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Introduction

The goal ofMathematical Programmingis the design of mathematical solution
methods for optimization problems. These methods should bealgorithmic in the
sense that they can be converted into computer programs without much effort.
The main concern, however, is not the eventual concrete implementation of an al-
gorithm but the necessary prerequisit thereof: the exhibition of a solution strategy
that hopefully makes the ensuing algorithm ”efficient” in practice. Mathematical
programming thus offers an approach to the theory of mathematical optimization
that is very much motivated by the question whether certain parameters (solu-
tions of an optimization problem or eigenvalues of a matrix) not only exist in an
abstract way but can actually be computed well enough to satisfy practical needs.

Mathematical optimization traditionally decomposes into three seemingly rather
disjoint areas:Discrete(or combinatorial) optimization, linear optimizationand
nonlinear optimization. Yet, a closer look reveals a different picture. Efficiently
solvable discrete optimization problems are typically those that can be cast into
the framework of linear optimization. And, as a rule of thumb, nonlinear problems
are solved by repeated linear (or quadratic) approximation.

The dominant role of linearity in optimization is not surprising. It has long been
known that much of the structural analysis of mathematical optimization can be
achieved taking advantage of the language of vector spaces (see, for example, Lu-
enberger’s elegant classic treatment [55]). Moreover, it appears to be an empirical
fact that not only computations in linear algebra can be carried out numerically
efficiently in practice but that, indeed, efficient numerical computation is tant-
amount to being able to reduce the computational task as much as possible to
linear algebra.

The present book wants to introduce the reader to the fundamental algorithmic
techniques in mathematical programming with a strong emphasis on the central
position of linear algebra both in the structural analysis and the computational
procedures. Although an optimization problem often admits a geometric picture
involving sets of points in Euclidean space, which may guide the intuition in the
structural analysis, we stress the role of thepresentationof a problem in terms of
explicit functions that encode the set of admissible solutions and the quantity to
be optimized. The presentation is crucial for the design of a solution method and
its efficiency.
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iv INTRODUCTION

The book attempts to be as much self-contained as possible. Only basic knowl-
edge about (real) vector spaces and differentiable functions is assumed at the out-
set. Chapter 1 reviews this material, providing proofs of facts that might be not
(yet) so familiar to the reader. We really begin in Chapter 2, which introduces the
fundamental techniques of numerical linear algebra we will rely on later. Chap-
ter 3 provides the corresponding geometric point of view. Then linear programs
are treated.

Having linear programming techniques at our disposal, we investigate discrete
optimization problems and discuss theories for analyzing their ”complexity” with
respect to their solvability by ”efficient” algorithms. Nonlinear programs proper
are presented in the last three chapters. Convex minimization problems occupy
here a position between linear and nonlinear structures: while the feasible sets of
linear programs arefinite intersections of half-spaces, convex problems may be
formulated with respect toinfinite intersections of half-spaces. Convex optimiza-
tion problems mark the border of efficient solvability. For example, quadratic
optimization problems turn out to be “efficiently” solvable if and only if they are
convex.

The book contains many items marked ”Ex”. These items are intended to provide
both ”examples” and ”exercises” to which also details of proofs or additional ob-
servations are deferred. They are meant to be an integral part of the presentation
of the material. We cordially invite the interested reader to test his or her under-
standing of the text by working them out in detail .



CHAPTER 1

Real Vector Spaces

This chapter is a brief review of the basic notions and facts from linear algebra
and analysis that we will use as tools in mathematical programming. The reader
is assumed to be already familiar with most of the material in this chapter. The
proofs we sketch here (as well as the exercises) are mainly meant as reminders.

1.1. Linear and Affine Spaces

We discuss mathematical programming problems to a very large extent within
the model of vector spacesV (or W etc:) over the fieldR of real numbers. The
fundamental operations that define the structure of a vector space are: adding
two vectors and multiplying a vector with ascalar (here: a real number� ∈ R).
So we can carry out algebraic manipulations taking advantage of the following
properties:

• If v;w are elements of the vector spaceV, then the sumz= v+w is an
element ofV.
• If v ∈ V is a vector inV and� ∈ R a scalar, thenz= �v is a vector inV.
• The order in which vectors are added is irrelevant:v+w = w+ v.

These properties reflect theelementary operationsto whichall(!) computations in
linear algebra reduce. We note that the vector0= 0 ·v ∈ V is uniquely determined
(and independent of the particular choice ofv ∈ V).

There are two especially important examples of vector spaces in mathematical
programming:

(1) V = Rn, the vector space of alln-tuplesx = .x1; : : : ; xn/
T of real num-

bersx j ∈R. Addition and scalar multiplication of vectors inRn is carried
out componentwise.

(2) V = Rm×n, the vector space of all.m× n/-matricesA = .ai j / of real
numbersai j , where i = 1; : : : ;m; j = 1; : : : ;n. Addition and scalar
multiplication is again componentwise.

REMARK. Having the full fieldR of real numbers available as field of scalars is impor-
tant mainly when we deal withlimits (as they are implicit in the notions ofcontinuousor
differentiablefunctions), or when we want to take square roots. In most other cases, it
would suffice to restrict the scalars to the subfieldQ⊂ R of rational numbers. Indeed, the
numerical parameters one usually encounters and deals with in the computational practice
are rational numbers. For convenience, we will usually assumeR as the underlying field

1



2 1. REAL VECTOR SPACES

of scalars.
While theoretical aspects of vector spaces are often fruitfully studied admitting scalars
from the fieldC of complex numbers, this generality is less ”natural” in mathematical
programming, where pairs of scalars often must be compared with respect to the order-
ing x < y of the real numbers (which cannot be extended to the complex numbers in an
algebraically ”reasonable” fashion).

We think of a vectorx ∈ Rn usually as acolumn vector, i:e:, as a.n× 1/-matrix:

x =

 x1
...
xn

 ;

which we often abbreviate asx = .x j /. The transposeof x is the corresponding
row vectorxT

= .x1; : : : ; xn/ .

A matrix A ∈ Rm×n can be thought of as either an ordered set ofn column vec-
tors A : j = .a1 j; : : : ;amj/

T
∈ Rm or as an ordered set ofm row vectorsA i: =

.ai1; : : : ;ain/ of length n. Alternatively, a matrixA ∈ Rm×n can be viewed as
a vector withm · n componentsai j , i.e., as an element inRm·n.

Of particular importance is theidentitymatrix I = .ei j / ∈ Rn×n, defined by

ei j =

{
1 if i = j;

0 if i 6= j:

Then column vectorse1; : : : ;en of I are the so-calledunit vectorsof Rn.

A linear subspaceof the vector spaceV is a (non-empty) subsetW⊆ V that is a
vector space in its own right (relative to the addition and scalar multiplication in
V). We then say thatW is closedwith respect to the operations of adding vectors
and multiplying them by scalars.

Because the intersection of linear subspaces is again a linear subspace, we ob-
serve: For every subsetS of the vector spaceV, there exists a unique smallest
linear subspace spanS, called thespan(or linear hull) of S, that containsS.

The vectorz ∈ V is a linear combination of the vectorsv1; : : : ;vk, if there are
scalars�1; : : : ; �k ∈ R such thatz = �1v1+ : : : + �kvk. Note that every linear
combination results from a finite sequence of elementary operations:

z1 = �1v1; z2 = z1+ �2v2; : : : ; zk = zk−1+ �kvk :

EX . 1.1. Show:spanS consists of all (finite) linear combinations of vectors in S.

If v1; : : : ;vn are the column vectors of the matrixA ∈Rm×n, andx= .x1; : : : ; xn/
T

is a vector of coefficientsx j , we describe the resulting linear combination in ma-
trix notation:

Ax = x1v1+ : : :+ xnvn ∈ Rm :
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In this case, span{v1; : : : ;vn} = {Ax ∈Rm
| x ∈Rn

} = col A is called thecolumn
spaceof A. Similarly, the linear hull of the row vectors ofA is the row space
row A. Interchanging the rows and columns ofA (i.e, passing fromA = .ai j / to
its transposeAT

= .ai j /, whereai j = a ji ), we have

row A = col AT :

A non-empty subsetS⊆ V of vectors is called (linearly)independentif no vector
s∈ Scan be expressed as a linear combination of vectors inS\ {s}.

EX . 1.2. Show:{v1; : : : ;vk} is independent if and only if�1v1+ : : :+ �kvk = 0 implies
�i = 0 for all i = 1; : : : ; k.

A minimal subsetB⊆ V such thatV = span B is abasisof V. Note that a non-
empty basis is necessarily an independent set. Thedimensionof V is the number
of elements in a basisB:

dim V = |B| :

From linear algebra, we know that any two finite bases of a vector space have the
same cardinality. This fact implies that ”dimV” is well-defined and equals the
maximal size of an independent subset ofV. (There are many interesting infinite-
dimensional vector spaces. For the applications in mathematical programming,
however, we will always be concerned with finite-dimensional vector spaces).

A finite-dimensional vector spaceV with basisB= {v1; : : : ;vn} can be identified
with Rn in the following way. BecauseB is linearly independent, each vector
v ∈ V has a unique representation

v = x1v1+ : : :+ xnvn ; wherex = .x1; : : : ; xn/
T
∈ Rn :

So we can represent the elementv ∈ V by the vectorx ∈ Rn of its coordinates
with respect toB. It is not difficult to verify that this representation is compatible
with the operations of adding vectors and multiplying vectors by scalars� ∈ R.

REMARK. The identification ofV with Rn depends, of course, on the basisB we choose
for the representation. Different bases lead to different representations.

In the caseV = Rn, theunit vectorse1; : : : ;en ∈ Rn form the so-calledstandard
basis. With respect to the latter, a vectorx = .x1; : : : ; xn/

T
∈ Rn has the repre-

sentation

x = x1e1+ : : :+ xnen :

An affine subspace(also called alinear variety) of the vector spaceV is a subset
L ⊆ V such that eitherL = ∅ or there exists a vectorp ∈ V and a linear subspace
W⊆ V with the property

L = p+W= {p+w |w ∈ W} :
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It is easy to verify that the affine subspaceL′ = p′+W′ equalsL = p+W if and
only if p′ ∈ L andW′ = W. We define theaffinedimension ofL as

dim L =

{
dim W if L 6= ∅;

−1 if L = ∅:

An affine subspace of dimension 0 is called apoint (and is identified with the
element it contains). Aline is an affine subspace of dimension 1. Aplane is
an affine subspace of dimension 2. An affine subspaceH of V of dimension
dim H = dim V− 1 is called ahyperplaneof V.

EX . 1.3. Show:

(a) The linear subspaces are exactly the affine subspaces L with0 ∈ L.
(b) The intersection of affine subspaces is an affine subspace.

A linear combinationz= �1v1+ : : :+ �kvk is said to be anaffine combinationof
v1; : : : ;vk if the scalars�i ∈ R satisfy the condition

∑k
i=1�i = 1.

EX . 1.4. Show that the subset L⊆ V is an affine subspace if and only if L contains all
(finite) affine combinations of elements of L.

For an arbitrary subsetS⊆ V, we denote by affSthe set of all finite affine combi-
nations of elements inSand call it theaffine hull(or affine span) of S. By Ex. 1.4,
aff S is the smallest affine subspace that containsS.

1.2. Maps and Matrices

Assume thatV andW are vector spaces with bases{v1; : : : ;vn} and{w1; : : : ;wm}

respectively. Everyv ∈ V can be uniquely expressed as a linear combination
v = x1v1 + : : : + xnvn, with coefficientsx j ∈ R, and everyw ∈ W as a linear
combinationw = y1w1+ : : :+ ymwm, with coefficientsyi ∈ R.

The mapf : V→W is said to belinear if f is “compatible” with the vector space
operations. This means that we have for allu;v ∈ V and� ∈ R:

f .u/+ f .v/ = f .u/+ f .v/

f .�u/ = � f .u/:

It follows that the linear mapf is completely determined by the images of the
basis vectorsv j and hence by the coefficientsai j that describe these images in
terms of the basis vectorswi :

f .v j / = a1 jw1+ a2 jw2+ : : :+ amjwm :

So the mapf is ”encoded” by the.m× n/-matrix A = .ai j /: If x is the vector of
coefficients of the vectorv ∈ V, theny = Ax is the vector of coefficients of the
image f .v/ ∈ W. In that sense, a linear map corresponds to a matrix (that also
depends on our choice of bases forV and W!) Conversely, we can construct a
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linear mapf from a given (m× n)-matrixA as follows. For every basis vectorv j ,
we define

f .v j / = a1 jw1+ a2 jw2+ : : :+ amjwm :

Because an arbitrary vectorv ∈ V can be uniquely expressed as a linear combina-
tion v = x1v1+ : : :+ xnvn, we obtain the well-defined extension

f .v/ = x1 f .v1/+ : : :+ xn f .vn/ :

The composition of two (or more) linear maps corresponds to the product of their
associated matrices. Iff : V→ W andg : W→ Z are linear maps represented
by A ∈ Rm×n resp.B ∈ Rk×m (with respect to fixed bases inV;W andZ), then also

g◦ f : V→ Z ; where g◦ f .u/ = g. f .u// ;

is a linear map. The matrixC = .ci j / ∈ Rk×n describingg ◦ f is the product
C = BA, i.e., the elementsci j are the inner products (cf. Section 1.3.1) of the
rows ofB with the columns ofA:

ci j = Bi· A· j =
m∑

l=1

bil al j :

REMARK. The product matrixC = BA admits two ”dual” points of view:

C· j = BA· j =
m∑

l=1

al j B·l and Ci· = Bi·A =
m∑

l=1

bil A l · :

That is: The jth columnC· j is the linear combination of the columns ofB according to
the coefficients of thejth column ofA. Dually, theith row Ci· is the linear combination
of the rows ofA according to the coefficients of theith row ofB. Hence

row BA ⊆ row A and colBA ⊆ col B :

The Kernel. If f : V → W is a linear map andL ⊆ V is a linear space, then
f .L/ ⊆ W is a linear subspace ofW. Similarly, if L ⊆ W is a linear space ofW,
then f −1.L/= {v ∈ V | f .v/ ∈ L} is a subspace ofV. In particular, thekerneland
the imageof f , defined by

ker f = {v ∈ V | f .v/ = 0} ⊆ V ;

im f = f .V/ ⊆ W

are subspaces ofV resp.W. Their dimensions are relatedvia

dim ker f + dim im f = dim V :

(To see this, take a basis of kerf , extend it to a basis ofV and verify that the
extension is mapped to a basis of imf .) Note that we may usually (or ”without
loss of generality” – henceforth abbreviated: ”w:l :o:g:”) assume imf = W, i.e.,
f is surjective(otherwise we simply replaceW by W′ = im f in our reasoning).
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EX . 1.5. Use the dimension formula to show that a linear map f: Rn
→ Rn is surjective

(i.e., f .Rn/ = Rn) if and only if it is injective(i.e., f .v1/ = f .v2/ impliesv1 = v2).

If f : Rn
→ Rm is represented byA ∈ Rm×n with respect to the standard bases in

Rn andRn, then

f .ej / = a1 je1+ : : :+ amjem= A· j :

Hence the vectorx = x1e1+ : : :+ xnen ∈ Rn is mapped to

f .x/ = x1 f .e1/+ : : :+ xn f .en/ = x1A·1+ : : :+ xnA·n = Ax

and we have imf = col A. The kernel of f .x/ = Ax is also referred to as the
kernelof A, i.e.,

kerA = {x ∈ Rn
| Ax = 0} :

Now suppose thatf .x/= Ax is surjective,i.e., col A = Rm. ThenA must contain
m columns, sayA·1; : : : ;A·m that form a basis ofRm. Let g : Rm

→ Rm be the
(unique) linear map with the propertyg.A· j / = ej; j = 1; : : : ;m. (Note that the
first ej denotes here thejth unit vector inRn, while the secondej is the jth unit
vector inRm.) Sog◦ f .ej / = ej holds for j = 1; : : : ;m. Therefore, if the matrix
B ∈ Rm×m representsg, i.e., if g.y/ = By, we have

.BA/ej = ej for j = 1; : : :m

and conclude thatBA ∈ Rm×n must be of the formBA = [I | N] , whereI ∈ Rm×m

is the identity matrix andN ∈ Rm×.n−m/.

EX . 1.6. Verify that BA = [I | N] is the matrix that represents f with respect to the
standard basis inRn and the basis{A·1; : : : ;A·m} in Rm.

In the special casem= n, the compositiong◦ f = id yields the identity map and
BA = I ∈ Rn×n. The matrixB ∈ Rn×n is then the so-calledinverseof A ∈ Rn×n,
denoted byA−1. SoA−1A = I . Moreover, f ◦ g.A· j / = f .ej / = A· j implies that
also f ◦ g= id and, therefore,AA−1

= I holds.

In the general casem≤ n, we observe thatg : Rm
→ Rm (defined byg.A· j /= ej)

has an inverseg−1 (defined byg−1.ej / = A· j). In particular,B−1
∈ Rm×m exists

and we have

Ax = 0 ⇒ BAx = 0 and .BA/x = 0 ⇒ Ax = B−1.BA/x = 0 ;

i.e., kerBA = kerA.

REMARK (ELEMENTARY ROW OPERATIONS). By anelementary row operationon the
matrixA ∈ Rm×n we understand one of the operations:

• Addition of one row to another row;
• Multiplication of one row by a non-zero scalar;
• Interchange of two rows;
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while keeping the other rows fixed. So elementary row operations consist of elementary
operations on the row vectors ofA. Hence an elementary row operation can be described
by multiplying A from the left with an matrixB ∈ Rm×m (see Ex. 1.7). Because an ele-
mentary row operation can be reversed by a similar operation,B is invertible. Moreover,

row A = row B−1.BA/ ⊆ row BA ⊆ row A

shows rowBA = row A. In other words: the row space ofA is invariant under elementary
row operations.

EX . 1.7. Design the matrixB ∈ R5×5 with the property thatBA arises fromA by sub-
tracting17 times the first row ofA from the fourth row.

Affine Maps. Restricting ourselves directly toV = Rn and W = Rm and their
standard bases, we define anaffine map f: Rn

→ Rm as a map of the form

f .x/ = Ax − b with A ∈ Rm×n; b ∈ Rm :

Clearly, the image imf of an affine map is an affine subspace ofRm and, con-
versely, theinverse image f−1.L/ = {x ∈ Rn

| f .x/ ∈ L} of an affine subspace
L ⊆ Rm is an affine subspace ofRn. In particular

f −1.{0}/ = {x ∈ Rn
| f .x/ = 0}

is an affine subspace ofRn. In case f −1.{0}/ is non-empty, we may chose an
arbitrary elementp ∈ f −1.{0}/ and obtain the representation

f −1.{0}/ = p+ kerA .= {p+ x | x ∈ kerA}/ :

If n= m and f .x/ = Ax − b is invertible (i.e., A−1 exists), f is called anaffine
transformation.

1.3. Inner Products and Norms

1.3.1. Inner Products. An inner productonRn is a map〈·|·〉 : Rn
×Rn

→ R
such that for all vectorsx;y;z ∈ Rn and scalars� ∈ R,

〈x|y〉 = 〈y|x〉(1.1)

〈�x|y〉 = �〈x|y〉(1.2)

〈x+ y|z〉 = 〈x|z〉 + 〈y|z〉(1.3)

〈x|x〉 > 0 if x 6= 0.(1.4)

By (1.1)-(1.3), an inner product is asymmetric bilinear formand, by (1.4),pos-
itive definite. We will usually be concerned with the so-calledstandard inner
product for x = .x1; : : : ; xn/

T andy = .y1; : : : ; yn/
T, which is a special case of

the matrix product:

〈x|y〉 = xTy =
n∑

j=1

x j y j :

EX . 1.8. Show that〈x|y〉 = xTy defines an inner product onRn.
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It is also useful to consider the standard inner product in the vector spaceRm×n

of .m× n/-matrices. If we think of two matricesA = .ai j / andB = .bi j / in Rm×n

as two vectors of lengthmn in Rmn, their inner product should be the sum of the
componentwise products. We will denote this inner product by

A ◦B =
m∑

i=1

n∑
j=1

ai j bi j :

REMARK. Defining thetraceof a matrixC = .ci j / ∈ Rn×n as the sum of all diagonal
elements,

tr C =
∑

i

cii ;

one obtainsA ◦B = tr .ATB/ (see Ex. 1.9).

EX . 1.9. Show:A ◦B = tr .ATB/, A ◦B = B ◦A, A ◦B = I ◦ .ATB/. Give an example
of matricesA;B ∈ Rn×n such thatAB 6= BA .

From the fundamental properties of the inner product, we can derive the inequality
of Cauchy-Schwarz:

L EMMA 1.1 (Cauchy-Schwarz). Let 〈·|·〉 be an inner product onRn. Then all
vectorsx;y ∈ Rn

\ {0} satisfy the inequality

〈x|y〉2 ≤ 〈x|x〉〈y|y〉 :

Equality holds if and only ifx is a scalar multiple ofy.

Proof.We may assume〈x|x〉 = 〈y|y〉 = 1 w.l.o.g.(otherwise we could scale, say,
x with a nonzero scalar� so that〈�x|�x〉 = 1, which would just multiply both
sides of the inequality with�2.) We then find

0 ≤ 〈x− y|x− y〉 = 〈x|x〉 − 2〈x|y〉 + 〈y|y〉 = 2− 2〈x|y〉

0 ≤ 〈x+ y|x+ y〉 = 〈x|x〉 + 2〈x|y〉 + 〈y|y〉 = 2+ 2〈x|y〉 :

So |〈x|y〉| ≤ 1 = 〈x|x〉〈y|y〉 . By property (1.4) of the inner product, equality can
only hold if x− y = 0 or x+ y = 0, i.e., if x = y or x = −y. The claim follows.

�

Inner Products and Positive Definite Matrices. Let 〈·|·〉 : Rn
×Rn

→ R be an
inner product onRn, and fix a basisB= {v1; : : : ;vn} of Rn. Relative toB, we can
describe the inner product via theGram matrixof inner products

G = G.v1; : : : ;vn/ = .gi j / = .〈vi |v j〉/ :

The symmetry of the inner product means thatG is a symmetricmatrix, i:e:,
G = GT (or equivalently,gi j = g ji for all i; j). If x = .x1; : : : ; xn/

T and y =
.y1; : : : ; yn/

T are then-tuples of scalars of the linear combinationsu = x1v1+
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: : : + xnvn andw = y1v1+ : : : + ynvn, then the bilinearity of the inner product
yields

〈u|w〉 = xTGy =
n∑

i=1

n∑
j=1

gi j xi y j :(1.5)

Moreover, ifx 6= 0, thenu 6= 0 andxTGx = 〈u|u〉 > 0 .

Conversely, let us call the symmetric matrixQ = .qi j / ∈ Rn×n positive definiteif
xTQx > 0 holds for allx 6= 0. ThenQ gives rise to an inner product〈x|y〉 =
xTQy (with Q as its Gram matrix with respect to the standard basis inRn).

REMARK. Our discussion exhibits inner products of finite-dimensional vector spaces
and positive definite matrices as manifestations of the same mathematical phenomenon:
The positive definite matrices are exactly the Gram matrices of inner products. In partic-
ular, the standard inner product onRn has the.n× n/-identity matrixI as its Gram matrix
relative to the standard basis{e1; : : : ;en}.

Inner Products and Orthogonal Matrices. Given an inner product〈·|·〉 : Rn
×

Rn
→ R, we say that the vectorsx;y ∈ Rn areorthogonalif 〈x|y〉 = 0. (See also

Ex. 1.13.) A system of vectors{v1; : : : ;vk} in Rn is calledorthonormalprovided

〈vi |v j〉 =

{
1 if i = j;

0 if i 6= j:

Consider nowRn with respect to the standard inner product〈x|y〉 = xTy. The
matrixA ∈Rn×n is calledorthogonalif ATA = I (i.e., if A−1

=AT). This property
means that the column vectorsA·1; : : : ;A·n of A satisfy

AT
·i A· j = .Aei /

TAe j = eT
i ej =

{
1 if i = j;

0 if i 6= j ;

i.e., the columnsA·1; : : : ;A·n (and then also the rows ofA) form an orthonormal
basis ofRn.

EX . 1.10. Show thatA ∈ Rn×n is orthogonal if and only ifxTy = .Ax/T.Ay/ holds for
all x;y ∈ Rn. Prove that the vectors of an orthonormal system are linearly independent.

1.3.2. Norms. We can speak reasonably about the ”length” of a vector inRn

only relative to a givennormonRn, that is, a map‖ · ‖ : Rn
→ R such that for all

vectorsx;y ∈ Rn and scalars� ∈ R,

‖x‖ > 0 for x 6= 0;(1.6)

‖�x‖ = |�| · ‖x‖;(1.7)

‖x+ y‖ ≤ ‖x‖ + ‖y‖:(1.8)

Inequality (1.8) is thetriangle inequality.
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Every inner product〈·|·〉 onRn gives rise to a norm (see Ex. 1.11)via

‖x‖ =
√
〈x|x〉 :

The norm arising from the standard inner product onRn is theEuclidean norm

‖x‖ =
√

xTx =
√

x2
1+ : : :+ x2

n :

REMARK. Rn admits also norms that do not arise from inner products (see Ex. 1.14). In
case of ambiguity, the Euclidean norm is denoted by‖x‖2.

EX . 1.11. Let 〈·|·〉 be an inner product onRn.

(a) Use the inequality of Cauchy-Schwarz to show that‖x‖ =
√
〈x|x〉 defines a

norm.
(b) Show that the norm defined in(a)satisfies the so-calledparallelogram equality:
‖x+ y‖2+ ‖x− y‖2 = 2‖x‖2+ 2‖y‖2 for all x;y ∈ Rn.

(c) Let‖ · ‖ be a norm that satisfies the parallelogram equality. Show that

〈x|y〉 =
1
4
.‖x+ y‖2− ‖x− y‖2/ defines an inner product.

Hint for (c): Verify the claim first for vectors with components inZ andQ. Deduce then
the statement forR from the continuity of the norm (cf. Section 1.4.2 below).

Extending the Euclidean norm of vectors to matricesA = .ai j / ∈ Rm×n, we obtain
theFrobenius norm:

‖A‖F =
√

A ◦A = ‖.ai j /‖2 :(1.9)

EX . 1.12. Show for everyA ∈ Rm×n andx ∈ Rn: ‖Ax‖2 ≤ ‖A‖F‖x‖2.

EX . 1.13(”Theorem of Pythagoras”). Let〈·|·〉 be an inner product onRn with associated
norm‖x‖ =

√
〈x|x〉. Say that the vectora is perpendicularto the vectorb if the distance

‖a− b‖ from a to b is the same as the distance‖a− .−b/‖ from a to .−b/. Show:

(1.10) ‖a− b‖ = ‖a− .−b/‖ ⇔ 〈a|b〉 = 0 ⇔ ‖a‖2+ ‖b‖2 = ‖a− b‖2 :

EX . 1.14. Define for the vectorx = .x1; : : : ; xn/
T
∈ Rn,

‖x‖1 = |x1| + : : :+ |xn| (“sum norm”)
‖x‖∞ = max

1≤i≤n
|xi | (“maximum norm”):

Show that both‖:‖1 and‖:‖∞ are norms but donotarise from inner products.
(Hint: use Ex. 1.11(b))



1.4. CONTINUOUS AND DIFFERENTIABLE FUNCTIONS 11

1.4. Continuous and Differentiable Functions

1.4.1. Topology ofRn. A norm on the vector spaceRn allows us to measure
the distance between vectors and, therefore, to specify ”neighborhoods”etc. We
will investigate these concepts with respect to the Euclidean norm and denote
it simply ‖ · ‖ = ‖ · ‖2 (unless explicitly specified otherwise). For two vectors
x;y ∈ Rn we define their(Euclidean) distanceas‖x− y‖. In the casen= 1, of
course, we also use the familiar notation of the absolute value|x− y|. (For a
general in-depth treatment of the analysis inRn and further details we refer,e.g.
to Rudin [69]).

The set of real numbersR has (by definition) the following so-calledcompleteness
property: A non-decreasing infinite sequence of real numbersr1 ≤ r2 ≤ : : : has a
(unique) limit

r = lim
k→∞

rk ∈ R

if and only if the exists abound M∈ R such thatrk ≤ M holds for all k. As
a consequence of this property (cf. Ex.1.15), every subsetS⊆ R has a unique
infimum, which is defined as the largest lower bound for alls ∈ S and denoted
by inf S. (If S is not bounded from below, then infS= −∞ and if S= ∅, then
inf S= +∞.) ThesupremumsupS is defined similarly.

EX . 1.15. Let S⊆ R be non-empty and s1 ∈ R be such that s1 ≤ s for all s∈ S. Define a
sequence s1 ≤ s2 ≤ : : : of lower bounds for S as follows. Given sk, we set

sk+1 =

{
sk+ 1=k if sk+ 1=k ≤ s for all s∈ S;

sk otherwise:

Show: s= limk→∞ sk = inf S . (Hint: Use
∑
∞

k=1 1=k=∞ .)

More generally, we say that a sequences1;s2; : : : of pointssk ∈ Rn convergesif
the exists somes∈ Rn such that

lim
k→∞
‖s− sk‖ = 0 ;

which is denoted bys= limk→∞ sk or justsk→ s. A subsetS⊂ Rn is boundedif
there exists someM ∈ R such that‖s‖ ≤ M holds for alls∈ S. The completeness
property ofR then implies the following (cf. Ex. 1.16):

• S⊂ Rn is bounded if and only if every infinite sequences1;s2; : : : of
pointssk ∈ Sadmits a convergent subsequencesk1;sk2; : : : .

We refer to the limits= lim i→∞ ski of a convergent subsequence.ski / as anaccu-
mulation pointof S (or the sequence.sk/).

EX . 1.16. Show: S⊂Rn is bounded if and only if every infinite sequence.sk/ in S admits
a convergent subsequence.ski /.
(Hint: Assume that S is contained in an n-dimensional cubeQ0 = [−M; M]n. Subdivide
Q0 into 2n smaller cubes. One of these, say Q1, contains infinitely manysk. Letsk1 be the
first sk that is contained in Q1 and proceed by subdividing Q1.)
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An open ball(of radiusr > 0 and centered atx0 ∈ Rn) is a subset of the form

Ur .x0/ = {x ∈ Rn
| ‖x− x0‖ < r} :

A setU ⊆ Rn is openif U contains with anyx0 also some open ballUr .x0/. (In
other words: An open set is precisely the union of all the open balls it contains.)
A subsetC⊆ Rn is closedif Rn

\C is open.

(Arbitrary) unions of open sets are open and, correspondingly, intersections of
closed sets are closed. In particular, everyS⊆ Rn has a unique smallest closed
set containingS, namely the intersection clSof all closed sets containingS. cl S
is the so-calledclosureof S. Similarly, everyS⊆ Rn admits a unique maximal
open set intScontained inS, namely the union of all open balls contained inS,
the interior of S.

Theboundaryof S⊆Rn is defined as@S= cl S\int S. Equivalently (cf. Ex. 1.17),
@Sconsists of all pointsx ∈ Rn that are accumulation points of bothSandRn

\S.

EX . 1.17. Show: Ifx ∈ cl S\int S then every U1=k.x/ .k = 1;2; : : :/ intersects both S
andRn

\S. Letsk ∈ U1=k.x/∩ S ands′k ∈ U1=k.x/\S and observesk→ x ands′k→ x.

EX . 1.18. Show:
(i) Open intervals.a;b/ are open subsets ofR .
(ii) An open line segment.a;b/ = {.1− �/a+ �b | � ∈ .0;1/} (a;b ∈ Rn) is notopen in
Rn, n≥ 2.

