has full rankm and thatC is a basis for the lattice generated by the columns of
A. In particular,C~! contains a row", say, such thag'b ¢ Z.

On the other hand, the fact th@tis a lattice basis implie€~*a; € Z™ for all
j=1,...,n,i.e, C'A € Z™", So, in particulary’ A e Z" holds and proves
statement (b) to be true.

&

REMARK. One can show that lattice bases exist even if the veetpese not rational

(see Lekkerkerker [53]). So Theorem 2.4 remains true in this more general setting. How-
ever, our finiteness argument for the algorithm Lattice Bases will no longer be valid if the
problem parameters are not rational. (This is no problem for practical applications, where
the problem data are always rational).
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2.4. Linear Inequalities

We now investigate the problem of computing a feasible vectwoiR" for a sys-
tem Ax < b of linear inequalities, witlA = (a;) e R™" andb = (bj) € R™,
which stands short for

n
(2.32) Max < b, i=1...m.

We approach the problem with the same idea as in Gaussian elimination and elim-
inate variables one after the other until the system is either seen to be infeasible
or a solution can be reconstructed backward substitution. However, there is
one important technical point to be observed:

¢ In the elementary row operations, only multiplications wathictly pos-
itive scalarsare admitted.

REMARK. The restriction to operations withositivescalars comes from the fact that
multiplication of an inequality with a negative scalar wotddersethe inequality.

To see how we have to proceed, let us dividei thimequality in the system (2.32)
by the positive numbeja;| wheneverg; # 0,1 =1, ..., m, and investigate the
equivalent system

n
X1+ Za;ij Sb/r, r=1,...,k
1_2

(2.33) —X1+ Zaij, <b,, s=k+1,...,¢

Z:at,x,<bt t=¢+1,....,m

For clarity of the exposition, we assume here that the rows are indexed such that
the first rows have coefficierd;; > 0, then the rows withta;; < 0 follow, and
finally the rows witha;; = 0 appear. Note that if either reg; > 0 or noa;; <0
occurs {.e, eitherk =0 or¢ = kin (2.33)), a solutiorx = (Xy, ..., Xy) is easily
obtained recursively by solving the system of inequalities ¢ + 1, ..., m of

(2.33) in the variables,, ..., X, and then chosg; sufficiently small resp. large

S0 as to satisfy the inequalities involving

The firstl inequalities in (2.33) can equivalently be written as

(2.34) ( Za”x,) > % > _max (Zaij, S).

.....
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with the understanding mia +o0 if k=0 (i.e,, there is na;; > 0) and max=
—oo if | =k (i.e, thereis na;; < 0).

Eliminating the variablex; in (2.34) and including the inequalities in which
does not appear, we obtain the system

n n
Dlagx — by < b—> ax, r=1...ks=k+1....¢
(2.35) 132 i=2

> agx < b, t=C+1,....m.

=2

It is crucial to observe that for every feasible solution of (2.35)acan be found

that satisfies the relation (2.34) because, by construction of the system (2.35),
the min> max property is guaranteed by all solutions. Re-ordering terms, we
moreover see that (2.35) is equivalent with

n

Z(a;j+a;j)xj < b +b,, r=1,....k; s=k+1,...,¢
(2.36)  I7?

Zat,-x,- < b, t=¢4+1,...,m

j=2
If X = (X, X, ..., Xn) T satisfies the system (2.33) then cleatly= (X, ..., X,)T
satisfies the linear inequality system (2.36) AOK’ < b’ for short). Moreover,
whenever a vectax’ = (Xy, ..., Xn)' satisfies (2.36), ther = (X3, Xo, ..., Xn)"

is feasible for (2.33jf and only if % is chosen according to (2.34).

REMARK. (2.36) arises from (2.33) by adding thends rows in pairs. In particular,
the systemA’x’ < b’ in (2.36) can be understood to be of the form

Ax = [0,A']x < b’ (with Oas the first column of).

As it was the case with Gaussian elimination, the preceding analysis says geomet-
rically that the solutions of the system (2.36) are the projections of the solutions
of the system (2.32) onto the variabbes xs, ..., X,. Iterating the construction,

we thus observe:

THEOREM 2.5(Projection Theorem)Let PC R" be the set of feasible solutions
of AXx < b. Thenforallk=1, ..., n, the projection

PO = {(Xi1s -+ Xn) | (X, ., X, Xiads - - - » Xn) € P for suitable x e R}

is the solution set of a linear systefAf“x® < b® in n — k variablesx®¥ =
(K15« -+ Xn)-
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Given the inequality system (2.32), we can find a solution (or decide that no so-
lution exists) recursively (eliminating one variable after the other until a solution
can be obtainedjia the following procedure.

Fourier-Motzkin

Compute a solutiofix,, . .., X,) for (2.36);
If no such solution exists, thesToPR,

Computex; via backward substitution from (2.34);

We note two important properties of Fourier-Motzkin elimination and its applica-
tion to systems of linear inequalities:

e Everyfeasible solution oAx < b can, in principle, be obtaineda suit-
able backward substitutions in the Fourier-Motzkin algorithm.

e If the coefficients ofA andb are rational numbers, the Fourier-Motzkin
algorithm will allow us to compute a solution with rational components
(if Ax < bis feasible at all).

Ex. 2.18. Eliminate X, y, z successively to solve the system

X 4+ y — 2z < 1
- 2y — 4z < -14
X 4+ 3y — 2z < =2
y + 4z < 13

2Xx — 5y + z < 0

REMARK. Fourier-Motzkin Elimination can be viewed as Gaussian Elimination with
respect to the set of non-negative scalars. In contrast to Gaussian Elimination for linear
equations, however, Fourier-Motzkin Elimination may increase the number of inequali-
ties considerably in every elimination step. This is the reason why the Fourier-Motzkin
algorithm is computationally not very efficient in general.

Ex. 2.19. Let m be the number of inequalities in the system (2.33). Establish the upper
bound m < m?/4 on the number frof inequalities in the system (2.36).

The Satisfiability Problem. A fundamental model in artificial intelligence is
concerned wittboolean functiong : {0, 1}" — {0, 1}. We consider such a func-
tion ¢ = ¢(X, ..., X,) as a function of logical (boolean) variables; and inter-
pret the value “1” as “TRUE” and the value “0” as “FALSE”. We say thais
satisfiableif ¢(x) = 1 holds for at least one € {0, 1}". Everyx with ¢(x) =1

is called asatisfying truth assignmex@s it assigns values to the logical variables
that makep become TRUE). Given a boolean functignwe would like to find a
satisfying truth assignment far (or decide that no such assignment exists).
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Allowing also thenegationx; of a boolean variablg;, it is well-known that each
boolean function can be represented by a first order logic formula, or boolean
formula, inconjunctive normal fornfCNF). For example,

P(X1, X2, X3) = (X1 V X2) A (X1 V X2V X3) A X3
is in CNF and has a satisfying truth assignme(it, 1, 0) = 1.

In other words, we can write(Xy, ..., X,) as a conjunction oflauses ¢ each

of which is a disjunction ofiterals, namely unnegated and negated boolean vari-
ables. Thesatisfiability problemasks for an assignment that makes all clages
of the system simultaneously TRUE.

The satisfiability problem for a CNF-system can be translated into the problem of
solving a linear system in th@, 1)-variablesx, , where each clause corresponds
to an inequality of the system and the negated varigbierepresented by % x.

For example, the clausg = x, v X5 V X7 is made TRUE if and only if we assign
values 0 or 1 to the variables such that

Xo+(L—X)+X>1 ie. —X+X—%X<0.

In general, we cannot solve the system by Fourier-Motzkin elimination since the
Fourier-Motzkin solution may not bleinary, i.e., X € {0, 1} for all k (even if a
binary solution exists). As a matter of fact, it is computationally difficult to find
satisfying truth assignments for general CNF-systems (see S@&ioHowever,
there are classes of CNF-systems that can be solved efficiently.

Assume thatC; A ... A C is a CNF-formula in which each clau$g consists

of at most 2 literals. Then it is easy to compute a satisfying truth assignment (if
one exists). Consider, for example, the variaklelf its negationx, occurs in no
clause, then we may sgt = 1 and remove all clauses containixgfrom further
consideration.

If there are clauseS; = Xk V XsandC, = X, V X, then a truth assignment satisfies
C, andC; simultaneously if and only if it satisfies the so-calledolution C=
Xs V X. Thatis, we can repladgé; andC, by C and continue. The resolution step
is equivalent with the elimination procedure in the Fourier-Motzkin algorithm
when we eliminate from the inequalities corresponding @ andC,. We add
the inequalities

—Xk —Xs -1

Xk —Xi 0

in order to derive =xs — X; < —1”, which corresponds t€. Note that this reso-

lution step does not increase the number of inequalities and hence gives rise to an
efficient algorithm.

IAIA

Ex. 2.20. Use the Fourier-Motzkin algorithm to solve the satisfiability problem for the
CNF-systemwith C=x1 VX2, & =X VX3, CG3=X1 V X2, C4 = X3V Xq, C5 = X1 V X4.
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2.4.1. Solvability of Linear Systems and Theorems of the Alternative.
From a conceptual point of view, we can deal with the Fourier-Motzkin algo-
rithm as we did with Gaussian Elimination. We imagine that the “eliminated”
variablex; is actually still present in the derived system (2.36) but has coefficient
0. Moreover, the inequalities of the derived system are obtained according to the
principle:

e Each inequality of (2.36) is a linear combination of the inequalities
of (2.33) with non-negative scalars.

Ex. 2.21. Given the linear systerAx < b, we may consider arbitrary non-negative
linear combinations of the inequalitiég.x < b; and obtain so-callederivedinequalities
of the form

(y"A)x <y'b
for somey > 0. Show: Every non-negative linear combination of derived inequalities
results again in a derived inequality.

As a consequence of Ex. 2.21, we find:

e Everyinequality in any iteration of the Fourier-Motzkin algorithm is of
the form(y"A)x < y'b, wherey > O.

Keeping this observation in mind, we arrive directly at the following general-
ization of Gale’s Theorem on the solvability of linear equations, which is often
referred to as the "Lemma of Farkas”:

THEOREM 2.6 (Farkas Lemma)Let A € R™" and b € R™ be given. Then
exactly one of the following alternatives is true:

(I) Ax < b isfeasible.

() There exists a vectgr> 0 such thatyTA =0" and y'b < 0.

Proof. We apply Fourier-Motzkin elimination to the systefw < b. After elimi-
nating all variables we arrive at the systéx < b with coefficient matrixA = 0,
in which theith inequality is of the type

0=0"x=[y/Alx<y/b=Dh

for some vectoy; > 0. This system is either trivially feasible (& > 0 holds for

all i) or infeasible. In the first case, (I) is true (and we can construct a feasible
solution ofAx < b via backward substitution). In the second case (ll) holds (take
y =y, if by < 0).

o
Ex. 2.22. Show directly that (I) and (Il) in Theorem 2.6 can not hold simultaneously.

REMARK. ltis usually quite straightforward to check computationally whether a given
vectorx is indeed a feasible solution of a given system of (linear or nonlinear) inequali-
ties. In this sense, a system of inequalities has a “short profoi’its feasibility. (Finding
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such a "short proof” is, of course, a usually much more involved matter, see Chapter 8.)
But how could one convince another person that a feasible solutionndbegist? This
guestion is generally very hard to answer. The Lemma of Farkas shows#etsys-

tems enjoy the remarkable property of possessing also “short prp&ds'infeasibility.

Ex. 2.23. Find a vectory € R that exhibits the infeasibility of the system

X1 + 2% + 3x3 < -1
—-2X1 + X2 < 2
—5x, — 6x3 < -1

Ex. 2.24.LetA e R™" b e R™, B € R**", d € RX be given. Show that exactly one of
the following alternatives is true
() Ax =b,Bx <d is feasible.
(1) There exist vectors € R™ andv e R¥ such thaw > 0,
uTA+viB=0",andu"b+v'd < 0.

In the same spirit, we can prove or disprove the existence of “non-trivial” solu-
tions of systems of linear equations and inequalities. We give one example, where
we use the notation

a<b

foranya = (a;), b = (bj) € R" that satisfya; < bj forall j=1,...,n.

COROLLARY 2.5 (Gordan) For everyA € R™", exactly one of the following
alternatives is true:

() Ax =0,x > 0 has anon-zerosolution.
(1) yTA < 0" has a solution.

Proof. If X andy satisfyAx =0, X > 0 andy'A < 0", we have(y'A)X =
yT(AX) = 0, and henc& = 0 because all components 9fA are strictly neg-
ative. So (I) and (Il) are mutually exclusive.

Assume now that (1) does not hold. Hengéy < b is infeasible for the particular
choiceb = —1. So the Lemma of Farkas guarantees the existence of a vector
X > 0 such that botlxTAT =07, i.e, Ax =0, andx"b < 0 (and hence # 0) are
satisfied, which implies that statement (1) is true.

&

REMARK. The results of Gordan [35] actually pre-date and imply the results of
Farkas [20]. As we have seen, both are consequences of the Fourier-Motzkin algorithm
that is essentially due to Fourier [26] even earlier (see also Motzkin.[60])

Stochastic Matrices. We illustrate the power of theorems of the alternative
with an application in stochastics. probability distributionon the finite set
S={1,2,...,n}is avectorr = (71, ..., 7,)" such that

n
>0 forallieS and Zmzl.
i=1
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The matrixP = (p;) € R™" is said to bestochasticif each row vectorP;. =
(pi1, - - -, Pin) Of Pis a probability distribution.

Thinking of Sas a system aftatesand of p;; as thetransition probabilityof the
system to pass into stajegiven it is in state,

n

/

Ty = z Pik7Ti
i—1

is the probability for the system to move into stafeassuming it is currently in
statei with probability ;. So

n =P'n
is the probability distribution of the states after one transition.
Stochastic matrices arise in the study of random walks and Markov chains (see,
e.g., [21] for more details). A fundamental property of any stochastic matrix
P = (p;) is the existence of ateady state distributignpnamely a probability
distribution = such thatr = PTxr. To prove this fact, it is convenient to use
matrix notation. Wher¢ is the identity, we must prove that the system

(P—1)'x=0,x>0

has a feasible solution # 0. Settingk = >, % > 0O, the vectorr = A~!x then
yields the desired steady state distribution.

By Gordan’s Theorem (Corollary 2.5), it suffices to show that the associated
“dual” system

(2.37) (P—=1)y <0 or, equivalently, Py <y

is infeasible. Consider therefore a potential feasible vectet (yi, ..., yn). Let
yx be a smallest component pf From (2.37), we would then deduce

n n
Yk > Z PkjYj = Ykz Pkj = Yk »
j=1 =1
which is impossible.

2.4.2. Implied Inequalities. We say that an inequality’ x < zis impliedby
Ax < b ifforall x e R",
Ax<b implies <c¢'x<z

(in other words: there is no solution @fx < b with ¢c'™x > 2). If Ax < b is
infeasible then, by definitioreveryinequality is implied. Hence we will always
assume in the following thax < b is feasible.

Implied inequalities are easily constructed: MultiplicationAfx < b; with a
scalar multipliery; > 0 yields the implied inequality;A; x < y;b;. Adding all
these inequalities, we obtain the implied inequality

(y'AX<y'b.
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Increasing the right hand side to any value yTb yields, of course, again an
implied inequality(y"TA)x < z.

A fundamental and exceedingly useful property of linear systems is the converse:
Everyimplied inequality arises this way. This statement is equivalent with Theo-
rem 2.6 and also occasionally referred to as the "Lemma of Farkas”.

COROLLARY 2.6 (Farkas) Assume thafx < b is feasible. Then the inequality
c'x < z is implied byAx < b if and only if there exists a non-negative vector
y > 0 such that

(2.38) c'=y'A and y'b<z

Proof. We have seen that condition (2.38) is sufficient. To show the necessity,
suppose that (2.38) has no non-negative solution. We claim thattixen zis

not implied byAx < b, i.e., that there exists a solution & < b andc'™x > z

So suppose that the system (2.38) has no solytiar0, i.e.,

Aly = ¢
(2.39) bly < z
-y < O

is infeasible. Then Theorem 2.6 implied.(Ex. 2.24) that the associated alterna-
tive system

vIAT + ub™ — w'l = 0T

(2.40) vic  + uz < 0

has a feasible solutiofv, u, w) with u > 0 andw > 0. We consider the two cases
u## 0andu = 0. Nowu > 0 implies thak = —u~!v satisfiesAx < b andc™x > z,
which proves the claim.

If u= 0 thenAv > 0 and(—c'v) > 0. Choosing some feasible solutiag of
AX < b, we setx; = Xo — tv and find fort > 0,

Ax;<b—tAv<b and c'x,=c'xy—tc'v.
Hence, fort > 0 sufficiently large, we obtain aga#x; < b andc™x, > z

<

Ex. 2.25. Show: f(x) = c"x is bounded from above on R {x € R" | Ax < 0} if and
only if the inequalityc™x < 0is implied byAx < 0.

Corollary 2.6 allows us to check wheth&ix < zis implied byAx < b by testing
the feasibility of the system
y>0, y'A=c’, y'b<z.