REMARK (RELATIVE TOPOLOGY). The topological concepts ofRn carry over to sub-
sets ofRn. For our purposes, it suffices to consider affine subspacesL⊆Rn. If dim L= k,
it is occasionally more ”natural” to think ofL as an ”isomorphic” copy ofRk and define
the relevant notions accordingly (”relative toL”).
A relatively open ballis a set of the formUr .x0/∩ L, x0 ∈ L, and therelative interiorof
a subsetS⊂ L is the union of all the relatively open ballsScontains.

A subsetS⊂ Rn is compact, if it is bounded and closed. SoS is compact if and
only if every infinite sequence.sk/ in S has an accumulation points∈ S. (The
existence ofs is equivalent to the boundedness ofS ands ∈ S is equivalent to
the closedness ofS.) This observation is sometimes referred to as theTheorem of
Bolzano-Weierstrass.

EX . 1.19. Let S⊂ R be compact. Show that inf S and sup S belong to S.

1.4.2. Continuous Functions.Let Sbe a given subset ofRn. Then the func-
tion f : S→ Rm is said to becontinuousat the pointx0 ∈ S if for every " > 0
there exists some� > 0 so that

‖ f .x0/− f .x/‖2 < " holds wheneverx ∈ Sand‖x0− x‖2 < �;

or, equivalently,f .U�.x0/∩ S/ ⊆ U". f .x0//. We denote this property by

f .x0/ = lim
x→x0

f .x/
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We say thatf is continuous on Sif f is continuous at everyx0 ∈ S.

It is easily verified that sums and products of real-valued continuous functions
are again continuous. Furthermore, compositions of continuous functions are
continuous.

L EMMA 1.2. Let ‖ · ‖ : Rn
→ R be an arbitrary norm onRn. Then f.x/ = ‖x‖

is a continuous function.

Proof.We first considerx0 = 0 and letM = n ·maxj ‖ej‖ (whereej is the jth unit
vector). Then

‖x‖ = ‖
∑

j

x jej‖ ≤

∑
i

|x j| · ‖ej‖ ≤ n.max
j
‖ej‖/.max

j
|x j|/ ≤ M‖x‖2 :

So‖x‖2→ 0 implies f .x/→ 0= f .0/, i.e., f is continuous atx0 = 0. The con-
tinuity of f in general now follows from the observation thatx→ x0 is equivalent
with .x− x0/→ 0.

�

If C ⊆ Rn is compact andf : C→ Rm is continuous, then the imagef .C/ is
compact inRm. For a proof of this fact, it suffices to show that every infinite
sequencef .z1/; f .z2/; : : : of images has an accumulation pointf .z/ ∈ f .C/.
Now C is compact. So the sequencez1;z2; : : : has a subsequencezk1;zk2; : : : and
a pointz ∈ C such thatzki → z. The continuity of f guaranteesf .zki /→ f .z/,
which establishesf .z/ as an accumulation point inf .C/.

As a consequence, we obtain the following existence result which is used repeat-
edly in the analysis of optimization problems.

THEOREM 1.1. (Weierstrass)Let C⊂ Rn be a nonempty compact set and f:
C→ R be continuous. Then f attains its maximum and minimum value on C,i.e.
there existx0;x1 ∈ C with

f .x0/ ≤ f .x/ ≤ f .x1/ for all x ∈ C:

Proof.If f : C→R is continuous, thenF = f .C/⊂R is compact. Hence infF ∈
R and supF ∈ R exist and belong toF. The Theorem follows.

�

REMARK. Theunit spere S:= {x ∈ Rn
| ‖x‖2 = 1} is a compact set. If‖ · ‖ is any norm

onRn, then in view of Lemma 1.2

� := min{‖x‖ | x ∈ S} > 0 and � = max{‖x‖ | x ∈ S}

exist, showing that‖ · ‖ is equivalentto the Euclidean norm‖ · ‖2 in the sense that

�‖x‖2 ≤ ‖x ‖ ≤ �‖x‖2 for all x ∈ Rn :

As a consequence, the definition of continuity (as well as the notion of differentiability
below) does not depend on the particular norm we use.
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1.4.3. Differentiable Functions. From a computational point of view, linear
and affine functions are the easiest to deal with. Therefore, we are interested
in the question when a not necessarily linear function can be, at least locally,
approximated by a linear function. Again, we focus right directly on the vector
spacesRn andRm, equipped with the standard inner product and the Euclidean
norm. In each case, we choose as reference the standard basis of unit vectors
ej = .: : : ;0;1;0; : : :/T.

Let U be an open subset inRn. The function f : U → Rm is said to bedif-
ferentiableat the pointx0 ∈ U if there exists a matrixA ∈ Rm×n and a function
' : U→ Rm such that limh→0'.h/ = 0 and

f .x0+ h/ = f .x0/+Ah + ‖h‖'.h/ for all x0+ h ∈ U :

A shorter way of expressing these conditions is offered by the notation

f .x0+ h/ = f .x0/+Ah + o.‖h‖/

(Recall thato.‖h‖k/ generally denotes a term of the form‖h‖k�.h/, where�.h/
is a function satisfying lim

h→0
�.h/ = 0.)

The definition says that the differentiable functionf can be approximated nearx0

via the affine function
f̃ .h/ = f .x0/+Ah :

The matrixA is called thederivativeof f atx0 and is generally denoted by∇ f .x0/

(and by f ′.x0/ in casen= 1). We call f differentiable on U if f is differentiable
at everyx0 ∈ U. The derivative∇ f .x0/ turns out to be nothing but theJacobian
matrix associated withf (see p. 17).

EX . 1.20. Show that f: U → Rm is necessarily continuous atx0 ∈ U provided f is
differentiable atx0.

Derivatives of Functions in One Variable.The analysis of functions of several
variables can often be reduced to the one-dimensional case. Therefore, we briefly
review some basic and important facts for functionsf in one real variablex (with
f ′ denoting the derivative).

Let f be defined on the open interval.a;b/ ⊆ R and differentiable at the point
x0 ∈ .a;b/. The following is a key observation for many optimization problems.

L EMMA 1.3. If f ′.x0/ > 0, then there exists some� > 0 such that

f .x0− h/ < f .x0/ < f .x0+ h/ whenever0< h< � :

Proof.Becausef ′.x0/ exists, we can write

f .x0+ h/ = f .x0/+ hf ′.x0/+ |h|'.h/

with limh→0'.h/ = 0. Hence, if f ′.x0/ > 0, there exists some� > 0 such that

|'.h/| < f ′.x0/ whenever|h| ≤ � ;
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which implies the Lemma.
�

An immediate consequence of Lemma 1.3 is theextremum principle: If f :
.a;b/→ R is differentiable atx0 ∈ .a;b/ and if either f .x0/ = maxx∈.a;b/ f .x/
or f .x0/ = minx∈.a;b/ f .x/, then

f ′.x0/ = 0

.

REMARK. The extremum principle exhibits thecritical equation f′.x/= 0 as a neces-
sary (and very useful)optimality conditionfor f .x/: When one searches for a maximizer
or a minimizer of f .x/, one may restrict one’s attention to the so-calledcritical points x0
that satisfy the critical equation.

THEOREM 1.2. (Mean Value Theorem)Let f : [a;b]→ R be continuous on the
closed interval[a;b] and differentiable on the open interval.a;b/. Then there
exists some� ∈ .a;b/ such that

f .b/− f .a/ = .b− a/ f ′.�/ :

Proof. Defineg.x/ = .b− a/ f .x/− [ f .b/− f .a/]x and observeg.a/ = g.b/.
If g is constant on [a;b], then every� ∈ .a;b/ has the claimed property

0= g′.�/ = .b− a/ f ′.�/− f .b/+ f .a/ :

Just like f , alsog is differentiable on.a;b/ and continuous on [a;b]. Hence, if
g is not constant on the compact set [a;b] ⊆ R, there exists some� ∈ .a;b/ such
that

g.�/ = max
x∈.a;b/

g.x/ or g.�/ = min
x∈.a;b/

g.x/ :

In either case, the extremum principle yieldsg′.�/ = 0 and the Theorem follows
as before.

�

EX . 1.21. Show:1+ x≤ ex for x ∈ R.

As an application of the mean Value Theorem we obtain the second orderTaylor
formula.

L EMMA 1.4. Let U = .−t0; t0/ ⊆ R and assume p: U → R is twice differen-
tiable. Then, for any given t∈ U there exists0< � < 1, such that

p.t/ = p.0/+ tp′.0/+
1
2

t2 p′′.�t/ :

Proof.Assumew:l :o:g: that t > 0 and consider, for� ∈ R (to be defined below)
the twice differentiable functiong : [0; t]→ R defined by

g.�/ := p.�/− [ p.0/+ �p′.0/+
1
2
�2�] :
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Theng.0/ = 0; g′.0/ = 0 and� can be chosen so thatg.t/ = 0. We are left to
show that this choice yields� = p′′.�t/ for some 0< � < 1.
Sinceg.0/ = g.t/ = 0, the Mean Value Theorem yields somet1 ∈ .0; t/ with
g′.t1/ = 0. Applying the Mean Value Theorem tog′ with g′.0/ = g′.t1/ = 0, we
find somet2 ∈ .0; t1/ such thatg′′.t2/ = 0. Hence

0= g′′.t2/ = p′′.t2/− �

and the claim follows with�t = t2.
�

Directional Derivatives and the Gradient. A function f : U→ Rm assigns to
each vectorx ∈ U a vector

f .x/ = . f1.x/; : : : ; fm.x//T ∈ Rm :

It follows from the definition thatf is differentiable atx0 if and only if each of
the real-valued component functionsfi : U → R is differentiable atx0. So we
may restrict our attention to the casem= 1.

Consider the differentiable real-valued functionf : U → R at the pointx0 ∈ U
and fix a “direction”d ∈ Rn. Then f induces locally a function

pd.t/ = f .x0+ td/

of the real parametert. Moreover, the representation

f .x0+ td/ = f .x0/+ t∇ f .x0/d+ ‖td‖'.td/

immediately shows that the derivativep′d.0/ exists. In fact, letting̃'.t/= ‖d‖'.td/,
we have

pd.t/ = pd.0/+ t∇ f .x0/d+ |t|'̃.t/

and hencep′d.0/ = ∇ f .x0/d.

Choosing the directiond as a unit vectorej , we recognize what the derivative
matrix ∇ f .x0/ = .a1; : : : ;an/ ∈ R1×n actually is and how it can be computed.
Recall first that thepartial derivative@ f=@x j of f at x0 is defined to be the deriv-
ative p′ej

.0/ of the functionpej .t/ = f .x0+ tej / , which implies

a j = ∇ f .x0/ej =
@ f .x0/

@x j
:

Hence, the derivative off : U→ R is given by

∇ f .x0/ =

[
@ f .x0/

@x1
; : : : ;

@ f .x0/

@xn

]
and is called thegradientof f atx0.

EX . 1.22. Let f : R2
→ R be given by f.x; y/ = x · y. Show∇ f .x; y/ = .y; x/.
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In general, we note forpd.t/ = f .x0+ td/ the formula for thedirectional deriv-
ative of f atx0 with respect tod:

p′d.0/ = ∇ f .x0/d =
n∑

j=1

@ f .x0/

@x j
d j(1.11)

Formula (1.11) allows us to determine the direction with respect to whichf offers
the largest marginal change atx0. With pd.t/ defined as before, we want to solve
the optimization problem

max
d∈Rn
|p′d.0/| subject to‖d‖ = 1:

We assume∇ f .x0/ 6= 0T. Applying the Cauchy-Schwarz inequality to (1.11), we
deduce

|p′d.0/| ≤ ‖∇ f .x0/‖ · ‖d‖ = ‖∇ f .x0/‖

with equality if and only ifdT
= �∇ f .x0/ for some� ∈ R. Hence we find that the

gradient∇ f .x0/ yields the directiond into which f exhibits the largest marginal
change atx0. Depending on the sign of�, we obtain the direction of largest
increase or largest decrease.

Moreover, we have the generalextremum principle: If x0 ∈ U is alocal minimizer
or maximizerof f in the sense that for some" > 0

f .x0/ = max
x∈U".x0/

f .x/ or f .x0/ = min
x∈U".x0/

f .x/ ;

the one-dimensional extremum principle says that 0= p′d.0/ = ∇ f .x0/d must
hold for all directionsd, which implies thatx0 must be acritical point, i.e., satisfy
thecritical equation

(1.12) ∇ f .x0/ = 0T

For generalf : U→ Rm, the same reasoning as in the casem= 1 shows that the
derivative∇ f .x0/ has as rows exactly the gradients of the component functions
fi of f . Hence the derivative∇ f .x0/ of f atx0 is theJacobianmatrix

∇ f .x0/ =

(
@ fi .x0/

@x j

)
∈ Rm×n :

EX . 1.23. Show that an affine function f.x/ = Ax + b has the derivative∇ f .x/ = A at
everyx. In particular, a linear function g.x/ = cTx has gradient∇g.x/ = cT.
Let Q be a symmetric matrix and consider thequadratic functionq.x/ = xT Qx. Show
that∇q.x/ = 2xTQ holds for allx.

The existence of the Jacobian∇ f .x/ (i.e., the existence of the partial derivatives
@ fi .x/=@x j) alone does not necessarily guarantee the differentiability off at x.
A sufficient – and in practice quite useful – condition is the continuity of the
(generally non-linear) mapx 7→ ∇ f .x/.
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L EMMA 1.5. Let U ⊆ Rn be open and f: U → Rm have continuous partial
derivative functionsx 7→ @ fi .x/=@x j for all i = 1 : : : ;m and j= 1; : : : ;n (i:e:,
the functionx 7→ ∇ f .x/ exists and is continuous). Then f is differentiable on U.

Proof.As noted above, it suffices to assumem= 1. Givenx0 ∈ U and the vector
d = .d1; : : : ;dn/

T
∈ Rn, we let

xk = x0+ d1e1+ : : :+ dkek for k= 1; : : : ;n :

For‖d‖ sufficiently small, we havexk ∈ U for all k= 1; : : : ;n and

f .x0+ d/− f .x0/ =

n∑
k=1

[ f .xk/− f .xk−1/] :

Applying the Mean Value Theorem to the functions� 7→ f .xk−1+ �ek/, we obtain
numbers�k ∈ .0;dk/ such that

f .xk/− f .xk−1/ = dk
@ f .xk−1+ �kek/

@xk
;

whence we deduce

‖d‖'.d/ = f .x0+ d/− f .x0/−∇ f .x0/d

=

n∑
k=1

dk

[
@ f .xk−1+ �kek/

@xk
−
@ f .x0/

@xk

]
:

Because‖d‖−1
· |dk| ≤ 1 and limd→0.xk−1+ �kek/ = x0, continuity of the partial

derivatives finally implies

lim
d→0
‖'.d/‖ ≤ lim

d→0

n∑
k=1

∣∣∣∣@ f .xk−1+ �kek/

@xk
−
@ f .x0/

@xk

∣∣∣∣ = 0 :

�

If f : U → Rm has continuous partial derivatives, we callf a C1-function. In
general,Ck denotes the class of functions with continuous partial derivatives up
to orderk (cf. Section1.4.4 below).

The Chain Rule. Let U ⊆ Rn and S⊆ Rm be open sets and assume that the
function f : U→ S is differentiable atx0 ∈ U. If g : S→ Rk is differentiable at
y0 = f .x0/, the composite functionh : U → Rk, given byh.x/ = g. f .x//, can
be linearly approximated atx0 by the composition of the respective derivatives.

More precisely,h= g◦ f is differentiable atx0 and the Jacobian ofh atx0 equals
the matrix product of the Jacobian matrices off atx0 andg aty0:

(1.13) ∇h.x0/ = ∇g.y0/∇ f .x0/

Formula (1.13) is known as thechain rulefor differentiable functions. To verify
it, it suffices to assumek = 1. Writing A = ∇ f .x0/ andB = ∇g.y0/ for ease of
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notation, the differentiability off andg provides us with functions' and such
that'.d/→ 0 asd→ 0 and .d̃/→ 0 asd̃→ 0 and

f .x0+ d/ = f .x0/+Ad + ‖d‖'.d/

g.y0+ d̃/ = g.y0/+Bd̃+ ‖d̃‖ .d̃/:

With d̃ = Ad + ‖d‖'.d/, we then obtain for alld 6= 0,

h.x0+ d/ = g. f .x0/+ d̃/

= g. f .x0//+Bd̃+ ‖d̃‖ .d̃/

= g. f .x0//+BAd +B‖d‖'.d/+ ‖d̃‖ .d̃/

= h.x0/+BAd + ‖d‖

(
B'.d/+

‖d̃‖
‖d‖

 .d̃/

)
:

By the choice of' and the continuity of the linear mapsx 7→ Ax, andy 7→ By,
we have bothB'.d/→ 0 and .d̃/→ 0 asd→ 0.

In order to establish the differentiability ofh= g ◦ f and the chain rule, it now
suffices to show that the quotient‖d̃‖=‖d‖ is bounded asd→ 0. From Ex. 1.12,
however, we know‖Ad‖ ≤ ‖A‖F‖d‖. In view of the triangle inequality (1.8), we
therefore conclude

‖d̃‖=‖d‖ ≤ ‖A‖F + ‖'.d/‖ ;

which is bounded asd→ 0.

The Product Rule. The chain rule is an often very useful tool for the computation
of derivatives. Let, for example,f1; f2 : .a;b/→ R be differentiable on the open
interval.a;b/ ⊆ R and considerh.t/ = f1.t/ · f2.t/.

With F.t/ = . f1.t/; f2.t//T andH.x; y/ = xy, we haveh.t/ = H.F.t//. So

∇F.t/ =

(
f ′1.t/
f ′2.t/

)
and ∇H.x; y/ = .y; x/

yield

h′.t/ = ∇H. f1.t/; f2.t// ∇F.t/ = . f2.t/; f1.t//

(
f ′1.t/
f ′2.t/

)
i.e.

h′.t/ = f2.t/ f ′1.t/+ f1.t/ f ′2.t/

EX . 1.24. Let f1; f2 : .a;b/→ R be differentiable and assume f2.t/ 6= 0 for all t ∈
.a;b/. Derive for h.t/ = f1.t/= f2.t/ thequotient rule:

h′.t/ =
f2.t/ f ′1.t/− f1.t/ f ′2.t/

f 2
2 .t/
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1.4.4. Second Derivatives and Taylor’s Formula.The differentiable func-
tion f : U → R gives rise to the function∇ f : U → Rn via the assignment
x 7→ [∇ f .x/]T. Let us assume that also∇ f .x/ is differentiable. Then the partial
derivatives of the partial derivatives off exist and define the second derivative
matrix

∇
2 f .x/ =

(
@2 f .x/
@xi@x j

)
;

called theHessianmatrix of f atx ∈ U.

REMARK. If all second partial derivatives are continuous onU, i.e., f is aC2-function,
one can show for allx ∈ U and alli; j,

@2 f .x/
@xi@x j

=
@2 f .x/
@x j@xi

;

which means that the Hessian∇2 f .x/ is symmetric.

EX . 1.25. Let∇ f : U→Rn be differentiable. Show that the function pu.t/= f .x0+ tu/
is twice differentiable at t0, if x0+ t0u ∈ U, and satisfies

p′′u.t0/ =
n∑

i=1

n∑
j=1

@2 f .x0+ t0u/
@xi@x j

uiu j

Consider the case where all second partial derivatives off exist and are contin-
uous. Then Lemma 1.5 tells us that∇ f is differentiable. By Ex. 1.25, we know
that pu.t/ = f .x0+ tu/ is twice differentiable.

In the subsequent discussion, we consider vectorsu of unit length ‖u‖ = 1.
Lemma 1.4 guarantees the existence of some 0< �u < 1, such that

pu.t/ = pu.0/+ p′u.0/t+
t2

2
p′′u.�ut/ ;

provided|t| > 0 is so small thatU|t|.x0/ ⊆ U. We want to derive an analogous
representation forf .

Given" > 0, the assumed continuity of the Hessian matrix∇2 f .x/ allows us to
choose|t| > 0 so small that for everyx ∈ U with ‖x0− x‖ < |t|,∣∣∣∣@2 f .x0/

@xi@x j
−
@2 f .x/
@xi@x j

∣∣∣∣ < " :
Recalling p′′u.t/ = uT

∇
2 f .x0+ tu/u and observing|uiu j| ≤ ‖u‖2 = 1 for every

two componentsui andu j of u, we obtain

|p′′u.0/− p′′u.�ut/| ≤ n2" ;

which is valid for alld = tu whenever the norm‖d‖ = |t| is small enough (in-
dependent of the unit directionu!). With p′u.0/ = ∇ f .x0/u, we thus arrive at
Taylor’s formulafor real-valued functions in several variables:
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f .x0+ d/ = f .x0/+∇ f .x0/d+ 1
2dT
∇

2 f .x0/d+ o.‖d‖2/

or with some� ∈ .0;1/:

f .x0+ d/ = f .x0/+∇ f .x0/d+ 1
2dT
∇

2 f .x0+ �d/d





CHAPTER 2

Linear Equations and Linear Inequalities

While Chapter 1 reviews general structural aspects of real vector spaces, we now
discuss fundamentalcomputational techniques for linear systemsin this chapter.
For convenience of the discussion, we generally assume that the coefficients of
the linear systems arereal numbers. It is important to note, however, that in
practical computations we mostly deal withrational numbers as input parameters.
We therefore point out right at the outset thatall the algorithms of this chapter
(Gaussian elimination, orthogonal projection, Fourier-Motzkin elimination) will
compute rational output quantities if the input parameters are rational numbers,
as the reader can easily check.

2.1. Gaussian Elimination

Let A = .ai j / ∈ Rm×n be an.m× n/-matrix andb = .bi / ∈ Rm a vector. Can we
representb as a linear combination of the column vectors ofA? And if yes, how?
To answer this question, we must find a vectorx = .x j / ∈ Rn such thatAx = b
holds,i:e:, such that

(2.1)

a11x1 + a12x2 + : : : + a1nxn = b1

a21x1 + a22x2 + : : : + a2nxn = b2
...

...
am1x1 + am2x2 + : : : + amnxn = bm

We refer to (2.1) as asystem of linear equationsin variablesx1; : : : ; xn. A vector
x= .x j / ∈ Rn satisfying (2.1) is calledfeasibleor asolutionfor (2.1). The system
is infeasibleif no solution exists.

From a structural point of view, our problem is the following. We are given the
linear function f : Rn

→ Rm via f .x/ = Ax, and a vectorb ∈ Rm. We are to
determine a vectorx in the “solution space” ofAx = b, i:e:, in the affine subspace
(cf. Section 1.2)

S= f −1.{b}/ = {x ∈ Rn
|Ax = b} ⊆ Rn :

In the computational approach to the problem, we try to transform the system
(2.1) of linear equalities via elementary vector space operations that leave the
solution spaceSunaltered until the system has attained an equivalent form from
which a solution can be easily inferred.

23
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If all coefficients occurring with the variablex1 are zero, the column is irrelevant
for any linear combination and we are reduced to solving the subsystem involving
only the variablesx2; : : : ; xn. Gaussian elimination wants to achieve a similar
reduction even when some (or all) coefficients occurring withx1 are non-zero.

Assume, for example, thata11 6= 0. Then

x1 =
1

a11
.b1− a12x2− : : :− a1nxn/ :(2.2)

We can substitute this expression forx1 in all other equations and obtain a new
systemA ′x′ = b′ that involves only the variablesx2; : : : ; xn. In this sense, the
variablex1 has been “eliminated”.

The systemsAx = b andA ′x′ = b′ of linear equations are very closely related.
Each solutionx= .x1; x2; : : : ; xn/

T for Ax = b yields a solutionx′ = .x2; : : : ; xn/
T

for A ′x′ = b′ (we just omit the variablex1 in x). Conversely, each solutionx′ for
A ′x′ = b′ can be extended to a solutionx = .x1; x2; : : : ; xn/

T for Ax = b by com-
puting the value ofx1 via backward substitutionaccording to the formula (2.2)
from x′ = .x2; : : : ; xn/

T.

REMARK. From a geometrical point of view, passing from the solution spaceS of
Ax = b to the solution spaceS′ of A ′x′ = b′ amounts to projecting the vectorsx =
.x1; x2; : : : ; xn/ ∈ S to x′ = .x2; : : : ; xn/ ∈ S′.

We next eliminate another variable, sayx2, from the systemA ′x′ = b′ in the same
way etc: until all variables have been eliminated. Going all the way back, we
can compute a solution for the original systemAx = b via repeated backward
substitution.

What does it mean in terms of algebraic operations to “eliminate”x1 in the system
Ax = b? It turns out that there is no need to actually removex1 from the system.
The elimination process comes down to a suitable sequence of “pivoting” opera-
tions that successively transform our original system into a completely equivalent
system which, however, has the virtue of being easily solvable.

Given a pair.i; j/ of row and column indices such thatai j 6= 0, let us call the
following operation aGaussian.i; j/-pivot (with pivot row i andpivot column j)
on the rows (equations) of the systemAx = b:

(GP) For all rowsk> i : Add .−akja−1
i j /× (row i) to row k.

EX . 2.1. Assume that̃Ax = b̃ arises fromAx = b via a Gaussian.i; j/-pivot. Show that
both systems have the same solution space S.

EX . 2.2. Show that the systemA ′x′ = b′ in the Gaussian elimination step with respect
to x1 and a11 6= 0 is exactly the subsystem we obtain when we first apply a.1;1/-pivot to
Ax = b and then remove column1 and row1 from the system.
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Recall that a matrixM = .mi j / is said to belower triangular if mi j = 0 whenever
i < j, andupper triangularif mi j = 0 wheneveri > j.

EX . 2.3. LetÃx = b̃ be the system arising fromAx = b via a Gaussian.i; j/-pivot. Show
that there exists an invertible lower triangular matrixM ∈ Rm×m such thatÃ =MA and
b̃ = Mb .

By interchanging rows if necessary in order to obtain a non-zero pivot element,
we can transformAx = b into upper triangular form with Gaussian pivots:

Gaussian Elimination

INIT: Set j = 1, i = 1.

ITER: WHILE i ≤ m and j ≤ n DO

(1) Find a row indexk≥ i such thatakj 6= 0;
If no suchk exists, thenj← j + 1, GOTO (1);
Interchange rowi and rowk;
Perform a Gaussian.i; j/-pivot;
Update j← j + 1 and i← i + 1;

REMARK. Step (1) of the Gaussian Elimination algorithm does not specify which rowk
to choose in case several candidates are available. There are examples demonstrating that
the numerical stability (with respect to rounding errors) of the algorithm very much de-
pends on a good pivot choice. Practical experience shows very good results ifk is chosen
as to maximize the absolute value|akj| of the pivot element . This rule is calledpartial
pivoting. (Complete pivotingtries to enhance the numerical stability of the computations
by allowing also column permutations in the search for a maximal pivot element. The
result, however, is usually not worth the extra computational effort of complete pivoting).

Note that this Gaussian elimination algorithm does not necessarily “eliminate” all
variables but just achieves an upper triangular form of the system of equations.
If .1; j1/; .2; j2/; : : : ; .r − 1; jr−1/; .r; jr / is the sequence of pivots during the
algorithm, the final system̃Ax = b̃ of equations will have the form

ã1 j1x j1+ ::: ã1 j2x j2+ ::: ã1 jr−1x jr−1+ ::: ã1 jr x jr+ ::: = b̃1

ã2 j2x j2+ ::: ã2 jr−1x jr−1+ ::: ã2 jr x jr+ ::: = b̃2
...

...
ãr−1 jr−1x jr−1+ ::: ãr−1 jr x jr+ ::: = b̃r−1

ãr j r x jr+ ::: = b̃r
...
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This final form of a system of linear equations is also known asHermite normal
form (or row echelon form) of the system.

The Gaussian Elimination algorithm impliesãt j = 0 whenevert > r . So there can-
not be any solution forAx = b if there exists somẽbt 6= 0 with t > r . Otherwise,
because all pivot elementsãpjp are non-zero, we can easily compute a solution for
Ax = b by backtracking the pivots and performing backward substitution:

x jr = b̃r=ãr j r

x jr−1 = .b̃r−1− ãr−1 jr x jr /=ãr−1 jr−1

x jr−2 = .b̃r−2− ãr−2 jr−1x jr−1 − ãr−2 jr x jr /=ãr−2 jr−2

...

x j1 = .b̃1−

r∑
p=2

ã1 j px j p/=ã1 j1

while the other variablesx j are set to zero. This procedure is correct because
the operations during Gaussian Elimination leave the solution spaceSof Ax = b
unaltered.

REMARK [RECOVERING ALL SOLUTIONS]. The solution ofAx = b just computed is
a special (”basic”) solution in the sense that all non-pivot variablesx j are set to zero. The
backward substitution process can easily be generalized by first assigning arbitrary values
to the non-pivot variablesx j and then computing (unique) corresponding values for the
remaining variables recursively. This way one can, in principle, generateeveryfeasible
solution ofAx = b.

The Gaussian elimination algorithm has some important matrix-theoretic impli-
cations. Recall that the matrixP = .pi j / ∈ Rm×m is a permutation matrixif
pi j ∈ {0;1} and each row and each column ofP contains exactly one coefficient 1.
Note thatPTP= I holds for every permutation matrixP, which impliesP−1

= PT

for the inverse matrixP−1 of P.

EX . 2.4. LetP= .pi j / be a.m×m/-permutation matrix. Show for the matrixA ∈Rm×n:
Row i ofPA equals row j ofA if and only if pi j = 1. (In other words:P permutes the
rows ofA according to the coefficientspi j .)

THEOREM 2.1. For every matrixA ∈Rm×n, there exists an.m×m/-permutation
matrixPand an invertible lower triangular matrixM ∈Rm×m such thatU=MPA
is upper triangular.

Proof.Run the Gaussian algorithm on the matrixA and record all the row permu-
tations that occur in the permutation matrixP. Then we obtain the same final up-
per triangular matrix̃A if we perform Gaussian Elimination on the matrixĀ = PA
without any row permutations. Denote byM1; : : : ;M r the matrices describing the
Gaussian pivots.
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By Ex. 2.3, eachM i is an invertible lower triangular matrix. Hence also the prod-
uctM =M rM r−1 · · ·M1 is an invertible lower triangular matrix and we obtain for
U = Ã:

U = Ã = MĀ = MPA :

�

COROLLARY 2.1(LU-factorization). For every matrixA ∈ Rm×n, there exists an
.m×m/-permutation matrixP, and matricesL ∈ Rm×m;U ∈ Rm×n such thatL is
invertible and lower triangular,U is upper triangular, and

LU = PA :

Proof.With the matricesM i as in the proof of Theorem 2.1, we takeL = M−1
=

M−1
1 · · ·M

−1
r . L is lower triangular (because it is the inverse of a lower triangular

matrix), andLU = M−1MPA = PA follows.
�

REMARK. If an LU-factorizationLU = PA of A is known, the systemAx = b can be
solved in three steps:

(1) Computēb := Pb ;
(2) Computey as a solution ofLy = b̄ ;
(3) Computex as a solution ofUx = y .

Step (2) can always be carried out sinceL is invertible so thaty = L−1b̄. Step (3) can be
successfully performed if and only ifAx = b has a solution at all. SinceL is triangular, it
is usually more efficient not to determineL−1 explicitly but to compute bothx andy by
backward substitution.

EX . 2.5. Compute an LU-factorization for matrixA =

 1 2 3
0 2 1
2 1 1

 .

COROLLARY 2.2 (Gale’s Theorem). Exactly one of the alternatives is true:

(a) The systemAx = b has a solution.
(b) There exists a vectory ∈ Rm such thatyTA = 0T andyTb 6= 0.