Similarly, we can identify redundancies in a system of linear inequalitiés (
Ex. 2.26) and, more importantly, characterize optimal solutions of linear opti-
mization problemsdf. Ex. 2.28).
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EX. 2.26. An inequalityA;.x < b; of Ax < b is calledredundantf its removal does not
affect the set of feasible solutions. Explain how redundancy can be tested with the help of
Fourier-Motzkin. Show by example:Af.x < bj andAj.x < b; are both redundant, then
removingbothinequalities simultaneously may well alter the set of feasible solutions.

Ex. 2.27. Show by example that the hypothestsc“< b is feasible” cannot be dropped
in Corollary 2.6.

Ex. 2.28. In alinear optimization problerwe are to maximize a linear function() =

cx on the set P= {x e R" | Ax < b}. LetX € P be given. Show: () =c'x =1z is
optimal if and only if Ax < b impliesc™x < z.

Conclude: The optimal solutiong(if they exist) arise precisely from the feasible solutions
of the linear system (in the variablesy, z):

Ax<b, c'x=z, y'A=c", y>0, yb<z.






CHAPTER 3

Polyhedra

A polyhedron PC R" is, by definition, the solution set of some systém < b
of linear inequalities:

P=PA,b)={xeR"|Ax <b}.

In this chapter we study polyhedra as geometrical objects with the goal of pro-
viding some geometric intuition for the “algebraic” results about linear inequality
systems in Chapter 2(g, the Farkas Lemma). Polyhedra can be looked at from
two different (“dual”) points of view. So this chapter also introduces the concept
of duality for polyhedra. The duality principle will also play a fundamental role
in our analysis of (linear and nonlinear) optimization problems in later chapters.

3.1. Polyhedral Cones and Polytopes

Geometrically speaking, an inequalié&/x < g with a # 0 defines ahalfspace
H= = P@', B) = {x e R"| a'x < B} with

H={xeR"|a'x=p}

as its associateayperplane Hence a polyhedroR = P(A, b) C R" is the inter-
section of finitely many halfspaces. (In particulBr= R" is the empty intersec-
tion of halfspaces).

Ex. 3.1. Show by example that different inequality systems may define the same polyhe-
dron.

Every hyperplaned C R" and, more generally, every linear or affine subspace
L C R" is the solution set of a linear system of inequalities and hence a polyhe-
dron. The following type of polyhedron is of particular interest:pélyhedral
coneis a polyhedron of the forn = P(A, 0) (see also Ex. 3.2).

Linear Subspaces.To motivate the structural analysis of polyhedra, let us first
take a look at the familiar case of linear subspaces (which form a particular class
of polyhedral cones). A linear subspacec R" can be represented in two con-
ceptually different ways as

L={xeR"|Ax=0} or L =span{vy,...,V},

whereA is a suitable matrix and the vectars ..., vk € R" generatd. = kerA.
We refer to these two amplicit resp. explicit representations df. Both have

57
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their advantages: The implicit representation allows us to check easily whether
a givenx € R" belongs toL (by evaluatingAx), while the explicit representa-
tion enables us to produce elemexts Xi;v; € L as linear combinations of the
generators;. .

Our definition of a polyhedron is based on the implicit represent&ienP (A, b).
We want to establish an explicit representation in terms of convex and conic hulls
(Theorem 3.3 below).

Conic and Convex Hulls. A non-empty subse$ C R" is a(convex) conéf for
scalarsiy, A, > 0,

X1, X0 € S == MX+AXs € S.
It is straightforward to check that a polyhedral cd®@\, 0) is a cone.

Ex. 3.2. Show: PC R" is a polyhedral cone if and only if P is a polyhedron and a cone.

REMARK. Some textbooks use the term "cone’ for subsgts R" with the property
“Xx e S= ax e Sfor all » > 0". For us, however, aoneis always alconvex) con@s
defined above.

A setSC R"is convexf for scalarsii, Ao >0, A1 + A =1,
X1, X2 € S= AX1 +AX € S
In other words
X, X0 € S=> (1=AM)X1+AX € S forall A € [0, 1].
Geometrically this means: K;, X, € Sthen S contains the wholdéine segment
[X1, Xo] = {(1—21)Xg+ X2 | & € [0, 1]}.

Ex. 3.3. Let SC R" be a non-empty set. Show:

(@) Sisaconeifandonly ifix; +...+Akxk € Sforallk> 1, xg,...,Xk € S and
A, ..., Ak > 0.
(b) Sisaconvex setifand onlyifx; + ...+ Axxk e Sforallk>1,x1,...,xxk e Sand

A, .- Ak >0withdig+...+ =1
(Hint: Induction on K).

Clearly, intersections of convex sets (cones) are convex sets (cones) again. Hence
for an arbitraryS C R" we may define it€onvex hullconv Sresp. itsconic hull

coneS as the smallest convex resp. conic set contail@ngxplicitly, these sets

are given by ¢f. Ex. 3.4):

i=1

k
coneS = {Zkixi IXieS A >0, keN}

i=1 i=1

k k
convsS = { AiXi | Xi € S, Aizo,ZAizl,keN].
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Ex. 3.4. Show for an arbitrary SC R": The above given setonv S resp.coneS are
the smallest convex resp. conic sets containing S.

The case of a finite se8 = {s, ..., s} c R" is of particular interest. Letting
S=[s:...s] € R™K be the matrix with columns;, we also write

coneS = {xeR"|x=S\, A >0}

convS = {xeR"|x=Spu, p>0,1"p=1}.

If |§ < oo, we say that con& and convS are finitely generated A finitely
generated set coris said to be golytope A polytope is alwaydoundedli.e.,
there exists a numbere R such that|x|| <r holds for allx € conv{s,, ..., S}
Indeed, the triangle inequality yields

i+ ...+ sl < sl + ..+ lIsdl =
forall0 < pq, ..., ux < 1.
For arbitrary set#\, B C R" the Minkowski sums defined as

A+B={a+b|ae A beB}.
We will show that each polyhedroR C R" allows an explicit representation as
a Minkowski sumP = convV + coneW with finite setsV, W c R". We first
establish the converse.
THEOREM 3.1(Weyl). Let V, W c R" be finite sets. Then
P = convV + coneW

is a polyhedron. In particular, the polytomenvV is a polyhedron and the finitely
generated coneoneW is a polyhedral cone.

Proof. AssumingV = {vy, ..., v} andW = {wy, ..., w,}, consider the system of
linear equations and inequalities:
Z = V+w
V = AVi+ ...+ AV
(3.1) W = UiWi+ ...+ LW
1" =1
A >0 p>0

in variablesz, v,w, X and u. Clearly, P is the projection of the seP of all
feasible solutions in théz, v, w, A, u)-space onto the variables Hence,P is a
polyhedron by the Projection Theorem (Theorem 2.5).

The second statement follows from the special cA§es {0} andV = {0} re-
spectively ¢f. Ex. 3.2).
&

REMARK. P = convV + coneW is an explicit representation of the polyhedrén
The proof of Weyl's Theorem shows that an implicit representaffoa P(A, b) can
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be obtained by applying Fourier-Motzkin elimination to the system (3.1) (eliminating all
variables except).

Ex. 3.5. Define the (k-dimensiona$tandard conasRX = {x € R¥ | x > 0} and the
standard simplein RKasAg = {pr € R¥ | > 0, 1Ty = 1}. Show:

(@) C C R"is a finitely generated cone if and only if there is some k and a linear map
f : RK — R" such that C= f(RX).

(b) P C R"is a polytope if and only if there is some k and a linear mapRK — R"
such that P= f(Ay).

Ex. 3.6. Show: The Minkowski sum-P Q of the polyhedra PQ C R" is a polyhedron
(Hint: Use the Projection Theorem).

Ex. 3.7. Show for the finite set ¥ R":
conv(VU{0}) =conv|V,0 ={xeR" [ x=VX,1TA <1, A > 0}.

Ex. 3.8. Show that an affine map(X) = Bx +d (B € R™" andd € R™) maps each
polyhedron PC R" to a polyhedron P= f(P) C R™. (Hint: cf. the proof of Weyl's
Theorem 3.1.)

Separating Hyperplanes.An inequalityc™x < y is said to bevalid for SC R"
if c'™x < yholdsforallx e S,i.e, SCH:={xeR"|c'x < y}. If SC H= and
the pointv € R" is not contained irH=, we say thaH= (or c'x < y) separatey
from Sand call

H={xeR"|c'x=y}

aseparating hyperplane

Ex. 3.9. Give an example of a (convex) seER" and a pointv € R"\ S that cannot
be separated from S by a hyperplane.

Let us illustrate the Farkas Lemma geometrically and point out its relation to
Weyl's Theorem. Consider a polyhedré= P(A, b) andv € R". By definition,
eitherv € P or v can be separated frof (by some inequalityh;. x < b;). This

is particularly true forP = coneW (which is a polyhedral cone by Weyl's Theo-
rem). In other words, given a finite S& C R" and a vector € R", exactly one

of the following holds:

(I) v e coneW
(1) v can be separated from coMé (and hence fronw) by an
inequalitya’™ < 0.
“Algebraically”, those two alternatives take the form
() WA =v, X >0isfeasible.
(1) There exists soma € R" such thag™W < 0", a'v > 0,
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which is exactly the Farkas Lemma (Theorem 2.6).

REMARK. Separating hyperplanes play an important role in mathematical program-
ming, e.g, as “cutting planes” in Chapter 9 as well as in the ellipsoid method of Chap-
ter 10. Moreover, in Chapter 10, the closed convex sets are characterized as exactly those
setsS C R" that are intersections of (possibly infinitely many) halfspaces, every

v ¢ Scan be separated frof).

3.2. Cone Duality

Each vectorc € R" corresponds to a unique real-valued linear functionia
f (x) = c"x (and conversely). Similarly, there is a one-to-one correspondence be-
tween points € R" with ||c|| = 1 and hyperplanell = {x e R" | ¢"x = 0}. More
generally, each linear subspace- R" is uniquely determined by its orthogonal
complement

Lt ={ceR"|c'™x=0 forallxeL)}.
If L is defined implicitly by the linear equality systeAx = 0 with A € R™",
thenL* is given explicitly as the row space Af

= {xeR"|Ax =0} — kerA

3.2
(32) Lt = {ceR"|cT=y'A, yeR™ = rowA.

This duality relation is the core of Gale’s Theorem (Corollary 2.2) for linear
equality systems. We want to generalize it toame dualityas a means to pass
from explicit to implicit representations (amice versa of polyhedral cones.

Given a coneC C R" we define it-dual (or polar ) cone as
C'={ceR"|c"x < Oforallx e C}.

Clearly, C° C R" is again a cone. It may be considered as the “cone of valid
inequalities” (of typec™x < 0) for C.

Ex. 3.10. Let CC R" be a cone. Show thaf x < y is valid for C if and only ifc"x < 0
is valid for C. (Hint: 0 € C impliesy > 0.)

Ex. 3.11. Show for the linear subspaced R™ L+ = LO.

The Duality Relation. As C° is again a cone, its dua® = (C%?° is well-
defined. The following simple observation implies in particular 1G&t = C
holds if C C R" is a polyhedral cone (and generalizes the well-known relation
L = L*+ for linear subspaces).

PROPOSITION 3.1. Let CC R" be a cone. Then the following are equivalent:
(i) C=C%,
(i) Cisthe intersection of (possibly infinitely many) halfspaces.
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Proof. Assume that (ii) holds. Thef certainly equals the intersection efi
halfspaces defined by valid inequalities. By Ex. 3.10 these are of the'type0.
So

(3.3) C={xeR"|c'™x<0 forallce C%,

which is equivalent to saying th& = C%. Conversely, (3.3) implies th& is an
intersection of halfspaces.
&

Ex. 3.12. Show: C= C%f and only if every ¢ C can be separated from C.

REMARK. Corollary?? of Chapter 10 says th&C R" is the intersection of halfspaces
if and only if Sis a closed convex set. Combined with Propaosition 3.1, this result implies
that the coneC satisfiesC = C% if and only if C is a closed cone.

Explicit Representations of Polyhedral Cones.We can now show that each
polyhedral cone admits an explicit representation as a finitely generated cone. In
view of Weyl's Theorem, this means that the finitely generated cones are exactly
the polyhedral cones.

LEMMA 3.1. P(A,0)°=coneA".

Proof. By the Farkas Lemma (Corollary 2.6), we find for= P(A, 0):
C® = {c|c'™x<0 isimplied byAx < 0}
= {clc'=y'A, y>0
coneA™.

<

THEOREM 3.2(Weyl-Minkowski). Let C= P(A, 0) C R" be a polyhedral cone.
Then there exists some finite setdAR" such that C= coneW.

Proof. Lemma 3.1 yield<C® = coneAT. Moreover, Weyl's Theorem guarantees
that C° = P(B, 0) holds for some matriB8. Consequently, Proposition 3.1 and
again Lemma 3.1 yield

C=C%=P(B,0)°=coneB",
and the claim follows withV as the set of column vectors Bf .

<

Ex. 3.13.LetW = [ ; i _01 . Sketch C= coneW and its dual & in R? and

compute an implicit representation€ P(A, 0).

EX. 3.14. Show that C= {x € R" | x > 0} U {0} is a cone and & = R".
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The Cone of Positive Semidefinite Matriceslf the coneC C R" is contained in
a proper subspadeC R", we may wish to define its polar congativeto L, i.e.,
C'={yelL|y'™x<OforallxeC}.

(We shall use the notatio@® only if L is fixed in advance so that no misunder-
standing is possible.)

A particularly interesting class of (non-polyhedral) cones is provided by the posi-
tive semidefinite matrices. Consider the subsgaeeS™" C R™" of symmetric
(n x n)-matricesX = (x;) and the inner product

n n
XoY :szijyij with X, Y e S™".

i=1 j=1

It is straightforward to verify that the set
K={XeS™|X >0}

of positive semidefinite matrices is a cone. An explicit representatiod «f
provided by
PrROPOSITION 3.2. K =cone{w' |v e R".

Proof. Every matrix of the formX = wT is p.s.d., which implies the inclusion
“D”. Conversely, assumé = 0 and expresX = ZZ T for some matrixZ = (zs)
with columns, sayz, ..., zx € R" (cf. Corollary 2.4). NowX = ZZ T means

k k
.
Xj =D ZuZy = (Z 27 ) .
=1 =1 ij
k

i.e, X = > z,z] is a non-negative combination of matrices of typé. In other
(=1
words, X € cone{w' | v e R"}.

Let us consider the polar cone Kfwith respect t&"*":
KO={Y eS™|XoY <OforallX € K}.

COROLLARY 3.1. K is the cone of negative semidefinite matrices. In other
words, K = —K and, consequently, R = K.

Proof. From Proposition 3.2, we conclude for alle S™":
YeK’ — Yow)=vlYv<0 foreveryveR".

Ex. 3.15. What is the polar cone of K with respect&j*"?
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3.3. Polar Duality of Convex Sets

We want to extend the concept of polarity to arbitrary convex €etsR". For
convenience, we assurfies C.

If cTx < zis a valid inequality forC, 0 € C impliesz > 0. If z> 0, we can scale
the inequality tac™x < 1 (with ¢ = ¢/2). In analogy with cone duality, we now
define thepolar of C as

CP —{ceR"|c"x < 1is valid for allx e C} .
Ex. 3.16. Show: ®° is a convex set. If © R" is a cone, then °' = C°,

EX. 3.17. Determine the polars of B {x € R | X; + X, < 1} and Q= {x € R? | x| <
2, i=12).

Ex. 3.18. Let V C R? consist of5 equally spaced points on the unit circle in the Eu-
clidean plane. Sketch the poIaP‘P—* of the convex pentagon 2 convV .

By virtue of Ex. 3.16, our next observation generalizes Proposition 3.1.

PRoOPOSITION 3.3. Let CC R" be a convex set with € C. Then the following
are equivalent:

(i) C = cPolpal,

(i) C is an intersection of (possible infinitely many) halfspaces.

Proof. Assume that (ii) holds,e.,
C={xeR"|a'x< g foralliel).

0 € C implies g; > 0. By scaling, we may therefore assurec {0, 1} with-
out loss of generality. Moreover, every inequaliyx < 0 can be replaced by
infinitely many inequalitieska'™x < 1 (k € N). SoC admits an equivalent pre-
sentation of the form

(3.4) C={xeR"|c/x<lforallje J},
which implies
(3.5) C={xeR"|c'x< 1forallce CP?} = cpolpol

Conversely, of course, (3.5) exhibifsas an intersection of halfspaces.
&

Explicit Representation of Polyhedra. Consider the special case of a polyhe-
dron P = P(A,b) C R". P is convex and € P is equivalent withb > 0. By
scaling, we may then assurbee {0, 1}.
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LEMMA 3.2. Let PC R" be a polyhedron of the form £ P([ g ] , ( é )) )

Then P° =conv[AT, 0]+ coneBT.
Proof. The Farkas Lemma (Corollary 2.6) yields
PPl — {ceR"|c'x < 1isimplied byAx < 1, Bx < 0}
= {ceR"|c"=y'A+2'B,y>0,z>0y"1<1}
= {y/Aly>0,y"1<1}+{z'B|z>0}
= conv [AT, 0] 4+ coneB" (cf. Ex. 3.7).
&
We can now establish the full equivalence between explicit and implicit represen-
tations of polyhedra.
THEOREM 3.3 (Decomposition Theorem)rhe non-empty set 8 R" is a poly-
hedron if and only if there are finite sets W C R" such that
P = convV + coneW .
(Hence, in particular, every bounded polyhedron is a polytope.)