Proof. BecauseyTAx = yTb, (a) and (b) cannot hold simultaneously. Assume
now thatAx = b has no solution. We show that then (b) is true.

Consider the final system̃Ax = b̃ computed by Gaussian Elimination fromAx =
b, whereÃ = MPA andb̃ = MPb. The system is infeasible if and only if there
is some row indexi > r , such that0T is theith row of Ã andb̃i 6= 0.

Let yT be theith row vector of the matrixMP. ThenyTA yields theith row vector
of Ã, while yTb yields theith component̃bi of b̃, and the Corollary follows.

�

Let us take a vector space point of view at Gaussian Elimination with respect to
the linear equality systemAx = b. Therow space V= row A of A is the linear
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hull of the row vectors ofA. By rankA we denote therank of the matrixA, i:e:,
the maximal number of linearly independent rows ofA. So rankA = dim rowA.

Since pivot operations are, in particular, sequences of elementary vector space
operations on the row vectors, the space rowA will stay the same after each
Gaussian pivot. From the upper triangular form of the final matrixÃ it follows
immediately that rank̃A = r , wherer is the total number of Gaussian pivots.
Hence

r = rankÃ = rankA :

So Gaussian Elimination provides a fast algorithm for computing a basis of the
space rowA.

We emphasize that thecolumn spacecol A = row AT doeschange when we ap-
ply (row) pivots toA. Note, however, that the set of columns{a j1; : : : ;a j l } of
A is linearly independent if and only if the corresponding columnsã j1; : : : ; ã j l

of the transformed matrix̃A (obtained fromA by row pivots) are linearly inde-
pendent. So, in particular, Gaussian Elimination reveals that the ’pivot columns’
a j1; : : : ;a jr form a basis of the column space and we observe that

r = rankA = dim .col A/ = dim .row A/ :

2.1.1. Gauss-Jordan Elimination.From a conceptual point of view, one
might want to strengthen the Gaussian pivoting rule (GP) to

(GJP) Forall rowsk 6= i: Add .−akja−1
i j /× .row i / to row k ,

which transforms also the matrix elements above the pivot elements to zero.

If one applies the elimination algorithm with (GJ P) instead of (GP), one obtains
a systemÃx = b̃ of equations with each pivot columnA· jk of Ã having a unique
nonzero entry in the corresponding pivot position.k; jk/.

While this form of the system of equations would make backward substitution
even easier, the elimination algorithm itself requires more computational effort.
Therefore, Gauss-Jordan Elimination offers no practical advantage over Gaussian
Elimination. Its virtues are more to be seen in being a theoretical tool for algo-
rithmic analysis (see, for example, the simplex algorithm for linear programs in
Chapter 4).

EX . 2.6. Assume that the matrixA ∈ Rn×n satisfiesrankA = n. Show that Gauss-Jordan
Elimination transformsA into a diagonal matrixÃ all of whose diagonal elements are
non-zero.

2.1.2. Determinants.Let � be a permutation of then distinct elements
1;2; : : : ;n. With � we associate the permutation matrixP= .pi j /, where

pi j =

{
1 if j = �.i /
0 otherwise.
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When we run Gaussian Elimination onP, the algorithm will only carry out row
permutations (and thus will transformP into the.n× n/-identity matrixI ). Sup-
poses= s.�/ is the number of proper row interchanges in the course of the
algorithm. Then the number

sgn� = .−1/s.�/

is thesignof the permutation�. Depending on its sign,� is called eitherevenor
odd.

Given the permutation�, let�−1 be the inverse permutation�.i / 7→ i, i = 1; : : : ;n.
Then we apparently have

sgn� = sgn�−1 :

With the.n× n/-matrixA = .ai j /, one associates itsdeterminantas the number

detA =
∑
�

.sgn�/a1�.1/a2�.2/ · · ·an�.n/ ;(2.3)

where the sum is taken over alln! permutations� of the indices 1;2; : : : ;n.

EX . 2.7. Show:detA = detAT. (Hint: sgn� = sgn�−1).

REMARK. Occasionally, it is helpful to think of detA not just as a real parameter asso-
ciated with a matrixA but to interpret det :Rn×n

→ R as a real-valued function on the
n2-dimensional vectors inRn2

. The expression (2.3) shows that detX is a sum of prod-
ucts of components ofX = .xi j / and hence clearly is a continuous (in fact, differentiable)
function.

REMARK. It is well-known that detA admits an intuitive interpretation as the change in
volume of a bodyK ⊆ Rn under the influence (“deformation”) of the linear mapx 7→ Ax:

vol A.K/ = |detA| · vol K :(2.4)

From the definition (2.3), it follows directly that

detA = a11a22 · · ·ann(2.5)

must hold ifA is (upper or lower) triangular. One can, furthermore, deduce the
determinant multiplication rulefor all A;B ∈ Rn×n:

detAB = detA · detB :(2.6)

EX . 2.8.

(a) LetP be the permutation matrix for the permutation�.
Show:sgn� = detP.

(b) Use the determinant multiplication rule to show: IfA ′ is the matrix obtained
from A by performing a Gaussian.i; j/-pivot, thendetA ′ = detA.
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Ex. 2.8 indicates that detA can be efficiently computed via the Gaussian elimi-
nation algorithm:A is transformed into the triangular matrixÃ = .ãi j / and, there-
fore

detA = .−1/sã11ã22 · · · ãnn ;(2.7)

wheres is the number of proper row interchanges during the run of the algorithm.

EX . 2.9. Show:detA 6= 0 if and only if all rows ofA are linearly independent.

Cramer’s Rule. Consider the systemAx = b whereA ∈ Rn×n satisfies detA 6= 0.
Cramer’s ruleprovides a determinant formula for computing each componentxi

of the (unique) solution vectorx:

xi =
detÂ i

detA
;(2.8)

whereÂ i is the matrix we obtain fromA upon replacing theith column ofA by
the vectorb.

The validity of Cramer’s rule is not difficult to check directly in the case whereA
is a diagonal matrix. In the general case, Gauss-Jordan Elimination will transform
A into diagonal form if detA 6= 0 (see Ex. 2.6). Since the pivots will leave the
determinants det̂A i and detA unchanged (see Ex. 2.8), the validity of Cramer’s
rule follows.

REMARK. Cramer’s rule is only of theoretical value. Gaussian Elimination will com-
pute a solution faster. The merit of (2.8) lies in the fact that it provides a means to estimate
the numerical size of the solution vectorx in theoretical algorithmic analysis (see Corol-
lary ??).

2.1.3. Symmetric and Positive Semidefinite Matrices.Recall that the ma-
trix A ∈ Rn×n is said to be symmetric ifA = AT. We denote the set of (real)
symmetricn× n matrices bySn×n. We want to apply Gaussian Elimination to
the rowsand to the columns of the symmetric matrixA= .ai j / with the goal of
retaining symmetry after each elimination step. Thereby, we take advantage of
the fact that matrix multiplicationfrom the lefthas the same effect on therowsof
a matrix as multiplication with thetransposedmatrix from the righthas on the
columnsof a matrix.

Assume firsta11 6= 0. Then we can perform a Gaussian pivot with respect toa11

on the symmetric matrixA. If this pivot is described by the matrixM1, say, then

A ′ = M1AM T
1

is again a symmetric matrix. (Note thatM1AM T
1 = .M1A/M T

1 can be interpreted
as the result of the symmetric Gaussian pivot with respect toa11 relative to the
columns ofM1A).



2.1. GAUSSIAN ELIMINATION 31

If the diagonal elementa′22 of M1AM T
1 is non-zero, we can pivot ona′22 in the

same way to obtain the symmetric matrix

M2.M1AM T
1 /M

T
2 = .M2M1/A.M2M1/

T

and continue.

A problem occurs ifa11 (or any subsequent diagonal elementaii ) equals zero. So
assume that - afteri − 1 pivots - we havea′ii = 0. If a′kl = 0 for all k; l ≥ i, we
are done (the matrix is diagonalized). Hence assume this is not the case. If a
diagonal elementa′kk 6= 0 .k > i / exists, we may resolve the problem by simply
permuting rowsi andk and columnsi andk, so as toswitch a′kk 6= 0 into position
.i; i /. If all diagonal elementsa′kk with k ≥ i are zero, leta′kl = a′lk 6= 0 for some
l > k ≥ i. We then add rowl to row k and columnl to columnk so as to obtain
a′kl + a′lk = 2a′kl 6= 0 in position.k; k/ and then switchi andk as before.

Let us refer to this operation asswitching a nonzerointo position.i; i /. We may
then state the algorithm transforming a symmetric matrixA ∈ Sn×n into a diagonal
matrix as follows.

Diagonalization

FOR i = 1; : : : ;n DO

Switch a nonzero into position.i; i / if necessary;
(If this is not possible,i.e., a′kl = 0 for k; l ≥ i: STOP.)
Perform a Gaussian.i; i /-pivot on the rows;
Perform a Gaussian.i; i /-pivot on the columns;

NEXT i.

THEOREM 2.2. Let A ∈ Sn×n be a symmetric matrix. Then there exists an inver-
tible matrixQ ∈ Rn×n such that

D = QAQT

is a diagonal matrix.

Proof. By construction, algorithm Diagonalization will produce a diagonal ma-
trix. Moreover, each of the row operations performed by the algorithm can be
described via multiplication by a suitable invertible matrixM from the left. Sym-
metrically, the corresponding column operation is given by the multiplication
from the right with the transposed matrixM T.

LetQ be the product of these matricesM . Then Diagonalization transformsA into
the diagonal matrixQAQT. Because each of the row operationsM is invertible,
Q is invertible.

�
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EX . 2.10. Find an invertible matrixQ ∈ R4×4 such thatQAQT is diagonal, where

A =


0 1 3 2
1 −1 1 0
3 1 1 2
2 0 2 0


Relaxing the notion ofpositive definitenesswe know from inner products and
Gram matrices, we say that the symmetric matrixA = .ai j / ∈ Sn×n is positive
semidefinite(“p.s.d.”), denoted byA � 0, if for everyx = .x1; : : : ; xn/

T
∈ Rn,

xTAx =
n∑

i=1

n∑
j=1

ai j xi x j ≥ 0 :(2.9)

HenceA is positive definite (denoted byA � 0) if A � 0 andxTAx = 0 holds
only for x = 0.

COROLLARY 2.3. Let A be a symmetric matrix andQ an invertible matrix such
thatD = QAQT is diagonal. Then

(a) A is p.s.d. if and only if all diagonal elements ofD are non-negative.
(b) A is positive definite if and only if all diagonal elements ofD are strictly

positive.

Proof.Sincex = QTy defines a 1-1 correspondence betweenx ∈ Rn andy ∈ Rn,
we conclude from

xTAx = yTQAQTy = yTDy =
n∑

i=1

di y
2
i

thatA is p.s.d. if and only ifD is. The latter however is equivalent todi ≥ 0 for
i = 1; : : : ;n. (If di < 0 theny = ei , theith unit vector, yieldsyTDy = di < 0.)

�

Corollary 2.3 is algorithmically very important. It implies that there is an efficient
way of deciding whether a given matrix is positive (semi-)definite. One only
needs to run the Diagonalization algorithm on the matrix and then read the result
off the diagonalized matrix.

Furthermore, Corollary 2.3 explains how positive semidefinite matrices are con-
structed from other matrices. LetA ∈ Rm×n be an arbitrary matrix. Then the
symmetric.m×m/-matrixS= AA T is p.s.d.. This is easily seen: We letx ∈ Rm

be arbitrary and considery = ATx. Then

xTSx= xTAA Tx = yTy ≥ 0 :

Conversely, ifS is symmetric, we can find some invertible matrixQ such that
D = QSQT is diagonal. IfS is in addition p.s.d., Corollary 2.3 says that the
elements ofD are non-negative. So we may form

√
D, the diagonal matrix whose

diagonal elements are the square roots of the elements ofD, and set

A = Q−1
√

D :
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ThenAA T
= .Q−1/

√
D
√

D.Q−1/T = Q−1D.Q−1/T = S . So we arrive at

COROLLARY 2.4. LetS be a symmetric matrix. Then
(a) S is p.s.d. if and only if there is a matrixA such thatS= AA T.
(b) S is positive definite if and only if there is an invertible matrixA such

thatS= AA T.

�

EX . 2.11. Prove part.b/ of Corollary 2.4. Moreover, show: If the matrixA is positive
definite, thenA−1 exists and is positive definite.

REMARK [I NNER PRODUCTS]. Recall form Section 1.3 that each inner product〈·|·〉
on Rn is defined by its values relative to the standard basis{e1; : : : ;en} and the (positive
definite) Gram matrixG, where

G = .〈ei |ej〉/ :

If x;y ∈ Rn, then
〈x|y〉 = xTGy :

Writing G = ATA, we obtain

(2.10) 〈x|y〉 = xT.ATA/y = .Ax/T.Ay/ :

Thus every inner product reduces to the standard Euclidean inner productvia a suitable
transformationx→ Ax.

REMARK. Corollary 2.4 may befalseif we restrict ourselves to rational numbers! The
reason is that we have to take square roots of numbers.

√
2, for example, is not inQ.

So the rational positive definite (1× 1)-matrixS= [2] cannot be expressed in the form
S= AA T with a rational matrixA.

EX . 2.12. LetA = .ai j / ∈ Sn×n be a positive definite matrix.

(a) Show that the diagonal elements aii of A are strictly positive.
(b) Show that the Diagonalization algorithm will always maintain aii 6= 0.

REMARK [CHOLESKY FACTORIZATION]. As a consequence of Ex. 2.12, one finds that
Diagonalization only performs Gaussian pivots when applied to a positive definite matrix
A. In particular, the matrixQ produced by Diagonalization is lower triangular. SoL =
Q−1
√

D yields aLU-factorization withU = LT , the so-calledCholesky factorization:

A = LL T :(2.11)



34 2.LINEAR EQUATIONS AND LINEAR INEQUALITIES

2.2. Orthogonal Projection and Least Square Approximation

Given an inner product〈:|:〉 on Rn, we define for everyx;y ∈ Rn their distance
via the norm

(2.12) ‖x− y‖ =
√
〈x− y|x− y〉 :

REMARK. Although (2.12) involves the square root, none of the computations below
would lead us outside the fieldQ of rational numbers since we actually work with the
squareddistance.

Given the vectorx ∈ Rn and a linear subspaceW ⊆ Rn, we want to find the
projection ofx onto W, i:e:, a vectorx̂ ∈ W such that

‖x− x̂‖ = min
y∈W
‖x− y‖ :(2.13)

The optimization problem (2.13) is equivalent with

‖x− x̂‖2 = min
y∈W
‖x− y‖2 :(2.14)

Problem (2.13) is often called theleast square approximationproblem (see also
the next subsection). Its solution is based on the following observation.

L EMMA 2.1. Assume thatx′ ∈W is such that the vectorx− x′ is orthogonal with
everyw ∈ W. Then̂x = x′ is the unique optimal solution of (2.13).

Proof.Let y ∈W be an arbitrary vector and considerw= x′− y. Becausew ∈W,
the Theorem of Pythagoras can be applied and yields

‖x− y‖2 = ‖x− x′ +w‖2 = ‖x− x′‖2+ ‖w‖2 :

Hencey is optimal for (2.13) if and only ifw = 0.
�

It is not difficult to compute a vectorx′ satisfying the hypothesis of Lemma 2.1 if
we know a basis{a1; : : : ;am} for W. Writing

x′ = z1a1+ : : :+ zmam with zi ∈ R;
observe first thatx− x′ is orthogonal with every basis vectorai of W exactly when
for all i = 1; : : : ;m,

〈x− x′|ai〉 = 〈x|ai〉 − 〈x′|ai〉 = 0 :(2.15)

From the linear expansion〈x′|ai〉 = z1〈a1|ai〉 + : : :+ zm〈am|ai〉, we see that the
equalities (2.15) give rise to the system of linear equations

〈a1|a1〉z1 + : : : + 〈am|a1〉zm = 〈x|a1〉

〈a1|a2〉z1 + : : : + 〈am|a2〉zm = 〈x|a2〉

...
〈a1|am〉z1 + : : : + 〈am|am〉zm = 〈x|am〉;
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which we can express more compactly with the help of the Gram matrixG =
.〈a j|ai〉/ ∈ Rm×m as

Gz= b ;(2.16)

wherez= .z1; : : : ; zm/
T
∈ Rm andb = .〈x|a1〉; : : : ; 〈x|am〉/

T
∈ Rm. Because the

Gram matrixG is positive definite, the inverse matrixG−1 exists and yields an
explicit formula for the solution

z= G−1b :(2.17)

Let us consider the case of the standard inner product〈x|y〉 = xTy. We form the
matrixA ∈ Rn×m with columnsai . Then

W= {y ∈ Rn
|y = Az;z ∈ Rm

} = col A ;

and we can write the least square approximation problem (2.14) in the form

min
z∈Rm
‖x−Az‖2 :

Here we haveG = ATA andb = ATx. So formula (2.17) implies for the orthog-
onal projection̂x of x ontoW:

x̂ = Az = A.ATA/−1b = A.ATA/−1ATx :(2.18)

The same computational approach works when the linear subspaceW ⊆ Rn of
interest is given as theorthogonal complement W= U⊥ of the linear subspaceU
generated by the columnsa1; : : : ;am of A, i.e.,

W= {w ∈ Rn
|aT

i w = 0 for i = 1; : : : ;m} = kerAT :

Let x′ be the orthogonal projection ofx ∈ Rn ontoU. Then

x̂ = x− x′(2.19)

is the projection ofx ontoW. By construction, namely,̂x is orthogonal with every
vector inU, which meanŝx ∈ W. Moreover,x− x̂ = x′ ∈ U is orthogonal with
everyw ∈ W. So, by Lemma 2.1,̂x is indeed the desired projection.

According to (2.19) and (2.18), the orthogonal projectionx̂ of the vectorx ∈ Rn

ontoW= kerAT is the vector

x̂ = x−A.ATA/−1ATx :(2.20)

Gradient Projection. To illustrate the usefulness of the concept of an orthogonal
projection, let us consider the differentiable functionf : Rn

→ R at the point
x0 ∈ Rn with ∇ f .x0/ 6= 0T. We have seen in Section 1.4.3 that the gradient vector
c= [∇ f .x0/]T points into the direction of the largest marginal increase off at
x0.



36 2.LINEAR EQUATIONS AND LINEAR INEQUALITIES

Suppose we are interested in finding the directionu of largest marginal increase
under the additional constraintu ∈ W, whereW is a fixed linear subspace ofRn.
This amounts to solving the problem

max{cTu |u ∈ W;‖u‖ = 1} :(2.21)

Let ĉ be the orthogonal projection ofc ontoW (and assumêc 6= 0). We claim that
û = ĉ=‖ĉ‖ solves the optimization problem (2.21). Indeed, ifu ∈ W, thenu is
orthogonal withc− ĉ. Hence

cTu = .c− ĉ/Tu+ ĉTu = ĉTu :

By the inequality of Cauchy-Schwarz, the latter is maximized exactly whenu is
a scalar multiple of̂c, which establishes the claim.

2.2.1. Least Square Approximation.A linear modeltries to relate a vector
y ∈ Rm of moutput parametersyi to a vectorx ∈ Rn of input parametersx j via the
relationy = Ax, where the matrixA ∈ Rm×n represents the structure of the linear
model.

Suppose that upon the unknown inputx in the model the output̄y is observed.
Then we can try to determinex by solving the systemAx = ȳ. Often, however,
this system will have no solution (for example, because of measurement errors)
and we will, more generally, content ourselves with an optimal solutionx̂ for the
problem

min
x∈Rn
‖ȳ−Ax‖2 ;(2.22)

which can be solved by the method described in the previous section.

Best Fit. For illustration, assume that some quantityy = y.t/ is a function of
some real parametert. We do not know the function explicitly. As an approxi-
mation, we model it as a polynomial of degreen with n+ 1 unknown structural
parametersa0;a1; : : : ;an :

y.t/ = a0+ a1t+ a2t
2
+ : : :+ ant

n :

If we have the data ofm≥ n+ 1 measurements of the outputȳi relative to the
input ti , 1≤ i ≤ m, at our disposal, we can form the measurement matrixM with
rows .1; ti ; t2

i ; : : : ; t
n
i / . We now wish to estimatex = .a0;a1; : : : ;an/

T as the
solution that “fits best” the observed relation

ȳ = Mx whereȳ = . ȳ1; : : : ; ȳm/
T :

REMARK. We should be aware that the important question whether (2.22) is indeed
an appropriate measure for “best fit” cannot be decided by mathematics but must be
answered by the person who sets up the mathematical model for a concrete physical
situation.

EX . 2.13. Find the line y.t/ = a+ bt in the planeR2 that provides the best least square
fit to the observed data y.0/ = −1, y.1/ = 2, and y.2/ = 1.
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Quadratic Optimization. As a second example, consider thequadratic opti-
mization problem under linear equality constraints

min xTQx =
n∑

i=1

n∑
j=1

qi j xi x j s:t: Ax = b ;(2.23)

whereQ = .qi j / ∈ Rn×n, A ∈ Rm×n, andb ∈ Rm are given problem parameters.
If the matrixQ is positive definite, we can solve (2.23) with the methods of this
chapter in the following way. We define for anyx;y ∈ Rn a Q-inner product and
aQ-norm:

〈x|y〉Q = xTQy and ‖x‖Q =
√
〈x|x〉Q :

With this terminology, (2.23) asks for an element with minimalQ-norm in the
affine subspaceL = {x ∈ Rn

| Ax = b}.

If we now compute a feasible solutionp ∈ Rn for Ax = b, we obtain a represen-
tation L = p+ kerA. Minimizing ‖x‖Q over L becomes equivalent with

min {‖p−w‖Q |w ∈ kerA} ;(2.24)

which is a particular case of (2.13) and can be solved by computing theQ-
orthogonal projection̂pQ of p ontoW= kerA.

The quadratic optimization problem (2.23) occurs, for example, as a subprob-
lem that has to be solved repeatedly during so-calledSQP-algorithms (see Chap-
ter 12). Another application arises from the fundamentalGauss-Markovmodel
in the theory of statistical inference, which we briefly describe (see,e.g., [67] for
more details).

The Gauss-Markov Model.We generalize the linear modely = Ax by allowing
for random noise in the measurements. We assume not only that the outputy ∈Rm

depends linearly on the inputx ∈ Rn through the matrixA ∈ Rm×n but also that
each componentyi of y is disturbed by some random variable"i , which we express
in matrix notation as

y = Ax + ε :(2.25)

The model assumes that the noises"i have expected valueE."i / = 0, areuncor-
related, i.e., satisfyE."i" j / = 0 for i 6= j, and have the same (usually unknown)
variance�2

= E."2
i / ≥ 0.

We seek an estimatêx for the unknownx that
(a) isunbiased, i:e:, satisfiesE.x̂/ = x,
(b) depends linearly on the observationy, i:e:, x̂ = Zy for some suitable

matrixZ ∈ Rn×m (to be determined),
(c) minimizesE.‖x̂− x‖2/.

Because of the linearity of the expectation (which means thatE is a linear func-
tion), we have

E.x̂/ = E.Zy/ = E.ZAx /+ E.Zε/ = ZAx :
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By (a), we wantE.x̂/ = x. SoZ should be ageneralized inverseof A, i.e., satisfy
ZA = I . In view of (c),Z should minimize the variance of the estimatex̂. Using
again the linearity of expectation, we deduce

E.‖x̂− x‖2/ = E.‖Zy − x‖2/ = E.‖Zε‖2/ = E.εTZTZε/ = �2 Z ◦ Z ;

where the last equality follows from our assumptionE."i" j / = 0 for i 6= j via

E.εTZTZε/ =
∑
i; j

(∑
k

zikzjk

)
E."i" j / =

∑
i

(∑
k

zikzik

)
E."i"i / = �

2 Z ◦ Z :

Because�2 is fixed (although unknown), the problem of determining an unbiased
linear estimator with least variance in the Gauss-Markov model reduces to mini-
mizing the Frobenius norm‖Z‖F =

√
Z ◦ Z of the matrixZ. So we want to solve

the minimum norm problem

min
X∈L
‖X‖F ; where L = {X ∈ Rn×m

| XA = I } :(2.26)

Identifying X with its n ·m-dimensional vector.xi j /, this is a quadratic problem
(with Q = I ) of type (2.23).

EX . 2.14. Observe that the constraintsX i·A = eT
i are “independent” of each other and

conclude that (2.26) decomposes into n independent subproblems of type (2.23), each of
dimension m.

2.2.2. The Algorithm of Gram-Schmidt. Projections onto a subspaceW⊆
Rn are particularly easy to compute whenW= col B, whereB = [a1; : : : ;am] is
such that the Gram matrixG = BTB = .〈ai |a j〉/ is diagonal. Then formula (2.17)
yields the coefficientszi = 〈ai |ai〉

−1
〈x|ai〉, i = 1; : : : ;m, for the projectionx̂ of

x ∈ Rn, i.e.,

(2.27) x̂ =
m∑

i=1

ziai =

m∑
i=1

〈ai |ai〉
−1
〈x|ai〉ai :

Let nowa1; : : : ;am ∈ Rn be arbitrary linearly independent vectors. We will con-
struct vectorsb1; : : : ;bm that are pairwise orthogonal (in the sense that〈bi |b j〉 = 0
if i 6= j) such that fork= 1; : : : ;m,

Vk = span{a1; : : : ;ak} = span{b1; : : : ;bk} :

The procedure is straightforward. We start withb1= a1. Assume we have already
constructedb1; : : : ;bk. We then compute the projection̂ak+1 of ak+1 onto Vk

and takebk+1 = ak+1− âk+1. Since theb1; : : : ;bk are pairwise orthogonal, the
projectionâk+1 is easy to compute according to (2.27).
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Gram-Schmidt
b1 = a1 andk= 1;

WHILE k< m DO

bk+1 = ak+1−
∑k

i=1〈bi |bi〉
−1
〈ak+1|bi〉bi ;

k← k+ 1 ;

EX . 2.15. Show (by induktion on k) that Gram-Schmidt produces pairwise orthogonal
vectorsb1; : : : ;bm so that Vk = span{b1; : : : ;bk} for k = 1; : : : ;m. Show furthermore:
〈bk|bk〉 ≤ 〈ak|ak〉 for k= 1; : : : ;m.

EX . 2.16. Extend the Gram-Schmidt algorithm to possibly linearly dependent vectors
a1; : : : ;am. (Hint: If ak+1 ∈ Vk, setbk+1 = 0.)

It is instructive to look at the Gram-Schmidt algorithm from the point of view of
matrix operations. LetA ∈ Rm×n be the matrix with rowsaT

1 ; : : : ;a
T
m. The algo-

rithm of Gram-Schmidt then (just as Gaussian elimination) performs elementary
row operations onA of the type

• Add (subtract) multiples of rows 1; : : : ; k to row k+ 1.

Hence each iterationk = 1; : : : ;m of Gram-Schmidt is achieved by multiplying
A (from left) with a lower triangular.m×m/-matrixM k with all entries 1 on the
diagonal. LettingM denote the product of the matricesM k, we obtain

B = MA = M m : : :M1A ;

whereB has rowsbT
1 ; : : : ;b

T
m that are pairwise orthogonal. Note that eachM k

has determinant 1. So the determinant multiplication rule says that alsoM has
determinant 1. In the case where〈·|·〉 is the standard inproduct〈x|y〉 = xTy,
this observation allows us to deduce the following estimate on the determinant of
positive (semi-)definite matrices.

PROPOSITION 2.1(Hadamard’s Inequality). LetA ∈ Rm×n be a matrix with row
vectorsaT

i . Then

0≤ det.AA T/ ≤

m∏
i=1

aT
i ai :

Proof. If the rows ofA are linearly dependent, we have detAA T
= 0 and there

is nothing to show. Otherwise we apply Gram-Schmidt to obtainB = MA with
detM = detM T

= 1 Hence

detAA T
= detMAA TM T

= detBBT:
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B has pairwise orthogonal rowsbT
i . So the matrixBBT is a diagonal matrix with

diagonal elementsbT
i bi ≥ 0. Hence (cf. Ex. 2.15),

0≤ detBBT
=

m∏
i=1

bT
i bi ≤

m∏
i=1

aT
i ai :

�

2.2.3. Eigenvalues of Symmetric Matrices.Let A ∈ Rn×n be a square ma-
trix. The number� ∈ R is called aneigenvalue ofA if there exists a vector
x ∈ Rn

\ {0} such that

Ax = �x .i:e:; x ∈ ker.A − �I // :

In other words,� is an eigenvalue ofA if det.A − �I / = 0. The nonzero vectors
x ∈ ker.A − �I / are theeigenvectorscorresponding to�. Clearly,x is an eigen-
vector if and only ifx′ = ‖x‖−1x is an eigenvector. So we can restrict our attention
to eigenvectors of unit length‖x‖ = 1.

Interest in eigenvalues and eigenvectors arises from the following consideration.
Suppose there exists a basis{x1; : : : ;xn} of Rn with pairwise orthogonal eigenvec-
tors ofA of length‖xi‖ = 1. SettingQ= [x1; : : : ;xn], the orthogonality relations
meanQTQ = I , i.e., QT

= Q−1, while the eigenvalue property yields the diago-
nalizationAQ = QD or

QTAQ = D; whereD = diag.�1; : : : ; �n/ :

REMARK. [SPECTRAL DECOMPOSITION]. The eigenvector basisQ implies in partic-
ular the so-calledspectral decomposition

(2.28) A =
n∑

i=1

�ixixT
i

of A as a (weighted) sum of the p.s.d. matricesxixT
i ∈ Rn×n of rank 1. The equality in

(2.28) is straightforward to verify by checking for each basis vector

Ax j = � jx j =

n∑
i=1

�ixi .xT
i x j / =

( n∑
i=1

�ixixT
i

)
x j :

REMARK. Although eigenvalues are quite ”natural” matrix parameters, not every (real)
matrix admits (real) eigenvalues. Moreover, even when eigenvalues exist, they cannot
be calculated with elementary linear-algebraic operations and fall outside the realm of
Gaussian elimination type methods. Already with positive definite matrices we face qua-
dratic optimization problems subject to the nonlinear constraint‖x‖ = 1 (see (2.29) be-
low). In this sense, Theorem 2.3 below is an ”existence result”. In practice, the numerical
computation of eigenvalues is not exact.

We want to show that everysymmetricmatrix A ∈ Sn×n admits an orthogonal
basisQ of eigenvectors. Observe first that the number

(2.29) �1 = min
‖x‖=1

xTAx
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is well-defined since the continuous functionf .x/ = xTAx attains its minimum
on the compact set{x ∈ Rn

| ‖x‖ = 1} (cf. Theorem 1.1). So there exists a vector
x1 ∈ Rn, ‖x1‖ = 1, such that�1 = xT

1 Ax1. By definition of�1, we havexT.A −
�1I /x ≥ 0 for all x ∈ Rn, i.e.,

.A − �1I / is positive semidefinite andxT
1 .A − �1I /x1 = 0 :

Expressing the p.s.d. matrix asA − �1I = CTC (cf. Corollary 2.4), we find

0= xT
1 .A − �1I /x1 = .Cx1/

T.Cx1/ = ‖Cx1‖
2

and henceCx1 = 0. SoCTCx1 = 0 or, equivalently,.A − �1I /x1 = 0, i.e., x1 is
an eigenvector ofA with corresponding eigenvalue�1.

Starting with the eigenvectorx1 corresponding to�1 we successively compute an
orthonormal basis of eigenvectorsQ = [x1; : : : ;xn] as follows. We (arbitrarily)
extendx1 to an orthonormal basisQ1 = [x1;q2; : : : ;qn] and observe that

QT
1 AQ1 =

[
�1 0T

0 A2

]
with a matrixA2 ∈ S.n−1/×.n−1/. The same argument exhibits some orthogonal

matrixQ2 with Q
T
2 A2Q2 =

[
�2 0T

0 A3

]
. HenceQ2 =

[
1 0T

0 Q2

]
yields

QT
2 QT

1 AQ1Q2 =

 �1 0 0T

0 �2 0T

0 0 A3

 :

After (at most)n steps, the desired diagonalization is obtained by the orthogonal
matrixQ = Q1 · · ·Qn.

Summarizing, we have derived the following ”spectral theorem”.

THEOREM 2.3 (Spectral Theorem for Symmetric Matrices). Let A ∈ Sn×n be a
symmetric matrix. Then there exists a matrixQ ∈Rn×n and eigenvalues�1; : : : ; �n

of A such that

QTQ = I and QTAQ = diag.�1; : : : ; �n/ :

�

REMARK. Our discussion exhibits the eigenvalue�1 of the symmetric matrixA as the
optimal solution of the optimization problem

(2.30) min� s.t. A − �I � 0 :

This problem can in principle be solved approximately by using the Diagonalization al-
gorithm (cf. Section 2.1.3): Suppose we have initial lower and upper bounds for�1, i.e.,
� ≤ �1 ≤ �. We then approximate�1 by binary search:
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WHILE �− � > " DO

BEGIN

Let � := .�+ �/=2.
Check whetherA − �I is p.s.d.
If yes, update� := �, otherwise� := � .

END

In practice, other methods are more efficient (e.g., theQR-algorithmcf. [33]).

2.3. Integer Solutions of Linear Equations

Often one may want to have solutions for systems of linear equations with each
coordinate being an integer. This extra requirement adds some difficulty to the
problem of solving linear equations. Consider, for example, the equation

3x1− 2x2 = 1 :

Gaussian Elimination will produce the rational solution.x1; x2/ = .1=3;0/ (or
.x1; x2/ = .0;−1=2/ if we re-order the variables) and miss the integral solution
.x1; x2/ = .1;1/. Moreover, the example

2x= 1

shows that a linear equation may well have a rational solution while being infea-
sible with respect to the integer requirement. So we must approach the problem
differently.

We assume that all coefficients of the linear equations we consider are rational.
Hence we can multiply the equations by suitable integers so that we obtain an
equivalent system with integral coefficients. The important point to make now
comes from the following observation. For everyx1; x2 ∈ Z and

b = a1x1+ a2x2 ;

each divisor the integersa1 anda2 have in common must also divideb, or, to put
it differently, b is an integral multiple of the greatest common divisor ofa1 and
a2. In fact, we have

L EMMA 2.2 (Euclid’s Algorithm). Let c= gcd.a1;a2/ be the greatest common
divisor of the integers a1 and a2. Then

L.a1;a2/ := {a1�1+ a2�2 |�1; �2 ∈ Z} = {c� |� ∈ Z} =: L.c/ :

Proof.We have already observed that everyb ∈ L.a1;a2/ must be a multiple of
c= gcd.a1;a2/. So it suffices to showc ∈ L.a1;a2/, i.e., it suffices to derive an
explicit integer representation

c = a1�1+ a2�2 :
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We solve the latter problem withEuclid’s Algorithm. The algorithm is based on
the simple observation that, for anyk ∈ Z, we have

gcd.a1;a2/ = gcd.a1;a2− a1/ = : : : = gcd.a1;a2− ka1/ :

Givena1;a2, we determine gcd.a1;a2/ as follows. Assuming|a1| ≤ |a2|, we first
try c= a1 as a candidate and check whether the quotient� = a2=c= a2=a1 is an
integer. If yes, clearly gcd.a1;a2/ = |c| = |a1| holds and the algorithm stops.

If � =∈ Z, we let [�] ∈ Z denote the integer nearest to� and write

a2 = [�]a1+�a1;

noting
|�| = |�− [�] | ≤ 1=2 and �a1 = a2− [�]a1 ∈ Z :

According to the basic observation above, it now suffices to determine

gcd.a1; �a1/ = gcd.a1;a2− [�]a1/ :

Because|�a1| ≤ |a1|=2, we tryc= �a1 as the next candidate for a greatest com-
mon divisor and proceed as before until the current� satisfies� ∈ Z (and hence
� = 0).

Since the absolute value|c| of our current candidate for gcd.a1;a2/ is reduced by
at least 50% in each iteration, the algorithm will stop after at most log|a1| steps
(log always denotes the logarithm to base 2) and output from the currentc the
result

|c| = gcd.a1;a2/ :

It is easy to update an expression for the currentc as an integer combination

c= a1�1+ a2�2

of the originala1 anda2 because the parameters in each iteration are simple in-
teger combinations of the parameters of the previous iteration and, hence, of the
original a1 anda2.

�

Euclid’s Algorithm allows us to solve the integer equation

a1x2+ a2x2 = b

in a straightforward way. We first compute an integer representation for the great-
est common divisorc of a1 anda2:

c= a1�1+ a2�2 :

If � = c−1b =∈ Z, then the equation does not have an integer solution. Otherwise
the choicex1 = ��1 andx2 = ��2 yields a solution.

We now generalize Euclid’s Algorithm with the goal of solving systems of linear
equations in integer variables. To be specific, we assume that we are givenn
integral vectorsa1; : : : ;an ∈ Zm together with a prescribed right-hand-side vector
b ∈ Zm and we want to find integersx j ∈ Z such that
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a1x1+ a2x2+ : : :+ anxn = b(2.31)

or assert that no integral solution of the system (2.31) ofm linear equations exists.

REMARK. Seemingly more generally, we could admit rational dataa j ;b ∈Qm for (2.31)
as well. Multiplying then each equation in (2.31) by a suitable denominator, we easily
obtain an equivalent problem with integral parameters.

Without loss of generality, we furthermore assume that the system (2.31) has full
rankm (remove redundant equations) and that we have labeled thea j ’s in such a
way that the firstm vectorsa1; : : : ;am ∈ Zm are linearly independent.

Consider the setL of all feasible right-hand-sidesb for (2.31),i.e., all vectors that
can be expressed as integral linear combinations of the vectorsa1; : : : ;an:

L = L.a1; : : : ;an/ = {

n∑
j=1

a j� j |� j ∈ Z} ⊆ Rm :

L is said to be thelattice generated by the vectorsa1; : : : ;an. It may happen that
L.a1; : : : ;am/ is a proper subset ofL.a1; : : : ;an/. Nevertheless, it turns out that
one can findm linearly independent vectorsc1; : : : ;cm ∈ L.a1; : : : ;an/ such that

L.c1; : : : ;cm/ = L.a1; : : : ;an/ :

Such a setC = {c1; : : : ;cm} will be called alattice basisfor L.a1; : : : ;an/. The
key to our algorithmic approach for solving the system (2.31) will be the con-
struction of a lattice basis.

Thinking of C as a matrixC with columnsci , we note that (2.31) has an integral
solution if and only ifb ∈ L.c1; : : : ;cm/, i.e., if and only if λ = C−1b ∈ Zm.

If b=Cλ is a representation ofb as an integral linear combination of theci ’s, and
if we know how to express eachci as an integral linear combination of the vectors
a1; : : : ;an, we can immediately compute an explicit integral solutionx for (2.31).

The algorithm below constructs a lattice basis iteratively. In each iteration, we
will be able to maintain an integral representation of the currentci ’s in terms of
the originala j ’s. The next lemma is straightforward from the definitions. It tells
us how to check whether{c1; : : : ;cm} is a lattice basis.

L EMMA 2.3. Let c1; : : : ;cm ∈ L.a1; : : : ;an/ be given vectors and considerC =
[c1; : : : ;cm]. Then L.c1; : : : ;cm/ = L.a1; : : : ;an/ holds if and only if for all j=
1; : : : ;n, the linear equation

Cλ = a j

has an integral solution.

�

The condition in Lemma 2.3 is easy to check ifC yields a basis ofRm (and thus is
invertible): We simply have to verify the propertyC−1a j ∈ Zm for all j = 1; : : : ;n.
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The algorithm for constructing a lattice basis now iterates two steps. The first
step checks whether the current candidate basis is good. If someC−1a j has a non-
integral component, we modify our current basis in a second step similar to the
adjustment of the candidatec in Euclid’s Algorithm and return to the first step.

Lattice Basis

INIT: C = [c1; : : : ;cm] = [a1; : : : ;am] ;
ITER: ComputeC−1;

If C−1a j ∈ Zm for j = 1; : : : ;n, thenSTOP;

If λ = C−1a j =∈ Zm for some j, then
Let a j = Cλ =

∑m
i=1�ici and compute

c=
∑m

i=1.�i − [�i ]/ci = a j −
∑m

i=1[�i ]ci ;

Let k be the largest indexi such that�i =∈ Z ;
UpdateC by replacingck with c in columnk;

NEXT ITERATION

Let us take a look at an iteration of the algorithm Lattice Basis. Ifc1; : : : ;cm are
elements of the latticeL.a1; : : : ;an/, it is clear thatc will also be a member of
L.a1; : : : ;an/. Moreover, if we have recorded how to express each of the vectors
ci as an integral linear combination ofa1; : : : ;an, then we can obtain such an
explicit representation forc as well.

From these remarks, it is apparent that we can solve (2.31) if the algorithm Lattice
Basis ever stops: We computey = C−1b and check whethery ∈ Zm. If yes,
substituting thea j ’s for theci ’s in b= Cy will produce the desired representation.

REMARK. In practical computation, it is preferable to solveCλ= a j by Gaussian Elim-
ination rather than to compute the inverseC−1 explicitly.

It remains to show that the algorithm is finite. In order to estimate the number of
iterations of Lattice Basis, we follow the quantity

1.c1; : : : ;cm/ = |detC|

in each iteration.C will always be a basis ofRm and thus yields|detC| > 0.
Since all coefficients inC are integers, we have|detC| ∈ N and hence conclude
|detC| ≥ 1.

Describing the replacement step in an iteration by matrix operations, we see that
the update ofC amounts to the computation of the matrix

C̄ = CM ;
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whereM = .�i j / ∈ Rm×m is the matrix with

�i j =

 1 if i = j 6= k
�i − [�i ] if j = k andi ≤ k

0 otherwise.

Hence we obtain

|detC̄| = |detM | · |detC| = |�k− [�k]| · |detC| ≤
1
2
1.c1; : : : ;cm/

and thus conclude afterK iterations

1≤ 1.c1; : : : ;cm/ ≤ 2−K1.a1; : : : ;am/ ;

which implies the bound on the number of iterations:

K ≤ log1.a1; : : : ;am/ :

EX . 2.17. Compute integers x; y; z∈ Z that solve the following system of linear equa-
tions:

2x + 5y + 3z = 3
3x + 2y + z = −7 :

The existence of lattice bases implies an integer analogue of Gale’s Theorem for
linear equations (see p. 27):

THEOREM 2.4. Let A ∈ Zm×n and b ∈ Zm be given. Then exactly one of the
following statements is true:

(a) There exists somex ∈ Zn such thatAx = b.
(b) There exists somey ∈ Rm such thatyTA ∈ Zn andyTb 6∈ Z.

Proof. If (a) is true, thenyTb = yTAx for somex ∈ Zn. So yTA ∈ Zn implies
yTb ∈ Z, i.e., (b) cannot be true.

If (a) is not true, thenC−1b 6∈ Zm, where we assume without loss of generality that
A has full rankm and thatC is a basis for the lattice generated by the columns of
A. In particular,C−1 contains a rowyT, say, such thatyTb 6∈ Z.

On the other hand, the fact thatC is a lattice basis impliesC−1a j ∈ Zm for all
j = 1; : : : ;n, i.e., C−1A ∈ Zm×n. So, in particular,yTA ∈ Zn holds and proves
statement (b) to be true.

�

REMARK. One can show that lattice bases exist even if the vectorsa j are not rational
(see Lekkerkerker [53]). So Theorem 2.4 remains true in this more general setting. How-
ever, our finiteness argument for the algorithm Lattice Bases will no longer be valid if the
problem parameters are not rational. (This is no problem for practical applications, where
the problem data are always rational).
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2.4. Linear Inequalities

We now investigate the problem of computing a feasible vectorx ∈ Rn for a sys-
tem Ax ≤ b of linear inequalities, withA = .ai j / ∈ Rm×n andb = .bi / ∈ Rm,
which stands short for

(2.32)
n∑

j=1

ai j x j ≤ bi ; i = 1; : : : ;m :

We approach the problem with the same idea as in Gaussian elimination and elim-
inate variables one after the other until the system is either seen to be infeasible
or a solution can be reconstructedvia backward substitution. However, there is
one important technical point to be observed:

• In the elementary row operations, only multiplications withstrictly pos-
itive scalarsare admitted.

REMARK. The restriction to operations withpositivescalars comes from the fact that
multiplication of an inequality with a negative scalar wouldreversethe inequality.

To see how we have to proceed, let us divide thei th inequality in the system (2.32)
by the positive number|ai1| wheneverai1 6= 0, i = 1; : : : ;m, and investigate the
equivalent system

(2.33)

x1+

n∑
j=2

a
′

r j x j ≤ b
′

r ; r = 1; : : : ; k

−x1+

n∑
j=2

a
′

sjx j ≤ b
′

s ; s= k+ 1; : : : ; `

n∑
j=2

at j x j ≤ bt ; t = `+ 1; : : : ;m

For clarity of the exposition, we assume here that the rows are indexed such that
the first rows have coefficientai1 > 0, then the rows withai1 < 0 follow, and
finally the rows withai1 = 0 appear. Note that if either noai1 > 0 or noai1 < 0
occurs (i.e., eitherk= 0 or ` = k in (2.33)), a solutionx = .x1; : : : ; xn/ is easily
obtained recursively by solving the system of inequalitiest = ` + 1; : : : ;m of
(2.33) in the variablesx2; : : : ; xn and then chosex1 sufficiently small resp. large
so as to satisfy the inequalities involvingx1.

The firstl inequalities in (2.33) can equivalently be written as

(2.34) min
r=1;:::;k

(
b
′

r −

n∑
j=2

a
′

r j x j

)
≥ x1 ≥ max

s=k+1;:::;`

(
n∑

j=2

a
′

sjx j − b
′

s

)
:
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with the understanding min= +∞ if k= 0 (i.e., there is noai1 > 0) and max=
−∞ if l = k (i.e., there is noai1 < 0).

Eliminating the variablex1 in (2.34) and including the inequalities in whichx1

does not appear, we obtain the system

(2.35)

n∑
j=2

a
′

sjx j − b
′

s ≤ b
′

r −

n∑
j=2

a
′

r j x j ; r = 1; : : : ; k; s= k+ 1; : : : ; `

n∑
j=2

at j x j ≤ bt ; t = `+ 1; : : : ;m:

It is crucial to observe that for every feasible solution of (2.35) anx1 can be found
that satisfies the relation (2.34) because, by construction of the system (2.35),
the min≥ max property is guaranteed by all solutions. Re-ordering terms, we
moreover see that (2.35) is equivalent with

(2.36)

n∑
j=2

.a
′

sj+ a
′

r j /x j ≤ b
′

r + b
′

s ; r = 1; : : : ; k; s= k+ 1; : : : ; `

n∑
j=2

at j x j ≤ bt ; t = `+ 1; : : : ;m:

If x = .x1; x2; : : : ; xn/
T satisfies the system (2.33) then clearlyx′ = .x2; : : : ; xn/

T

satisfies the linear inequality system (2.36) (orA ′x′ ≤ b′ for short). Moreover,
whenever a vectorx′ = .x2; : : : ; xn/

T satisfies (2.36), thenx = .x1; x2; : : : ; xn/
T

is feasible for (2.33)if and only if x1 is chosen according to (2.34).

REMARK. (2.36) arises from (2.33) by adding ther ands rows in pairs. In particular,
the systemA ′x′ ≤ b′ in (2.36) can be understood to be of the form

Ãx = [0;A ′]x ≤ b′ (with 0 as the first column of̃A):

As it was the case with Gaussian elimination, the preceding analysis says geomet-
rically that the solutions of the system (2.36) are the projections of the solutions
of the system (2.32) onto the variablesx2; x3; : : : ; xn. Iterating the construction,
we thus observe:

THEOREM 2.5(Projection Theorem). Let P⊆ Rn be the set of feasible solutions
of Ax ≤ b. Then for all k= 1; : : : ;n, the projection

P.k/
= {.xk+1; : : : ; xn/ | .x1; : : : ; xk; xk+1; : : : ; xn/ ∈ P for suitable xi ∈ R}

is the solution set of a linear systemA.k/x.k/
≤ b.k/ in n− k variablesx.k/

=

.xk+1; : : : ; xn/.

�
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Given the inequality system (2.32), we can find a solution (or decide that no so-
lution exists) recursively (eliminating one variable after the other until a solution
can be obtained)via the following procedure.

Fourier-Motzkin
Compute a solution.x2; : : : ; xn/ for (2.36);
If no such solution exists, thenSTOP,

Computex1 via backward substitution from (2.34);

We note two important properties of Fourier-Motzkin elimination and its applica-
tion to systems of linear inequalities:

• Everyfeasible solution ofAx ≤ b can, in principle, be obtainedvia suit-
able backward substitutions in the Fourier-Motzkin algorithm.
• If the coefficients ofA andb are rational numbers, the Fourier-Motzkin

algorithm will allow us to compute a solution with rational components
(if Ax ≤ b is feasible at all).

EX . 2.18. Eliminate x, y, z successively to solve the system

3x + y − 2z ≤ 1
− 2y − 4z ≤ −14

−x + 3y − 2z ≤ −2
y + 4z ≤ 13

2x − 5y + z ≤ 0

REMARK. Fourier-Motzkin Elimination can be viewed as Gaussian Elimination with
respect to the set of non-negative scalars. In contrast to Gaussian Elimination for linear
equations, however, Fourier-Motzkin Elimination may increase the number of inequali-
ties considerably in every elimination step. This is the reason why the Fourier-Motzkin
algorithm is computationally not very efficient in general.

EX . 2.19. Let m be the number of inequalities in the system (2.33). Establish the upper
bound m′ ≤ m2=4 on the number m′ of inequalities in the system (2.36).

The Satisfiability Problem. A fundamental model in artificial intelligence is
concerned withboolean functions' : {0;1}n→ {0;1}. We consider such a func-
tion ' = '.x1; : : : ; xn/ as a function ofn logical (boolean) variablesx j and inter-
pret the value “1” as “TRUE” and the value “0” as “FALSE”. We say that' is
satisfiableif '.x/ = 1 holds for at least onex ∈ {0;1}n. Everyx with '.x/ = 1
is called asatisfying truth assignment(as it assigns values to the logical variables
that make' become TRUE). Given a boolean function', we would like to find a
satisfying truth assignment for' (or decide that no such assignment exists).
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Allowing also thenegationx̄ j of a boolean variablex j , it is well-known that each
boolean function can be represented by a first order logic formula, or boolean
formula, inconjunctive normal form(CNF). For example,

'.x1; x2; x3/ = .x1∨ x2/∧ .x̄1∨ x2∨ x3/∧ x̄3

is in CNF and has a satisfying truth assignment'.1;1;0/ = 1.

In other words, we can write'.x1; : : : ; xn/ as a conjunction ofclauses Ci , each
of which is a disjunction ofliterals, namely unnegated and negated boolean vari-
ables. Thesatisfiability problemasks for an assignment that makes all clausesCi

of the system simultaneously TRUE.

The satisfiability problem for a CNF-system can be translated into the problem of
solving a linear system in the.0;1/-variablesxk , where each clause corresponds
to an inequality of the system and the negated variablex̄k is represented by 1− xk.
For example, the clauseCi = x2∨ x̄5∨ x7 is made TRUE if and only if we assign
values 0 or 1 to the variables such that

x2+ .1− x5/+ x7 ≥ 1 i.e. − x2+ x5− x7 ≤ 0 :

In general, we cannot solve the system by Fourier-Motzkin elimination since the
Fourier-Motzkin solution may not bebinary, i.e., xk ∈ {0;1} for all k (even if a
binary solution exists). As a matter of fact, it is computationally difficult to find
satisfying truth assignments for general CNF-systems (see Section??). However,
there are classes of CNF-systems that can be solved efficiently.

Assume thatC1 ∧ : : : ∧ Cm is a CNF-formula in which each clauseCi consists
of at most 2 literals. Then it is easy to compute a satisfying truth assignment (if
one exists). Consider, for example, the variablexk. If its negationx̄k occurs in no
clause, then we may setxk = 1 and remove all clauses containingxk from further
consideration.

If there are clausesC1= xk∨ xs andC2= x̄k∨ xt, then a truth assignment satisfies
C1 andC2 simultaneously if and only if it satisfies the so-calledresolution C=
xs∨ xt. That is, we can replaceC1 andC2 by C and continue. The resolution step
is equivalent with the elimination procedure in the Fourier-Motzkin algorithm
when we eliminatexk from the inequalities corresponding toC1 andC2. We add
the inequalities

−xk −xs ≤ −1
xk −xt ≤ 0

in order to derive “−xs− xt ≤ −1”, which corresponds toC. Note that this reso-
lution step does not increase the number of inequalities and hence gives rise to an
efficient algorithm.

EX . 2.20. Use the Fourier-Motzkin algorithm to solve the satisfiability problem for the
CNF-system with C1 = x1∨ x2, C2 = x̄1∨ x3, C3 = x̄1∨ x̄2, C4 = x̄3∨ x4, C5 = x1∨ x̄4.
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2.4.1. Solvability of Linear Systems and Theorems of the Alternative.
From a conceptual point of view, we can deal with the Fourier-Motzkin algo-
rithm as we did with Gaussian Elimination. We imagine that the “eliminated”
variablex1 is actually still present in the derived system (2.36) but has coefficient
0. Moreover, the inequalities of the derived system are obtained according to the
principle:

• Each inequality of (2.36) is a linear combination of the inequalities
of (2.33) with non-negative scalars.

EX . 2.21. Given the linear systemAx ≤ b, we may consider arbitrary non-negative
linear combinations of the inequalitiesA i·x≤ bi and obtain so-calledderivedinequalities
of the form

.yTA/x ≤ yTb

for somey ≥ 0. Show: Every non-negative linear combination of derived inequalities
results again in a derived inequality.

As a consequence of Ex. 2.21, we find:
• Everyinequality in any iteration of the Fourier-Motzkin algorithm is of

the form.yTA/x ≤ yTb, wherey ≥ 0.

Keeping this observation in mind, we arrive directly at the following general-
ization of Gale’s Theorem on the solvability of linear equations, which is often
referred to as the ”Lemma of Farkas”:

THEOREM 2.6 (Farkas Lemma). Let A ∈ Rm×n and b ∈ Rm be given. Then
exactly one of the following alternatives is true:

(I) Ax ≤ b is feasible.
(II) There exists a vectory ≥ 0 such thatyTA = 0T and yTb < 0.

Proof.We apply Fourier-Motzkin elimination to the systemAx ≤ b. After elimi-
nating all variables we arrive at the systemÃx ≤ b̃ with coefficient matrixÃ = 0,
in which theith inequality is of the type

0= 0Tx = [yT
i A]x ≤ yT

i b = b̃i

for some vectoryi ≥ 0. This system is either trivially feasible (ifb̃i ≥ 0 holds for
all i) or infeasible. In the first case, (I) is true (and we can construct a feasible
solution ofAx ≤ b via backward substitution). In the second case (II) holds (take
y = yi if b̃i < 0).

�

EX . 2.22. Show directly that (I) and (II) in Theorem 2.6 can not hold simultaneously.

REMARK. It is usually quite straightforward to check computationally whether a given
vectorx is indeed a feasible solution of a given system of (linear or nonlinear) inequali-
ties. In this sense, a system of inequalities has a “short proof”x for its feasibility. (Finding
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such a ”short proof” is, of course, a usually much more involved matter, see Chapter 8.)
But how could one convince another person that a feasible solution doesnot exist? This
question is generally very hard to answer. The Lemma of Farkas shows thatlinear sys-
tems enjoy the remarkable property of possessing also “short proofs”y for infeasibility.

EX . 2.23. Find a vectory ∈ R3 that exhibits the infeasibility of the system

x1 + 2x2 + 3x3 ≤ −1
−2x1 + x2 ≤ 2

−5x2 − 6x3 ≤ −1 :

EX . 2.24. Let A ∈ Rm×n;b ∈ Rm;B ∈ Rk×n;d ∈ Rk be given. Show that exactly one of
the following alternatives is true

(I) Ax = b;Bx ≤ d is feasible.
(II) There exist vectorsu ∈ Rm andv ∈ Rk such thatv ≥ 0,

uTA + vTB = 0T, and uTb+ vTd < 0.

In the same spirit, we can prove or disprove the existence of “non-trivial” solu-
tions of systems of linear equations and inequalities. We give one example, where
we use the notation

a < b
for anya= .a j /;b = .b j / ∈ Rn that satisfya j < b j for all j = 1; : : : ;n.

COROLLARY 2.5 (Gordan). For everyA ∈ Rm×n, exactly one of the following
alternatives is true:

(I) Ax = 0;x ≥ 0 has anon-zerosolution.
(II) yTA < 0T has a solution.

Proof. If x̄ and ȳ satisfy Ax̄ = 0; x̄ ≥ 0 and ȳTA < 0T, we have.ȳTA/x̄ =
ȳT.Ax̄/ = 0, and hencēx = 0 because all components ofȳTA are strictly neg-
ative. So (I) and (II) are mutually exclusive.

Assume now that (II) does not hold. HenceATy≤ b is infeasible for the particular
choiceb = −1. So the Lemma of Farkas guarantees the existence of a vector
x ≥ 0 such that bothxTAT

= 0T, i.e., Ax = 0, andxTb < 0 (and hencex 6= 0) are
satisfied, which implies that statement (I) is true.

�

REMARK. The results of Gordan [35] actually pre-date and imply the results of
Farkas [20]. As we have seen, both are consequences of the Fourier-Motzkin algorithm
that is essentially due to Fourier [26] even earlier (see also Motzkin [60]).

Stochastic Matrices. We illustrate the power of theorems of the alternative
with an application in stochastics. Aprobability distributionon the finite set
S= {1;2; : : : ;n} is a vectorπ = .�1; : : : ; �n/

T such that

�i ≥ 0 for all i ∈ S and
n∑

i=1

�i = 1 :
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The matrixP = .pi j / ∈ Rn×n is said to bestochasticif each row vectorPi· =

.pi1; : : : ; pin/ of P is a probability distribution.

Thinking of Sas a system ofstatesand of pi j as thetransition probabilityof the
system to pass into statej, given it is in statei,

�′k =

n∑
i=1

pik�i

is the probability for the system to move into statek, assuming it is currently in
statei with probability�i . So

π ′ = PTπ

is the probability distribution of the states after one transition.

Stochastic matrices arise in the study of random walks and Markov chains (see,
e:g:, [21] for more details). A fundamental property of any stochastic matrix
P = .pi j / is the existence of asteady state distribution, namely a probability
distribution π such thatπ = PTπ. To prove this fact, it is convenient to use
matrix notation. WhereI is the identity, we must prove that the system

.P− I /Tx = 0; x ≥ 0

has a feasible solutionx 6= 0. Setting� =
∑

i xi > 0, the vector� = �−1x then
yields the desired steady state distribution.

By Gordan’s Theorem (Corollary 2.5), it suffices to show that the associated
“dual” system

.P− I /y < 0 or, equivalently, Py< y(2.37)

is infeasible. Consider therefore a potential feasible vectoryT
= .y1; : : : ; yn/. Let

yk be a smallest component ofy. From (2.37), we would then deduce

yk >

n∑
j=1

pkj y j ≥ yk

n∑
j=1

pkj = yk ;

which is impossible.

2.4.2. Implied Inequalities. We say that an inequalitycTx ≤ z is impliedby
Ax ≤ b if for all x ∈ Rn,

Ax ≤ b implies cTx ≤ z

(in other words: there is no solution ofAx ≤ b with cTx > z). If Ax ≤ b is
infeasible then, by definition,everyinequality is implied. Hence we will always
assume in the following thatAx ≤ b is feasible.

Implied inequalities are easily constructed: Multiplication ofA i·x ≤ bi with a
scalar multiplieryi ≥ 0 yields the implied inequalityyiA i·x ≤ yibi . Adding all
these inequalities, we obtain the implied inequality

.yTA/x ≤ yTb :
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Increasing the right hand side to any valuez≥ yTb yields, of course, again an
implied inequality.yTA/x ≤ z.

A fundamental and exceedingly useful property of linear systems is the converse:
Everyimplied inequality arises this way. This statement is equivalent with Theo-
rem 2.6 and also occasionally referred to as the ”Lemma of Farkas”.

COROLLARY 2.6 (Farkas). Assume thatAx ≤ b is feasible. Then the inequality
cTx ≤ z is implied byAx ≤ b if and only if there exists a non-negative vector
y ≥ 0 such that

cT
= yTA and yTb ≤ z:(2.38)

Proof. We have seen that condition (2.38) is sufficient. To show the necessity,
suppose that (2.38) has no non-negative solution. We claim that thencTx ≤ z is
not implied byAx ≤ b, i.e., that there exists a solution ofAx ≤ b andcTx > z.
So suppose that the system (2.38) has no solutiony ≥ 0, i.e.,

(2.39)
ATy = c
bTy ≤ z
−Iy ≤ 0

is infeasible. Then Theorem 2.6 implies (cf. Ex. 2.24) that the associated alterna-
tive system

(2.40)
vTAT

+ ubT
− wTI = 0T

vTc + uz < 0

has a feasible solution.v;u;w/ with u≥ 0 andw ≥ 0. We consider the two cases
u 6= 0 andu= 0. Nowu> 0 implies that̄x=−u−1v satisfiesAx̄≤ b andcTx̄> z,
which proves the claim.

If u = 0 thenAv ≥ 0 and .−cTv/ > 0. Choosing some feasible solutionx0 of
Ax ≤ b, we setxt = x0− tv and find fort > 0,

Ax t ≤ b− tAv ≤ b and cTxt = cTx0− tcTv :

Hence, fort > 0 sufficiently large, we obtain againAx t ≤ b andcTxt > z.
�

EX . 2.25. Show: f.x/ = cTx is bounded from above on P= {x ∈ Rn
| Ax ≤ 0} if and

only if the inequalitycTx ≤ 0 is implied byAx ≤ 0.

Corollary 2.6 allows us to check whethercTx ≤ z is implied byAx ≤ b by testing
the feasibility of the system

y ≥ 0 ; yTA = cT ; yTb ≤ z :

Similarly, we can identify redundancies in a system of linear inequalities (cf.
Ex. 2.26) and, more importantly, characterize optimal solutions of linear opti-
mization problems (cf. Ex. 2.28).
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EX . 2.26. An inequalityA i·x ≤ bi of Ax ≤ b is calledredundantif its removal does not
affect the set of feasible solutions. Explain how redundancy can be tested with the help of
Fourier-Motzkin. Show by example: IfA i·x ≤ bi andA j·x ≤ b j are both redundant, then
removingboth inequalities simultaneously may well alter the set of feasible solutions.

EX . 2.27. Show by example that the hypothesis “Ax ≤ b is feasible” cannot be dropped
in Corollary 2.6.