Proof. By Weyl's Theorem, the condition is sufficient fd? to be a polyhe-
dron. We show that the polyhedrdmindeed admits an explicit representation
as claimed.

If 0 e P, the representation in Lemma 3.2 exhibi®®' as a polyhedron. Since
0 e PP Lemma 3.2 can be applied to the polyhed®h= PP°' and yields
together with Proposition 3.3

P = (P)° = convV + coneW
for suitable finite set¥, W C R",

If 0 ¢ P, we choose some, € P and consideP, = {—Xp} + P, which (by Ex. 3.6)
is a polyhedron. Sincé € P, there exist finite set¥, and\W, with the property
Po = convVy 4+ coneWy. With V = {Xo} + Vo andW = W, it is now straightfor-
ward (cf. Ex. 3.19) to verify

P = {Xo} + Po =convV + coneW .

o

Ex. 3.19.Show: P=convV +coneW if and only ifxg + P = conv (Xg + V) + coneW
for eachxg € R".

Ex. 3.20. Let PC RR? be the unbounded polyhedron with boundary lines
y=X+3,y= —%x+ 5 and y=10.

Express P as = P(A, b) and P= convV + coneW. Draw P,convV andconeW
(separate pictures).
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The coneC = coneW in the Decomposition Theorem 3.3 is called theession
coneof P = P(A, b) and is equal td’(A, 0). It is uniquely determined b¥ (cf.
Ex. 3.21).

Ex. 3.21. Show that foJ £ P = P(A, b) = convV + coneW the following statements
are equivalent:
(i) w e coneW.
(i) we P(A,0).
(i) xo+ Aw € P for eachxp € P andi > 0.
(iv) Xo+ Aw e P for somexp € P andi > 0.

3.4. Faces

Intuitively speaking, a "face” of a polyhedroR C R" is a setF of the form
F = PN H, whereH is a hyperplane that “touche®. We also calH asupport-
ing hyperplane (supporting in F). To formalize this idea, assunie= P(A, b)
and recall that an inequality is valid fét if every pointx € P satisfies it. We say
that the sefF C P is afaceof P if there exists a valid inequalitg"x < y for P
such that

F={xeP|c'x=1y)}.

Note that this definition includes the empty $e{take 0'x < 1) and the full
polyhedronP itself (take0O"x < 0) as so-called “trivial” faces oP .

From the optimization point of view, a face &f(A, b) consists by definition of
all pointsx of P that achieve the maximum valud&x) = y (while all other points
x" e Pyield f(x') < y) with respect to the linear functiofi(x) = c"x.

Assume that the facé = {x € P | ¢'x = y} is non-empty (and henc&x < b
is feasible). Because'x < y is valid for P, it is implied by Ax < b. So the
Farkas Lemma (Corollary 2.6) guarantees the existence of a wectdd such
thatc™ = yTA andy™b < y. Hence we know that everye F satisfies

O<y'"b—Ax)=y'b—y'Ax<y—c'x=0,

which implies, for allx € F, the equalityy"b = ¢c"x = y as well as the so-called
“complementary slackness” relation

0=y"(b-Ax) =D yi(b-Ax).

This relation says: If; # 0 holds for theith component of the vectgr> 0, then
the correspondingh inequalityA;x < b; of the systemAx < b must betight (or
active forallx € F, i.e,,

Aix=D0b forall xeF.
Therefore, in view of
(3.6) c'=y'A, yb=y,
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the relatiorc™x = y is seen to be implied by the set of those inequalitie®xok b
that are tight for alk € F.

THEOREM 3.4. The nonempty set F is a face of the polyhedroa P(A, b) if
and only if there exists a subsysté&ix < b’ of Ax < b such that

F={xeP|A'xX=Db'}.

Proof. AssumeF = {x € P|A’x = b’} for some subsysteA’x < b’ of Ax < b.

If the subsystem is empty we obtain the fdee= P. Otherwise, choose’ as the
sum of the rows oA\’ and, correspondingly; as the sum of the coefficients bof
(i.e, c" = 1"TA’ andy = 1'b). Thenc™x < y is a valid inequality forP(A, b).

Moreover, we observe for everye P(A, b),

c'x=y ifandonly if A’x="b".
SoF = {x e P|c'x = y} is a face ofP.
Conversely, assume th&t= {x € P|c'x = y} is a face ofP and letA’x < b’
be the subsystem &x < b consisting of all inequalities that are tight for every

x € F. By definition, we then havé C {x € P|A’X =Db’}. We claim that, in fact,
the equalityF = {x € P|A’x = b’} holds.

Indeed, relation (3.6) shows that the linear equatibh= y can be obtained as
a non-negative linear combination of equation&\ix = b’. So everyx € P that
satisfiesA’x = b’ must also satisfg"x = y and hence belong tB.

&

Since a finite system of linear inequalities admits only a finite number of different
subsystems, we immediately deduce from Theorem 3.4:

COROLLARY 3.2. A polyhedron has only a finite number of faces.
EX. 3.22. Prove that the closed disk=S {x € R?| ||x|| < 1} is nota polyhedron.

Dimension. Recall from Chapter 1 (p. 4) that aff denotes the smallest affine
subspace oR" that containd® C R". Because affine subspaces are intersections
of hyperplanes, afP is the intersection of all hyperplanes that contRin

Let A=x < b= denote the (possibly empty) subsystemAof < b consisting of
those inequalities that are tight for evexye P = P(A,b). ThenP C {x €

R"|A=x = b=} and, since afP is the smallest affine subspace containing
also affP C {x € R"|A=x = b=}. Actually, equality holds:

COROLLARY 3.3.
(3.7) aff P(A,b) = (x e R"|A=x =Db~}.



68 3.POLYHEDRA

Proof. We have already observed thai™holds. To establish the converse inclu-
sion, it suffices to show that any hyperplaHe= {x € R"|c"x = y} containing
aff P also contains the solution set &fFx = b=, i.e,, thatc™x = y is implied
by A=x = b=. Thus assuméd = {x € R"|c"x = y} contains affP, and hence
P. As in the proof of Theorem 3.4 we thus find thidk = y is a (non-negative)
linear combination of the equations ATx = b= (which is the system\'x = b’
corresponding td- = P) and the claim follows.

&

Ex. 3.23. LetA’x < b’ be the subsystem 8 < b of all inequalities that are tight for
the given poinkg € P = P(A, b). Show: F= {x € P|A’x = b’} is theuniquesmallest
face of P that containzg.

Let us define thelimensiorof a polyhedronP as

(3.8) dmP =dim aff P.

Then (3.7) implies a formula for the dimension:

COROLLARY 3.4.If Ae R™"and P(A, b) # @, then
(3.9 dimP(A, b) = n—rankA~ .

Proof.dim P =dim {x € R"|A=x = b=} = dim kerA= = n—rankA=.
<o

Facets.Since a face of a polyhedron is a polyhedron in its own right, it is mean-
ingful to talk about the dimension of a face in general. We say that theHaufe
the polyhedrorP is afacetif

dmF=dmP-1.

The example of an affine subspace shows that polyhedra without facets do exist.
However, this example furnishes the only exception, as we shall prove in Corol-
lary 3.5 below.

We say thatAx < b is irredundantif no inequality inAx < b is implied by the
remaining inequalities. Clearly, every polyhedrBrcan be defined by an irre-
dundant system. (We only have to remove implied inequalities successively until
an irredundant system is obtained.)

EX. 3.24. Formulate an optimization problem whose solution would allow you to decide
whether theth inequalityA;x < b; is implied by the remaining inequalities Ak < b.

COROLLARY 3.5. Assume thalx < bisirredundant and consider an inequality
Aix < b; which is not part oiA=x < b=. Then

F={X|AXx < b,Aix =D}
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is a facet of P= P(A, b). Consequently, if P is not an affine subspace, then P
has proper nonempty faces and each such face can be obtained as an intersection
of facets.

Proof. Denote byA*x < b* the system of those inequalitiesA% < b that are not
in A=x < b=. The hypothesis of the Corollary says tlhak < b; is in A*x < b*.

By definition, we can find for eacAsx < bs of A*x < b* somex® € P(A, b)
satisfying the strict inequalithsx® < bs. Assuming there arke such inequalities,
it follows that also the convex combination

1 k
X* = —sz
ks:l

lies in P(A, b). Moreover, one readily verifies th&t*x* < b* holds,i.e., the
average<* of thek vectorsx® satisfieseachinequality inA*x < b* strictly.

SinceAx < bis anirredundant system, removiAgx < b; from the system would
result in a larger feasibility region. So there exists some vectoiR" such that
Aijv > b; holds whilev satisfies all the other inequalitigs;x < b;j, j # i, of
AXx < b. By the choice o, we have O< b — Aix* < Ajv — AiXx*.

Let A = (b; — Aix*)(Aiv — Aix*)~1. Noting 0< A < 1, we then obtain
X=Av+ (1—-21)X" € P(A,b).

In particular,A;x = b; holds, whileAgx < by is true for all other inequalities in
A*x < b*. Hence the subsystemAk < b of inequalities that are tight for the face
F consists precisely dA=x < b= together with the one extra inequalidyx < b;,
which yields dimF = dim P — 1, as claimed.

Consider finally an arbitrary non-trivial fad€ of the polyhedrorP(A, b). Each
inequality of Ax < b that is tight forF’ is either already tight foP(A, b) or, as
we have seen, induces a facetRfA, b). So F’ must be the intersection of the
corresponding facets.

&

REMARK. Our analysis in Corollary 3.5 exhibits “facet-generating” inequalities as the
strongest inequalities for the description of a polyhedro® # P(A, b) is presented by

an irredundant systeix < b, thenA=x = b= determines the affine subspace relative to
which P has full dimension, whilé\*x < b* describes the facets &f. In particular, the
number of facets oP equals the number of inequalitiesAix < b*.

REMARK. Let £ = L(P) be the collection of all faces of the polyhedrén Ordering
the members of. by containment, we obtain the trivial fadeas the unique minimal and
P as the uniqgue maximal member 6f As faces are precisely intersections of facefs (
Corollary 3.5), an intersection of faces always yields a face. He&nbecomes d#attice
relative to the binary operations for &, F, € L,

FAR=FRNk
FrvE=nN{Fe L|F, KR CF}.
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(L(P), A, Vv) is called thdace latticeof the polyhedrorP and captures the combinatorial
structure of the polyhedroR (seee.g, [79] for more details).

Ex. 3.25. Let F be a minimal nonempty face ofPP(A, b). Show: F= xp + kerA

for somexg € P. (Hint: L = kerA is the unique largest linear subspace contained in the
recession cone @, 0) of P.)

Give an example of a full-dimensional polyhedroncPR2 whose minimal faces have
dimensionl.

3.5. Vertices and Polytopes

The vectorv € R" is called avertex(or extreme pointof the polyhedrorP C R"

if F = {v}is aface ofP (of dimension dimF = 0). Relative to a representation

of the polyhedron in terms of linear inequalities, Corollary 3.4 states that a point
v e P(A,b) is avertex if and only if there exists a subsyst&m < b’ of Ax < b

so that rankA” = n andyv is the unique (feasible) solution of

Av=Db".
In other words, the rows oA’ must contain a basis ®". We therefore call a
vertex of P = P(A, b) alsobasic solutioror vertex solutiorof the systenfAx < b.

A vertex v of a polyhedronP is defined “implicitly” by a hyperplaneH that
supportsP exactly in the point. An “explicit” characterization is also possible:

THEOREM 3.5. Let P be a polyhedron ande P arbitrary. Thenv is a vertex of
P if and only ifv cannot be expressed as convex combination of other vectors in
P.

Proof. Let P = P(A, b) and assume that there are vecteys..., v € P and
numbersy; > 0 such thad_; i = 1 andv = A;v1 + ... + AV Let furthermore
F be an arbitrary face dP. We claim:

veF if and only if Vi,...,Vc€ F.

Indeed, assumE = {x € P|A’x = b’} for some subsyste®d’x < b’ of Ax < b.
Now v; € P implies in particularA’v; < b’. HenceA’v = b’ or, equivalently,
> Ai(A'vi —b’) = 0is true if and only ifA;A’v; = b’ is true for alli.

Consequently, iF = {v}, thenv =v; = ... = v\. Conversely, suppose that P
is not a vertex. LeA’x < b’ consist of all inequalities i\x < b that are tight at
v and consideF = {x € P|A’x =Db’}. F is a face ofP and containy. Sincev is
not a vertex, we know dinf > 1, which yields rankA’ < n— 1.

Hence we can find a vectars# 0 such thatA’z = 0. Choosinge > 0 sufficiently
small, we can guarantee that bath= v + ¢z andv, = v — ¢z are feasible for
AX < b. Hence we obtain

1
V= E(V1+V2)
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as a non-trivial convex combination of pointg v, € P.
<o

COROLLARY 3.6. Let PC R" be a polytope and let \L P be the set of vertices
of P. Then P=convV.

Proof. Assume that saj? = convV’ for some finite se¥’ C R". We may assume
that V' is minimal in the sense that¢ conv (V' \ {v}) holds for every € V.
Then nov € V’ can be expressed as a non-trivial convex combination of vectors
in P\ {v}. HenceV’ must be the set of extreme points (verticesof

&

REMARK. The proof of Corollary 3.6 indicates that the Iigtof its vertices provides
the smallest explicit representation of the polytdpe- P(A, b). Note, however, thg/|
can beexponentially largawvith respect to the size of the implicit representatfon< b
(see Ex. 3.26).

Ex. 3.26. Show that P= {x e R" | 0 < x < 1} is a polytope witl2" vertices.

Vertices and Basic Solutions of Ax= b, x > 0. The simplex algorithm for linear
programs in Chapter 4 refers to polyhedtaf the form

(3.10) P={xeR"|Ax=Db,x>0}.

Observe that (due to the constraints- 0) P does not contain any affine space
of dimension> 1. So by virtue of Corollary 3.4, iP is nonempty, it must have
vertices (every minimal nonempty face Bfis one).

AssumingA € R™" with rankA =r (< m), we find in this case that a vector
x € Pis avertex if and only if there is a sét of [IN| = n—r indices| such that
x is the unique solution of

AX = Db
Xj=ex = 0, jeN,

or equivalently:
(i) x;=0forall j € N.
(if) The submatrixB of thoser columnsA.; with j ¢ N has full rankr, i.e.,
is a column basis foA.

Thinking of a vertex ofP algebraically as the unique solution of the linear system
Ax = b under the additional constraints (i) and (ii), we call a verteXPdlso a
basic solution Computationally, solving\x = b under condition (i), (ii) simply
amounts to applying Gaussian EliminatiorB® = b.

With the notion of a basic solution we can easily derive Caadlory’s Theorem
on convex combinations.
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THEOREM 3.6 (Caratleodory) Let SC R". Then evenp € coneS can be ex-
pressed as a conic combination of at most n vectors and évergonv S can be
written as a convex combination of at most1i vectorsin S.

Proof.Let b € coneS. By definition, there exist vectoss, ..., S € Sand coef-
ficientsxy, ..., X > 0 such thab = > xs. Consider the matriA € R™ with
thek column vectors; and letP C R* be the polyhedron of all feasible solutions
of the linear system

Ax = b

x > 0.

By the previous discussiof, = P(A, b) has a vertex. Interpretingv as a basic
solution of the linear system, we find thahas at mosh non-zero components
v;, which furnish the desired convex combination tbor

Assume nowb € convSand lets;, ..., s € SandxXy, ..., X > 0 be such that
b=> xs and> x = 1. This means

b S . n+1
= C
(1) € cone{(l) | i 1,...,k]_R ,

and the claim follows from the result for cones.
O

COROLLARY 3.7.Let Sc R" be a compact set. Theonv (S) is compact.

Proof. Consider the standard simplex

n+1
Anr1={(h1, ... Anp) [ 4] >0, ij =1}
=1

and define a continuous functidh: A1 x Sx --- x S— R"via

n+1
F()\‘la st )\4n+1a ala st an+1) - Z)\‘ja] .
=1

Caratleodory’s Theorem implie§ (A1 x Sx ... x S) =convS. SinceA,;
and S are compactA,,; x Sx --- x Sis compact. So con¢S) is the image
of a compact set under a continuous function and, therefore, congia&ec-
tion 1.4.2).

&

Ex. 3.27. Give an example of a closed setR" such thaiconv S is not closed. (Hint:
Consider S={(0, 1)} U {(x1,0) | x1 € R}.)

Ex. 3.28. Give an example of a compact setzSR" such thatconeS is not closed.
(Hint: Consider S= {x € R? | ¢ + (xo —1)> =1}.)
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3.6. Rational Polyhedra

From a computational point of view it is reasonable to consider systems of in-
equalitiesAx < b with only rational coefficients. Let us thus call the polyhedron
P(A, b) rational if A € Q™" andb € Q™. It then follows from Theorem 3.4
that all faces of a rational polyhedron are rational polyhedra. Moreover, for any
Vi,...,Vm € Q", we find that both conévy, ..., vy,) and conv(vy, ..., Vvy,) are
rational polyhedra. Indeed, all our proofs are eventually based on the Fourier-
Motzkin algorithm, for which we had noted that rationality of the parameters is
preserved during the computation.

Similarly, the Decomposition Theorem of Weyl and Minkowski holds for rational
polyhedraj.e., a setP C R" is a rational polyhedron if and only if there are finite
setsV, W c Q" of vectors with rational components such that

P = convV 4 coneW .
We leave the straightforward check to the reader.






CHAPTER 4
Lagrangian Duality

The present chapter pursues two goals. First, we take a (rather preliminary) look
at nonlinear optimization problems by investigating to what extent fundamental
concepts carry over from linear to general optimization problems and what kind
of difficulties arise in the general context. Doing so, our second goal is to motivate
much of the theory of nonlinear problems that are treated in more detail in subse-
guent chapters. The main points we want to make now are Lagrangian relaxation
as a bounding technique for integer programis Chapter 9) and the optimal-

ity conditions (which we derive rather independently from the rest of the chapter
in Section 4.4) that motivate many of the algorithmic approaches to non-linear
problems.

4.1. Lagrangian Relaxation

A nonlinear (constrained) optimization problama problem of the type

max f(X) s.t. gj(x) <0, j=1...,m,
with objective function f R" — R andconstraint functions g: R" — R. In
terms of the vector-valued functiog\x) = (g1(X), ..., gm(x))", this problem
can be stated more compactly as
(4.2) max f(x) s.t. g(x) <O0.

REMARK. Usually, one assumek andg to be (at least) continuous. In what follows,
whenever a gradier¥ f or Jacobiarvg are used, we implicitly assume thhtandg are
continuously differentiable.

The use of “max” resp. “min” is standard notation in nonlinear optimization although
“sup” and “inf” would be more precise. For example,

min X s.t. X1Xo>1, X >0

has “minimum value” 0, but optimal solutions do not exist.

Ex. 4.1. Show thak = (1, 1) (with f(X) = 6) is an optimal solution for

max f(x) =4(x;+X2) — ()G +x3) st gx)=xxe—1 < 0.
Clearly, a linear program, maximizing a linear objecti#x) = c"x underlinear
constraints gx) = Ax —b < 0 is a special case of (4.1).

As in linear programming, we associate with ghemal problem(4.1) adual
problem that wants to minimize certain upper bounds on the primal maximum

75
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value. As in the linear case, we obtain such bounds from non-negative combina-
tions of the constraints. Consider apy= (yi, ..., Ym)" > 0. Then everyprimal
feasiblex, i.e., anyx € R" with g(x) < 0, necessarily satisfies the “derived” in-
equality

(4.2) D yigi0 = y'gx) < 0.
j=1
So eacty > 0 gives rise to an upper boundy):
(4.3) max f(x) < maxf(x)— y'g(x) = L(y).
gx)< X

The (unconstrained) maximization problem defining the upper bound
L(y) = maxf(x) —y'g(x)

is called theLagrangian relaxatiorof (4.1) with Lagrangian multipliers y > 0
(which play the role of the dual variables in linear programming). So the La-
grangian relaxation is obtained by “moving the constraints into the objective
function”. We also say that weelax or dualizethe constraintg); (x) < 0 with
multipliersy; > 0.

The problem of determining the best possible upper bduwyd is theLagrangian
dual problem

(4.4) min L(y) = min max f(x) —y'g(x).
y>0 y>0 X

We immediately observe the following relation between the primal problem (4.1)
and its dual (4.4).

THEOREM 4.1. (Weak Duality)

max f(x) < minL .
g(x)<0 *) = y>0 W

Consequently, if equality is attained with the primal feasibbnd the (dual fea-
sible)y > 0, thenX andy are optimal primal resp. dual solutions. In this case
andy are necessarilgomplementaryn the sense thay' g(x) = 0.

Proof. In view of (4.2), we have the inequality
0 < 00 —y'g(®) < maxf () —y'g) = L@) .

Equality can only hold iff" g(x) = 0.
<o

REMARK. As in the linear (programming) case, an equality constrgijiix) = O is
formally equivalent to two opposite inequalities and correspondsdigraunrestricted
multiplier y; € R in the Lagrangian dual.
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REMARK. An alternative view on Lagrangian relaxation is the following. Choosing all
multipliersy; > 0 “very large”, we would expect the optimal solution of

max f (x) —y'g(x)

to be primal feasible (since any violation gf(x) < O is penalizedby subtracting
yjgj(x) > 0 from the objective function). On the other hand, takingyalfvery large”
makes the objective functionf (x) —yTg(x) almost unrelated to the “true” objective
function f(x) . So the “best” choice of multiplierg > 0, i.e., the solution of the dual
problem, will usuallynot guarantee the corresponding maximizxéo be primal feasible.

At first sight, the Lagrangian dual (a so-calledn-max problemhnmay appear
more difficult than the original primal problem (4.1). Actually, it is often easier
to solve. One reason is that the value of the Lagrangian relaxation

(4.5) L(y) = maxf(x) —y'g(x)

can often be found by the extremum principle with respect to the maximization
problem relative to (see p. 17). In other words, a maximizer of (4.5) (for fixed
y > 0) must necessarily satisfy the (generally nonlineait)cal equation

(4.6) Vix) —y'Vgx) = 0.

Ex. 4.2. Consider the eigenvalue problem for the symmetric marix R"*":

max x'Ax withdual minmaxx"Ax —A (x'x—1).
xTx=1 AeR X

The critical equationV f (x) — AVg(x) = 2xTA — 21 x" = 0" is always solvable (with
x = 0or—in case\ is an eigenvalue oA — a corresponding eigenvector). However, the
relaxation

L(A) = maxx'AX — A X'X+ A = A+ max x" (A — Al )x
X X
has an optimal solution only for > Amax the maximum eigenvalue &, because the

matrix A — Al is negative semidefinite far > Amax (S0 thatx = Ois optimal). IfA = Amax
also a corresponding eigenveckgax is optimal.

EX. 4.3. The Lagrangian relaxation for the problem in Ex. 4.1 is
L(y) =max f(x) = yg(x) = 4(x1 + X2) — (% +%3) — y(xaxe — 1)
with critical equation
VEX) = yVg(x) = (4—2x1 — yX, 4 — yx1 — 2%2) = (0,0) ,

which is a linear system in variables, xo. If y # 2, thenk = (4/(2+y),4/(2+Y))
is the unique solution (and can be shown to be optimally # 2, everyk e R? with
K1 + X2 = 2 solves the critical equation and is optimal:

max f (x) — 2g(x) = max4(x, + X2) — (x1 + X2)2 +2 = max4t — t?+2=6.

In particular,Xx = (1, 1) andy = 2 are optimal primal resp. dual solutions (see Theo-
rem4.1).
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Strong Duality. The duality gapof problem (4.1) is the difference between the
dual and primal optimal value. We say tis&tong dualityholds if the inequality in
Theorem 4.1 is an equalitye., if the duality gap is zero. (We do not necessarily
require the existence of optimal soluticnsesp.y achieving equality.) Unfortu-
nately, strong duality is generally not guaranteed (see Ex. 4.4 for an extreme case
of a non-zero duality gap).

EX. 4.4. Show that the duality gap is infinite for

maxx; St X4+X <0, x>0.
Partial Relaxation. Often one may want to dualize not all of the constraints
g;(x) < 0. Then one can partition the set of constraints as

max f(x) st gu(x) <0, g(x) <0
X

and only dualize the constraings(x) < 0 with multipliersy;. In the same way
as before, one thus obtainpartial relaxationand the weak duality relation

(4.7) max  f(x) < min max f(x)—yjgi(X).
a(x) <0 ¥120 g2(x)<0
02(x) <0

Ex. 4.5. Show: The more constraints are dualized, the weaker are the bounds offered by
the (“partial”) Lagrangian dual in (4.7).

4.2. Lagrangian Duality

In order to analyze the relationship between the primal problem (4.1) and its dual
(4.4), we define (by slightly misusing our notation) the associaggtangian
functionas a function in the variablesandy:

(4.8) Lex,y) = f0—y'g(x) .
So we regain the function from Section 4.1 Bgy) = max L(X,y) .

REMARK. It is occasionally convenient to allow a function to attain the "valugsb.
We do this with the understandingoo < X < +oo for all x e R, A - (+00) = +o0 for
A > 0, (400) + (+00) = +00, etc. (Note, however, that+oco) — (+00) is undefined).

4.2.1. Saddle Points.For anyX € R" andy > 0, we (trivially) observe
(4.9) minLXy) < LX.y) < maxL(xy)
y= X

and, therefore, conclude

(4.10) maxmin L(X,y) < min max L(X,y) = min L(y) .
X y>0 y>0 X y>0
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Relation (4.10) is the Weak Duality Theorem in disguise. Indeed, the left hand
side of (4.10) is equivalent with the primal problem (4.1) sindeEx. 4.6)

f(x) ifgx)<0

. R T _
(4.11) minL(x,y) = min F) -y 9 = [—oo otherwise.

EX. 4.6. Show: minw'y = 0if w > 0, and minw'y = —oo otherwise.
y>0 y>0

So we arrive at the pair gfrimal-dual Lagrangian problems

(P) max min L(X,y) (D) minmax L(x,y) .
x y>0 y>0 X

We are particularly interested in the case where strong duality holds.ard

y achieve equality in (4.9) (and hence equality holds in (4.10)), we call the pair
(X,y) a saddle pointof the Lagrangian functioi.(x, y). In this case we also
say thatx andy simultaneouslgolve the primal and dual problem (in the sense
that (X, ¥) solves the primal max-min problem afg X) solves the dual min-max
problem). In particulaiX is an optimal solution of the primal (4.3)js an optimal
solution of the dual (4.4) and the duality gap is zesb Theorem 4.1). Also the
converse is true:

THEOREM 4.2. For anyX and anyy > 0, the following are equivalent:

() (X,¥y) is a saddle point of the Lagrangian functiori®, y).
(i) x andy are optimal solutions of (4.1) resp. (4.4) and the duality gap is
zero.

Proof. It remains to show that (ii) implies (i). Assume thats primal feasible.
Theny"g(X) < 0 holds for anyy > 0. Hence (ii) yields
min L(X,y) =min f(x) —y'g(x) > f(X) = L) = max L(x.y),
y= y= X
i.e., equality must hold in (4.9).
&

REMARK. As in the linear casecf. Section??) the min-max relation (4.10) may be
interpreted game-theoreticallyz(x, y) is the payoff (gain) of player 1 when he chooses
his strategy € R" and player 2 chooses strategy R'T'. The primal problem (of player

1) is to maximize his gain in the “worst case” (against all possible strategies of player 2).
Similarly, the dual problem (of player 2) is to minimize his loss (= gain of player 1). In
this context, saddle points correspondtpuilibrium strategiesNone of the players can
expect any gain from changing his strategyrésp. y), even if he knew his opponent’s
strategy.

We stress that the apparent symmetry between (P) and (D) is deceplive, §3
is not symmetric inx andy. Indeed the dual variableg; occur linearly in
L(x,y) as opposed to the primal variablgs Only in the linear casa,e., when
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f (x) = c'x is a linear objective ang(x) = Ax — b < O are linear constraints, the
Lagrangian function

L(x,y) =c'™x—y"(Ax —b) = (c" —y"A)x+b'y
is linear in bothx andy.

This explains why, in the linear case, Lagrangian duality reduces to linear pro-
gramming duality: Indeed, as in (4.11), we deduce
by ifcT—yTA=0"
_ _ T _ T Ty, —
L) = max LoGy) = mflx(c y Ax+bly = [+oo otherwise.
So the Lagrangian dual is equivalent with the linear programming dual:

migl Ley) «— minb'y sty'A ==c", y>0.
y=

The equivalence in Theorem 4.2 indicates that saddle points are generally not easy
to find (if they exist at all). Assumind andg to be differentiable, we can reduce
the number of candidates by solving the critical equation (4.6):

COROLLARY 4.1. Every saddle poingx, y) of L(x, y) satisfies the condition
VIX)—y'Vgx) = 0'.
Proof. If X solves L(y) = max f(x) —y'g(x) , the extremum principlec.
X

(1.12)) with respect to the functiofix) = f(x) —y' g(x) says thak must satisfy
the critical equation

VX)) = VIX) -y ' Vg(X) = 0" .
&
4.2.2. The Lagrangian Dual and Convexity. The fact that occurs linearly

in L(Xx, y) has important consequences: The Lagrangian dual is always a so-called
convex optimization problem.

REMARK. Convex functions and convex optimization problems will be studied in detail
in Chapter 10. For our present purpose it suffices to know the definitichdfR" is a
convex set, then the functioh: S— R (or, more generallyf : S— R U {oo}) is convex

if for all x1, X, € Sanda € [0, 1],

fOX1+ (1 —2)x2) < Af(X) + (1—=2) f(x2).
A convex optimization problei a problem of type
min f(x) st xeS,

where f is a convex function or8and SC R" is a closed convex set. (As mentioned
earlier, closed convex sets are exactly the intersections of (possibly infinitely many) half-
spacesg¢f. Corollary ??.)

PROPOSITION 4.1. The function Iy) = max f (x) —yTg(x) is convex.
X
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Proof. Assume to the contrary that there existy, € R andi € [0, 1] such that
(4.12) L(Ay1+ (1= 2)y2) > AL(y) + (1= 2 L(y2).
Lety = Ay1 + (1 — 1)y,. By definition ofL(y), we have

L(y) = max f(x) —y'g(x).
So (4.12) implies the existence of some R" so that
(4.13) f®) —¥7'9(0) > AL (Y1) + (1= A)L(y2).
Again, by definition ofL(y),
f®) —y[g(x) < max f(x)—y[g(x) = L(y1)
f®) —y;0®) < max f(x)—y;0(x) = L(y2).
Multiplying these two inequalities with resp.(1 — A) and adding them yields a

contradiction to (4.13).
<&

Proposition 4.1 reveals a fundamental difference between the primal problem
(4.1) and its dual (4.4): The dual is always a convex optimization problem. In
particular, the dual of the dual cannot be (equivalent to) the primal, unless the
primal is a convex problem itself. In Section 4.3 we will see that this condition is
(in some sense) also sufficient.

REMARK. Proposition 4.1 can be used to derive a geometric interpretation of the dual
as a convexification of the primal. We only sketch the result, which will be presented
(and proved) in detail in Chapter 10. Assume for simplicity that there is only a single
constraintg(x) < 0. Introducing the seB C R? defined by

G:= {(;) | f=f(x), g=09g(x), xeR"},
the primal resp. dual optimum values are
vp = maxf | (f) €eG,g<0} and
g
vp = min max{f —yg| (f) e G}
y>0 g
It turns out that in cas& is compact the optimum dual valug, can equivalently be
obtained as the optimum valug: of the following convexification of the primaict.

Section??, Figure??):

ve=max{f | (;) e convG, g<0}.

As a consequence, strong duality (duality gap zero) can be guaranteed for saoailed
pact convex problem&f. Section??).
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4.2.3. Solving the Lagrangian Dual.Let us outline the basic idea for solv-
ing the Lagrangian dual to get a better understanding of the primal-dual relation-
ship. In what follows we assume that we can computg) and a corresponding
optimal solutionx of

(4.14) L(y) = max f(x) —y'g(x)

for any fixedy > O (otherwise we cannot expect to solve niigy) at all).

Starting with an arbitrary, > 0, we construct a sequengg i, Yo, . . . that hope-
fully converges to an optimal solutignof the Lagrangian dual. We proceed as
follows. Givenyy > 0, we solve (4.14) foy = y, by computing a vectaxy with

(4.15) Ly = f () — Ve 9(%)-

How should we modifyy = yx and (possibly) decreadqy) in the next iteration?
Intuitively, (4.15) suggests to increaggin caseg;(xx) > 0 (thereby increasing
the penaltyfor violating the constraing; (x) < 0). Similarly, we would decrease
y; if g;(xx) < 0. This intuition suggests the 'update’

Yk+1 = Yk + 8kg(Xx) for some stepsizé > 0.
On the other hand we want to ensyig; > 0. We therefore takgy 1 as
(4.16) Yke1 = Mmax {yk + 5k0(Xk) , 0} (componentwise)
This strategy is the essence of the so-caflebigradient metho(tf. Chapter 10).

EX. 4.7. Assume/1 = Yk holds in (4.16). Showyy =y solves the dual problem.
(Hint: Use (4.17) below.)

Ex. 4.8. Consider the Lagrangian (y) = max 4(x; +Xg) — X2 — X2 — y(X1%2 — 1) from
Ex. 4.3. For any fixed ¥ 0, themaximumis attained in

K=42+y L 2+y™ with gR) =% —-1>0 < y<2.

So the subgradient method will decrease a currgnt-\2 and increase a currenty< 2.
Show that the step sizég = 1/k imply y — y, the optimum solution of the dual (for
any initial value y > 0).

REMARK. The termsubgradient methot motivated by the following consideration.
Lety > Owith X the corresponding solution of (4.14). Then by definitiorLof

(4.17) Ly+h) > fR—-F+hTg® = LF) —g&) h.