EX . 2.28. In a linear optimization problemwe are to maximize a linear function f.x/ =
cTx on the set P= {x ∈ Rn

| Ax ≤ b}. Let x ∈ P be given. Show: f.x/ = cTx = z is
optimal if and only if Ax ≤ b impliescTx ≤ z.
Conclude: The optimal solutionsx (if they exist) arise precisely from the feasible solutions
of the linear system (in the variablesx;y; z):

Ax ≤ b ; cTx = z ; yTA = cT ; y ≥ 0 ; yTb ≤ z :





CHAPTER 3

Polyhedra

A polyhedron P⊆ Rn is, by definition, the solution set of some systemAx ≤ b
of linear inequalities:

P= P.A;b/ = {x ∈ Rn
| Ax ≤ b} :

In this chapter we study polyhedra as geometrical objects with the goal of pro-
viding some geometric intuition for the “algebraic” results about linear inequality
systems in Chapter 2 (e.g., the Farkas Lemma). Polyhedra can be looked at from
two different (“dual”) points of view. So this chapter also introduces the concept
of duality for polyhedra. The duality principle will also play a fundamental role
in our analysis of (linear and nonlinear) optimization problems in later chapters.

3.1. Polyhedral Cones and Polytopes

Geometrically speaking, an inequalityaTx ≤ � with a 6= 0 defines ahalfspace
H≤ = P.aT; �/ = {x ∈ Rn

| aTx ≤ �} with

H = {x ∈ Rn
| aTx = �}

as its associatedhyperplane. Hence a polyhedronP= P.A;b/ ⊆ Rn is the inter-
section of finitely many halfspaces. (In particular,P= Rn is the empty intersec-
tion of halfspaces).

EX . 3.1. Show by example that different inequality systems may define the same polyhe-
dron.

Every hyperplaneH ⊆ Rn and, more generally, every linear or affine subspace
L ⊆ Rn is the solution set of a linear system of inequalities and hence a polyhe-
dron. The following type of polyhedron is of particular interest: Apolyhedral
coneis a polyhedron of the formP= P.A;0/ (see also Ex. 3.2).

Linear Subspaces.To motivate the structural analysis of polyhedra, let us first
take a look at the familiar case of linear subspaces (which form a particular class
of polyhedral cones). A linear subspaceL ⊆ Rn can be represented in two con-
ceptually different ways as

L = {x ∈ Rn
| Ax = 0} or L = span{v1; : : : ;vk};

whereA is a suitable matrix and the vectorsv1; : : : ;vk ∈ Rn generateL = kerA.
We refer to these two asimplicit resp. explicit representations ofL. Both have

57
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their advantages: The implicit representation allows us to check easily whether
a givenx ∈ Rn belongs toL (by evaluatingAx), while the explicit representa-
tion enables us to produce elementsx = 6�ivi ∈ L as linear combinations of the
generatorsvi . .

Our definition of a polyhedron is based on the implicit representationP= P.A;b/.
We want to establish an explicit representation in terms of convex and conic hulls
(Theorem 3.3 below).

Conic and Convex Hulls. A non-empty subsetS⊆ Rn is a (convex) coneif for
scalars�1; �2 ≥ 0,

x1;x2 ∈ S =⇒ �1x+ �2x2 ∈ S :

It is straightforward to check that a polyhedral coneP.A;0/ is a cone.

EX . 3.2. Show: P⊆ Rn is a polyhedral cone if and only if P is a polyhedron and a cone.

REMARK. Some textbooks use the term ”cone’ for subsetsS⊆ Rn with the property
“x ∈ S⇒ �x ∈ S for all � ≥ 0”. For us, however, aconeis always a(convex) coneas
defined above.

A set S⊆ Rn is convexif for scalars�1; �2 ≥ 0 , �1+ �2 = 1,

x1;x2 ∈ S⇒ �1x1+ �2x2 ∈ S

In other words

x1;x2 ∈ S⇒ .1− �/x1+ �x2 ∈ S for all � ∈ [0;1]:

Geometrically this means: Ifx1;x2 ∈ S then S contains the wholeline segment
[x1;x2] = {.1− �/x1+ �x2 | � ∈ [0;1]}.

EX . 3.3. Let S⊆ Rn be a non-empty set. Show:
(a) S is a cone if and only if�1x1+ : : : + �kxk ∈ S for all k≥ 1, x1; : : : ;xk ∈ S and
�1; : : : ; �k ≥ 0.
(b) S is a convex set if and only if�1x1+ : : :+ �kxk ∈ S for all k≥ 1, x1; : : : ;xk ∈ S and
�1; : : : ; �k ≥ 0 with �1+ : : :+ �k = 1.
(Hint: Induction on k).

Clearly, intersections of convex sets (cones) are convex sets (cones) again. Hence
for an arbitraryS⊆ Rn we may define itsconvex hullconv S resp. itsconic hull
coneSas the smallest convex resp. conic set containingS. Explicitly, these sets
are given by (cf. Ex. 3.4):

coneS :=

{
k∑

i=1

�ixi | xi ∈ S; �i ≥ 0; k ∈ N

}

conv S :=

{
k∑

i=1

�ixi | xi ∈ S; �i ≥ 0;
k∑

i=1

�i = 1; k ∈ N

}
:
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EX . 3.4. Show for an arbitrary S⊆ Rn: The above given setsconv S resp.coneS are
the smallest convex resp. conic sets containing S.

The case of a finite setS= {s1; : : : ;sk} ⊂ Rn is of particular interest. Letting
S= [s1 : : :sk] ∈ Rn×k be the matrix with columnssi , we also write

coneS = {x ∈ Rn
| x = Sλ; λ ≥ 0}

convS =
{
x ∈ Rn

| x = Sµ; µ ≥ 0;1Tµ = 1
}
:

If |S| < ∞, we say that coneS and convS are finitely generated. A finitely
generated set convS is said to be apolytope. A polytope is alwaysbounded, i.e.,
there exists a numberr ∈ R such that‖x‖ ≤ r holds for allx ∈ conv{s1; : : : ;sk}.
Indeed, the triangle inequality yields

‖�1s1+ : : :+�ksk‖ ≤ ‖s1‖ + : : :+ ‖sk‖ = r

for all 0≤ �1; : : : ; �k ≤ 1.

For arbitrary setsA; B⊆ Rn theMinkowski sumis defined as

A+ B= {a+ b | a ∈ A; b ∈ B} :

We will show that each polyhedronP ⊆ Rn allows an explicit representation as
a Minkowski sumP = convV + coneW with finite setsV;W ⊂ Rn. We first
establish the converse.

THEOREM 3.1 (Weyl). Let V;W⊂ Rn be finite sets. Then

P= convV+ coneW

is a polyhedron. In particular, the polytopeconvV is a polyhedron and the finitely
generated coneconeW is a polyhedral cone.

Proof.AssumingV = {v1; : : : ;vk} andW= {w1; : : : ;w`}, consider the system of
linear equations and inequalities:

z = v+w

v = �1v1+ : : :+ �kvk

w = �1w1+ : : :+�`w`(3.1)

1Tλ = 1

λ ≥ 0; µ ≥ 0

in variablesz;v;w;λ and µ. Clearly, P is the projection of the set̄P of all
feasible solutions in the.z;v;w;λ;µ/-space onto the variablesz. Hence,P is a
polyhedron by the Projection Theorem (Theorem 2.5).

The second statement follows from the special casesW = {0} and V = {0} re-
spectively (cf. Ex. 3.2).

�

REMARK. P = convV + coneW is an explicit representation of the polyhedronP.
The proof of Weyl’s Theorem shows that an implicit representationP = P.A;b/ can
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be obtained by applying Fourier-Motzkin elimination to the system (3.1) (eliminating all
variables exceptz).

EX . 3.5. Define the (k-dimensional)standard coneas Rk
+ = {x ∈ Rk

| x ≥ 0} and the
standard simplexin Rk as1k = {µ ∈ Rk

| µ ≥ 0; 1Tµ = 1}. Show:
(a) C ⊆ Rn is a finitely generated cone if and only if there is some k and a linear map
f : Rk

→ Rn such that C= f .Rk
+/.

(b) P⊆ Rn is a polytope if and only if there is some k and a linear map f: Rk
→ Rn

such that P= f .1k/.

EX . 3.6. Show: The Minkowski sum P+ Q of the polyhedra P; Q⊆ Rn is a polyhedron
(Hint: Use the Projection Theorem).

EX . 3.7. Show for the finite set V⊆ Rn:
conv.V ∪ {0}/ = conv [V;0] = {x ∈ Rn

| x = Vλ;1Tλ ≤ 1;λ ≥ 0}:

EX . 3.8. Show that an affine map f.x/ = Bx+ d (B ∈ Rm×n and d ∈ Rm) maps each
polyhedron P⊆ Rn to a polyhedron P′ = f .P/ ⊆ Rm. (Hint: cf. the proof of Weyl’s
Theorem 3.1.)

Separating Hyperplanes.An inequalitycTx ≤  is said to bevalid for S⊆ Rn

if cTx ≤  holds for allx ∈ S, i.e., S⊆ H≤ = {x ∈ Rn
| cTx ≤ }. If S⊆ H≤ and

the pointv ∈ Rn is not contained inH≤, we say thatH≤ (or cTx ≤ ) separatesv
from Sand call

H = {x ∈ Rn
| cTx = }

aseparating hyperplane.

EX . 3.9. Give an example of a (convex) set S⊆ Rn and a pointv ∈ Rn
\ S that cannot

be separated from S by a hyperplane.

Let us illustrate the Farkas Lemma geometrically and point out its relation to
Weyl’s Theorem. Consider a polyhedronP= P.A;b/ andv ∈ Rn. By definition,
eitherv ∈ P or v can be separated fromP (by some inequalityA i·x ≤ bi). This
is particularly true forP= coneW (which is a polyhedral cone by Weyl’s Theo-
rem). In other words, given a finite setW⊆ Rn and a vectorv ∈ Rn, exactly one
of the following holds:

(I) v ∈ coneW
(II) v can be separated from coneW (and hence fromW) by an

inequalityaTx ≤ 0.

“Algebraically”, those two alternatives take the form

(I) Wλ = v; λ ≥ 0 is feasible.
(II) There exists somea ∈ Rn such thataTW ≤ 0T; aTv > 0 ,
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which is exactly the Farkas Lemma (Theorem 2.6).

REMARK. Separating hyperplanes play an important role in mathematical program-
ming, e.g., as “cutting planes” in Chapter 9 as well as in the ellipsoid method of Chap-
ter 10. Moreover, in Chapter 10, the closed convex sets are characterized as exactly those
setsS⊆ Rn that are intersections of (possibly infinitely many) halfspaces, (i.e., every
v 6∈ Scan be separated fromS).

3.2. Cone Duality

Each vectorc ∈ Rn corresponds to a unique real-valued linear functionf via
f .x/= cTx (and conversely). Similarly, there is a one-to-one correspondence be-
tween pointsc∈ Rn with ‖c‖ = 1 and hyperplanesH = {x ∈ Rn

| cTx= 0}. More
generally, each linear subspaceL ⊆ Rn is uniquely determined by its orthogonal
complement

L⊥ = {c ∈ Rn
| cTx = 0 for all x ∈ L}:

If L is defined implicitly by the linear equality systemAx = 0 with A ∈ Rm×n,
thenL⊥ is given explicitly as the row space ofA:

(3.2)
L = {x ∈ Rn

| Ax = 0} = kerA

L⊥ = {c ∈ Rn
| cT
= yTA; y ∈ Rm

} = row A:

This duality relation is the core of Gale’s Theorem (Corollary 2.2) for linear
equality systems. We want to generalize it to acone dualityas a means to pass
from explicit to implicit representations (andvice versa) of polyhedral cones.

Given a coneC⊆ Rn we define itsdual (or polar ) cone as

C0
= {c ∈ Rn

| cTx ≤ 0 for all x ∈ C}:

Clearly, C0
⊆ Rn is again a cone. It may be considered as the “cone of valid

inequalities” (of typecTx ≤ 0) for C.

EX . 3.10. Let C⊆ Rn be a cone. Show thatcTx ≤  is valid for C if and only ifcTx ≤ 0
is valid for C. (Hint: 0 ∈ C implies ≥ 0.)

EX . 3.11. Show for the linear subspace L⊆ Rn: L⊥ = L0.

The Duality Relation. As C0 is again a cone, its dualC00
= .C0/0 is well-

defined. The following simple observation implies in particular thatC00
= C

holds if C ⊆ Rn is a polyhedral cone (and generalizes the well-known relation
L = L⊥⊥ for linear subspaces).

PROPOSITION 3.1. Let C⊆ Rn be a cone. Then the following are equivalent:

(i) C= C00.
(ii) C is the intersection of (possibly infinitely many) halfspaces.
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Proof. Assume that (ii) holds. ThenC certainly equals the intersection ofall
halfspaces defined by valid inequalities. By Ex. 3.10 these are of the typecTx≤ 0.
So

(3.3) C= {x ∈ Rn
| cTx ≤ 0 for all c ∈ C0

} ;

which is equivalent to saying thatC= C00. Conversely, (3.3) implies thatC is an
intersection of halfspaces.

�

EX . 3.12. Show: C= C00 if and only if everyv 6∈ C can be separated from C.

REMARK. Corollary??of Chapter 10 says thatS⊆ Rn is the intersection of halfspaces
if and only if S is a closed convex set. Combined with Proposition 3.1, this result implies
that the coneC satisfiesC= C00 if and only if C is a closed cone.

Explicit Representations of Polyhedral Cones.We can now show that each
polyhedral cone admits an explicit representation as a finitely generated cone. In
view of Weyl’s Theorem, this means that the finitely generated cones are exactly
the polyhedral cones.

L EMMA 3.1. P.A;0/0 = coneAT:

Proof.By the Farkas Lemma (Corollary 2.6), we find forC= P.A;0/:

C0
= {c | cTx ≤ 0 is implied byAx ≤ 0}

= {c | cT
= yTA; y ≥ 0}

= coneAT:

�

THEOREM 3.2(Weyl-Minkowski). Let C= P.A;0/⊆ Rn be a polyhedral cone.
Then there exists some finite set W⊆ Rn such that C= coneW.

Proof.Lemma 3.1 yieldsC0
= coneAT. Moreover, Weyl’s Theorem guarantees

that C0
= P.B;0/ holds for some matrixB. Consequently, Proposition 3.1 and

again Lemma 3.1 yield

C= C00
= P.B;0/0 = coneBT ;

and the claim follows withW as the set of column vectors ofBT.
�

EX . 3.13. Let W =
[

1 2 −1
2 1 0

]
. Sketch C= coneW and its dual C0 in R2 and

compute an implicit representation C= P.A;0/.

EX . 3.14. Show that C= {x ∈ Rn
| x > 0} ∪ {0} is a cone and C00

= Rn
+.
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The Cone of Positive Semidefinite Matrices.If the coneC⊆ Rn is contained in
a proper subspaceL ⊆ Rn, we may wish to define its polar conerelativeto L, i.e.,

C0
= {y ∈ L | yTx ≤ 0 for all x ∈ C}:

(We shall use the notationC0 only if L is fixed in advance so that no misunder-
standing is possible.)

A particularly interesting class of (non-polyhedral) cones is provided by the posi-
tive semidefinite matrices. Consider the subspaceL = Sn×n

⊆ Rn×n of symmetric
(n× n)-matricesX = .xi j / and the inner product

X ◦Y =
n∑

i=1

n∑
j=1

xi j yi j with X;Y ∈ Sn×n:

It is straightforward to verify that the set

K = {X ∈ Sn×n
| X � 0}

of positive semidefinite matrices is a cone. An explicit representation ofK is
provided by

PROPOSITION 3.2. K = cone{vvT
| v ∈ Rn

}:

Proof. Every matrix of the formX = vvT is p.s.d., which implies the inclusion
“⊇”. Conversely, assumeX � 0 and expressX = ZZ T for some matrixZ = .zst/

with columns, say,z1; : : : ;zk ∈ Rn (cf. Corollary 2.4). NowX = ZZ T means

xi j =

k∑
`=1

zi`zj` =

(
k∑

`=1

z`zT
`

)
i j

;

i.e., X =
k∑̀
=1

z`zT
` is a non-negative combination of matrices of typevvT. In other

words,X ∈ cone{vvT
| v ∈ Rn

}.
�

Let us consider the polar cone ofK with respect toSn×n:

K0
= {Y ∈ Sn×n

| X ◦Y ≤ 0 for all X ∈ K} :

COROLLARY 3.1. K0 is the cone of negative semidefinite matrices. In other
words, K0

= −K and, consequently, K00
= K.

Proof.From Proposition 3.2, we conclude for allY ∈ Sn×n:

Y ∈ K0
⇐⇒ Y ◦ .vvT/ = vTYv ≤ 0 for everyv ∈ Rn :

�

EX . 3.15. What is the polar cone of K with respect toRn×n?
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3.3. Polar Duality of Convex Sets

We want to extend the concept of polarity to arbitrary convex setsC ⊆ Rn. For
convenience, we assume0 ∈ C.

If cTx ≤ z is a valid inequality forC, 0 ∈ C impliesz≥ 0. If z> 0, we can scale
the inequality tōcTx ≤ 1 (with c̄= c=z). In analogy with cone duality, we now
define thepolar of C as

Cpol
= {c ∈ Rn

| cTx ≤ 1 is valid for allx ∈ C} :

EX . 3.16. Show: Cpol is a convex set. If C⊆ Rn is a cone, then Cpol
= C0.

EX . 3.17. Determine the polars of P= {x ∈ R2
+ | x1+ x2 ≤ 1} and Q= {x ∈ R2

| |xi | ≤

2; i = 1;2}.

EX . 3.18. Let V⊆ R2 consist of5 equally spaced points on the unit circle in the Eu-
clidean plane. Sketch the polar Ppol of the convex pentagon P= convV .

By virtue of Ex. 3.16, our next observation generalizes Proposition 3.1.

PROPOSITION 3.3. Let C⊆ Rn be a convex set with0 ∈ C. Then the following
are equivalent:

(i) C= Cpol pol .
(ii) C is an intersection of (possible infinitely many) halfspaces.

Proof.Assume that (ii) holds,i.e.,

C= {x ∈ Rn
| aT

i x ≤ �i for all i ∈ I }:

0 ∈ C implies �i ≥ 0. By scaling, we may therefore assume�i ∈ {0;1} with-
out loss of generality. Moreover, every inequalityaT

i x ≤ 0 can be replaced by
infinitely many inequalitieskaT

i x ≤ 1 .k ∈ N/. SoC admits an equivalent pre-
sentation of the form

(3.4) C= {x ∈ Rn
| cT

j x ≤ 1 for all j ∈ J} ;

which implies

(3.5) C= {x ∈ Rn
| cTx ≤ 1 for all c ∈ Cpol

} = Cpol pol :

Conversely, of course, (3.5) exhibitsC as an intersection of halfspaces.
�

Explicit Representation of Polyhedra. Consider the special case of a polyhe-
dron P = P.A;b/ ⊆ Rn. P is convex and0 ∈ P is equivalent withb ≥ 0. By
scaling, we may then assumebi ∈ {0;1}.
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L EMMA 3.2. Let P⊆ Rn be a polyhedron of the form P= P

([
A
B

]
;

(
1
0

))
:

Then Ppol
= conv [AT;0] + coneBT :

Proof.The Farkas Lemma (Corollary 2.6) yields

Ppol
= {c ∈ Rn

| cTx ≤ 1 is implied byAx ≤ 1; Bx ≤ 0}

= {c ∈ Rn
| cT
= yTA + zTB;y ≥ 0;z≥ 0;yT1≤ 1}

= {yTA | y ≥ 0;yT1≤ 1} + {zTB | z≥ 0}

= conv [AT;0] + coneBT .cf. Ex. 3.7/:

�

We can now establish the full equivalence between explicit and implicit represen-
tations of polyhedra.

THEOREM 3.3 (Decomposition Theorem). The non-empty set P⊆ Rn is a poly-
hedron if and only if there are finite sets V;W⊆ Rn such that

P= convV+ coneW :

(Hence, in particular, every bounded polyhedron is a polytope.)

Proof. By Weyl’s Theorem, the condition is sufficient forP to be a polyhe-
dron. We show that the polyhedronP indeed admits an explicit representation
as claimed.

If 0 ∈ P, the representation in Lemma 3.2 exhibitsPpol as a polyhedron. Since
0 ∈ Ppol , Lemma 3.2 can be applied to the polyhedronP′ = Ppol and yields
together with Proposition 3.3

P= .P′/pol
= convV+ coneW

for suitable finite setsV;W⊆ Rn.

If 0 =∈ P, we choose somex0 ∈ P and considerP0= {−x0}+ P, which (by Ex. 3.6)
is a polyhedron. Since0 ∈ P0, there exist finite setsV0 andW0 with the property
P0 = convV0+ coneW0. With V = {x0} + V0 andW=W0, it is now straightfor-
ward (cf. Ex. 3.19) to verify

P= {x0} + P0 = convV+ coneW :

�

EX . 3.19.Show: P= convV+coneW if and only ifx0+ P= conv.x0+V/+coneW
for eachx0 ∈ Rn.

EX . 3.20. Let P⊆ R2 be the unbounded polyhedron with boundary lines

y= x+ 3; y= −
1
2

x+ 5 and y= 10:

Express P as P= P.A;b/ and P= convV + coneW. Draw P,convV andconeW
(separate pictures).
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The coneC= coneW in the Decomposition Theorem 3.3 is called therecession
coneof P= P.A;b/ and is equal toP.A;0/. It is uniquely determined byP (cf.
Ex. 3.21).

EX . 3.21. Show that for∅ 6= P= P.A;b/ = convV+ coneW the following statements
are equivalent:

(i) w ∈ coneW.
(ii) w ∈ P.A;0/.

(iii) x0+ �w ∈ P for eachx0 ∈ P and� ≥ 0.
(iv) x0+ �w ∈ P for somex0 ∈ P and� ≥ 0.

3.4. Faces

Intuitively speaking, a ”face” of a polyhedronP ⊆ Rn is a setF of the form
F = P∩ H, whereH is a hyperplane that “touches”P. We also callH asupport-
ing hyperplane (supportingP in F). To formalize this idea, assumeP= P.A;b/
and recall that an inequality is valid forP if every pointx ∈ P satisfies it. We say
that the setF ⊆ P is a faceof P if there exists a valid inequalitycTx ≤  for P
such that

F = {x ∈ P | cTx = } :

Note that this definition includes the empty set∅ (take 0Tx ≤ 1) and the full
polyhedronP itself (take0Tx ≤ 0) as so-called “trivial” faces ofP .

From the optimization point of view, a face ofP.A;b/ consists by definition of
all pointsx of P that achieve the maximum valuef .x/=  (while all other points
x′ ∈ P yield f .x′/ < ) with respect to the linear functionf .x/ = cTx.

Assume that the faceF = {x ∈ P | cTx = } is non-empty (and henceAx ≤ b
is feasible). BecausecTx ≤  is valid for P, it is implied by Ax ≤ b. So the
Farkas Lemma (Corollary 2.6) guarantees the existence of a vectory ≥ 0 such
thatcT

= yTA andyTb ≤ . Hence we know that everyx ∈ F satisfies

0≤ yT.b−Ax/ = yTb− yTAx ≤  − cTx = 0 ;

which implies, for allx ∈ F, the equalityyTb = cTx =  as well as the so-called
“complementary slackness” relation

0= yT.b−Ax/ =
∑

i

yi .bi −A ix/ :

This relation says: Ifyi 6= 0 holds for theith component of the vectory ≥ 0, then
the correspondingith inequalityA ix ≤ bi of the systemAx ≤ b must betight (or
active) for all x ∈ F, i.e.,

A ix = bi for all x ∈ F :

Therefore, in view of

(3.6) cT
= yTA ; yTb =  ;
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the relationcTx=  is seen to be implied by the set of those inequalities ofAx ≤ b
that are tight for allx ∈ F.

THEOREM 3.4. The nonempty set F is a face of the polyhedron P= P.A;b/ if
and only if there exists a subsystemA ′x ≤ b′ of Ax ≤ b such that

F = {x ∈ P |A ′x = b′} :

Proof.AssumeF = {x ∈ P |A ′x = b′} for some subsystemA ′x ≤ b′ of Ax ≤ b.
If the subsystem is empty we obtain the faceF = P. Otherwise, choosecT as the
sum of the rows ofA ′ and, correspondingly, as the sum of the coefficients ofb′

(i.e., cT
= 1TA ′ and = 1Tb′). ThencTx ≤  is a valid inequality forP.A;b/.

Moreover, we observe for everyx ∈ P.A;b/,

cTx =  if and only if A ′x = b′ :

So F = {x ∈ P |cTx = } is a face ofP.

Conversely, assume thatF = {x ∈ P |cTx = } is a face ofP and letA ′x ≤ b′

be the subsystem ofAx ≤ b consisting of all inequalities that are tight for every
x ∈ F. By definition, we then haveF ⊆ {x ∈ P |A ′x= b′}. We claim that, in fact,
the equalityF = {x ∈ P |A ′x = b′} holds.

Indeed, relation (3.6) shows that the linear equationcTx =  can be obtained as
a non-negative linear combination of equations inA ′x = b′. So everyx ∈ P that
satisfiesA ′x = b′ must also satisfycTx =  and hence belong toF.

�

Since a finite system of linear inequalities admits only a finite number of different
subsystems, we immediately deduce from Theorem 3.4:

COROLLARY 3.2. A polyhedron has only a finite number of faces.

EX . 3.22. Prove that the closed disk S= {x ∈ R2
| ‖x‖ ≤ 1} is nota polyhedron.

Dimension. Recall from Chapter 1 (p. 4) that affP denotes the smallest affine
subspace ofRn that containsP⊆ Rn. Because affine subspaces are intersections
of hyperplanes, affP is the intersection of all hyperplanes that containP.

Let A=x ≤ b= denote the (possibly empty) subsystem ofAx ≤ b consisting of
those inequalities that are tight for everyx ∈ P = P.A;b/. Then P ⊆ {x ∈
Rn
|A=x = b=} and, since affP is the smallest affine subspace containingP,

also affP⊆ {x ∈ Rn
|A=x = b=}. Actually, equality holds:

COROLLARY 3.3.

(3.7) aff P.A;b/ = {x ∈ Rn
|A=x = b=} :
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Proof.We have already observed that “⊆” holds. To establish the converse inclu-
sion, it suffices to show that any hyperplaneH = {x ∈ Rn

|cTx = } containing
aff P also contains the solution set ofA=x = b=, i.e., that cTx =  is implied
by A=x = b=. Thus assumeH = {x ∈ Rn

|cTx = } contains affP, and hence
P. As in the proof of Theorem 3.4 we thus find thatcTx =  is a (non-negative)
linear combination of the equations inA=x = b= (which is the systemA ′x = b′

corresponding toF = P) and the claim follows.
�

EX . 3.23. Let A ′x ≤ b′ be the subsystem ofAx ≤ b of all inequalities that are tight for
the given pointx0 ∈ P= P.A;b/. Show: F= {x ∈ P |A ′x = b′} is theuniquesmallest
face of P that containsx0.

Let us define thedimensionof a polyhedronP as

(3.8) dim P= dim aff P :

Then (3.7) implies a formula for the dimension:

COROLLARY 3.4. If A ∈ Rm×n and P.A;b/ 6= ∅, then

(3.9) dim P.A;b/ = n− rankA= :

Proof.dim P= dim {x ∈ Rn
|A=x = b=} = dim kerA= = n− rankA=.

�

Facets.Since a face of a polyhedron is a polyhedron in its own right, it is mean-
ingful to talk about the dimension of a face in general. We say that the faceF of
the polyhedronP is afacetif

dim F = dim P− 1 :

The example of an affine subspace shows that polyhedra without facets do exist.
However, this example furnishes the only exception, as we shall prove in Corol-
lary 3.5 below.

We say thatAx ≤ b is irredundantif no inequality inAx ≤ b is implied by the
remaining inequalities. Clearly, every polyhedronP can be defined by an irre-
dundant system. (We only have to remove implied inequalities successively until
an irredundant system is obtained.)

EX . 3.24. Formulate an optimization problem whose solution would allow you to decide
whether the ith inequalityA ix ≤ bi is implied by the remaining inequalities ofAx ≤ b.

COROLLARY 3.5. Assume thatAx ≤ b is irredundant and consider an inequality
A ix ≤ bi which is not part ofA=x ≤ b=. Then

F = {x |Ax ≤ b;A ix = bi}
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is a facet of P= P.A;b/. Consequently, if P is not an affine subspace, then P
has proper nonempty faces and each such face can be obtained as an intersection
of facets.

Proof.Denote byA∗x≤ b∗ the system of those inequalities ofAx ≤ b that are not
in A=x ≤ b=. The hypothesis of the Corollary says thatA ix ≤ bi is in A∗x ≤ b∗.

By definition, we can find for eachAsx ≤ bs of A∗x ≤ b∗ somexs
∈ P.A;b/

satisfying the strict inequalityAsxs < bs. Assuming there arek such inequalities,
it follows that also the convex combination

x∗ =
1
k

k∑
s=1

xs

lies in P.A;b/. Moreover, one readily verifies thatA∗x∗ < b∗ holds, i.e., the
averagex∗ of thek vectorsxs satisfieseachinequality inA∗x ≤ b∗ strictly.

SinceAx ≤ b is an irredundant system, removingA ix≤ bi from the system would
result in a larger feasibility region. So there exists some vectorv ∈ Rn such that
A iv > bi holds whilev satisfies all the other inequalitiesA jx ≤ b j , j 6= i, of
Ax ≤ b. By the choice ofv, we have 0< bi −A ix∗ < A iv−A ix∗.

Let � = .bi −A ix∗/.A iv−A ix∗/−1. Noting 0< � < 1, we then obtain

x̄ = �v+ .1− �/x∗ ∈ P.A;b/ :

In particular,A i x̄ = bi holds, whileAsx̄ < bs is true for all other inequalities in
A∗x≤ b∗. Hence the subsystem ofAx ≤ b of inequalities that are tight for the face
F consists precisely ofA=x ≤ b= together with the one extra inequalityA ix ≤ bi ,
which yields dimF = dim P− 1, as claimed.

Consider finally an arbitrary non-trivial faceF ′ of the polyhedronP.A;b/. Each
inequality ofAx ≤ b that is tight forF ′ is either already tight forP.A;b/ or, as
we have seen, induces a facet ofP.A;b/. So F ′ must be the intersection of the
corresponding facets.

�

REMARK. Our analysis in Corollary 3.5 exhibits “facet-generating” inequalities as the
strongest inequalities for the description of a polyhedron. IfP= P.A;b/ is presented by
an irredundant systemAx ≤ b, thenA=x = b= determines the affine subspace relative to
which P has full dimension, whileA∗x ≤ b∗ describes the facets ofP. In particular, the
number of facets ofP equals the number of inequalities inA∗x ≤ b∗.

REMARK. Let L = L .P/ be the collection of all faces of the polyhedronP. Ordering
the members ofL by containment, we obtain the trivial face∅ as the unique minimal and
P as the unique maximal member ofL . As faces are precisely intersections of facets (cf.
Corollary 3.5), an intersection of faces always yields a face. HenceL becomes alattice
relative to the binary operations for allF1; F2 ∈ L ,

F1∧ F2 = F1∩ F2

F1∨ F2 = ∩{F ∈ L | F1; F2 ⊆ F} :
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.L .P/;∧;∨/ is called theface latticeof the polyhedronP and captures the combinatorial
structure of the polyhedronP (see,e.g., [79] for more details).

EX . 3.25. Let F be a minimal nonempty face of P= P.A;b/. Show: F= x0+ kerA
for somex0 ∈ P. (Hint: L = kerA is the unique largest linear subspace contained in the
recession cone P.A;0/ of P.)
Give an example of a full-dimensional polyhedron P⊆ R3 whose minimal faces have
dimension1.