If L(y) is differentiable a¥, then (4.17) implies thaf L (y) = —g(X) " holds €f. Ex. 4.9).
So step (4.16) is a move in the direction of the largest marginal decreasg)ofin gen-
eral, howeverL (y) is not differentiable and there is no reason to expect lthigt 1) <
L (yk) should hold ¢f. Section??).
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Ex. 4.9. Suppose : R™ — R is differentiable iny € R™. Furthermore, assume there
existsg € R™ such that

Ly +h) = £y +g'h
for all h e R™. Show thag" = V£(y) must hold.

4.3. Cone Duality

Weak duality (Theorem 4.1) rests on the basic fact
gx)<0 and y>0 = y'gx)<0.

This observation suggests to re-state the Weak Duality Theorem in a slightly more
general setting: Instead of constraimt&) < 0 (as in the optimization model
(4.1)) we allow constraints of the forg(x) € K, whereK C R™is a cone. Cor-
respondingly, the dual variablgsare then chosen in the dual coKé.

REMINDER. Recall from Section 3.2 that every cokeC R™ has an associated dual
cone
KO ={yeR™|y'g<0 forallge K}.
Furthermore K = K% holds if and only ifK is the intersection of (possibly infinitely
many) halfspaces.e.,
K={xeRM|alx<0, jeJ}.

THEOREM 4.3. Let KC R™be a cone. Then

max f(x) < min  L(y).
g(x) € K y e KO
If equality is achieved at a primal feasibkeand a dual feasibl§, thenX andy
are primal resp. dual optimal and complementarg,, y' g(X) = O.

Proof. AssumeX is primal feasiblej.e., g(X) € K. Theny'g(X) < 0 for every
y € K%, Hence for every e K° we have

f®) < 1) —y'g(x) < max f(x) —y'g(x) = L(y)

As this holds for each primal feasib¥e(i.e., g(X) € K) and each dual feasibie
(i.e. y € K9, the Theorem follows.
&

REMARK. Purely formally, also problems of type m&x (x) | g(x) € K} can be cast
into the form (4.1). For example, one could def@eR" — R as

§0) = {O if g(x) € K

1 otherwise
and consider the equivalent problem miaxx) | §(x) < 0}. Note, however, that the
dual of a problem depends on thenstraint functiongather than thdeasible sethey
define. The practical solvability of a problem often depends critically on an "appropriate”
formulation.

or  §Xx) =minllgx) — z|2
zeK
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4.3.1. Examples.Interesting examples are obtained by "coning” the con-
straints in a primal-dual pair of linear programs,

max c'x resp. minbTy
(4.18) st. Ax—b<0 st. c—ATy<0
x>0 y>0

The resulting weak duality relation is the following.

COROLLARY 4.2. Let KC R"and MC R™ be arbitrary cones. Then
max c'x < min by
(4.19) st. Ax—beK° st. c—ATye M°
xeM yeK

Moreover, if K= K% and M= M®, the two problems are dual to each other.

Proof. Let x andy be primal resp. dual feasible. Then
c'™x < c'™x—y"(Ax—b) = (c"=y"A)x+y'b < y'b.

The way the dual (right hand side in (4.19)) is constructed from the primal (left
hand side in (4.19)) immediately implies that the dual of the dual equals the primal
in caseK = K andM = M%,

&

EX. 4.10. Show that for polyhedral cones ¥ P(B, 0) and M= P(C, 0) the two prob-
lems in (4.19) are a primal-dual pair of linear programs.

Convex Problems.In general, ifK and M are arbitrary cones with the property
thatK = K andM = M%, the two problems in (4.19) are convex optimization
problems (as defined at the beginning of Section 4.2.2).

Conversely, consider an arbitrary convex optimization probleni i(x) | x € S}
wheref : R" — R is convex and5 C R" is a closed convex set. We may assume
w.l.o.g.(cf. Ex. 4.11) thatf (x) = c"x is linear. SinceSis a closed convex set, it
is the intersection of (possibly infinitely many) halfspades,

S={xeR"|ajx<bj, jeJ.

SettingM = {(Xn’:l) e R™! | afx — bjx,1 < 0} andK := R with K° = {0}, we
can write our convex problem equivalently as

X
max—c'x s.t.Xp1— 1€ K°, ( ) e M.
Xn+1

Hence any convex problem can be stated (in a rather natural way) as a problem
of type (4.19) withK = K% andM = M., In this sense the problems in (4.19)
can be considered as the most general class of problems for which the dual of the
dual is the primal.
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Ex. 4.11. Suppose & R" is a closed convex set and: S— R is a convex function.
Show that S:={(}) | x € S, f(x) < z} is a closed convex set and thatn{ f (x) | x € S}

equalsmin{z| (}) € S}.

Semidefinite Programs. Particularly interesting examples are obtained from
(4.19) by takingK C S**k to be the cone of positive semidefiniex k matri-
ces withK® = {S e S**k | S< 0} (cf. Section 3.2). So the dual variablgsare
considered as (vectors corresponding ko) k matricesY = (y;;) € S¥** and,
correspondingly we also interprete= (bj;) as a matrixB e S and every col-
umnA,; of A as a matrixA® e Sk, Recalling our notatiolB o Y = IR

for the “inner product” of matrices, (4.19) becomes (With= R")

max c'x < min BoY
n

(4.20) st. > ADx-B=<0 st. ADoY=¢ i=1,...,n
i=1
Y >0

Such problems, maximizing or minimizing a linear objective under linear and
semidefinite constraints, are calleemidefinite programs

REMARK. In Chapter 9 we will see how semidefinite programs arise in a natural way as
Lagrangian relaxations of (certain) integer programming problems. We study semidefi-
nite programs in more detail in SectiGn.

4.4. Optimality Conditions
We now return tanonlinearoptimization problems of the form (4.1)e.,

mafx f(x), whereF ={xeR"|gXx)<0}.

The objective functionf and the constraint functiog are (possibly) nonlinear
functions. ¥ is called the set ofeasible solution®f the optimization problem.
An optimal solutionis, by definition, a feasible point € # with maximum ob-
jective value f (X). Computing an optimal solution can be extremely difficult.
Even checking whether a given candidate vegter indeed optimal is generally
a very hard task.

Since the computation of an overall optimal solution is so difficult, nonlinear
optimization usually tries to at least identiliycally optimal solutiongwhich is
generally hard enough). We say that ¥ is alocal maximizer(or simply a
maximizey if for somee > 0:

(4.21) f(X) > f(x) holdsforallxe  with ||[X—X]| < ¢.

If (4.21) is true for alle > 0, X is aglobal maximizer Local resp. globamini-
mizersare defined in the same way for minimization problems.
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Ex. 4.12. Give an example of a polytoge = {x € R" | AX < b} and a pointxp € R" so
that each vertex of is a local maximizer of the problem

max f(x) =[x —xol|> st Ax<b.

4.4.1. Linear Constraints. We first take a look at the case of linear con-
straintsaij <bj(j=1,...,m). So we consider

(4.22) maxf(x) st Ax<b,

whereA € R™" is the matrix with rowsatjT and f : R" — R is a differentiable
function. The feasible sef is the polyhedrorP(A, b).

Trying to decide whethex € 7 is locally optimal, we are mainly interested in
the constraintaij < b; thatX satisfies with equalitycf. Ex. 4.13). We call these
constraintdight or activeatx and refer to

JX) = {jlajx=bj} C {1,....m}

as the correspondirartive sefof indices).

Ex. 4.13. Show: There exists some> 0 such that everx € R" with |[X — X|| < ¢
satisfies all constraints nonactive®aivith strict inequality.
A feasible directioratX is a vectord € R" such that

ad<0 forallje J(X).

We denote byD(X) C R" the (polyhedral)cone of feasible directionsLetd e
D(X) with ||d|| = 1. Then, in view of Ex. 4.13, we can find some- 0 so that

(4.23) X+tde F forall0<t<e.
If X is a maximizer off, then the differentiability off yields
0> f(X+td)— f(X) = tVFX)d+o(t).
Dividing byt > 0 and then letting — O, we therefore conclude th&tf (X)d < 0
must hold. This is the necessary optimality condition we seek.

THEOREM 4.4 (Necessary Optimality Conditionsvery maximizek € F of
(4.22) satisfies the following two equivalent conditions:

(&) (Primal Condition)
VixX)d<0 forall de D(X).
(b) (Dual Condition)There are multipliers y> 0, j € J(X), such that

Vi®) — > ya =0

jeIx)
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Proof. We have seen that (a) is a necessary condition for optimality. We show
that (b) is equivalent with (a). Now (a) means that the inequalifyx)d < O is
implied by the systems of inequalitie$d <0, j € J(X). By Farkas Lemmacf.
Corollary 2.6), this is equivalent witl f (X) being a nonnegative combination of
the vectorsy;, j € J(X), i.e., with (b).

&

REMARK. We emphasize that conditions (a) and (b) are pestessarygonditions and

at most exhibitandidatex for being maximizers. Sometimes alsafficientconditions

for optimality can be given (that guarante¢o be indeed a maximizer). Such conditions
typically require information about second order derivatives (see Chapter 12 for more
details).

The necessary dual condition (b) is often stated in a slightly different form.
o _ Jyi fjed®),
oo ifigIm,

yields a vectof € R of multipliers such thax andy > 0 arecomplementaryn
the sense that for all:

ax<b, = y;=0 (., V(AX-b)=0).

In other words, the dual condition (b) in Theorem 4.4 is equivalent with the so-
calledKarush-Kuhn-Tuckeconditions (or KKTeonditions for short):

(4.24) Vix)—y'/A=0", y>0, y'(Ax—b)=0.

We say that the feasible poirte ¥ is a Kuhn-Tucker poin{or KKT-point for
short) ifX satisfies (4.24) with suitable multiplieyse R

REMARK. The reader may have noticed that the KKT-condition (4.24) for a local maxi-
mizer is a special case of the necessary condRidix) — yT Vg(x) = 0T we derived for
saddle points in Corollary 4.1 (becauge) = Ax — b has the Jacobia¥ig(x) = A). This

is not surprising, indeed, a saddle pofrty) of the LagrangiarL(x, y) always implies

X to be a local (even a global) maximizer.

On the other hand, a local maximizer usually is not even a kind of “local saddle point” of
the LagrangiariL(x,y) = f(x) —y'(Ax — b). The two concepts are quite different (in
spite of the formal similarity of the necessary conditions they imply).

EX. 4.14(“Equality and Inequality Constraints”Show: Every maximizer of
maxf(x) st. Bx=d, Ax<b,

whereB € RK*N and A e R™" satisfies the KKT-condition

VIX)—ATB—p'A=0", uT(Ax—b)=0, AeR¥, ueR?.
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4.4.2. General Constraints.In the presence of general nonlinear constraints
g(x) < 0 (where we assumg: R" — R™ to be differentiable), we could try to
take a similar approach: We firkhearizethe constraintsi.e., replace them by
their first order approximations, and then proceed as before.

GivenX € ¥, we again consider the correspondaive set
I = {jlgx=0C{l,....m.
An (approximately¥easible directioratX is then a vectod € R" such that
Vg;x)d < 0 forall j € J(X).

If d #£ Ois such a direction at the maximizeand (4.23) holds, the same argument
as before yieldsV f (X)d < 0. The problem is that (4.23) need no longer hold.
Indeed, we may not be able to move iatay feasible directiord without leaving
the feasible se¥ immediately ¢f. Ex. 4.15).

Under certain assumptions on the constraint functs) (so-calledconstraint
qualificationg, one can argue that the cone of feasible directiDiis) approxi-

mates the feasible s@t (locally atx) sufficiently well so that this problem can be
overcome by moving along feasible curvan ¥ leading approximately (rather

than exactly) into directioml € D(X). These (truly nonlinear) phenomena are
discussed in detail in Chapter 12. One obtains necessary conditions that again are
formally the same as the saddle point conditions of KKT-type

(4.25) Vi) —y'Vgx)=0", y=>0, y'gx)=0

(which we already know to be necessary saddle point conditions without any as-
sumptions on the constraints).

EX. 4.15. For max{x; | g(x) = [|x]|? < 1} or max{x1 | h(x) = ||x||> = 1}, determine the
cone of feasible directions @) in X € ¥ and find which directions have the property
(4.23).

Minimization Problems. In the case of minimization problems, where we max-
imize (— f), the KKT-conditions for a minimizex are, of course, obtained when
we replaceV f (X) in (4.25) by (—=V f(X)). After multiplication with (-1), the
KKT-conditions for a minimizeK therefore become

(4.26) VIX)+y'VgX)=0", y>0, y'gX =0.



CHAPTER 5

Integer Programming

An integer linear progran(ILP) is, by definition, a linear program with the addi-
tional constraint that all variables take integer values:

(5.1) maxc'x st. Ax <b and xintegral.

Integrality restrictions occur in many situations. For example, the products in a
linear production modelcf. p. ??) might be “indivisible goods” that can only

be produced in integer multiples of one unit. Many problems in operations re-
search and combinatorial optimization can be formulated as ILPs. As integer
programming is NP-hard (see Secti®?, every NP-problem can in principle be
formulated as an ILP. In fact, such problems usually admit many different ILP
formulations. Finding a particularly suited one is often a decisive step towards
the solution of a problem.

5.1. Formulating an Integer Program

In this section we present a number of (typical) examples of problems with their
corresponding ILP formulations.

Graph Coloring. Let us start with the combinatorial problem of coloring the
nodes of a graplec = (V, E) so that no two adjacent nodes receive the same
color and as few colors as possible are ustd3ection??). This problem occurs

in many applications. For example, the nodes may represent “jobs” that can each
be executed in one unit of time. An edge joining two nodes may indicate that
the corresponding jobs cannot be executed in parallel (because they use perhaps
common resources). In this interpretation, the gr&plvould be theconflict
graphof the given set of jobs. The minimum number of colors needed to color its
nodes equals the number of time units necessary to execute all jobs.

Formulating thenode coloring problermas an ILP, we assum¥ = {1, ..., n}
and that we have colors at our disposal. We introduce binary variabjgs
k=1,...,n, to indicate whether coldkt is used(yx = 1) or not (yx = 0). Fur-
thermore, we introduce variableg to indicate whether nodereceives colok.

89
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The resulting ILP is

(5.2) mn>p v st. 1 DXk = 1 i=1,...,n
2 Xk—Y < 0 i,k=1,...,n
(3) Xk+xx < 1 (,))eE k=1,...,n
4) O0<Xk, ¥« < 1
B Xk € Z

The constraints (4) and (5) ensure that #eand y, are binary variables. The
constraints (1)—(3) guarantee (in this order) that each node is coloredj rede
ceives colork only if color k is used at all, and any two adjacent nodes have
different colors.

EX. 5.1. Show: If the integrality constraint (5) is removed, the resulting linear program
has optimum value equal to 1.

The Traveling Salesman Problem (TSP)This is one of the best-known com-
binatorial optimization problems: There andowns and a "salesman”, located

in town 1, who is to visit each of the other— 1 towns exactly once and then
return home. The toutraveling salesman toQihas to be chosen so that the to-
tal distance traveled is minimized. To model this problem, consider the so-called
complete graph K i.e., the graphK, = (V, E) with n = |V| pairwise adjacent
nodes. With respect to a given cost (distance) funatiofc — R we then seek

to find aHamilton circuit CC E, i.e., a circuit including every node, of minimal
cost.

An ILP formulation can be obtained as follows. We introduce binary variables
Xik (I,k=1, ..., n)toindicate whether nodéas thekth node visited. In addition,
we introduce variableyg. (e € E) to record whether edgeis traversed:

min> . g CeYe

s.t. X1 = 1

Zﬂzlxik = 1 1=1...,n

Zin:lxik = 1 k:]., , N
(53) Zeye = n

Xikei +Xk—Ye < 1 e=(,])),k>2
Xn+Xu1—Ye < 1 e=(,1)

0<Xk,Ye < 1
Xk, Ye € Z

Ex. 5.2. Show that each feasible solution of (5.3) corresponds to a Hamilton circuit and
conversely.

In computational practice, other TSP formulations have proved more efficient.
To derive an alternative formulation, consider first the following simple program
with edge variabley,, e € E:
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minc'y st. y@(@i) = 2 i=1,...,n
(5.4) O<y <1
y integral

(Recall our shorthand notatigngs(i)) = > .5, Ye for the sum of aly-values on
edges incident with node)

ILP (5.4) doesnot describe our problem correctly: We still must rule out solu-
tions corresponding to disjoint circuits that cover all nodes. We achieve this by
adding more inequalities, so-calledbtour elimination constraintsto simplify

the notation, we write foy € RE and two disjoint subsetS, T C V

yS: = > Ve
e=(,])
ieSjeT

The subtour elimination constraints
y(S:9 >2

make sure that there will be at least two edges in the solution that lead from a
proper nonempty subs8tc V to its complemen$=V \ S. So the corresponding
tour is connected. A correct ILP-formulation is thus given by

minc'y st. y@(@i) = 2 i=1,...,n
y(s:9 > 2 gcScV
(5.5) bey = 1
y integral

Note the contrast to our first formulation (5.3): ILP (5.5) has exponentially many
constraints, one for each proper subSet V. If n = 30, there are more thai®
constraints. Yet, the way to solve (5.5) in practice is to add even more constraints!
This approach of adding so-called cutting planes is presented in Sections 5.2 and
5.3 below.

REMARK. The mere fact that (5.5) has exponentially many constraints does not prevent
us from solving it (without the integrality constraints) efficientty.(Section??).