3.5. Vertices and Polytopes

The vectorv ∈ Rn is called avertex(or extreme point) of the polyhedronP⊆ Rn

if F = {v} is a face ofP (of dimension dimF = 0). Relative to a representation
of the polyhedron in terms of linear inequalities, Corollary 3.4 states that a point
v ∈ P.A;b/ is a vertex if and only if there exists a subsystemA ′x ≤ b′ of Ax ≤ b
so that rankA ′ = n andv is the unique (feasible) solution of

A ′v = b′ :

In other words, the rows ofA ′ must contain a basis ofRn. We therefore call a
vertex ofP= P.A;b/ alsobasic solutionor vertex solutionof the systemAx ≤ b.

A vertex v of a polyhedronP is defined “implicitly” by a hyperplaneH that
supportsP exactly in the pointv. An “explicit” characterization is also possible:

THEOREM 3.5. Let P be a polyhedron andv ∈ P arbitrary. Thenv is a vertex of
P if and only ifv cannot be expressed as convex combination of other vectors in
P.

Proof. Let P = P.A;b/ and assume that there are vectorsv1; : : : ;vk ∈ P and
numbers�i > 0 such that

∑
i �i = 1 andv = �1v1+ : : :+ �kvk. Let furthermore

F be an arbitrary face ofP. We claim:

v ∈ F if and only if v1; : : : ;vk ∈ F :

Indeed, assumeF = {x ∈ P |A ′x = b′} for some subsystemA ′x ≤ b′ of Ax ≤ b.
Now vi ∈ P implies in particularA ′vi ≤ b′. HenceA ′v = b′ or, equivalently,∑

i �i .A ′vi − b′/ = 0 is true if and only if�iA ′vi = �ib′ is true for alli.

Consequently, ifF = {v}, thenv= v1= : : := vk. Conversely, suppose thatv ∈ P
is not a vertex. LetA ′x ≤ b′ consist of all inequalities inAx ≤ b that are tight at
v and considerF = {x ∈ P |A ′x = b′}. F is a face ofP and containsv. Sincev is
not a vertex, we know dimF ≥ 1, which yields rankA ′ ≤ n− 1.

Hence we can find a vectorz 6= 0 such thatA ′z= 0. Choosing� > 0 sufficiently
small, we can guarantee that bothv1 = v+ �z andv2 = v− �z are feasible for
Ax ≤ b. Hence we obtain

v =
1
2
.v1+ v2/
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as a non-trivial convex combination of pointsv1;v2 ∈ P.
�

COROLLARY 3.6. Let P⊆ Rn be a polytope and let V⊆ P be the set of vertices
of P. Then P= convV.

Proof.Assume that sayP= convV′ for some finite setV′ ⊆ Rn. We may assume
that V′ is minimal in the sense thatv 6∈ conv.V′ \ {v}/ holds for everyv ∈ V′.
Then nov ∈ V′ can be expressed as a non-trivial convex combination of vectors
in P \ {v}. HenceV′ must be the set of extreme points (vertices) ofP.

�

REMARK. The proof of Corollary 3.6 indicates that the listV of its vertices provides
the smallest explicit representation of the polytopeP= P.A;b/. Note, however, that|V|
can beexponentially largewith respect to the size of the implicit representationAx ≤ b
(see Ex. 3.26).

EX . 3.26. Show that P= {x ∈ Rn
| 0≤ x ≤ 1} is a polytope with2n vertices.

Vertices and Basic Solutions of Ax= b;x ≥ 0. The simplex algorithm for linear
programs in Chapter 4 refers to polyhedraP of the form

(3.10) P= {x ∈ Rn
|Ax = b;x ≥ 0} :

Observe that (due to the constraintsx ≥ 0) P does not contain any affine space
of dimension≥ 1. So by virtue of Corollary 3.4, ifP is nonempty, it must have
vertices (every minimal nonempty face ofP is one).

AssumingA ∈ Rm×n with rankA = r .≤ m/, we find in this case that a vector
x ∈ P is a vertex if and only if there is a setN of |N| = n− r indices j such that
x is the unique solution of

Ax = b

x j = eT
j x = 0; j ∈ N ;

or equivalently:

(i) x j = 0 for all j ∈ N.
(ii) The submatrixB of thoser columnsA· j with j =∈ N has full rankr , i.e.,

is a column basis forA.

Thinking of a vertex ofP algebraically as the unique solution of the linear system
Ax = b under the additional constraints (i) and (ii), we call a vertex ofP also a
basic solution. Computationally, solvingAx = b under condition (i), (ii) simply
amounts to applying Gaussian Elimination toBx = b.

With the notion of a basic solution we can easily derive Carathéodory’s Theorem
on convex combinations.
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THEOREM 3.6 (Carath́eodory). Let S⊆ Rn. Then everyb ∈ coneS can be ex-
pressed as a conic combination of at most n vectors and everyb ∈ conv S can be
written as a convex combination of at most n+ 1 vectors in S.

Proof.Let b ∈ coneS. By definition, there exist vectorss1; : : : ;sk ∈ Sand coef-
ficientsx1; : : : ; xk ≥ 0 such thatb =

∑
xisi . Consider the matrixA ∈ Rn×k with

thek column vectorssi and letP⊆ Rk be the polyhedron of all feasible solutions
of the linear system

Ax = b
x ≥ 0:

By the previous discussion,P= P.A;b/ has a vertexv. Interpretingv as a basic
solution of the linear system, we find thatv has at mostn non-zero components
vi , which furnish the desired convex combination forb.

Assume nowb ∈ conv S and lets1; : : : ;sk ∈ S and x1; : : : ; xk ≥ 0 be such that
b =

∑
xisi and

∑
xi = 1. This means(
b
1

)
∈ cone

{(
si

1

)
| i = 1; : : : ; k

}
⊆ Rn+1 ;

and the claim follows from the result for cones.
�

COROLLARY 3.7. Let S⊂ Rn be a compact set. Thenconv.S/ is compact.

Proof.Consider the standard simplex

1n+1 =
{
.�1; : : : ; �n+1/ | � j ≥ 0;

n+1∑
j=1

� j = 1
}

and define a continuous functionF : 1n+1× S× · · · × S→ Rn via

F.�1; : : : ; �n+1;a1; : : : ;an+1/ =

n+1∑
j=1

� ja j :

Carath́eodory’s Theorem impliesF.1n+1× S× : : :× S/ = conv S. Since1n+1

and S are compact,1n+1 × S× · · · × S is compact. So conv.S/ is the image
of a compact set under a continuous function and, therefore, compact (cf. Sec-
tion 1.4.2).

�

EX . 3.27. Give an example of a closed set S⊂ Rn such thatconv S is not closed. (Hint:
Consider S= {.0;1/} ∪ {.x1;0/ | x1 ∈ R}.)

EX . 3.28. Give an example of a compact set S⊂ Rn such thatconeS is not closed.
(Hint: Consider S= {x ∈ R2

| x2
1+ .x2− 1/2 = 1}.)
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3.6. Rational Polyhedra

From a computational point of view it is reasonable to consider systems of in-
equalitiesAx ≤ b with only rational coefficients. Let us thus call the polyhedron
P.A;b/ rational if A ∈ Qm×n andb ∈ Qm. It then follows from Theorem 3.4
that all faces of a rational polyhedron are rational polyhedra. Moreover, for any
v1; : : : ;vm ∈ Qn, we find that both cone.v1; : : : ;vm/ and conv.v1; : : : ;vm/ are
rational polyhedra. Indeed, all our proofs are eventually based on the Fourier-
Motzkin algorithm, for which we had noted that rationality of the parameters is
preserved during the computation.

Similarly, the Decomposition Theorem of Weyl and Minkowski holds for rational
polyhedra,i.e., a setP⊆ Rn is a rational polyhedron if and only if there are finite
setsV;W⊂ Qn of vectors with rational components such that

P = convV+ coneW :

We leave the straightforward check to the reader.





CHAPTER 4

Lagrangian Duality

The present chapter pursues two goals. First, we take a (rather preliminary) look
at nonlinear optimization problems by investigating to what extent fundamental
concepts carry over from linear to general optimization problems and what kind
of difficulties arise in the general context. Doing so, our second goal is to motivate
much of the theory of nonlinear problems that are treated in more detail in subse-
quent chapters. The main points we want to make now are Lagrangian relaxation
as a bounding technique for integer programs (cf. Chapter 9) and the optimal-
ity conditions (which we derive rather independently from the rest of the chapter
in Section 4.4) that motivate many of the algorithmic approaches to non-linear
problems.

4.1. Lagrangian Relaxation

A nonlinear (constrained) optimization problemis a problem of the type

max f .x/ s.t. g j.x/ ≤ 0 ; j = 1; : : : ;m;

with objective function f: Rn
→ R andconstraint functions gj : Rn

→ R. In
terms of the vector-valued functiong.x/ = .g1.x/; : : : ; gm.x//T, this problem
can be stated more compactly as

(4.1) max f .x/ s.t. g.x/ ≤ 0 :

REMARK. Usually, one assumesf andg to be (at least) continuous. In what follows,
whenever a gradient∇ f or Jacobian∇g are used, we implicitly assume thatf andg are
continuously differentiable.

The use of “max” resp. “min” is standard notation in nonlinear optimization although
“sup” and “inf” would be more precise. For example,

min x1 s.t. x1x2 ≥ 1; x1 ≥ 0

has “minimum value” 0, but optimal solutions do not exist.

EX . 4.1. Show thatx = .1;1/ (with f .x/ = 6) is an optimal solution for

max f .x/ = 4.x1+ x2/− .x2
1+ x2

2/ s.t. g.x/ = x1x2− 1 ≤ 0 :

Clearly, a linear program, maximizing a linear objectivef .x/ = cTx underlinear
constraints g.x/ = Ax − b ≤ 0 is a special case of (4.1).

As in linear programming, we associate with theprimal problem(4.1) adual
problem that wants to minimize certain upper bounds on the primal maximum

75
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value. As in the linear case, we obtain such bounds from non-negative combina-
tions of the constraints. Consider anyy = .y1; : : : ; ym/

T
≥ 0. Then everyprimal

feasiblex, i.e., anyx ∈ Rn with g.x/ ≤ 0, necessarily satisfies the “derived” in-
equality

(4.2)
m∑

j=1

y j g j.x/ = yTg.x/ ≤ 0 :

So eachy ≥ 0 gives rise to an upper boundL.y/:

(4.3) max
g.x/≤0

f .x/ ≤ max
x

f .x/− yTg.x/ = L.y/:

The (unconstrained) maximization problem defining the upper bound

L.y/ = max
x

f .x/− yTg.x/

is called theLagrangian relaxationof (4.1) with Lagrangian multipliers yj ≥ 0
(which play the role of the dual variables in linear programming). So the La-
grangian relaxation is obtained by “moving the constraints into the objective
function”. We also say that werelax or dualizethe constraintsg j.x/ ≤ 0 with
multipliers y j ≥ 0.

The problem of determining the best possible upper boundL.y/ is theLagrangian
dual problem

(4.4) min
y≥0

L.y/ = min
y≥0

max
x

f .x/− yTg.x/:

We immediately observe the following relation between the primal problem (4.1)
and its dual (4.4).

THEOREM 4.1. (Weak Duality)

max
g.x/≤0

f .x/ ≤ min
y≥0

L.y/ :

Consequently, if equality is attained with the primal feasiblex and the (dual fea-
sible)y ≥ 0, thenx andy are optimal primal resp. dual solutions. In this casex
andy are necessarilycomplementaryin the sense thatyTg.x/ = 0 .

Proof. In view of (4.2), we have the inequality

f .x/ ≤ f .x/− yTg.x/ ≤ max
x

f .x/− yTg.x/ = L.y/ :

Equality can only hold ifyTg.x/ = 0.
�

REMARK. As in the linear (programming) case, an equality constraintg j .x/ = 0 is
formally equivalent to two opposite inequalities and corresponds to asign-unrestricted
multiplier y j ∈ R in the Lagrangian dual.
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REMARK. An alternative view on Lagrangian relaxation is the following. Choosing all
multipliers y j ≥ 0 “very large”, we would expect the optimal solution of

max
x

f .x/− yTg.x/

to be primal feasible (since any violation ofg j .x/ ≤ 0 is penalizedby subtracting
y j g j .x/ > 0 from the objective function). On the other hand, taking ally j “very large”
makes the objective functionf .x/− yTg.x/ almost unrelated to the “true” objective
function f .x/ . So the “best” choice of multipliersy ≥ 0, i.e., the solution of the dual
problem, will usuallynot guarantee the corresponding maximizerx to be primal feasible.

At first sight, the Lagrangian dual (a so-calledmin-max problem) may appear
more difficult than the original primal problem (4.1). Actually, it is often easier
to solve. One reason is that the value of the Lagrangian relaxation

(4.5) L.y/ = max
x

f .x/− yTg.x/

can often be found by the extremum principle with respect to the maximization
problem relative tox (see p. 17). In other words, a maximizer of (4.5) (for fixed
y ≥ 0) must necessarily satisfy the (generally nonlinear)critical equation

(4.6) ∇ f .x/− yT
∇g.x/ = 0T :

EX . 4.2. Consider the eigenvalue problem for the symmetric matrixA ∈ Rn×n:

max
xTx=1

xTAx with dual min
�∈R

max
x

xTAx − � .xTx− 1/ :

The critical equation∇ f .x/− �∇g.x/ = 2xTA − 2� xT
= 0T is always solvable (with

x = 0 or – in case� is an eigenvalue ofA – a corresponding eigenvector). However, the
relaxation

L.�/ = max
x

xTAx − � xTx+ � = �+max
x

xT.A − �I /x

has an optimal solution only for� ≥ �max, the maximum eigenvalue ofA, because the
matrixA−�I is negative semidefinite for�≥ �max(so thatx= 0 is optimal). If�= �max,
also a corresponding eigenvectorxmax is optimal.

EX . 4.3. The Lagrangian relaxation for the problem in Ex. 4.1 is

L.y/ = max f .x/− yg.x/ = 4.x1+ x2/− .x2
1+ x2

2/− y.x1x2− 1/

with critical equation

∇ f .x/− y∇g.x/ = .4− 2x1− yx2;4− yx1− 2x2/ = .0;0/ ;

which is a linear system in variablesx1; x2. If y 6= 2, thenx̂ = .4=.2+ y/;4=.2+ y//
is the unique solution (and can be shown to be optimal). Ify = 2, everyx̂ ∈ R2 with
x̂1+ x̂2 = 2 solves the critical equation and is optimal:

max
x

f .x/− 2g.x/ = max
x

4.x1+ x2/− .x1+ x2/
2
+ 2= max

t
4t− t2+ 2= 6:

In particular,x = .1;1/ and y = 2 are optimal primal resp. dual solutions (see Theo-
rem 4.1).
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Strong Duality. Theduality gapof problem (4.1) is the difference between the
dual and primal optimal value. We say thatstrong dualityholds if the inequality in
Theorem 4.1 is an equality,i.e., if the duality gap is zero. (We do not necessarily
require the existence of optimal solutionsx resp.y achieving equality.) Unfortu-
nately, strong duality is generally not guaranteed (see Ex. 4.4 for an extreme case
of a non-zero duality gap).

EX . 4.4. Show that the duality gap is infinite for

max x1 s.t. x3
1+ x2 ≤ 0; x2 ≥ 0 :

Partial Relaxation. Often one may want to dualize not all of the constraints
g j.x/ ≤ 0. Then one can partition the set of constraints as

max
x

f .x/ s.t. g1.x/ ≤ 0; g2.x/ ≤ 0

and only dualize the constraintsg1.x/ ≤ 0 with multipliersy1. In the same way
as before, one thus obtains apartial relaxationand the weak duality relation

(4.7) max
g1.x/ ≤ 0
g2.x/ ≤ 0

f .x/ ≤ min
y1≥0

max
g2.x/≤0

f .x/− yT
1 g1.x/ :

EX . 4.5. Show: The more constraints are dualized, the weaker are the bounds offered by
the (“partial”) Lagrangian dual in (4.7).

4.2. Lagrangian Duality

In order to analyze the relationship between the primal problem (4.1) and its dual
(4.4), we define (by slightly misusing our notation) the associatedLagrangian
functionas a function in the variablesx andy:

(4.8) L.x;y/ = f .x/− yTg.x/ :

So we regain the function from Section 4.1 asL.y/ = maxx L.x;y/ .

REMARK. It is occasionally convenient to allow a function to attain the ”values”±∞.
We do this with the understanding−∞ ≤ x ≤ +∞ for all x ∈ R, � · .+∞/ = +∞ for
� > 0, .+∞/+ .+∞/ = +∞, etc. (Note, however, that.+∞/− .+∞/ is undefined).

4.2.1. Saddle Points.For anyx ∈ Rn andy ≥ 0, we (trivially) observe

(4.9) min
y≥0

L.x;y/ ≤ L.x;y/ ≤ max
x

L.x;y/

and, therefore, conclude

(4.10) max
x

min
y≥0

L.x;y/ ≤ min
y≥0

max
x

L.x;y/ = min
y≥0

L.y/ :
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Relation (4.10) is the Weak Duality Theorem in disguise. Indeed, the left hand
side of (4.10) is equivalent with the primal problem (4.1) since (cf. Ex. 4.6)

(4.11) min
y≥0

L.x;y/ = min
y≥0

f .x/− yTg.x/ =
{

f .x/ if g.x/ ≤ 0
−∞ otherwise.

EX . 4.6. Show: min
y≥0

wTy = 0 if w ≥ 0, and min
y≥0

wTy = −∞ otherwise.

So we arrive at the pair ofprimal-dual Lagrangian problems:

.P/ max
x

min
y≥0

L.x;y/ .D/ min
y≥0

max
x

L.x;y/ :

We are particularly interested in the case where strong duality holds. Ifx and
y achieve equality in (4.9) (and hence equality holds in (4.10)), we call the pair
.x;y/ a saddle pointof the Lagrangian functionL.x;y/. In this case we also
say thatx andy simultaneouslysolve the primal and dual problem (in the sense
that.x;y/ solves the primal max-min problem and.y;x/ solves the dual min-max
problem). In particular,x is an optimal solution of the primal (4.1),y is an optimal
solution of the dual (4.4) and the duality gap is zero (cf. Theorem 4.1). Also the
converse is true:

THEOREM 4.2. For anyx and anyy ≥ 0, the following are equivalent:

(i) .x;y/ is a saddle point of the Lagrangian function L.x;y/.
(ii) x andy are optimal solutions of (4.1) resp. (4.4) and the duality gap is

zero.

Proof. It remains to show that (ii) implies (i). Assume thatx is primal feasible.
ThenyTg.x/ ≤ 0 holds for anyy ≥ 0. Hence (ii) yields

min
y≥0

L.x;y/ = min
y≥0

f .x/− yTg.x/ ≥ f .x/ = L.y/ = max
x

L.x;y/;

i.e., equality must hold in (4.9).
�

REMARK. As in the linear case (cf. Section??) the min-max relation (4.10) may be
interpreted game-theoretically:L.x;y/ is the payoff (gain) of player 1 when he chooses
his strategyx ∈ Rn and player 2 chooses strategyy ∈ Rm

+. The primal problem (of player
1) is to maximize his gain in the “worst case” (against all possible strategies of player 2).
Similarly, the dual problem (of player 2) is to minimize his loss (= gain of player 1). In
this context, saddle points correspond toequilibrium strategies: None of the players can
expect any gain from changing his strategy (x resp. y), even if he knew his opponent’s
strategy.

We stress that the apparent symmetry between (P) and (D) is deceptive, asL.x;y/
is not symmetric inx and y. Indeed the dual variablesy j occur linearly in
L.x;y/ as opposed to the primal variablesxi . Only in the linear case,i.e., when
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f .x/= cTx is a linear objective andg.x/= Ax− b ≤ 0 are linear constraints, the
Lagrangian function

L.x;y/ = cTx− yT.Ax − b/ = .cT
− yTA/x+ bTy

is linear in bothx andy.

This explains why, in the linear case, Lagrangian duality reduces to linear pro-
gramming duality: Indeed, as in (4.11), we deduce

L.y/ = max
x

L.x;y/ = max
x
.cT
− yTA/x+ bTy =

{
bTy if cT

− yTA = 0T

+∞ otherwise.

So the Lagrangian dual is equivalent with the linear programming dual:

min
y≥0

L.y/ ←→ min bTy s.t. yTA = cT; y ≥ 0 :

The equivalence in Theorem 4.2 indicates that saddle points are generally not easy
to find (if they exist at all). Assumingf andg to be differentiable, we can reduce
the number of candidates by solving the critical equation (4.6):

COROLLARY 4.1. Every saddle point.x;y/ of L.x;y/ satisfies the condition

∇ f .x/− yT
∇g.x/ = 0T :

Proof. If x solves L.y/ = max
x

f .x/ − yTg.x/ , the extremum principle (cf.

(1.12)) with respect to the function̄f .x/= f .x/− yTg.x/ says thatx must satisfy
the critical equation

∇ f̄ .x/ = ∇ f .x/− yT
∇g.x/ = 0T :

�

4.2.2. The Lagrangian Dual and Convexity.The fact thaty occurs linearly
in L.x;y/ has important consequences: The Lagrangian dual is always a so-called
convex optimization problem.

REMARK. Convex functions and convex optimization problems will be studied in detail
in Chapter 10. For our present purpose it suffices to know the definition: IfS⊆ Rn is a
convex set, then the functionf : S→ R (or, more generallyf : S→ R∪ {∞}) is convex
if for all x1;x2 ∈ Sand� ∈ [0;1],

f .�x1+ .1− �/x2/ ≤ � f .x1/+ .1− �/ f .x2/:

A convex optimization problemis a problem of type

min f .x/ s.t. x ∈ S ;

where f is a convex function onS and S⊆ Rn is a closed convex set. (As mentioned
earlier, closed convex sets are exactly the intersections of (possibly infinitely many) half-
spaces,cf. Corollary??.)

PROPOSITION 4.1. The function L.y/ = max
x

f .x/− yTg.x/ is convex.
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Proof.Assume to the contrary that there existy1;y2 ∈ Rm
+

and� ∈ [0;1] such that

(4.12) L.�y1+ .1− �/y2/ > �L.y1/+ .1− �/L.y2/:

Let y = �y1+ .1− �/y2. By definition ofL.y/, we have

L.y/ = max
x

f .x/− yTg.x/:

So (4.12) implies the existence of somex ∈ Rn so that

(4.13) f .x/− yTg.x/ > �L.y1/+ .1− �/L.y2/:

Again, by definition ofL.y/,

f .x/− yT
1 g.x/ ≤ max

x
f .x/− yT

1 g.x/ = L.y1/

f .x/− yT
2 g.x/ ≤ max

x
f .x/− yT

2 g.x/ = L.y2/:

Multiplying these two inequalities with� resp..1− �/ and adding them yields a
contradiction to (4.13).

�

Proposition 4.1 reveals a fundamental difference between the primal problem
(4.1) and its dual (4.4): The dual is always a convex optimization problem. In
particular, the dual of the dual cannot be (equivalent to) the primal, unless the
primal is a convex problem itself. In Section 4.3 we will see that this condition is
(in some sense) also sufficient.

REMARK. Proposition 4.1 can be used to derive a geometric interpretation of the dual
as a convexification of the primal. We only sketch the result, which will be presented
(and proved) in detail in Chapter 10. Assume for simplicity that there is only a single
constraintg.x/ ≤ 0. Introducing the setG⊆ R2 defined by

G := {

(
f
g

)
| f = f .x/; g= g.x/; x ∈ Rn

};

the primal resp. dual optimum values are

vP = max{ f |

(
f
g

)
∈ G; g≤ 0} and

vD = min
y≥0

max{ f − yg |

(
f
g

)
∈ G}

It turns out that in caseG is compact the optimum dual valuevD can equivalently be
obtained as the optimum valuevC of the following convexification of the primal (cf.
Section??, Figure??):

vC = max{ f |

(
f
g

)
∈ convG; g≤ 0} :

As a consequence, strong duality (duality gap zero) can be guaranteed for so-calledcom-
pact convex problems(cf. Section??).
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4.2.3. Solving the Lagrangian Dual.Let us outline the basic idea for solv-
ing the Lagrangian dual to get a better understanding of the primal-dual relation-
ship. In what follows we assume that we can computeL.y/ and a corresponding
optimal solutionx̂ of

(4.14) L.y/ = max
x

f .x/− yTg.x/

for any fixedy ≥ 0 (otherwise we cannot expect to solve minL.y/ at all).

Starting with an arbitraryy0≥ 0, we construct a sequencey0;y1;y2; : : : that hope-
fully converges to an optimal solutiony of the Lagrangian dual. We proceed as
follows. Givenyk ≥ 0, we solve (4.14) fory = yk by computing a vectorxk with

(4.15) L.yk/ = f .xk/− yT
k g.xk/:

How should we modifyy = yk and (possibly) decreaseL.y/ in the next iteration?
Intuitively, (4.15) suggests to increasey j in caseg j.xk/ > 0 (thereby increasing
thepenaltyfor violating the constraintg j.x/ ≤ 0). Similarly, we would decrease
y j if g j.xk/ < 0. This intuition suggests the ’update’

yk+1 = yk+ �kg.xk/ for some stepsize�k > 0 :

On the other hand we want to ensureyk+1 ≥ 0. We therefore takeyk+1 as

(4.16) yk+1 = max
{
yk+ �kg.xk/ ; 0

}
(componentwise):

This strategy is the essence of the so-calledsubgradient method(cf. Chapter 10).

EX . 4.7. Assumeyk+1 = yk holds in (4.16). Show:yk = y solves the dual problem.
(Hint: Use (4.17) below.)

EX . 4.8. Consider the Lagrangian L.y/=max
x

4.x1+ x2/− x2
1− x2

2− y.x1x2−1/ from

Ex. 4.3. For any fixed y≥ 0, themaximumis attained in

x̂ = 4..2+ y/−1; .2+ y/−1/ with g.x̂/ = x̂1x̂2− 1≥ 0 ⇐⇒ y≤ 2 :

So the subgradient method will decrease a current yk > 2 and increase a current yk < 2.
Show that the step sizes�k = 1=k imply yk→ y, the optimum solution of the dual (for
any initial value y0 ≥ 0).

REMARK. The termsubgradient methodis motivated by the following consideration.
Let y ≥ 0 with x̂ the corresponding solution of (4.14). Then by definition ofL,

(4.17) L.y+ h/ ≥ f .x̂/− .y+ h/Tg.x̂/ = L.y/− g.x̂/Th:

If L.y/ is differentiable aty, then (4.17) implies that∇L.y/=−g.x̂/T holds (cf. Ex. 4.9).
So step (4.16) is a move in the direction of the largest marginal decrease ofL.y/. In gen-
eral, however,L.y/ is not differentiable and there is no reason to expect thatL.yk+1/ ≤

L.yk/ should hold (cf. Section??).
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EX . 4.9. Supposè : Rm
→ R is differentiable iny ∈ Rm. Furthermore, assume there

existsg ∈ Rm such that
`.y+ h/ ≥ `.y/+ gTh

for all h ∈ Rm. Show thatgT
= ∇`.y/ must hold.

4.3. Cone Duality

Weak duality (Theorem 4.1) rests on the basic fact

g.x/ ≤ 0 and y ≥ 0 =⇒ yTg.x/ ≤ 0 :

This observation suggests to re-state the Weak Duality Theorem in a slightly more
general setting: Instead of constraintsg.x/ ≤ 0 (as in the optimization model
(4.1)) we allow constraints of the formg.x/ ∈ K, whereK ⊆ Rm is a cone. Cor-
respondingly, the dual variablesy are then chosen in the dual coneK0.

REMINDER. Recall from Section 3.2 that every coneK ⊆ Rm has an associated dual
cone

K0
= {y ∈ Rm

| yTg≤ 0 for all g ∈ K}:

Furthermore,K = K00 holds if and only ifK is the intersection of (possibly infinitely
many) halfspaces,i.e.,

K = {x ∈ Rm
| aT

j x ≤ 0; j ∈ J} :

THEOREM 4.3. Let K⊆ Rm be a cone. Then

max f .x/ ≤ min L.y/ :
g.x/ ∈ K y ∈ K0

If equality is achieved at a primal feasiblex and a dual feasibley, thenx andy
are primal resp. dual optimal and complementary,i.e., yTg.x/ = 0.

Proof. Assumex is primal feasible,i.e., g.x/ ∈ K. ThenyTg.x/ ≤ 0 for every
y ∈ K0. Hence for everyy ∈ K0 we have

f .x/ ≤ f .x/− yTg.x/ ≤ max
x

f .x/− yTg.x/ = L.y/

As this holds for each primal feasiblex (i.e., g.x/ ∈ K) and each dual feasibley
(i.e., y ∈ K0), the Theorem follows.

�

REMARK. Purely formally, also problems of type max{ f .x/ | g.x/ ∈ K} can be cast
into the form (4.1). For example, one could defineg̃ : Rn

→ R as

g̃.x/ =
{

0 if g.x/ ∈ K
1 otherwise

or g̃.x/ = min
z∈K
‖g.x/− z‖2

and consider the equivalent problem max{ f .x/ | g̃.x/ ≤ 0}. Note, however, that the
dual of a problem depends on theconstraint functionsrather than thefeasible setthey
define. The practical solvability of a problem often depends critically on an ”appropriate”
formulation.
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4.3.1. Examples.Interesting examples are obtained by ”coning” the con-
straints in a primal-dual pair of linear programs,

(4.18)
max cTx resp. minbTy
s:t: Ax − b ≤ 0 s:t: c−ATy ≤ 0

x ≥ 0 y≥ 0

The resulting weak duality relation is the following.

COROLLARY 4.2. Let K⊆ Rn and M⊆ Rm be arbitrary cones. Then

(4.19)
max cTx ≤ min bTy
s:t: Ax − b ∈ K0 s:t: c−ATy ∈ M0

x ∈ M y ∈ K

Moreover, if K= K00 and M= M00, the two problems are dual to each other.

Proof.Let x andy be primal resp. dual feasible. Then

cTx ≤ cTx− yT.Ax − b/ = .cT
− yTA/x+ yTb ≤ yTb :

The way the dual (right hand side in (4.19)) is constructed from the primal (left
hand side in (4.19)) immediately implies that the dual of the dual equals the primal
in caseK = K00 andM = M00.

�

EX . 4.10. Show that for polyhedral cones K= P.B;0/ and M= P.C;0/ the two prob-
lems in (4.19) are a primal-dual pair of linear programs.

Convex Problems.In general, ifK andM are arbitrary cones with the property
that K = K00 andM = M00, the two problems in (4.19) are convex optimization
problems (as defined at the beginning of Section 4.2.2).

Conversely, consider an arbitrary convex optimization problem min{ f .x/ | x ∈ S}
where f : Rn

→ R is convex andS⊆ Rn is a closed convex set. We may assume
w.l.o.g.(cf. Ex. 4.11) thatf .x/ = cTx is linear. SinceS is a closed convex set, it
is the intersection of (possibly infinitely many) halfspaces,i.e.,

S= {x ∈ Rn
| aT

j x ≤ b j; j ∈ J}:

SettingM := {
( x

xn+1

)
∈ Rn+1

| aT
j x− b j xn+1 ≤ 0} andK := R with K0

= {0}, we
can write our convex problem equivalently as

max−cTx s.t. xn+1− 1 ∈ K0;

(
x

xn+1

)
∈ M:

Hence any convex problem can be stated (in a rather natural way) as a problem
of type (4.19) withK = K00 andM = M00. In this sense the problems in (4.19)
can be considered as the most general class of problems for which the dual of the
dual is the primal.
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EX . 4.11. Suppose S⊆ Rn is a closed convex set and f: S→ R is a convex function.
Show that S′ := {

(x
z

)
| x ∈ S; f .x/ ≤ z} is a closed convex set and thatmin{ f .x/ | x ∈ S}

equalsmin{z |
(x

z

)
∈ S′}.