Maximum Clique. This is another well-studied combinatorial problem, which
we will use as a case study for integer programming techniques later. Consider
again the complete gragh, = (V, E) onn nodes. This time, there are weights

c e RV andd e RE given on both the vertices and the edges. We look for a set
C C V that maximizes the total weight of vertices and induced edges:

(5.6) Enc%xc(C) + d(E(C)).

As K, = (V, E) is the complete graph, ea€C V is a clique (set of pairwise
adjacent nodes). Therefore, we call (5.6) t@ximum weighted clique problem
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EXx. 5.3. Given a graph G= (V, E’) with E' C E, choose =1 and

4o 0 ecF
€~ 1 —n otherwise

Show: With these parameters (fop K (V, E)), (5.6) reduces to the problem of finding
a cliqgue C in G of maximum cardinality.
Problem (5.6) admits a rather straightforward ILP-formulation:

maxc'x+dTy

Ye— Xi < 0 ecE,iee
(5.7) Xi+Xj—VYe < 1 e=(,])eE
0 < xy < 1
X,y integer

A vector (x, y) with all component;, ye € {0, 1} that satisfies the constraints of
(5.7) is the so-callefvertex-edge) incidence vectof the clique

C={ieV|x=1.

In other wordsx € RV is the incidence vector o andy € RE is the incidence
vector of E(C).

REMARK. The reader may have noticed that all ILPs we have formulated so far are
binary programsij.e., the variables are restricted to take valuegdnl} only. This is

not by pure accident. The majority of integer optimization problems can be cast in this
setting. But of course, there are also othexg( the integer linear production model
mentioned in the introduction to this chapter).

5.2. Cutting Planes |

Consider the integer linear program
(5.8) maxc'x st. Ax <b and xintegral.

For the following structural analysis it is important (see Ex. 5.4) to assum@that
andb are rationalj.e., A € Q™" andb € Q™. In this case, the polyhedron

(5.9) P={xeR"|Ax < b}

is a rational polyhedronc{. Section 3.6). The set of integer vectorsknis a
discrete set, whose convex hull we denote by

(5.10) P, =conv{x e Z" | Ax < b} .

Solving (5.8) is equivalent with maximizingf x over the convex se®, (Why?).
Below, we shall prove that aldg is a polyhedron and derive a system of inequal-

ities describingP,. We thus show how (at least in principle) the original problem
(5.8) can be reduced to a linear program.

Ex. 5.4. Give an example of a (non-rational) polyhedronZPR" such that the set|Rs
not a polyhedron.
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PrRoOPOSITION 5.1. Let PC R" be a rational polyhedron. Then also B a
rational polyhedron. In case B4 @, its recession cone equals that of P.

Proof. The claim is trivial if P is bounded (a$ then contains only finitely many
integer points and the result follows by virtue of the discussion in Section 3.6). By
the Weyl-Minkowski Theorem 3.2, a rational polyhedron generally decomposes
into

P =convV + coneW
with finite sets of rational vectorg C Q" andW C Q". By scaling, if necessary,
we may assume thadv C Z". Denote byw andW the matrices whose columns
are the vectors iv.andW respectively. Thus eache P can be written as

X=VA+Wp, whereX, p>0andl™ =1

Let | ] be theintegral partof u # 0 (obtained by rounding down each compo-
nentu; > 0 to the next integeru;|). Splitting w into its integral part x| and its
non-integral parjx = p — [ pt] yields
X=VA+Wn+W|pu| =X+W|pu]

with | ] > Ointegral andk € P, where

P={(VA+Wgr|A>01"A=10<m<1}.
BecausaVN C Z", x is integral if and only iiX is integral. Hence

PNZ"=PNZ"+{Wz|z> Ointegra).
Taking convex hulls on both sides, we firef.(Ex. 5.5)
P, = conv(PNZ") + coneW.

SinceP is boundedP N Z" is finite. So the claim follows as before.

Ex. 5.5. Show:conv (V + W) = convV + convW for all V, W C R".

We next want to derive a system of inequalities descriliingrhere is no loss of
generality when we assunteto be described by a systefx < b with A andb
integral. The idea now is to derive new inequalities that are validPfdbut not
necessarily foiP) and to add these to the systéir < b. Such inequalities are
calledcutting planess they “cut off” parts ofP that are guaranteed to contain no
integral points.

Consider an inequalitg™x < g that is valid forP. If c € Z" but 8 & Z, then
each integrak e P N Z" obviously satisfies the stronger inequalifyx < |8].
Recall from Corollary 2.6 that valid inequalities f& can be derived from the
systemAx < b by taking nonnegative linear combinations. We therefore consider
inequalities of the form

(5.11) (y'A)x<y'b, y>0.
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If yTA € Z", then every € PN Z" (and hence every e P)) satisfies
(5.12) (Y'A)X < LyTb].

We say that (5.12) arises from (5.11) founding(if y'A € Z"). In particular, we
regain the original inequalitiedx < b taking asy all unit vectors. We conclude

PCP =XxeR"|(y/A)x<|y'bl,y>0, y'AecZ"} CP.

Searching for inequalities of type (5.12) withA e Z", we may restrict ourselves
to 0 <y < 1. Indeed, eacly > 0 splits into its integral parz = |y] > 0 and
non-integral pary =y — z. The inequality (5.12) is then implied by the two
inequalities

(Z'TA)X < Z'b (e Z)

v'AX < [y'b].

(Recall that we assumg& andb to be integral.) The first inequality in (5.13) is
implied byAx < b. To describeP’, it thus suffices to augment the systém < b
by all inequalities of the type (5.12) with< y < 1, which describes

(5.14) PP={xeR"|(yTA)x<|y'b], 0<y<1 y'AeZ.

by a finite number of inequalities (see Ex. 5.6) and thus exh®itss a polyhe-
dron.

(5.13)

EX. 5.6. Show: There are only finitely many vectgrsA € Z"with0 <y < 1.

Ex. 5.7. Show: PC Q implies P C Q'. (In particular, P depends only on P and not
on the particular systerAx < b describing P.)

Iterating the above construction, we obtain the so-callechory sequence
(5.15) POPOP'D2...2P®2...DP.

Remarkably ¢f. Gomory [34], and also Chvatal [9]), Gomory sequences are al-
ways finite:

THEOREM 5.1. The Gomory sequence is finite in the sense tHat=PP, holds
for some te N.

Before giving the proof, let us examine in geometric terms what it means to pass
from P to P’. Consider an inequality
(y'/Ax <y'b

with y > 0 andy'A e Z". Assume that the components pfA have greatest
common divisod = 1 (otherwise replacg by d=1y). Then the equation

(y"A)x = ly"b]
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admits an integral solutior € Z" (cf. Ex. 5.8). Hence passing frof to P’
amounts to shifting all supporting hyperplandsof P “towards” P, until they
“touch” Z" in some poink (not necessarily irP,).

FIGURE 5.1. Moving a cutting plane towards, P

EX. 5.8. Show: An equation”x = g withc e Z", 8 € Z admits an integer solution if and
only if the greatest common divisor of the componentsdividesg (Hint: Section 2.3).

The crucial step in proving Theorem 5.1 is the observation that the Gomory se-
guence (5.15) induces Gomory sequences on all facBsohultaneously. More
precisely, assumé& C P is a proper face. From Section 3.6, we know that
F = PN H holds for someational hyperplane

H={xeR"| ' A)x=y'b}
with y € QT (and hencg'A € Q" andy'b € Q).

LEMMA 5.1. F= PN Himplies F = P N H.

Proof. From Ex. 5.7 we concludé’ C P’. Since, furthermoreF’ C F C H
holds, we concludé’ C P’ N H. To prove the converse inclusion, note tlkais

the solution set of 5

V' AX v'b.
Scalingy if necessary, we may assume taA andy'b are integral. By defini-
tion, F’ is described by the inequalities
(5.16) WA +ay ' A)x < (W b+ay'b|
with w > 0, & € R (not sign-restricted) and/TA + oy'A € Z". We show that
each inequality (5.16) is also valid f& N H (and hencd® " H C F).

If « < 0, observe that fox € H (and hence for € P’ N H) the inequality (5.16)
remains unchanged if we increasey an integek € N: Sincex satisfies/' Ax =

>
<
Il 1A
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¥'b € Z, both the left and right hand side will increasekyy b if « is increased to
a + k. Hence we can assume> 0 without loss of generality. & > 0, however,
(5.16) is easily recognized as an inequality of type (5.12). (Vakev + oy > 0.)
So the inequality is valid foP’” and hence foP’ N H.

<&

We are now prepared for the

Proof of Theorem 5.1.In caseP = {x € R" | Ax = b} is an affine subspace, the
claim follows from Corollary 2.2¢f. Ex. 5.9). In generalP is presented in the
form

(5.17) AX

A'X
with n — d equalitiesA;.x = b; ands > 0 facet inducingi(e., irredundant) in-
equalitiesA’j,x < b’j.

b
b/

I

CAseE 1l: P, = @. Let us argue by induction os> 0. If s= 0, P is an affine
subspace and the claim is true sl 1, we remove the last inequalify,x < b}

in (5.17) and leQ C R" be the corresponding polyhedron. By induction, we then
haveQ® = Q, for somet € N. Now P, = @ implies

QN{xeR"Ax<b}=0.

S
Since P® € QM and (trivially) P® C {x € R" | ALx < b}, we conclude that
P® = ¢ holds, too.

CASE 2: P, # §. We proceed now by induction on dif If dim P =0, P = {p}
is an affine subspace and the claim is true. In general, $thheea polyhedron,
we can represent it as

AX =
Cx <

o T

with C andd integral.

We show that each inequalitf x < § of the systenCx < d will eventually be-
come valid for somé®®, t € N (which establishes the claim immediately). So fix
an inequalityc™x < 8. SinceP andP, (and hence alP®) have identical recession
cones by Proposition 5.1, the values
8® = maxc'x
xeP®

are finite for eachi € N. The sequenc&" is decreasing. Indeed, from the defini-
tion of the Gomory sequence we conclude tHat? < |5V |. Hence the sequence
8® reaches its limit

8= lim sV >4

—> 00

in finitely many steps. I8 = 8, there is nothing left to prove. Suppose therefore
8§ =6® > § and consider the face

F:={xePY|c™x=3).
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Then F, must be empty since everye P, D F, szitisfiesch <8§<34. IfcT e
row A, thenc'x is constant onP O PY D P, soé > § is impossible. Hence
c’ €rowA, i.e, dim F < dim P. By induction, we conclude from Lemma 5.1

for some finitek. Hences™® < §, a contradiction.
o

Ex. 5.9. Assume P= {x € R" | Ax = b}. Show that either P= P, or P = P, = 4.
(Hint: Corollary 2.2 and Proposition 5.1)

Ex. 5.10(Matching Polytopes)Let G = (V, E) be a graph with an even number of
nodes. Aperfect matchingn G is a set of pairwise disjoint edges covering all nodes.
Perfect matchings i@ are in one-to-one correspondence with integral (and hence binary)
vectorsx e RE satisfying the constraints
(1) x@Gi))=1 (ieV)
(2) 0<x< 1L
Let P C RE be the polytope described by these constraints. The associated paRtope
is called thematching polytopef G. Thus P, is the convex hull of (incidence vectors
of) perfect matchings is. (For example, ifG consists of two disjoint triangles, we have
RE~RS P={3 1} andP, = 0).
To construct the Gomory polytofd#, consider som&C V. When we add the constraints
(1) fori € S, every edgee = (i, j) with i, j € Soccurs twice. So the resulting equation is
(1) x(8(9) +2x(E(9) =Y
(Recall thate(S) C E is the set of edges induced 18) On the other hand, (2) implies
(2) x(3(9) > 0.
From (1’) and (2") we conclude that(E(S)) < %|S| is valid for P. Hence forSC V
(3) X(E(9)) < [3191]

is valid for P’. It can be showndf. [12]) that the inequalities (1)-(3) describg. So
P’ = P, and the Gomory sequence has length 1.

Gomory’s Cutting Plane Method. Theorem 5.1 tells us that — at least in principle

— integer programs can be solved by repeated application of linear programming.
Conceptually, Gomory’s method works as follows. Start with the integer linear
program

(5.18) maxc'x st. Ax <b, xintegral

and solve its LRelaxation which is obtained by dropping the integrality con-
straint:

(5.19) maxc'x st. Ax<b.

So c'x is maximized overP = {x € R" | Ax < b}. If the optimal solution is
integral, the problem is solved. Otherwise, deternf@and maximizec™x over
P etc.



98 5.INTEGER PROGRAMMING

Unfortunately, this approach is hopeless inefficient. In practice, if the optirium
of (5.19) is non-integral, one tries to fimdtting planegi.e., valid inequalities for
P, that “cut off” a part of P containingx*) right away in order to add these to the
systemAx < b and then solves the new systetc. This procedure is generally
known as thesutting plane methotbr integer linear programs.

Of particular interest in this context are cutting planes that are best possible in
the sense that they cut as much as possiblePoffldeally, one would like to

add inequalities that define facets®f Numerous classes of sutdcet defining
cutting planes for various types of problems have been published in the literature.
In Section 5.3, we discuss some techniques for deriving such cutting planes.

5.3. Cutting Planes Il

The cutting plane method has been successfully applied to many types of prob-
lems. The most extensively studied problem in this context is the traveling sales-
man problem (see.g, [12] for a detailed exposition). Here, we will take the max
clique problem from Section 5.1 as our guiding example, trying to indicate some
general techniques for deriving cutting planes. Moreover, we take the opportunity
to explain how even more general (seemingbnlinear integer programs can be
formulated as ILPs.

The followingunconstrained quadratic booledne., binary)problemwas studied
in Padberg [64] with respect to a symmetric ma@@x= (q;) € R™":

n
(520) maxz gj%X;, X e {0,1} .

i, j=1

As X - X; = X; holds for a binary variableg;, the essential nonlinear terms in the
objective function are the ternefg x x; (i # j). These may bénearizedwith the
help of new variabley;; = xix;. Sincex X; = X;X;, it suffices to introduce just
n(n — 1)/2 new variablesy,, one for each edge = (i, j) € E in the complete
graphK, = (V, E) with V = {1, ..., n}.

The salient point is the fact that the non-linear equafipe= x;x; is equivalent
with the three linear inequalities

Ye < Xi, Ye < Xj, andx +X; —Ye <1

if Xi, X; andy, are binary variables.
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With ¢; = q; andde = g + g; for e= (i, j) € E, problem (5.20) can thus be
written as an integer linear program:

max Zn:cixi + Zdeye s.t.
=1

ecE

(521) YVe— X < 0 ecE,iee
Xi+Xj—VYe < 1 e=(j))ekE
0<X,Ye < 1
Xi, Ye integer.

Note that (5.21) is precisely our ILP formulation (5.7) of the weighted max clique
problem.

Let P C RVVE be the polytope defined by the inequality constraints of (5.21).
As we have seen in Section 5.B, is then the convex hull of the (vertex-edge)
incidence vectorsx, y) € RVVE of cliques (subsets} C V.

The polytopeP C RV is easily seen to have full dimensiont (3) (because,
e.g, X = % -landy = % -1 yields an interior point(x,y) of P). EvenP, is
full-dimensional (see Ex. 5.11).

Ex. 5.11. Show: RVVE is the affine hull of the incidence vectors of the cliques of sizes
0,1 and 2.

What cutting planes can we construct f8r? By “inspection”, we find that for
any three vertices |, k € V and corresponding edgesf, g € E, the following
triangle inequality

(5.22) X+X+X—Ye—Yr—Yg <1
holds for any clique incidence vectox, y) € RVVE,

Ex. 5.12. Show: (5.22) can also be derived from the inequalities describing P by round-
ing.

This idea can be generalized. To this end, we extend our general shorthand nota-
tion and write for(x,y) e RV"E andSC V:

X(9 =D % and y(= D Ve.

ieS ecE(S)
For example, (5.22) now simply becomesS) —y(S) < 1for|§ = 3.
For everySC V and integerx € N, consider the followinglique inequality
(5.23) axX(S) —y(S) < a(a+1)/2.

PROPOSITION 5.2. Each clique inequality is valid for P
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Proof.Let (x, y) € RVVE be the incidence vector of some cliqGec V. We must
show that(x, y) satisfies (5.23) for eacBC V and« € N. Lets=|SN C|. Then
X(S) = sandy(S) = s(s—1)/2. Hence
ala+1)/2—ax(S)+y(S) = [a(e+1)—2as+s(s—1)]/2
(¢ —9s)(a—s+1)/2,

which is nonnegative since bothands are integers.
&

A further class of inequalities can be derived similarly. For any two disjoint sub-
setsS, T C V, the associatedut inequalityis

(5.24) X(S4+y(S+y(T)—y(S:T)>0

(Recall from Section 5.1 that(S: T) denotes the sum of ajf-values on edges
joining SandT).

PROPOSITION 5.3. Each cut inequality is valid for P

Proof. Assume thatx, y) € RVVE is the clique incidence vector & C V. With
s=|CnN g andt = |CNT|, we then find
X(+Y(S+y(T)—y(S:T) = s+s(s—1)/24+t(t—1)/2—st
= (s—t)y(s—t+1)/2>0.
&
Multiplying a valid inequality with a variable; > 0, we obtain a new (nonlin-
ear!) inequality. We caltinearizeit by introducing new variables as explained at
the beginning of this section. Alternatively, we may simply use linear (lower or

upper) bounds for the nonlinear terms, thus weakening the resulting inequality.
For example, multiplying a clique inequality (5.23) by 2 € S, yields

Zainxj —2%Y(S) < a(a+ 1)X%.
jesS

Because oky(S) < y(S), x¥* = x andxXj = Ye, € = (i, j) € E, the following
so-called-clique inequality

(5.25) 2y(i 2 S\ {i}) —2y(S) — (e — L)% < 0

must be valid forP,. (This may also be verified directly.)

REMARK. Most of the above inequalities actually define facetd?af Considere.qg,
for somex, 1 < a < n— 2, the clique inequality

ax(S) —y(S) <a(e+1)/2,

which is satisfied with equality by all incidence vectors of clig@es V with |CN S =«
or|[CNS =wa+1. LetH C RVVE pbe the affine hull of all these incidence vectors.
To prove that the clique inequality is facet defining, one has to show

dmH=dmP, -1,
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i.e., H is a hyperplane iflRV“E. This is not too hard to do. (In the special c&e V and
a = 1, it follows readily from Ex. 5.11).

The cutting plane method suffers from a difficulty we have not mentioned so far.
Suppose we try to solve an integer linear program, starting with its LP-relaxation
and repeatedly adding cutting planes. In each step, we then face the problem of
finding a suitable cutting plane that cuts off the current non-integral optimum.
This problem is generally difficult.E.g, for the max clique problem one can
show that it isN P-hard to check whether a giveix*, y*) € RV'E satisfies alll
clique inequalities and, if not, find a violated one to cut©ff, y*).

Moreover, one usually has only a limited number of different classes (types) of
cutting planes to work with. In the max clique problem, for example, we could
end up with a solutiorix*, y*) that satisfies all clique;clique and cut inequalities

and yet is non-integral. The original system and these three classes of cutting
planes namely descrild@ by no means completely.

The situation in practice, however, is often not so bad. Quite efficient heuristics
can be designed that frequently succeed to find cutting planes of a special type.
Macambira and de Souza [57], for example, solve max clique instances of up to
50 nodes with the above clique and cut inequalities and some more sophisticated
generalizations thereof.

Furthermore, even when a given problem is not solved completely by cutting
planes, the computation was not futile: Typically, the (non-integral) optimum
obtained after having added hundreds of cutting planes provides a rather tight
estimate of the true integer optimum. Such estimates are extremely valuable in a
branch and bound method for solving ILPs as discussed in Section 5.4 below. For
example, the combination of cutting planes and a branch and bound procedure has
solved instances of the TSP with several thousand nodes to optintdlif¥Z]).

5.4. Branch and Bound

Any linear maximization program (ILP) with binary variablgs ..., x, can in
principle be solved bgomplete enumeratiorCheck all 2 possible solutions for
feasibility and compare their objective values. To do this in a systematic fashion,
one constructs an associateee of subproblemas follows. Fixing, say the first
variablex,, to eitherx; = 0 orx; = 1, we generate two subprobleisP | x; = 0)
and(ILP | x;, = 1). These two subproblems are said to be obtained from (ILP) by
branchingon x;.

Clearly, an optimal solution of (ILP) can be inferred by solving the two subprob-
lems. Repeating the above branching step, we can bbiltbay treewhose nodes
correspond to subproblems obtained by fixing some variables to be 0 or 1. (The
termbinaryrefers here to the fact that each node in the tree has exactlpives
neighbors) The resulting tree may look as indicated in Figure 9.2 below.
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(ILP)

(ILP|x, =0) (ILP X =1)

(ILP|x,=0, X3 =0) (ILP X, =0, x3=1)
FIGUREDS.2.

Having constructed the complete tree, we could solve (Hd®jom upand inspect
the 2' leaves of the tree, which correspond to "trivial” (all variables fixed) prob-
lems. In contrast to this solution by complete enumeratimanch and bound
aims at building only a small part of the tree, leaving most of the “lower part”
unexplored. This approach is suggested by the following two obvious facts:

e If we can solve a particular subproblem, séiyP | x; = 0, x3 = 1), di-
rectly (e.g, by cutting planes), there is no need to inspect the subprob-
lems in the branch belo@WLP | x; = 0, X3 = 1) in the tree.

o If we obtain an upper bountd (x; = 0, x3 = 1) for the sub-problem
(ILP | x; =0, x3 = 1) that islessthan the objective value of some known
feasible solution of the original (ILP), thehiLP | x; = 0, X3 = 1) offers
no optimal solution.

Only if neither of these circumstances occurs we have to explore the subtree
rooted at(ILP | x; = 0, x3 = 1) for possible optimal solutions. We do this by
branching at(ILP | x;, = 0, X3 = 1) and creating two new subproblems in the
search tree. An efficient branch and bound procedure tries to avoid such branch-
ing steps as much as possible. To this end, one needs efficient algorithms that
produce

(1) “good” feasible solutions of the original (ILP).
(2) tight upper bounds for the subproblems.

There is a trade-off between the quality of the feasible solutions and upper bounds
on the one hand and the size of the search tree we have to build on the other. As
a rule of thumb, “good” solutions should be almost optimal and bounds should
differ from the true optimum by less than 10%.

Algorithms for computing good feasible solutions usually depend very much on
the particular problem at hand. So there is little to say in general. Quite often,
however, simple and fasteuristic procedure$or almost optimal solutions can

be found. Such algorithms, also callkduristicsfor short, are known for many
problem types. They have no guarantee for success, but work well in practice.

REMARK [LocCAL SEARCH]. In the max clique problem the following simplecal
searchoften yields surprisingly good solutions: We start with soB€ V and check
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whether the removal of some node C or the addition of some nodg¢ C yields an
improvement. If so, we add (delete) the corresponding node and continue this way until
no such improvement is possible (in which case we stop with the cugesitoptimum

C C V). This procedure may be repeated with different initial solutiérns V.

Computing good upper bounds is usually more difficult. Often, one just solves
the corresponding LP-relaxations. If these are too weak, one can try to improve
them by adding cutting planes as outlined in Section 5.3 . An alternative is to
obtain upper bounds from Lagrangian relaxation (see Section 5.5 below).

Search and Branching Strategies.For the practical execution of a branch and
bound algorithm, one needs to specify how one should proceed. Suppose, for
example, that we are in a situation as indicated in Figurei®2 that we have
branched from (ILP) on variable, and from(ILP | x, = 0) on variablexs. We

then face the question which subproblem to consider next, githBr| x; = 1)

or one of the subproblems oOfLP | x; = 0). There are two possible (extremal)
strategies: We either always go to one of the “lowest” (most restricted) subprob-
lems or to one of the “highest” (least restricted) subproblems. The latter strategy,
choosing(ILP | x; = 1) in our case, is calletireadth first searchwhile the for-

mer strategy is referred to depth first searchas it moves down the search tree
as fast as possible.

A second question concerns the way of branching itself. If LP-relaxation or cut-
ting planes are used for computing upper bounds, we obtain a fractional optimum
x* each time we try to solve a subproblem. A commonly used branching rule
then branches on thmost fractional X. In the case of (01)-variables, this rule
branches on the variabefor which x' is closest to 12. In concrete applications,

we have perhaps an idea about the “relevance” of the variables. We may then al-
ternatively decide to branch on the most relevant variapblddvanced software
packages for integer programming allow the user to specify the branching process
and support various upper bounding techniques.

REMARK. The branch and bound approach can easily be extended to general integer
problems. Instead of fixing a variabkgto either O or 1, we may restrict it iq < «;j or

X > aj + 1 for suitablex; € Z. Indeed, the general idea ispartition a given subproblem

into a number of (possibly more than just two) subproblems of similar type.

5.5. Lagrangian Relaxation

In Section 4.1, Lagrangian relaxation was introduced as a means for calculating
upper bounds for optimization problems. Thereby, one “relaxes” (dualizes) some
(in)equality constraints by adding them to the objective function using Lagrangian

multipliersy > 0 (in case of inequality constraints) to obtain an upper bdufyd.

The crucial question is which constraints to dualize. The more constraints are
dualized, the weaker the bound becomes. On the other hand, dualizing more
constraints facilitates the computationlofy). There is a trade-off between the
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quality of the bounds we obtain and the effort necessary for their computation.
Generally, one would dualize only the “difficult” constraint®., those that are
difficult to deal with directly (see Section 5.5.2 for an example).

Held and Karp [39] were the first to apply the idea of Lagrangian relaxation to
integer linear programs. Assume that we are given an integer program as

(5.26) max{c'x | Ax < b, Bx < d, x € Z"}

for givenintegral matricesA, B and vectord, ¢, d and letz, be the optimum
value of (5.26). Dualizing the constraings< — b < 0 with multipliersu > 0
yields the upper bound

(5.27) L(u) = max{c'™x—u'(Ax —b) |Bx < d,x e Z"}
u'b +max{(c" —u'A)x |Bx <d,x e Z"}

and thus the Lagrangian dual problem
(5.28) zZh = migl L(u).
u=

Ex. 5.13. Show that I(u) is an upper bound onjg for everyu > O.

It is instructive to compare (5.28) with the linear programming relaxation
(5.29) Z » = max{c'x | Ax < b, Bx < d},

which we obtain by dropping the integrality constraxn¢ Z". We find that La-
grangian relaxation approximates the true optingjgnat least as well:
THEOREM 5.2. 7z, < Zf < Zp.

Proof. The first inequality is clearcf. Ex. 5.13). The second one follows from
the fact that the Lagrangian dual of a linear program equals the linear program-
ming dual. Formally, we may derive the second inequality by applying linear
programming duality twice:

% = minLw
= rpjgl [uT™b + mxax{(cT —u'A)X|Bx<d,xeZM
< rpjg [uT™b + m):'alx{(cT —uTA)x | Bx < dJ]
= T;IQ [uT™b + mvin{dTv [VIB=c' —u'A,v > 0}]
= min {Ub+v'd|u’"A+vIB=c",u>0,v> 0}

= max{c'x|Ax < b,Bx <d} =Z,.
X



5.5. LAGRANGIAN RELAXATION 105

REMARK. As the proof of Theorem 5.2 showg, = 7, holds if and only if the inte-
grality constraink € Z" is redundant in the Lagrangian dual problem defirgfjgIn this
case, the Lagrangian dual is said to haveitiegrality property (cf. Geoffrion [29]).

It turns out that solving the Lagrangian dual problem amounts to minimizing a
"piecewise linear” function of a certain type. We say that a functiarR" — R

is piecewise linear conveak f is obtained as the maximum of a finite number of
affine functionsf; : R" — R (cf. Figure 5.3 below). (General convex functions
are discussed in Chapter 10).

f(x)

FIGURES.3. f(u)y=max{fi(u)|1<i <k}

ProPOSITION 5.4. Let U be the set of vectots> 0 such that
(5.30) Lw) =u"b+max{(c' —uTA)x|Bx<d,xeZ" < 0.
X

Then L is a piecewise linear convex function on U.

Proof. For fixedu > 0, the maximum in (5.30) is obtained by maximizing a linear
function f(x) = (c" —uTA)x over

P, =conv{x | Bx < d, x € Z"} = convV + coneE ,

say, with finite setd/ C Z" andE C Z" (cf. Proposition 5.1). IfL(u) < oo, the
maximum in (5.30) is attained at some= V (Why?). Hence
L(u) =u"b+ max{(c' —uTAy|ve V]

exhibiting the restriction otf. to U as the maximum of the finitely many affine
functions
G =u"(b—Av)+cv;  (vieV).
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5.5.1. Solving the Lagrangian Dual.After these structural investigations,
let us address the problem of computing (at least approximately) the best possible
upper bound.(u*) and solving the Lagrangian dual

z5, = minL(u).
u>0

To this end, we assume that we can evaluiage Efficiently solve) for any given
u>0:

(5.31) L(U) = max{c'x—U"(Ax —b) | Bx < d,x € Z"} .

REMARK. In practice this means that the constraints we dualieze £ b) have to be
chosen appropriately so that the resultin@) is easy to evaluate (otherwise we obvi-
ously cannot expect to solve the problem rhii))

Suppos« € Z" is an optimal solution of (5.31). We then seek same 0 such
thatL(u) < L(U). SinceX is a feasible solution of the maximization problem in
(5.31),L(u) < L(u) implies

(5.32) c'X—u"(AX—b) < L(u) < L@ =c'x—u"(AX—b)

and hence
(u—1u)"(AX—b) > 0.

The Subgradient Method. The preceding argument suggests to try a veater
u+ Auwith

Au=u—-U=A(AX—Db)
for some smalktep size. > 0.

Of course, we also want to have= U + Au > 0. So we simply replace any
negative component by De., we project the resulting vectaronto the seR! of
feasible multipliers and obtain

(5.33) u=max0, U+ A(AX —b)} (componentwise)

REMARK. This procedure appears intuitively reasonable: As our stepisigesmall,

a negative component can only occuiif~ 0 andA; X < b;. This means that we do
not need to enforce the constrailitx < b; by assigning a large penalty (Lagrangian
multiplier) to it. Consequently, we try; = O.

The above procedure is tlsebgradient metho¢tf. also Section 4.2.3) for solv-
ing the Lagrangian dual: We start with somag > 0 and compute a sequence
Ui, Uy, ... by iterating the above step with step sizagsa,, ... .

The appropriate choice of the step sizds a delicate problem — both in theory
and in practice. A basic result states that convergence takes place (in the sense of
Theorem??) provided

o0

lim 3, =0 and ;M — 0.
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5.5.2. Max Clique Revisited. How could Lagrangian relaxation be applied
to the max clique problem? The first (and most crucial) step is to establish an
appropriate ILP formulation of the max clique problem. This formulation should
be such that dualizing a suitable subset of constraints yields upper bounds that are
reasonably tight and efficiently computable. A bit of experimenting reveals our
original formulation (5.7) resp. (5.21) to be inadequate. Below, we shall derive
an alternative formulation that turns out to work better.

We start by passing from the underlying complete gripk= (V, E) to the com-
plete directed grapiD, = (V, A), replacing each edge= (i, j) € E by two
oppositely directed ara$, j) € Aand(j, i) € A. To avoid confusion with the no-
tation, we will always indicate whether a pair j) is considered as an ordered or
unordered pair and writ@, j) € Aor (i, j) € E, resp. With each ar@, j) € A, we
associate a binary variablg. The original edge weightd, (e € E) are equally
replaced by arc weightg; = g;; = de/2 (€= (i, j) € E).

The original ILP formulation (5.7) can now be equivalently replaced by

maxc'x+q'y s.t.
D x+x—30+yi)) < 1 (.j)eE
(5.34) (2) Yii — Vi = 0 (,))eE
(3) Yij — Xi < 0 (,)eA

4) xe{0,1}V,ye {0, 1}A

REMARK. (5.34) is a “directed version” of (5.7). The cliques (subs€ts) V are now
in one-to-one correspondence with the feasible solutions of (5.34), namelgrties-arc
incidence vectorsx, y) € {0, 1}VVA, defined byx; = 1if i € Candy;; = 1ifi, j € C.

The directed version (5.34) offers the following advantage over the formulation
(5.7): After dualizing constraints (1) and (2) in (5.34), the remaining constraints
(3) and (4) imply no “dependence” between different nodasd j (i.e., y; =1
impliesx; = 1 but notx; = 1) . The resulting Lagrangian relaxation can therefore
be solved quite easilycf. Ex. 5.14).

EX. 5.14. Using Lagrangian multipliers € RE for dualizing constraints (1) and unre-
stricted multiplierss e RE for dualizing the equality constraints (2) in (5.34), one obtains

1
L(u,v) =maxc'x+q'y + Z Uij (1 =% — Xj + > i+ yii)) + Z vij (¥ij = Yii)
(i,))eE (i, ))eE
subject to (3)—(4) from (5.34) .
So for givenu € RE andv e RE, computingL (u, v) amounts to solving a problem of the
following type (with suitabl&€ € RV andg e R?):
maxe'x+q'y subjectto (3)—(4) from (5.34)
Show: A problem of the latter type is easy to solve because the constraints (3)—(4) imply

no “dependence” between different nodes i and |.

(Hint: Fori e V,let R={j e V| Gj > 0}. Setx=1if &+ > Gj > 0.)
jeR
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Unfortunately, the Lagrangian bounds we obtain from the dualization of the con-
straints (1) and (2) in (5.34) are too weak to be useful in practice. To derive tighter
bounds, we want to add more constraints to (5.34) while keeping the enlarged sys-
tem still efficiently solvable after dualizing constraints (1) and (2). It turns out that
one can add “directed versiong¥f(below) of the clique inequalities (5.23) and
thei-clique inequalities (5.25) foB = V without complicating things too much.

The resulting formulation of the max clique problem is

maxc'x+q'y s.t.
1) X+ X — 3(Yij + Yi) < 1 (i,j)eE
(2) Yii — Vi = 0 (i,j)eE
(5.35) 3 Yij — Xi < 0 (i, j) e A
4) 20x(V) —y(V) < ale+1) a=1,...,n
5) 2ay(T@())—y(V) —a(a—1)x < 0 ieV
(6) x € {0, 1}V, y € {0, 1A

where, in constraints (4) and (5), we used the straightforward extension of our
general shorthand notation:

yV)= D> yy and  y@t) =Dy
(i,peA j#i
Constraints (4) and (5) are “directed versions” of the original cliqueiasiidue
inequalities (5.23) and (5.25).