Semidefinite Programs. Particularly interesting examples are obtained from
(4.19) by takingK ⊆ Sk×k to be the cone of positive semidefinitek× k matri-
ces withK0

= {S∈ Sk×k
| S� 0} (cf. Section 3.2). So the dual variablesy are

considered as (vectors corresponding to)k× k matricesY = .yi j / ∈ Sk×k and,
correspondingly we also interpreteb = .bi j / as a matrixB ∈ Sk×k and every col-
umnA·i of A as a matrixA.i /

∈ Sk×k. Recalling our notationB ◦ Y =
∑

i; j bi j yi j

for the “inner product” of matrices, (4.19) becomes (withM = Rn)

(4.20)

max cTx ≤ min B ◦Y

s:t:
n∑

i=1
A.i /xi −B � 0 s:t: A.i /

◦Y = ci i = 1; : : : ;n

Y � 0

Such problems, maximizing or minimizing a linear objective under linear and
semidefinite constraints, are calledsemidefinite programs.

REMARK. In Chapter 9 we will see how semidefinite programs arise in a natural way as
Lagrangian relaxations of (certain) integer programming problems. We study semidefi-
nite programs in more detail in Section??.

4.4. Optimality Conditions

We now return tononlinearoptimization problems of the form (4.1),i.e.,

max
x∈F

f .x/ ; whereF = {x ∈ Rn
| g.x/ ≤ 0} :

The objective functionf and the constraint functiong are (possibly) nonlinear
functions. F is called the set offeasible solutionsof the optimization problem.
An optimal solutionis, by definition, a feasible pointx ∈ F with maximum ob-
jective value f .x/. Computing an optimal solution can be extremely difficult.
Even checking whether a given candidate vectorx is indeed optimal is generally
a very hard task.

Since the computation of an overall optimal solution is so difficult, nonlinear
optimization usually tries to at least identifylocally optimal solutions(which is
generally hard enough). We say thatx ∈ F is a local maximizer(or simply a
maximizer) if for some" > 0:

(4.21) f .x/ ≥ f .x/ holds for allx ∈ F with ‖x− x‖ < " .

If (4.21) is true for all" > 0, x is aglobal maximizer. Local resp. globalmini-
mizersare defined in the same way for minimization problems.
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EX . 4.12. Give an example of a polytopeF = {x ∈ Rn
| Ax ≤ b} and a pointx0 ∈ Rn so

that each vertex ofF is a local maximizer of the problem

max f .x/ = ‖x− x0‖
2 s.t. Ax ≤ b :

4.4.1. Linear Constraints. We first take a look at the case of linear con-
straintsaT

j x ≤ b j ( j = 1; : : : ;m). So we consider

(4.22) max f .x/ s.t. Ax ≤ b ;

whereA ∈ Rm×n is the matrix with rowsaT
j and f : Rn

→ R is a differentiable
function. The feasible setF is the polyhedronP.A;b/.

Trying to decide whetherx ∈ F is locally optimal, we are mainly interested in
the constraintsaT

j x ≤ b j thatx satisfies with equality (cf. Ex. 4.13). We call these
constraintstight or activeatx and refer to

J.x/ = { j | aT
j x = b j} ⊆ {1; : : : ;m}

as the correspondingactive set(of indices).

EX . 4.13. Show: There exists some" > 0 such that everyx ∈ Rn with ‖x − x‖ < "

satisfies all constraints nonactive atx with strict inequality.

A feasible directionatx is a vectord ∈ Rn such that

aT
j d ≤ 0 for all j ∈ J.x/:

We denote byD.x/ ⊆ Rn the (polyhedral)cone of feasible directions. Let d ∈
D.x/ with ‖d‖ = 1. Then, in view of Ex. 4.13, we can find some" > 0 so that

(4.23) x+ td ∈ F for all 0< t ≤ ":

If x is a maximizer off , then the differentiability off yields

0 ≥ f .x+ td/− f .x/ = t∇ f .x/d+ o.t/:

Dividing by t > 0 and then lettingt→ 0, we therefore conclude that∇ f .x/d ≤ 0
must hold. This is the necessary optimality condition we seek.

THEOREM 4.4 (Necessary Optimality Conditions). Every maximizerx ∈ F of
(4.22) satisfies the following two equivalent conditions:

(a) (Primal Condition)

∇ f .x/d ≤ 0 for all d ∈ D.x/ :

(b) (Dual Condition)There are multipliers yj ≥ 0, j ∈ J.x/, such that

∇ f .x/−
∑
j∈J.x/

y jaT
j = 0T:
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Proof. We have seen that (a) is a necessary condition for optimality. We show
that (b) is equivalent with (a). Now (a) means that the inequality∇ f .x/d ≤ 0 is
implied by the systems of inequalitiesaT

j d ≤ 0, j ∈ J.x/. By Farkas Lemma (cf.
Corollary 2.6), this is equivalent with∇ f .x/ being a nonnegative combination of
the vectorsa j , j ∈ J.x/, i.e., with (b).

�

REMARK. We emphasize that conditions (a) and (b) are justnecessaryconditions and
at most exhibitcandidatesx for being maximizers. Sometimes alsosufficientconditions
for optimality can be given (that guaranteex to be indeed a maximizer). Such conditions
typically require information about second order derivatives (see Chapter 12 for more
details).

The necessary dual condition (b) is often stated in a slightly different form.

y j =

{
y j if j ∈ J.x/;
0 if j =∈ J.x/ ;

yields a vectory ∈ Rm
+

of multipliers such thatx andy ≥ 0 arecomplementaryin
the sense that for allj:

aT
j x < b j =⇒ y j = 0 .i:e:; yT.Ax− b/ = 0/ :

In other words, the dual condition (b) in Theorem 4.4 is equivalent with the so-
calledKarush-Kuhn-Tuckerconditions (or KKT-conditions, for short):

(4.24) ∇ f .x/− yTA = 0T ; y ≥ 0 ; yT.Ax − b/ = 0:

We say that the feasible pointx ∈ F is a Kuhn-Tucker point(or KKT-point for
short) ifx satisfies (4.24) with suitable multipliersy ∈ Rm

+
.

REMARK. The reader may have noticed that the KKT-condition (4.24) for a local maxi-
mizer is a special case of the necessary condition∇ f .x/− yT

∇g.x/ = 0T we derived for
saddle points in Corollary 4.1 (becauseg.x/= Ax−b has the Jacobian∇g.x/= A). This
is not surprising, indeed, a saddle point.x;y/ of the LagrangianL.x;y/ always implies
x to be a local (even a global) maximizer.
On the other hand, a local maximizer usually is not even a kind of “local saddle point” of
the LagrangianL.x;y/ = f .x/− yT.Ax − b/. The two concepts are quite different (in
spite of the formal similarity of the necessary conditions they imply).

EX . 4.14(“Equality and Inequality Constraints”). Show: Every maximizer of

max f .x/ s.t. Bx = d; Ax ≤ b ;

whereB ∈ Rk×n andA ∈ Rm×n, satisfies the KKT-condition

∇ f .x/− λTB−µTA = 0T ; µT.Ax − b/ = 0 ; λ ∈ Rk ; µ ∈ Rm
+ :
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4.4.2. General Constraints.In the presence of general nonlinear constraints
g.x/ ≤ 0 (where we assumeg : Rn

→ Rm to be differentiable), we could try to
take a similar approach: We firstlinearize the constraints,i.e., replace them by
their first order approximations, and then proceed as before.

Givenx ∈ F , we again consider the correspondingactive set

J.x/ = { j | g j.x/ = 0} ⊆ {1; : : : ;m} :

An (approximately)feasible directionatx is then a vectord ∈ Rn such that

∇g j.x/d ≤ 0 for all j ∈ J.x/:

If d 6= 0 is such a direction at the maximizerx and (4.23) holds, the same argument
as before yields∇ f .x/d ≤ 0 . The problem is that (4.23) need no longer hold.
Indeed, we may not be able to move intoanyfeasible directiond without leaving
the feasible setF immediately (cf. Ex. 4.15).

Under certain assumptions on the constraint functionsg j.x/ (so-calledconstraint
qualifications), one can argue that the cone of feasible directionsD.x/ approxi-
mates the feasible setF (locally atx) sufficiently well so that this problem can be
overcome by moving along afeasible curvein F leading approximately (rather
than exactly) into directiond ∈ D.x/. These (truly nonlinear) phenomena are
discussed in detail in Chapter 12. One obtains necessary conditions that again are
formally the same as the saddle point conditions of KKT-type

(4.25) ∇ f .x/− yT
∇g.x/ = 0T ; y ≥ 0 ; yTg.x/ = 0

(which we already know to be necessary saddle point conditions without any as-
sumptions on the constraints).

EX . 4.15. For max{x1 | g.x/ = ‖x‖2 ≤ 1} or max{x1 | h.x/ = ‖x‖2 = 1}, determine the
cone of feasible directions D.x/ in x ∈ F and find which directions have the property
(4.23).

Minimization Problems. In the case of minimization problems, where we max-
imize .− f /, the KKT-conditions for a minimizerx are, of course, obtained when
we replace∇ f .x/ in (4.25) by.−∇ f .x//. After multiplication with .−1/, the
KKT-conditions for a minimizerx therefore become

(4.26) ∇ f .x/+ yT
∇g.x/ = 0T ; y ≥ 0 ; yTg.x/ = 0 :



CHAPTER 5

Integer Programming

An integer linear program(ILP) is, by definition, a linear program with the addi-
tional constraint that all variables take integer values:

(5.1) maxcTx s:t: Ax ≤ b and x integral:

Integrality restrictions occur in many situations. For example, the products in a
linear production model (cf. p. ??) might be “indivisible goods” that can only
be produced in integer multiples of one unit. Many problems in operations re-
search and combinatorial optimization can be formulated as ILPs. As integer
programming is NP-hard (see Section??), every NP-problem can in principle be
formulated as an ILP. In fact, such problems usually admit many different ILP
formulations. Finding a particularly suited one is often a decisive step towards
the solution of a problem.

5.1. Formulating an Integer Program

In this section we present a number of (typical) examples of problems with their
corresponding ILP formulations.

Graph Coloring. Let us start with the combinatorial problem of coloring the
nodes of a graphG = .V; E/ so that no two adjacent nodes receive the same
color and as few colors as possible are used (cf. Section??). This problem occurs
in many applications. For example, the nodes may represent “jobs” that can each
be executed in one unit of time. An edge joining two nodes may indicate that
the corresponding jobs cannot be executed in parallel (because they use perhaps
common resources). In this interpretation, the graphG would be theconflict
graphof the given set of jobs. The minimum number of colors needed to color its
nodes equals the number of time units necessary to execute all jobs.

Formulating thenode coloring problemas an ILP, we assumeV = {1; : : : ;n}
and that we haven colors at our disposal. We introduce binary variablesyk,
k = 1; : : : ;n, to indicate whether colork is used.yk = 1/ or not .yk = 0/. Fur-
thermore, we introduce variablesxik to indicate whether nodei receives colork.

89
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The resulting ILP is

(5.2) min
∑n

k=1 yk s:t: .1/
∑n

k=1 xik = 1 i = 1; : : : ;n
.2/ xik − yk ≤ 0 i; k= 1; : : : ;n
.3/ xik + x jk ≤ 1 .i; j/ ∈ E; k= 1; : : : ;n
.4/ 0≤ xik; yk ≤ 1
.5/ xik; yk ∈ Z

The constraints (4) and (5) ensure that thexik and yk are binary variables. The
constraints (1)–(3) guarantee (in this order) that each node is colored, nodei re-
ceives colork only if color k is used at all, and any two adjacent nodes have
different colors.

EX . 5.1. Show: If the integrality constraint (5) is removed, the resulting linear program
has optimum value equal to 1.

The Traveling Salesman Problem (TSP).This is one of the best-known com-
binatorial optimization problems: There aren towns and a ”salesman”, located
in town 1, who is to visit each of the othern− 1 towns exactly once and then
return home. The tour (traveling salesman tour) has to be chosen so that the to-
tal distance traveled is minimized. To model this problem, consider the so-called
complete graph Kn, i.e., the graphKn = .V; E/ with n = |V| pairwise adjacent
nodes. With respect to a given cost (distance) functionc : E→ R we then seek
to find aHamilton circuit C⊆ E, i.e., a circuit including every node, of minimal
cost.

An ILP formulation can be obtained as follows. We introduce binary variables
xik .i; k= 1; : : : ;n/ to indicate whether nodei is thekth node visited. In addition,
we introduce variablesye .e∈ E/ to record whether edgee is traversed:

(5.3)

min
∑

e∈E ceye

s:t: x11 = 1∑n
k=1 xik = 1 i = 1; : : : ;n∑n
i=1 xik = 1 k= 1; : : : ;n∑

e ye = n
xi;k−1+ x jk − ye ≤ 1 e= .i; j/; k≥ 2

xin + x11− ye ≤ 1 e= .i;1/
0≤ xik; ye ≤ 1

xik; ye ∈ Z

EX . 5.2. Show that each feasible solution of (5.3) corresponds to a Hamilton circuit and
conversely.

In computational practice, other TSP formulations have proved more efficient.
To derive an alternative formulation, consider first the following simple program
with edge variablesye, e∈ E:
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(5.4)
min cTy s:t: y.�.i // = 2 i = 1; : : : ;n

0 ≤ y ≤ 1
y integral:

(Recall our shorthand notationy.�.i // =
∑

e∈�.i / ye for the sum of ally-values on
edges incident with nodei.)

ILP (5.4) doesnot describe our problem correctly: We still must rule out solu-
tions corresponding to disjoint circuits that cover all nodes. We achieve this by
adding more inequalities, so-calledsubtour elimination constraints. To simplify
the notation, we write fory ∈ RE and two disjoint subsetsS;T ⊆ V

y.S : T/ =
∑

e= .i; j/
i ∈ S; j ∈ T

ye:

The subtour elimination constraints

y.S : S/ ≥ 2

make sure that there will be at least two edges in the solution that lead from a
proper nonempty subsetS⊂ V to its complementS= V \ S. So the corresponding
tour is connected. A correct ILP-formulation is thus given by

(5.5)

min cTy s:t: y.�.i // = 2 i = 1; : : : ;n
y.S : S/ ≥ 2 ∅ ⊂ S⊂ V
0 ≤ y ≤ 1

y integral:

Note the contrast to our first formulation (5.3): ILP (5.5) has exponentially many
constraints, one for each proper subsetS⊂ V. If n= 30, there are more than 230

constraints. Yet, the way to solve (5.5) in practice is to add even more constraints!
This approach of adding so-called cutting planes is presented in Sections 5.2 and
5.3 below.

REMARK. The mere fact that (5.5) has exponentially many constraints does not prevent
us from solving it (without the integrality constraints) efficiently (cf. Section??).

Maximum Clique. This is another well-studied combinatorial problem, which
we will use as a case study for integer programming techniques later. Consider
again the complete graphKn = .V; E/ on n nodes. This time, there are weights
c ∈ RV andd ∈ RE given on both the vertices and the edges. We look for a set
C⊆ V that maximizes the total weight of vertices and induced edges:

(5.6) max
C⊆V

c.C/+ d.E.C//:

As Kn = .V; E/ is the complete graph, eachC ⊆ V is a clique (set of pairwise
adjacent nodes). Therefore, we call (5.6) themaximum weighted clique problem.
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EX . 5.3. Given a graph G= .V; E′/ with E′ ⊆ E, choosec= 1 and

de=

{
0 e∈ E′

−n otherwise

Show: With these parameters (for Kn = .V; E/), (5.6) reduces to the problem of finding
a clique C in G of maximum cardinality.

Problem (5.6) admits a rather straightforward ILP-formulation:

(5.7)

max cTx+ dTy
ye− xi ≤ 0 e∈ E; i ∈ e

xi + x j − ye ≤ 1 e= .i; j/ ∈ E
0 ≤ x;y ≤ 1

x;y integer

A vector.x;y/ with all componentsxi ; ye ∈ {0;1} that satisfies the constraints of
(5.7) is the so-called(vertex-edge) incidence vectorof the clique

C= {i ∈ V | xi = 1} :

In other words,x ∈ RV is the incidence vector ofC andy ∈ RE is the incidence
vector ofE.C/.

REMARK. The reader may have noticed that all ILPs we have formulated so far are
binary programs,i.e., the variables are restricted to take values in{0;1} only. This is
not by pure accident. The majority of integer optimization problems can be cast in this
setting. But of course, there are also others (e.g., the integer linear production model
mentioned in the introduction to this chapter).

5.2. Cutting Planes I

Consider the integer linear program

(5.8) maxcTx s:t: Ax ≤ b and x integral:

For the following structural analysis it is important (see Ex. 5.4) to assume thatA
andb are rational,i.e., A ∈ Qm×n andb ∈ Qm. In this case, the polyhedron

(5.9) P= {x ∈ Rn
| Ax ≤ b}

is a rational polyhedron (cf. Section 3.6). The set of integer vectors inP is a
discrete set, whose convex hull we denote by

(5.10) PI = conv{x ∈ Zn
| Ax ≤ b} :

Solving (5.8) is equivalent with maximizingcTx over the convex setPI (Why?).
Below, we shall prove that alsoPI is a polyhedron and derive a system of inequal-
ities describingPI . We thus show how (at least in principle) the original problem
(5.8) can be reduced to a linear program.

EX . 5.4. Give an example of a (non-rational) polyhedron P⊆ Rn such that the set PI is
not a polyhedron.
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PROPOSITION 5.1. Let P⊆ Rn be a rational polyhedron. Then also PI is a
rational polyhedron. In case PI 6= ∅, its recession cone equals that of P.

Proof.The claim is trivial if P is bounded (asP then contains only finitely many
integer points and the result follows by virtue of the discussion in Section 3.6). By
the Weyl-Minkowski Theorem 3.2, a rational polyhedron generally decomposes
into

P= convV+ coneW

with finite sets of rational vectorsV ⊆ Qn andW⊆ Qn. By scaling, if necessary,
we may assume thatW ⊆ Zn. Denote byV andW the matrices whose columns
are the vectors inV andW respectively. Thus eachx ∈ P can be written as

x = Vλ+Wµ ; whereλ;µ ≥ 0 and1Tλ = 1:

Let bµc be theintegral partof µ 6= 0 (obtained by rounding down each compo-
nent�i ≥ 0 to the next integerb�ic). Splittingµ into its integral partbµc and its
non-integral partµ = µ− bµc yields

x = Vλ+Wµ+Wbµc = x+Wbµc

with bµc ≥ 0 integral andx ∈ P, where

P= {Vλ+Wµ | λ ≥ 0; 1Tλ = 1; 0≤ µ < 1} :

BecauseW⊆ Zn, x is integral if and only ifx is integral. Hence

P∩Zn
= P∩Zn

+ {Wz | z≥ 0 integral}:

Taking convex hulls on both sides, we find (cf. Ex. 5.5)

PI = conv.P∩Zn/+ coneW:

SinceP is bounded,P∩Zn is finite. So the claim follows as before.
�

EX . 5.5. Show:conv.V+W/ = convV+ convW for all V;W⊆ Rn.

We next want to derive a system of inequalities describingPI . There is no loss of
generality when we assumeP to be described by a systemAx ≤ b with A andb
integral. The idea now is to derive new inequalities that are valid forPI (but not
necessarily forP) and to add these to the systemAx ≤ b. Such inequalities are
calledcutting planesas they “cut off” parts ofP that are guaranteed to contain no
integral points.

Consider an inequalitycTx ≤ � that is valid for P. If c ∈ Zn but � 6∈ Z, then
each integralx ∈ P∩ Zn obviously satisfies the stronger inequalitycTx ≤ b�c.
Recall from Corollary 2.6 that valid inequalities forP can be derived from the
systemAx ≤ b by taking nonnegative linear combinations. We therefore consider
inequalities of the form

(5.11) .yTA/x ≤ yTb; y ≥ 0 :
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If yTA ∈ Zn, then everyx ∈ P∩Zn (and hence everyx ∈ PI ) satisfies

(5.12) .yTA/x ≤ byTbc:

We say that (5.12) arises from (5.11) byrounding(if yTA ∈ Zn). In particular, we
regain the original inequalitiesAx ≤ b taking asy all unit vectors. We conclude

PI ⊆ P′ = {x ∈ Rn
| .yTA/x ≤ byTbc; y ≥ 0; yTA ∈ Zn

} ⊆ P:

Searching for inequalities of type (5.12) withyTA ∈ Zn, we may restrict ourselves
to 0 ≤ y ≤ 1. Indeed, eachy ≥ 0 splits into its integral partz = byc ≥ 0 and
non-integral party = y − z. The inequality (5.12) is then implied by the two
inequalities

(5.13)
.zTA/x ≤ zTb .∈ Z/
.yTA/x ≤ byTbc:

(Recall that we assumeA andb to be integral.) The first inequality in (5.13) is
implied byAx ≤ b. To describeP′, it thus suffices to augment the systemAx ≤ b
by all inequalities of the type (5.12) with0≤ y < 1, which describes

(5.14) P′ = {x ∈ Rn
| .yTA/x ≤ byTbc; 0≤ y ≤ 1; yTA ∈ Zn

}:

by a finite number of inequalities (see Ex. 5.6) and thus exhibitsP′ as a polyhe-
dron.

EX . 5.6. Show: There are only finitely many vectorsyTA ∈ Zn with 0≤ y ≤ 1.

EX . 5.7. Show: P⊆ Q implies P′ ⊆ Q′. (In particular, P′ depends only on P and not
on the particular systemAx ≤ b describing P.)

Iterating the above construction, we obtain the so-calledGomory sequence

(5.15) P⊇ P′ ⊇ P′′ ⊇ : : : ⊇ P.k/
⊇ : : : ⊇ PI :

Remarkably (cf. Gomory [34], and also Chvatal [9]), Gomory sequences are al-
ways finite:

THEOREM 5.1. The Gomory sequence is finite in the sense that P.t/
= PI holds

for some t∈ N.

Before giving the proof, let us examine in geometric terms what it means to pass
from P to P′. Consider an inequality

.yTA/x ≤ yTb

with y ≥ 0 andyTA ∈ Zn. Assume that the components ofyTA have greatest
common divisord= 1 (otherwise replacey by d−1y). Then the equation

.yTA/x = byTbc
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admits an integral solutionx ∈ Zn (cf. Ex. 5.8). Hence passing fromP to P′

amounts to shifting all supporting hyperplanesH of P “towards” PI until they
“touch” Zn in some pointx (not necessarily inPI ).

FIGURE 5.1. Moving a cutting plane towards PI

EX . 5.8. Show: An equationcTx= � with c∈ Zn, � ∈ Z admits an integer solution if and
only if the greatest common divisor of the components ofc divides� (Hint: Section 2.3).

The crucial step in proving Theorem 5.1 is the observation that the Gomory se-
quence (5.15) induces Gomory sequences on all faces ofP simultaneously. More
precisely, assumeF ⊆ P is a proper face. From Section 3.6, we know that
F = P∩ H holds for somerational hyperplane

H = {x ∈ Rn
| .yTA/x = yTb}

with y ∈ Qm
+

(and henceyTA ∈ Qn andyTb ∈ Q).

L EMMA 5.1. F = P∩ H implies F′ = P′ ∩ H.

Proof. From Ex. 5.7 we concludeF ′ ⊆ P′. Since, furthermore,F ′ ⊆ F ⊆ H
holds, we concludeF ′ ⊆ P′ ∩ H. To prove the converse inclusion, note thatF is
the solution set of

Ax ≤ b
yTAx = yTb:

Scalingy if necessary, we may assume thatyTA andyTb are integral. By defini-
tion, F ′ is described by the inequalities

(5.16) .wTA + �yTA/x ≤ bwTb+ �yTbc

with w ≥ 0, � ∈ R (not sign-restricted) andwTA + �yTA ∈ Zn. We show that
each inequality (5.16) is also valid forP′ ∩ H (and henceP′ ∩ H ⊆ F ′).

If � < 0, observe that forx ∈ H (and hence forx ∈ P′ ∩ H) the inequality (5.16)
remains unchanged if we increase� by an integerk ∈ N: Sincex satisfiesyTAx =
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yTb ∈ Z, both the left and right hand side will increase bykyTb if � is increased to
�+ k. Hence we can assume� ≥ 0 without loss of generality. If� ≥ 0, however,
(5.16) is easily recognized as an inequality of type (5.12). (Takey=w+�y≥ 0.)
So the inequality is valid forP′ and hence forP′ ∩ H.

�

We are now prepared for the

Proof of Theorem 5.1.In caseP= {x ∈ Rn
| Ax = b} is an affine subspace, the

claim follows from Corollary 2.2 (cf. Ex. 5.9). In general,P is presented in the
form

(5.17)
Ax = b
A ′x ≤ b′

with n− d equalitiesA i·x = bi and s≥ 0 facet inducing (i.e., irredundant) in-
equalitiesA ′j·x ≤ b′j .

CASE 1: PI = ∅. Let us argue by induction ons≥ 0. If s= 0, P is an affine
subspace and the claim is true. Ifs≥ 1, we remove the last inequalityA ′s·x ≤ b′s
in (5.17) and letQ⊆ Rn be the corresponding polyhedron. By induction, we then
haveQ.t/

= QI for somet ∈ N. Now PI = ∅ implies

QI ∩ {x ∈ Rn
| A ′s·x ≤ b′s} = ∅ :

Since P.t/
⊆ Q.t/ and (trivially) P.t/

⊆ {x ∈ Rn
| A ′s·x ≤ b′s}, we conclude that

P.t/
= ∅ holds, too.

CASE 2: PI 6= ∅. We proceed now by induction on dimP. If dim P= 0, P= {p}
is an affine subspace and the claim is true. In general, sincePI is a polyhedron,
we can represent it as

Ax = b
Cx ≤ d

with C andd integral.

We show that each inequalitycTx ≤ � of the systemCx ≤ d will eventually be-
come valid for someP.t/, t ∈ N (which establishes the claim immediately). So fix
an inequalitycTx≤ �. SinceP andPI (and hence allP.t/) have identical recession
cones by Proposition 5.1, the values

�.t/ = max
x∈P.t/

cTx

are finite for eacht ∈ N. The sequence�.t/ is decreasing. Indeed, from the defini-
tion of the Gomory sequence we conclude that�.t+1/

≤ b�.t/c. Hence the sequence
�.t/ reaches its limit

� := lim
t→∞

�.t/ ≥ �

in finitely many steps. If� = �, there is nothing left to prove. Suppose therefore
� = �.t/ > � and consider the face

F := {x ∈ P.t/
| cTx = �}:
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Then FI must be empty since everyx ∈ PI ⊇ FI satisfiescTx ≤ � < �. If cT
∈

row A, thencTx is constant onP ⊇ P.t/
⊇ PI , so � > � is impossible. Hence

cT
6∈ row A, i.e., dim F < dim P. By induction, we conclude from Lemma 5.1

F.k/
= P.t+k/

∩ {x ∈ Rn
| cTx = �} = ∅

for some finitek. Hence�.t+k/ < �, a contradiction.
�

EX . 5.9. Assume P= {x ∈ Rn
| Ax = b}. Show that either P= PI or P′ = PI = ∅.

(Hint: Corollary 2.2 and Proposition 5.1)

EX . 5.10 (Matching Polytopes). Let G = .V; E/ be a graph with an even number of
nodes. Aperfect matchingin G is a set of pairwise disjoint edges covering all nodes.
Perfect matchings inG are in one-to-one correspondence with integral (and hence binary)
vectorsx ∈ RE satisfying the constraints

(1) x.�.i // = 1 .i ∈ V/

(2) 0≤ x ≤ 1.

Let P⊆ RE be the polytope described by these constraints. The associated polytopePI

is called thematching polytopeof G. Thus PI is the convex hull of (incidence vectors
of) perfect matchings inG. (For example, ifG consists of two disjoint triangles, we have
RE
' R6, P= {12 · 1} andPI = ∅).

To construct the Gomory polytopeP′, consider someS⊆ V. When we add the constraints
(1) for i ∈ S, every edgee= .i; j/ with i; j ∈ Soccurs twice. So the resulting equation is

(1’) x.�.S//+ 2x.E.S// = |S|
(Recall thatE.S/ ⊆ E is the set of edges induced byS.) On the other hand, (2) implies

(2’) x.�.S// ≥ 0:

From (1’) and (2’) we conclude thatx.E.S// ≤ 1
2|S| is valid for P. Hence forS⊆ V

(3) x.E.S// ≤ b1
2|S|c

is valid for P′. It can be shown (cf. [12]) that the inequalities (1)-(3) describePI . So
P′ = PI and the Gomory sequence has length 1.

Gomory’s Cutting Plane Method. Theorem 5.1 tells us that – at least in principle
– integer programs can be solved by repeated application of linear programming.
Conceptually, Gomory’s method works as follows. Start with the integer linear
program

(5.18) maxcTx s:t: Ax ≤ b; x integral

and solve its LP-relaxation, which is obtained by dropping the integrality con-
straint:

(5.19) maxcTx s:t: Ax ≤ b :

So cTx is maximized overP = {x ∈ Rn
| Ax ≤ b}. If the optimal solution is

integral, the problem is solved. Otherwise, determineP′ and maximizecTx over
P′ etc.
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Unfortunately, this approach is hopeless inefficient. In practice, if the optimumx∗

of (5.19) is non-integral, one tries to findcutting planes(i.e., valid inequalities for
PI that “cut off” a part ofP containingx∗) right away in order to add these to the
systemAx ≤ b and then solves the new systemetc.. This procedure is generally
known as thecutting plane methodfor integer linear programs.

Of particular interest in this context are cutting planes that are best possible in
the sense that they cut as much as possible offP. Ideally, one would like to
add inequalities that define facets ofPI . Numerous classes of suchfacet defining
cutting planes for various types of problems have been published in the literature.
In Section 5.3, we discuss some techniques for deriving such cutting planes.

5.3. Cutting Planes II

The cutting plane method has been successfully applied to many types of prob-
lems. The most extensively studied problem in this context is the traveling sales-
man problem (see,e.g., [12] for a detailed exposition). Here, we will take the max
clique problem from Section 5.1 as our guiding example, trying to indicate some
general techniques for deriving cutting planes. Moreover, we take the opportunity
to explain how even more general (seeminglynonlinear) integer programs can be
formulated as ILPs.

The followingunconstrained quadratic boolean(i.e., binary)problemwas studied
in Padberg [64] with respect to a symmetric matrixQ = .qi j / ∈ Rn×n:

(5.20) max
n∑

i; j=1

qi j xi x j ; xi ∈ {0;1} :

As xi · xi = xi holds for a binary variablexi , the essential nonlinear terms in the
objective function are the termsqi j xi x j .i 6= j/. These may belinearizedwith the
help of new variablesyi j = xi x j . Sincexi x j = x j xi , it suffices to introduce just
n.n− 1/=2 new variablesye, one for each edgee= .i; j/ ∈ E in the complete
graphKn = .V; E/ with V = {1; : : : ;n}.

The salient point is the fact that the non-linear equationye = xi x j is equivalent
with the three linear inequalities

ye≤ xi ; ye≤ x j; andxi + x j − ye≤ 1

if xi ; x j andye are binary variables.
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With ci = qii andde = qi j + q ji for e= .i; j/ ∈ E, problem (5.20) can thus be
written as an integer linear program:

(5.21)

max
n∑

i=1

ci xi +

∑
e∈E

deye s.t.

ye− xi ≤ 0 e∈ E; i ∈ e
xi + x j − ye ≤ 1 e= .i; j/ ∈ E

0≤ xi ; ye ≤ 1
xi ; ye integer.