Ex. 5.15. Show that every incidence vectox,y) € RVYA of a set (clique) OC V
satisfies the constraints in (5.35). (Hint: Section 5.3)

To dualize constraints (1) and (2) in (5.35), we introduce Lagrangian multipliers
u e RE for the inequality constraints (1) and unrestricted multipliers R for
the equality constraints (2). So we obtain fau, v) the expression

1
max c'x + qu+Z uij (1—x — xj + E(yij +yi)) + Z vij (Yij — Vi)
(,j)eE (,j)eE
subject to (3)—(6) from (5.35)

Givenu € RE andv e RF, the computation oE.(u, v) amounts to solving a prob-
lem of the following type (for suitablé e RV andg e R*):

(5.36) maxC'x+q'y subjectto (3)—(6) from (5.35)

The integer linear program (5.36) appears to be more difficult, but can still be
solved quickly.

Forp=0,...,n, we determine the best solution satisfyx(/) = p as follows:
For p=0, setx =y =0. Givenp > 1, we choose for eache V thep—1
most profitable arcs id* (i), i.e., those with the highesf-values. Suppose their
g-values sum up t@; fori € V. We then letx; = 1 for the p largest values of
G + Gi. If i =1, we lety;; = 1 for the p — 1 most profitable arcs ir* (i).
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The optimal solution is then the best we found foe= 0, ..., n. This follows
from

LEMMA 5.2. Let(x,y) € {0, 1}VYA. Then(x, y) is a feasible solution of (5.36) if
and only if there exists someep{O0, ..., n} such that
p—1 if =1

0 if X;i =0
Proof. Assume first thatx, y) satisfies (i) and (ii). Thenix, y) satisfies the con-
straints (3) and (6) of (5.35). Constraint (4) reduces to

(4) 2ap—p(p—1) < a(x+ 1),

which holds for alla, p € Z since (¢ — p)?> + (¢ — p) > 0. Constraint (5) is
certainly satisfied ik = O (due to (ii)). Forx, = 1, constraint (5) becomes

20(p—1)—p(p—1) <a(ax—1),

i x(V)=p and (i) Y(5+(i))=[ (ieV)

which is (4’) again.

Conversely, assume that, y) is feasible for (5.36) and lgt = x(V) = >, X
Consider the constraints (5) of (5.36) for thaseith x; = 1. Adding the corre-
sponding inequalities for any, we find

2ay(V) — py(V) — pa(e—1) <0.
Takinga = p, we conclude/(V) < p(p—1).
On the other hand, lettingg = p in (4), we have
2p? —y(V) < p(p+1) andhence y(V) > p(p—1),
which provesy(V) = p(p — 1). Substituting the latter equality into (5) (with
a = p) and dividing byp, we deduce for € V with x; = 1:
2y (1) < (p—D+(p—Dx =2(p-1).

In view of constraint (3) in (5.35), we thus have the inequalities

| —1if x=1
y(5+('))5{ "0 it x=o

Sincey(V) = p(p — 1), actually equality must hold.
o

Ex. 5.16. The Lagrangian bounds(u, v) we obtain when solving (5.36) as explained
above are generally better than the bound produced by the LP-relaxation of (5.36). Con-
sider, for example, the complete directed grdph= (V, A) with €= 0 € RV and sym-
metric arc weightgj; = Gj; as indicated in Figure 5.4 below.

An optimum integral solution of (5.36) can be obtained as follows: Choose afyGSat

with |C| = 3. Setx; = 1 if i € C. Furthermore, for eache C choose two arcs ia* (i)

with weightgj; = 1. Sety;; = 1 on these two arcs. This solution guarantees an objective
function valueq'y = 6 (so the duality gap is zero).
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In contrast, the LP-relaxation of (5.36) is solvedXiy= x4 = 1, X = X3 = 2/3, 12 =

Y13 = Ya2 = Yaz = 1 andyz1 = Y23 = Y24 = Y31 = Y32 = Y34 = 2/3 with an objective
value of 8. So Lagrangian relaxation (in this example) provides strictly better bounds than
LP-relaxation. In other words, problem formulation (5.36) does not have the integrality
property €f. p. 105).

1 4

FIGURE 5.4. All arcs have weight 1 except the two arck 4) and
(4, 1) of weight—100.

Our Lagrangian relaxation of the max clique problem makes use of cutting planes
by adding them to the constraints. This approach works well as long as we can
deal with these additional constraints directly. If we wanted to add other cutting

planes (say triangle inequalities), solving (5.36) with these additional constraints
would become a lot more difficult.

An alternative procedure would add such constraints and dualize them immedi-
ately. The resulting Lagrangian bound may then again be computed by solving a
problem of type (5.36) (with a modified objective function). This approach has
proved rather promising in practicef([43]).

5.6. Dualizing the Binary Constraints

As we have seen, Lagrangian relaxation is a technique to get rid of difficult in-
equality or equality constraints by dualizing them. Can we do something similar
with the binary constraints? The answer is yes, and the reason is simple: A bi-
nary constrain; € {0, 1} can be equivalently written as an equality constraint
x? — % = 0, which we dualize as usual.

Note, however that dualizing the quadratic equaiibr x; = 0 necessarily results

in a quadratic term in the Lagrangian function. We illustrate this approach in the
case of the maximum clique problem — or, equivalently, the unconstrained qua-
dratic binary optimization problem from Section 5.3 (see La&rohal and Oustry

[52] for other examples and more details of this technique in general).
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Let Q € R™" be a symmetric matrix and reconsider the unconstrained quadratic
boolean problem

(5.37) max{x'Qx | x € {0,1}"} .

Dualizing the constraints? — x;, = 0 with Lagrangian multipliers; € R, we
obtain the Lagrangian bound

_ T 2y
(5.38) L(u) = max x QX"‘Z,“'(Xi X).

Letting U € R™" denote the diagonal matrix with diagonaE R", we can write

(5.39) L(u) = max X" (Q+ U)x —u'x.

Evaluating L(u) amounts to solving the unconstrained quadratic optimization
problem (5.39). Ex. 5.17 shows how to accomplish this.

Ex. 5.17. For fixedu € R", consider the function
f(x)=x"(Q+U)x—u'x.

Show: If X(Q + U)X > 0 holds for som& € R", then f has no finite maximum.
Assume thai' (Q + U)x < 0 always holds (i.eQ + U is negative semidefini)e Show:
X is optimal for f if and only if Vf (X) = 2X" (Q + U) — uT = 0". (Hint: Section??).
So f has a finite maximum if and only@+ U is negative semidefinite andf (x) = 0"
has a solution. The maximum is attained in e&ehR" satisfying2(Q + U)X = u, which
implies

1+

1
L(u)=maxf(x)==X'u—u'x=—-=u'x.
X 2 2

The Lagrangian dual mjri(u) is called thesemidefinite relaxatiorof the primal
(5.37), as it can be reformulated as follows (witle R", r € R):
min L(u) = min{r| L(u) <r}
u u,r
= min{r | x(Q+U)x—u'x<r vxeR"
u,r

1,7 /1
_ min{r|(1,xT)[ ! e ]()50 v x e R")
u,r -3

U (Q+U) | \x
_ _ 1,7
= rU’irn {r] [ _%ru Q iuU) ]is negative semidefinije

Only the last step needs further explanation, which is given in Ex. 5.18 below.

Ex. 5.18. Show for anys € R(MDx(+D):

1
(1, xT)S(X) <0 forallxeR" <= 2z'Sz<O0 forall ze R™?,



112 5.INTEGER PROGRAMMING

Our reformulation of the Lagrangian duaa

, : —r LT
= = 2
(5.40) minLu) = minr st Su= [ Sl @Qru) ] <0.

is a special case of semidefinite progranfoptimizing a linear objective under
linear and semidefinite constraints, see also Seg#opn

REMARK. To understand how (and why) problem (5.40) can be solved at least approx-
imately, consider the following “cutting plane approach”: We first replace the condition
of semidefiniteness fd = S, by afinite number of linear inequalities

(5.41) a'Sa<0 (aeA)

for some finite sefA C R™1. Note that, for each fixed € A, the inequalit;aTSag Ois
alinear inequality with variables andu.

We then minimize subject to constraints (5.41). If the solution provides us wiimdu

such thalS ; is negative semidefinite, we have found a solution. Otherwigg Sa > 0
holds for somea € R, we adda to A (i.e., we add aviolated inequality and solve the
modified problenetc. (Note that we can check wheth8e S, is negative semidefinite
with the Diagonalization algorithm from Section 2.1. This also provides us with a suitable
vectora in caseSis not negative semidefinite.)

The theoretical aspects of this approach will be discussed in the context of the ellipsoid
method in Sectior??. In practice, analogues of the interior point method for linear pro-
grams ¢f. Chapter??) solve semidefinite programs more efficiently.

We want to emphasize that the approach of dualizing the binary constraints in a
general integer program

max c'x st. Ax<b, xe{0 1"

is limited. If we dualize only the binary constrainté— x; = 0 using Lagrangian
multipliersu; € R, the Lagrangian function becomes

L(u)=maxx'Ux+ (c—u)'x st Ax<b.

In contrast to (5.38), this is a quadratic optimization problem widguality con-
straints which is in general difficult (NP-haraf. Section??).
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R

N,Z,Q

Rn

R}

RE

Rmxn

Snxn

xeR"

(Y]

U, (x)

€,..., 6

%

xTy

A = (a;) e R™"
AT

Ai, A

AoB =22 a;bj
IAllF =+vAoA
A>0

A=0

A>-B

I

diag(dy, ..., dy)

-

spanA
aff A
coneA
convA
clC
intC
LJ_

CO

ppol

set of real numbers

set of natural, integer, rational numbers
Euclideam-space

set of non-negative vectors RI"

set of real vectors indexed by the $et
set of reaim x n matrices

set of real symmetria x n matrices
column vector with components, .. ., X,
Euclidean norm

e-neighborhood ok

standard unit vectors IiR"

inner product

standard inner product iR"

real (m x n) matrix

transpose of

row vectors, column vectors &éf

“inner product” of matrices

Frobenius norm of the matrix.

positive semidefinite matrix (p.s.d.)
positive definite matrix

A — B is positive semidefinite

unit matrix

diagonal matrix

vector with all components equal &oe R

linear hull (span) of a seA
affine hull (affine span) of a s&%
convex cone of a s

convex hull of a seA

closure of a se€

interior of a seC

orthogonal complement df
dual cone ofC

polar of P
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[X, ]
P(A, b)
kerA
f f
Vi = (32, ..., 1x)

[VEx)]T or VT f(x)
Vi) = (%502)
[VEX)]T or VT f(x)
Ve g(X, y)

V2 £ (x)

af (X)

log

In

(a)
(X)
(n
[o]
[or], Lot
w.l.0.Q.
C

(-

line segment betweex y € R"
polyhedron of solutions oAx < b
kernel of the matribA

gradient off : R" — R atx (row vector)
transpose of the gradient (column vector)
Jacobian off : R" — R™atx

transpose of the Jacobian

partial derivative with respect to thevariable
Hessian off : R" — R atx

subdifferential off : R" — R atx

logarithm to base 2

natural logarithm

size ofqe Q

size ofx € Q"

size of a problem instande

nearest integer

smallest integer « resp. largest integet «

without loss of generality
containment
proper containment
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accumulation point, 11 compact set, 12
active, 66, 86 complementary, 76, 87
index set, 86, 88 slackness, 66
affine complete graph, 90
combination, 4 completeness property, 11
hull, 4 cone, 58
map, 7 duality, 61, 83
space, 1 of positive semidefinite matrices, 63
subspace, 3 of feasible directions, 86
transformation, 7 conic hull, 58
conjunctive normal form (CNF), 50
backward substitution, 24 constraint functions, 75
basic constraint qualification, 88
solution, 70,71 continuous, 12
basis, 3 convex
best fit, 36 hull, 58
binary program, 80
constraint, 110 set, 58
search, 41 Cramers rule, 30
tree, 101 critical
variable, 50 equation, 15, 17, 77
Bolzano-Weierstrass point, 17
theorem of, 12 cut

boolean function, 49
boundary, 12

branch and bound, 102
breadth first search, 103

inequality, 100
cutting plane, 93

derivative, 14

Caratléodory’s Theorem, 71 derived inequality, 51
Cauchy-Schwarz inequality, 8 determinant, 28
chainrule, 18 diagonalization, 31
Cholesky factorization, 33 dimension, 3, 4
clique of a polyhedron, 68
inequality, 99 directional derivative, 16
closed set, 12 distance, 34
closure of a set, 12 dual, 75
CNF, 50 cone, 61, 83
column space, 3, 28 duality gap, 78
compact convex problem, 81 dualize, 76
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eigenvalue, 40
eigenvector, 40
elementary

row operation, 6

operation, 1
enumeration, 101
equilibrium strategies, 79
Euclid’s algorithm, 43
Euclidean

distance, 11

norm, 10
extremum principle, 15, 17

face, 66
lattice, 70
facet, 68
generating, 69
Farkas lemma, 51
feasible
curve, 88
direction, 86, 88
solution, 85
Fourier-Motzkin, 49
Frobenius norm, 10

Gale’s Theorem, 27
Gauss-Jordan, 28
Gauss-Markov, 37
Gaussian elimination, 23, 25
generalized inverse, 38
global maximizer, 85
Gomory sequence, 94
Gordan, 52

gradient, 16

Gram matrix, 8
Gram-Schmidt, 38

greatest common divisor, 42

Hadamard'’s inequality, 39
halfspace, 57

Hamilton circuit, 90
Hermite normal form, 25
hyperplane, 4, 57

identity matrix, 9

implied inequality, 53

independent, 3
vectors, 3

inequality
Cauchy-Schwarz, 8

infimum, 11

injective map, 6

inner product, 7
integer linear program, 89
integer solution, 42
integral

part, 93
integrality property, 105
interior of a set, 12
inverse

image, 7

of a matrix, 6
irredundant, 68

Jacobian, 17

Karush-Kuhn-Tucker (KKT), 87
kernel

ofamap, 5

of a matrix, 6
KKT

condition, 87

point, 87
Kuhn-Tucker point

see KKT point, 87

Lagrangian

dual, 76, 80, 82

function, 78

multipliers, 76

relaxation, 75, 76, 103, 104
lattice, 44, 69

basis, 44
least square problem, 34, 36
line segment, 58
linear

combination, 2

map, 4

variety, 3
linear model, 36
linearize, 88
local maximizer, 85
local minimizer, 17
local search, 102
locally optimal solutions, 85
lower triangular, 25
LP-relaxation, 97, 104
LU-factorization, 27

matching
polytope, 97
matrix
Hessian, 20
positive definite, 8



product, 5
maximizer, 85
maximum weighted clique problem, 91
mean value theorem, 15
min-max problem, 77
minimizer, 85
Minkowski sum, 59

nabla, 16
necessary optimality condition, 87
negative semidefinite, 111
node coloring problem, 89
nonlinear

problem, 75

program, 85
norm, 9

objective function, 75
open
ball, 12
set, 12
optimality condition, 15, 17
necessary, 86
orthogonal
complement, 35
matrix, 9
projection, 34
vectors, 9
orthonormal system, 9

parallelogram equality, 10
partial derivative, 16
partial pivoting, 25
partial relaxation, 78
penalized, 77
penalty, 82
perfect matching, 97
permutation, 28
matrix, 26
perpendicular, 10
piecewise linear, 105
pivot, 24
polar, 64
polar cone, 61
relative to L, 63
polyhedral cone, 57
polyhedron, 57
polytope, 59
positive definite, 8, 9
positive semidefinite, 30, 32
primal
feasible, 76

INDEX

primal-dual

Lagrangian problems, 79
probability distribution, 52

product rule, 19
projection, 34

quadratic boolean problem, 98, 111

quotient rule, 19

rank, 28
rational
polyhedron, 73
recession cone, 66
redundant, 55
relax, 76
relaxation
Lagrangian, 75, 103
LP, 97, 104
partial, 78
semidefinite, 111
resolution, 50
rounding, 94
row echelon form, 25
row space, 3, 27

saddle point, 79

satisfiability problem, 49

satisfiable, 49
scalar, 1
search
breadth first, 103
depth first, 103
local, 102
semidefinite
program, 85, 112
relaxation, 111

separating hyperplane, 60
sign of a permutation, 29
spectral decomposition, 40

standard
basis, 3
cone, 60
inner product, 7
simplex, 60

steady state distribution, 53

stochastic matrix, 52
strong duality, 78
subgradient
method, 82, 106
subspace, 2

subtour elimination constraints, 91
supporting hyperplane, 66
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supremum, 11
surjective map, 5, 6
symmetric matrix, 8, 30

Taylor formula, 15, 20

tight, 66, 86

trace, 8

transpose, 2

traveling salesman problem, 90
trivial face, 66

unit spere, 13
unit vector, 3
upper triangular, 25

valid, 60

vector space, 1

vertex solution, 70

vertex-arc incidence vector
of a clique, 107

vertex-edge incidence vector
of a clique, 92

volume, 29