Note that (5.21) is precisely our ILP formulation (5.7) of the weighted max clique
problem.

Let P ⊆ RV∪E be the polytope defined by the inequality constraints of (5.21).
As we have seen in Section 5.1,PI is then the convex hull of the (vertex-edge)
incidence vectors.x;y/ ∈ RV∪E of cliques (subsets)C⊆ V.

The polytopeP ⊆ RV∪E is easily seen to have full dimensionn+
(n

2

)
(because,

e.g., x = 1
2 · 1 and y = 1

3 · 1 yields an interior point.x;y/ of P). Even PI is
full-dimensional (see Ex. 5.11).

EX . 5.11. Show:RV∪E is the affine hull of the incidence vectors of the cliques of sizes
0,1 and 2.

What cutting planes can we construct forPI ? By “inspection”, we find that for
any three verticesi; j; k ∈ V and corresponding edgese; f; g ∈ E, the following
triangle inequality

(5.22) xi + x j + xk− ye− y f − yg ≤ 1

holds for any clique incidence vector.x;y/ ∈ RV∪E.

EX . 5.12. Show: (5.22) can also be derived from the inequalities describing P by round-
ing.

This idea can be generalized. To this end, we extend our general shorthand nota-
tion and write for.x;y/ ∈ RV∪E andS⊆ V:

x.S/ =
∑
i∈S

xi and y.S/ =
∑

e∈E.S/

ye :

For example, (5.22) now simply becomes:x.S/− y.S/ ≤ 1 for |S| = 3.

For everyS⊆ V and integer� ∈ N, consider the followingclique inequality

(5.23) �x.S/− y.S/ ≤ �.�+ 1/=2:

PROPOSITION 5.2. Each clique inequality is valid for PI .
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Proof.Let .x;y/ ∈ RV∪E be the incidence vector of some cliqueC⊆ V. We must
show that.x;y/ satisfies (5.23) for eachS⊆ V and� ∈ N. Let s= |S∩C|. Then
x.S/ = s andy.S/ = s.s− 1/=2. Hence

�.�+ 1/=2− �x.S/+ y.S/ = [�.�+ 1/− 2�s+ s.s− 1/]=2

= .�− s/.�− s+ 1/=2;

which is nonnegative since both� ands are integers.
�

A further class of inequalities can be derived similarly. For any two disjoint sub-
setsS;T ⊆ V, the associatedcut inequalityis

(5.24) x.S/+ y.S/+ y.T/− y.S : T/ ≥ 0

(Recall from Section 5.1 thaty.S : T/ denotes the sum of ally-values on edges
joining SandT).

PROPOSITION 5.3. Each cut inequality is valid for PI .

Proof.Assume that.x;y/ ∈ RV∪E is the clique incidence vector ofC ⊆ V. With
s= |C∩ S| andt = |C∩ T|, we then find

x.S/+ y.S/+ y.T/− y.S : T/ = s+ s.s− 1/=2+ t.t− 1/=2− st

= .s− t/.s− t+ 1/=2≥ 0:

�

Multiplying a valid inequality with a variablexi ≥ 0, we obtain a new (nonlin-
ear!) inequality. We canlinearizeit by introducing new variables as explained at
the beginning of this section. Alternatively, we may simply use linear (lower or
upper) bounds for the nonlinear terms, thus weakening the resulting inequality.
For example, multiplying a clique inequality (5.23) by 2xi , i ∈ S, yields

2�
∑
j∈S

xi x j − 2xiy.S/ ≤ �.�+ 1/xi :

Because ofxiy.S/ ≤ y.S/, x2
i = xi andxi x j = ye, e= .i; j/ ∈ E, the following

so-calledi-clique inequality

(5.25) 2�y.i : S\ {i}/− 2y.S/− �.�− 1/xi ≤ 0

must be valid forPI . (This may also be verified directly.)

REMARK. Most of the above inequalities actually define facets ofPI . Consider,e.g.,
for some�, 1≤ � ≤ n− 2, the clique inequality

�x.S/− y.S/ ≤ �.�+ 1/=2 ;

which is satisfied with equality by all incidence vectors of cliquesC⊆ V with |C∩ S| = �

or |C∩ S| = �+ 1. Let H ⊆ RV∪E be the affine hull of all these incidence vectors.
To prove that the clique inequality is facet defining, one has to show

dim H = dim PI − 1 ;
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i.e., H is a hyperplane inRV∪E. This is not too hard to do. (In the special caseS= V and
� = 1, it follows readily from Ex. 5.11).

The cutting plane method suffers from a difficulty we have not mentioned so far.
Suppose we try to solve an integer linear program, starting with its LP-relaxation
and repeatedly adding cutting planes. In each step, we then face the problem of
finding a suitable cutting plane that cuts off the current non-integral optimum.
This problem is generally difficult.E.g., for the max clique problem one can
show that it isN P-hard to check whether a given.x∗;y∗/ ∈ RV∪E satisfies all
clique inequalities and, if not, find a violated one to cut off.x∗;y∗/.

Moreover, one usually has only a limited number of different classes (types) of
cutting planes to work with. In the max clique problem, for example, we could
end up with a solution.x∗;y∗/ that satisfies all clique,i-clique and cut inequalities
and yet is non-integral. The original system and these three classes of cutting
planes namely describePI by no means completely.

The situation in practice, however, is often not so bad. Quite efficient heuristics
can be designed that frequently succeed to find cutting planes of a special type.
Macambira and de Souza [57], for example, solve max clique instances of up to
50 nodes with the above clique and cut inequalities and some more sophisticated
generalizations thereof.

Furthermore, even when a given problem is not solved completely by cutting
planes, the computation was not futile: Typically, the (non-integral) optimum
obtained after having added hundreds of cutting planes provides a rather tight
estimate of the true integer optimum. Such estimates are extremely valuable in a
branch and bound method for solving ILPs as discussed in Section 5.4 below. For
example, the combination of cutting planes and a branch and bound procedure has
solved instances of the TSP with several thousand nodes to optimality (cf. [12]).

5.4. Branch and Bound

Any linear maximization program (ILP) with binary variablesx1; : : : ; xn can in
principle be solved bycomplete enumeration: Check all 2n possible solutions for
feasibility and compare their objective values. To do this in a systematic fashion,
one constructs an associatedtree of subproblemsas follows. Fixing, say the first
variablex1, to eitherx1= 0 orx1= 1, we generate two subproblems.ILP | x1= 0/
and.ILP | x1 = 1/. These two subproblems are said to be obtained from (ILP) by
branchingon x1.

Clearly, an optimal solution of (ILP) can be inferred by solving the two subprob-
lems. Repeating the above branching step, we can build abinary treewhose nodes
correspond to subproblems obtained by fixing some variables to be 0 or 1. (The
termbinary refers here to the fact that each node in the tree has exactly twolower
neighbors.) The resulting tree may look as indicated in Figure 9.2 below.
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. I LP | x1 = 0; x3 = 1/. I LP | x1 = 0; x3 = 0/

. I LP | x1 = 0/

. I LP/

. I LP | x1 = 1/

FIGURE 5.2.

Having constructed the complete tree, we could solve (ILP)bottom upand inspect
the 2n leaves of the tree, which correspond to ”trivial” (all variables fixed) prob-
lems. In contrast to this solution by complete enumeration,branch and bound
aims at building only a small part of the tree, leaving most of the “lower part”
unexplored. This approach is suggested by the following two obvious facts:

• If we can solve a particular subproblem, say.ILP | x1 = 0; x3 = 1/, di-
rectly (e.g., by cutting planes), there is no need to inspect the subprob-
lems in the branch below.ILP | x1 = 0; x3 = 1/ in the tree.
• If we obtain an upper boundU.x1 = 0; x3 = 1/ for the sub-problem
.ILP | x1= 0; x3= 1/ that islessthan the objective value of some known
feasible solution of the original (ILP), then.ILP | x1 = 0; x3 = 1/ offers
no optimal solution.

Only if neither of these circumstances occurs we have to explore the subtree
rooted at.ILP | x1 = 0; x3 = 1/ for possible optimal solutions. We do this by
branching at.ILP | x1 = 0; x3 = 1/ and creating two new subproblems in the
search tree. An efficient branch and bound procedure tries to avoid such branch-
ing steps as much as possible. To this end, one needs efficient algorithms that
produce

(1) “good” feasible solutions of the original (ILP).
(2) tight upper bounds for the subproblems.

There is a trade-off between the quality of the feasible solutions and upper bounds
on the one hand and the size of the search tree we have to build on the other. As
a rule of thumb, “good” solutions should be almost optimal and bounds should
differ from the true optimum by less than 10%.

Algorithms for computing good feasible solutions usually depend very much on
the particular problem at hand. So there is little to say in general. Quite often,
however, simple and fastheuristic proceduresfor almost optimal solutions can
be found. Such algorithms, also calledheuristicsfor short, are known for many
problem types. They have no guarantee for success, but work well in practice.

REMARK [L OCAL SEARCH]. In the max clique problem the following simplelocal
searchoften yields surprisingly good solutions: We start with someC ⊆ V and check
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whether the removal of some nodei ∈ C or the addition of some nodej =∈ C yields an
improvement. If so, we add (delete) the corresponding node and continue this way until
no such improvement is possible (in which case we stop with the currentlocal optimum
C⊆ V). This procedure may be repeated with different initial solutionsC⊆ V.

Computing good upper bounds is usually more difficult. Often, one just solves
the corresponding LP-relaxations. If these are too weak, one can try to improve
them by adding cutting planes as outlined in Section 5.3 . An alternative is to
obtain upper bounds from Lagrangian relaxation (see Section 5.5 below).

Search and Branching Strategies.For the practical execution of a branch and
bound algorithm, one needs to specify how one should proceed. Suppose, for
example, that we are in a situation as indicated in Figure 9.2,i.e., that we have
branched from (ILP) on variablex1 and from.ILP | x1 = 0/ on variablex3. We
then face the question which subproblem to consider next, either.ILP | x1 = 1/
or one of the subproblems of.ILP | x1 = 0/. There are two possible (extremal)
strategies: We either always go to one of the “lowest” (most restricted) subprob-
lems or to one of the “highest” (least restricted) subproblems. The latter strategy,
choosing.ILP | x1 = 1/ in our case, is calledbreadth first searchwhile the for-
mer strategy is referred to asdepth first search, as it moves down the search tree
as fast as possible.

A second question concerns the way of branching itself. If LP-relaxation or cut-
ting planes are used for computing upper bounds, we obtain a fractional optimum
x∗ each time we try to solve a subproblem. A commonly used branching rule
then branches on themost fractional x∗i . In the case of (0;1)-variables, this rule
branches on the variablexi for whichx∗i is closest to 1=2. In concrete applications,
we have perhaps an idea about the “relevance” of the variables. We may then al-
ternatively decide to branch on the most relevant variablexi . Advanced software
packages for integer programming allow the user to specify the branching process
and support various upper bounding techniques.

REMARK. The branch and bound approach can easily be extended to general integer
problems. Instead of fixing a variablexi to either 0 or 1, we may restrict it toxi ≤ �i or
xi ≥ �i +1 for suitable�i ∈ Z. Indeed, the general idea is topartition a given subproblem
into a number of (possibly more than just two) subproblems of similar type.

5.5. Lagrangian Relaxation

In Section 4.1, Lagrangian relaxation was introduced as a means for calculating
upper bounds for optimization problems. Thereby, one “relaxes” (dualizes) some
(in)equality constraints by adding them to the objective function using Lagrangian
multipliersy≥ 0 (in case of inequality constraints) to obtain an upper boundL.y/.

The crucial question is which constraints to dualize. The more constraints are
dualized, the weaker the bound becomes. On the other hand, dualizing more
constraints facilitates the computation ofL.y/. There is a trade-off between the
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quality of the bounds we obtain and the effort necessary for their computation.
Generally, one would dualize only the “difficult” constraints,i.e., those that are
difficult to deal with directly (see Section 5.5.2 for an example).

Held and Karp [39] were the first to apply the idea of Lagrangian relaxation to
integer linear programs. Assume that we are given an integer program as

(5.26) max{cTx | Ax ≤ b; Bx ≤ d; x ∈ Zn
}

for given integral matricesA;B and vectorsb;c;d and letz∗I P be the optimum
value of (5.26). Dualizing the constraintsAx − b ≤ 0 with multipliers u ≥ 0
yields the upper bound

L.u/ = max{cTx− uT.Ax − b/ | Bx ≤ d;x ∈ Zn
}(5.27)

= uTb+max{.cT
− uTA/x | Bx ≤ d;x ∈ Zn

}

and thus the Lagrangian dual problem

(5.28) z∗D = min
u≥0

L.u/ :

EX . 5.13. Show that L.u/ is an upper bound on z∗I P for everyu ≥ 0.

It is instructive to compare (5.28) with the linear programming relaxation

(5.29) z∗LP = max{cTx | Ax ≤ b;Bx ≤ d};

which we obtain by dropping the integrality constraintx ∈ Zn. We find that La-
grangian relaxation approximates the true optimumz∗I P at least as well:

THEOREM 5.2. z∗I P ≤ z∗D ≤ z∗LP.

Proof. The first inequality is clear (cf. Ex. 5.13). The second one follows from
the fact that the Lagrangian dual of a linear program equals the linear program-
ming dual. Formally, we may derive the second inequality by applying linear
programming duality twice:

z∗D = min
u≥0

L.u/

= min
u≥0

[uTb+max
x
{.cT
− uTA/x | Bx ≤ d;x ∈ Zn

}]

≤ min
u≥0

[uTb+max
x
{.cT
− uTA/x | Bx ≤ d}]

= min
u≥0

[uTb+min
v
{dTv | vTB = cT

− uTA;v ≥ 0}]

= min
u;v
{uTb+ vTd | uTA + vTB = cT;u ≥ 0;v ≥ 0}

= max
x
{cTx | Ax ≤ b;Bx ≤ d} = z∗LP:

�
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REMARK. As the proof of Theorem 5.2 shows,z∗D = z∗LP holds if and only if the inte-
grality constraintx ∈ Zn is redundant in the Lagrangian dual problem definingz∗D. In this
case, the Lagrangian dual is said to have theintegrality property (cf. Geoffrion [29]).

It turns out that solving the Lagrangian dual problem amounts to minimizing a
”piecewise linear” function of a certain type. We say that a functionf : Rn

→ R
is piecewise linear convexif f is obtained as the maximum of a finite number of
affine functions fi : Rn

→ R (cf. Figure 5.3 below). (General convex functions
are discussed in Chapter 10).

x

f .x/

FIGURE 5.3. f .u/ = max{ fi .u/ | 1≤ i ≤ k}

PROPOSITION 5.4. Let U be the set of vectorsu ≥ 0 such that

(5.30) L.u/ = uTb+max
x
{.cT
− uTA/x | Bx ≤ d;x ∈ Zn

} <∞ :

Then L is a piecewise linear convex function on U.

Proof.For fixedu ≥ 0, the maximum in (5.30) is obtained by maximizing a linear
function f .x/ = .cT

− uTA/x over

PI = conv{x | Bx ≤ d; x ∈ Zn
} = convV+ coneE ;

say, with finite setsV ⊆ Zn andE ⊆ Zn (cf. Proposition 5.1). IfL.u/ <∞, the
maximum in (5.30) is attained at somev ∈ V (Why?). Hence

L.u/ = uTb+max{.cT
− uTA/v | v ∈ V};

exhibiting the restriction ofL to U as the maximum of the finitely many affine
functions

`i .u/ = uT.b−Av i /+ cTvi .vi ∈ V/:

�
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5.5.1. Solving the Lagrangian Dual.After these structural investigations,
let us address the problem of computing (at least approximately) the best possible
upper boundL.u∗/ and solving the Lagrangian dual

z∗D = min
u≥0

L.u/:

To this end, we assume that we can evaluate (i.e., efficiently solve) for any given
u ≥ 0:

(5.31) L.u/ = max{cTx− uT.Ax − b/ | Bx ≤ d;x ∈ Zn
} :

REMARK. In practice this means that the constraints we dualize (Ax ≤ b) have to be
chosen appropriately so that the resultingL.u/ is easy to evaluate (otherwise we obvi-
ously cannot expect to solve the problem minL.u/)

Supposex ∈ Zn is an optimal solution of (5.31). We then seek someu ≥ 0 such
that L.u/ < L.u/. Sincex is a feasible solution of the maximization problem in
(5.31),L.u/ < L.u/ implies

(5.32) cTx− uT.Ax− b/ ≤ L.u/ < L.u/ = cTx− uT.Ax− b/

and hence
.u− u/T.Ax− b/ > 0:

The Subgradient Method.The preceding argument suggests to try a vectoru =
u+∆u with

∆u = u− u = �.Ax− b/
for some smallstep size� > 0.

Of course, we also want to haveu = u+∆u ≥ 0. So we simply replace any
negative component by 0,i.e., we project the resulting vectoru onto the setRm

+
of

feasible multipliers and obtain

(5.33) u = max{0 ; u+ �.Ax− b/} (componentwise):

REMARK. This procedure appears intuitively reasonable: As our step size� is small,
a negative component can only occur ifui ≈ 0 andA i·x < bi . This means that we do
not need to enforce the constraintA i·x ≤ bi by assigning a large penalty (Lagrangian
multiplier) to it. Consequently, we tryui = 0.

The above procedure is thesubgradient method(cf. also Section 4.2.3) for solv-
ing the Lagrangian dual: We start with someu0 ≥ 0 and compute a sequence
u1;u2; : : : by iterating the above step with step sizes�1; �2; : : : .

The appropriate choice of the step size�i is a delicate problem – both in theory
and in practice. A basic result states that convergence takes place (in the sense of
Theorem??) provided

lim
i→∞

�i = 0 and
∞∑
i=0

�i =∞:
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5.5.2. Max Clique Revisited.How could Lagrangian relaxation be applied
to the max clique problem? The first (and most crucial) step is to establish an
appropriate ILP formulation of the max clique problem. This formulation should
be such that dualizing a suitable subset of constraints yields upper bounds that are
reasonably tight and efficiently computable. A bit of experimenting reveals our
original formulation (5.7) resp. (5.21) to be inadequate. Below, we shall derive
an alternative formulation that turns out to work better.

We start by passing from the underlying complete graphKn = .V; E/ to the com-
plete directed graphDn = .V; A/, replacing each edgee= .i; j/ ∈ E by two
oppositely directed arcs.i; j/ ∈ A and. j; i / ∈ A. To avoid confusion with the no-
tation, we will always indicate whether a pair.i; j/ is considered as an ordered or
unordered pair and write.i; j/ ∈ A or .i; j/ ∈ E, resp. With each arc.i; j/ ∈ A, we
associate a binary variableyi j . The original edge weightsde .e∈ E/ are equally
replaced by arc weightsqi j = q ji = de=2 (e= .i; j/ ∈ E).

The original ILP formulation (5.7) can now be equivalently replaced by

(5.34)

max cTx+ qTy s:t:
.1/ xi + x j −

1
2.yi j + y ji / ≤ 1 .i; j/ ∈ E

.2/ yi j − y ji = 0 .i; j/ ∈ E

.3/ yi j − xi ≤ 0 .i; j/ ∈ A

.4/ x ∈ {0;1}V;y ∈ {0;1}A

REMARK. (5.34) is a “directed version” of (5.7). The cliques (subsets)C ⊆ V are now
in one-to-one correspondence with the feasible solutions of (5.34), namely thevertex-arc
incidence vectors.x;y/ ∈ {0;1}V∪A, defined byxi = 1 if i ∈ C andyi j = 1 if i; j ∈ C.

The directed version (5.34) offers the following advantage over the formulation
(5.7): After dualizing constraints (1) and (2) in (5.34), the remaining constraints
(3) and (4) imply no “dependence” between different nodesi and j (i.e., yi j = 1
impliesxi = 1 but notx j = 1) . The resulting Lagrangian relaxation can therefore
be solved quite easily (cf. Ex. 5.14).

EX . 5.14. Using Lagrangian multipliersu ∈ RE
+ for dualizing constraints (1) and unre-

stricted multipliersv ∈ RE for dualizing the equality constraints (2) in (5.34), one obtains

L.u;v/ = max cTx+ qTy+
∑

.i; j/∈E

ui j
(
1− xi − x j +

1
2
.yi j + y ji /

)
+

∑
.i; j/∈E

vi j .yi j − y ji /

subject to (3)–(4) from (5.34) .

So for givenu ∈ RE
+ andv ∈ RE, computingL.u;v/ amounts to solving a problem of the

following type (with suitablẽc ∈ RV andq̃ ∈ RA):

max c̃Tx+ q̃Ty subject to (3)–(4) from (5.34)

Show: A problem of the latter type is easy to solve because the constraints (3)–(4) imply
no “dependence” between different nodes i and j.
(Hint: For i ∈ V, let Pi = { j ∈ V | q̃i j > 0}. Set xi = 1 if c̃i +

∑
j∈Pi

q̃i j > 0.)
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Unfortunately, the Lagrangian bounds we obtain from the dualization of the con-
straints (1) and (2) in (5.34) are too weak to be useful in practice. To derive tighter
bounds, we want to add more constraints to (5.34) while keeping the enlarged sys-
tem still efficiently solvable after dualizing constraints (1) and (2). It turns out that
one can add “directed versions” (cf. below) of the clique inequalities (5.23) and
the i-clique inequalities (5.25) forS= V without complicating things too much.
The resulting formulation of the max clique problem is

(5.35)

maxcTx+ qTy s.t.

.1/ xi + x j −
1
2.yi j + y ji / ≤ 1 .i; j/ ∈ E

.2/ yi j − y ji = 0 .i; j/ ∈ E

.3/ yi j − xi ≤ 0 .i; j/ ∈ A

.4/ 2�x.V/− y.V/ ≤ �.�+ 1/ � = 1; : : : ;n

.5/ 2�y.�+.i //− y.V/− �.�− 1/xi ≤ 0 i ∈ V

.6/ x ∈ {0;1}V;y ∈ {0;1}A

where, in constraints (4) and (5), we used the straightforward extension of our
general shorthand notation:

y.V/ =
∑

.i; j/∈A

yi j and y.�+.i // =
∑
j 6=i

yi j :

Constraints (4) and (5) are “directed versions” of the original clique andi-clique
inequalities (5.23) and (5.25).

EX . 5.15. Show that every incidence vector.x;y/ ∈ RV∪A of a set (clique) C⊆ V
satisfies the constraints in (5.35). (Hint: Section 5.3)

To dualize constraints (1) and (2) in (5.35), we introduce Lagrangian multipliers
u ∈ RE

+
for the inequality constraints (1) and unrestricted multipliersv ∈ RE for

the equality constraints (2). So we obtain forL.u;v/ the expression

max cTx+ qTy+
∑

.i; j/∈E

ui j

(
1− xi − x j +

1
2
.yi j + y ji /

)
+

∑
.i; j/∈E

vi j .yi j − y ji /

subject to (3)–(6) from (5.35):

Givenu ∈ RE
+

andv ∈ RE, the computation ofL.u;v/ amounts to solving a prob-
lem of the following type (for suitablẽc ∈ RV andq̃ ∈ RA):

max c̃Tx+ q̃Ty subject to (3)–(6) from (5.35)(5.36)

The integer linear program (5.36) appears to be more difficult, but can still be
solved quickly.

For p= 0; : : : ;n, we determine the best solution satisfyingx.V/ = p as follows:
For p = 0, setx = y = 0. Given p ≥ 1, we choose for eachi ∈ V the p− 1
most profitable arcs in�+.i /, i.e., those with the highest̃q-values. Suppose their
q̃-values sum up tõqi for i ∈ V. We then letxi = 1 for the p largest values of
c̃i + q̃i . If xi = 1, we letyi j = 1 for the p− 1 most profitable arcs in�+.i /.
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The optimal solution is then the best we found forp = 0; : : : ;n. This follows
from

L EMMA 5.2. Let .x;y/ ∈ {0;1}V∪A. Then.x;y/ is a feasible solution of (5.36) if
and only if there exists some p∈ {0; : : : ;n} such that

.i/ x.V/ = p and .ii / y.�+.i // =
{

p− 1 if xi = 1
.i ∈ V/

0 if xi = 0

Proof.Assume first that.x;y/ satisfies (i) and (ii). Then.x;y/ satisfies the con-
straints (3) and (6) of (5.35). Constraint (4) reduces to

(4’) 2�p− p.p− 1/ ≤ �.�+ 1/,
which holds for all�; p ∈ Z since.� − p/2 + .� − p/ ≥ 0. Constraint (5) is
certainly satisfied ifxi = 0 (due to (ii)). Forxi = 1, constraint (5) becomes

2�.p− 1/− p.p− 1/ ≤ �.�− 1/;

which is (4’) again.

Conversely, assume that.x;y/ is feasible for (5.36) and letp= x.V/ =
∑

i∈V xi .
Consider the constraints (5) of (5.36) for thosei with xi = 1. Adding the corre-
sponding inequalities for any�, we find

2�y.V/− py.V/− p�.�− 1/ ≤ 0:

Taking� = p, we concludey.V/ ≤ p.p− 1/:

On the other hand, letting� = p in (4), we have

2p2
− y.V/ ≤ p.p+ 1/ and hence y.V/ ≥ p.p− 1/ ;

which provesy.V/ = p.p− 1/. Substituting the latter equality into (5) (with
� = p) and dividing byp, we deduce fori ∈ V with xi = 1:

2y.�+.i // ≤ .p− 1/+ .p− 1/xi = 2.p− 1/:

In view of constraint (3) in (5.35), we thus have the inequalities

y.�+.i // ≤
{

p− 1 if xi = 1
0 if xi = 0.

Sincey.V/ = p.p− 1/, actually equality must hold.
�

EX . 5.16. The Lagrangian boundsL.u;v/ we obtain when solving (5.36) as explained
above are generally better than the bound produced by the LP-relaxation of (5.36). Con-
sider, for example, the complete directed graphD4 = .V; A/ with c̃= 0 ∈ RV and sym-
metric arc weights̃qi j = q̃ ji as indicated in Figure 5.4 below.
An optimum integral solution of (5.36) can be obtained as follows: Choose any setC⊆ V
with |C| = 3. Setxi = 1 if i ∈ C. Furthermore, for eachi ∈ C choose two arcs in�+.i /
with weight q̃i j = 1. Setyi j = 1 on these two arcs. This solution guarantees an objective
function valuẽqTy = 6 (so the duality gap is zero).
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In contrast, the LP-relaxation of (5.36) is solved byx1 = x4 = 1, x2 = x3 = 2=3, y12 =

y13 = y42 = y43 = 1 andy21 = y23 = y24 = y31 = y32 = y34 = 2=3 with an objective
value of 8. So Lagrangian relaxation (in this example) provides strictly better bounds than
LP-relaxation. In other words, problem formulation (5.36) does not have the integrality
property (cf. p. 105).

1

2

3

4

FIGURE 5.4. All arcs have weight 1 except the two arcs.1;4/ and
.4;1/ of weight−100.

Our Lagrangian relaxation of the max clique problem makes use of cutting planes
by adding them to the constraints. This approach works well as long as we can
deal with these additional constraints directly. If we wanted to add other cutting
planes (say triangle inequalities), solving (5.36) with these additional constraints
would become a lot more difficult.

An alternative procedure would add such constraints and dualize them immedi-
ately. The resulting Lagrangian bound may then again be computed by solving a
problem of type (5.36) (with a modified objective function). This approach has
proved rather promising in practice (cf. [43]).

5.6. Dualizing the Binary Constraints

As we have seen, Lagrangian relaxation is a technique to get rid of difficult in-
equality or equality constraints by dualizing them. Can we do something similar
with the binary constraints? The answer is yes, and the reason is simple: A bi-
nary constraintxi ∈ {0;1} can be equivalently written as an equality constraint
x2

i − xi = 0, which we dualize as usual.

Note, however that dualizing the quadratic equationx2
i − xi = 0 necessarily results

in a quadratic term in the Lagrangian function. We illustrate this approach in the
case of the maximum clique problem – or, equivalently, the unconstrained qua-
dratic binary optimization problem from Section 5.3 (see Lemaréchal and Oustry
[52] for other examples and more details of this technique in general).
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Let Q ∈ Rn×n be a symmetric matrix and reconsider the unconstrained quadratic
boolean problem

(5.37) max{xTQx | x ∈ {0;1}n} :

Dualizing the constraintsx2
i − xi = 0 with Lagrangian multipliersui ∈ R, we

obtain the Lagrangian bound

(5.38) L.u/ = max
x∈Rn

xTQx+
∑

i

ui .x
2
i − xi /:

LettingU ∈ Rn×n denote the diagonal matrix with diagonalu ∈ Rn, we can write

(5.39) L.u/ = max
x

xT.Q+U/x− uTx:

Evaluating L.u/ amounts to solving the unconstrained quadratic optimization
problem (5.39). Ex. 5.17 shows how to accomplish this.

EX . 5.17. For fixedu ∈ Rn, consider the function

f .x/ = xT.Q+U/x− uTx:

Show: If x.Q+U/x > 0 holds for somex ∈ Rn, then f has no finite maximum.
Assume thatxT.Q+U/x ≤ 0 always holds (i.e.,Q+U is negative semidefinite). Show:
x is optimal for f if and only if∇ f .x/ = 2xT.Q+U/− uT

= 0T. (Hint: Section??).
So f has a finite maximum if and only ifQ+U is negative semidefinite and∇ f .x/= 0T

has a solution. The maximum is attained in eachx ∈ Rn satisfying2.Q+U/x= u, which
implies

L.u/ = max
x

f .x/ =
1
2

xTu− uTx = −
1
2

uTx :

The Lagrangian dual minu L.u/ is called thesemidefinite relaxationof the primal
(5.37), as it can be reformulated as follows (withu ∈ Rn, r ∈ R):

min
u

L.u/ = min
u;r
{r | L.u/ ≤ r}

= min
u;r
{r | xT.Q+U/x− uTx ≤ r ∀x ∈ Rn

}

= min
u;r
{r | .1;xT/

[
−r −

1
2uT

−
1
2u .Q+U/

](
1
x

)
≤ 0 ∀ x ∈ Rn

}

= min
u;r
{ r |

[
−r −

1
2uT

−
1
2u .Q+U/

]
is negative semidefinite}:

Only the last step needs further explanation, which is given in Ex. 5.18 below.

EX . 5.18. Show for anyS∈ R.n+1/×.n+1/:

.1;xT/S
(

1
x

)
≤ 0 for all x ∈ Rn

⇐⇒ zTSz≤ 0 for all z ∈ Rn+1.
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Our reformulation of the Lagrangian dualvia

min
u

L.u/ = min
r;u

r s:t: Sr;u =

[
−r −

1
2uT

−
1
2u .Q+U/

]
� 0:(5.40)

is a special case of asemidefinite program(optimizing a linear objective under
linear and semidefinite constraints, see also Section??).

REMARK. To understand how (and why) problem (5.40) can be solved at least approx-
imately, consider the following “cutting plane approach”: We first replace the condition
of semidefiniteness forS= Sr;u by afinitenumber of linear inequalities

(5.41) aTSa≤ 0 .a ∈ A/

for some finite setA⊆ Rn+1. Note that, for each fixeda ∈ A, the inequalityaTSa≤ 0 is
a linear inequality with variablesr andu.
We then minimizer subject to constraints (5.41). If the solution provides us withr andu
such thatSr;u is negative semidefinite, we have found a solution. Otherwise, ifaTSa > 0
holds for somea ∈ Rn+1, we adda to A (i.e., we add aviolated inequality) and solve the
modified problemetc. (Note that we can check whetherS= Sr;u is negative semidefinite
with the Diagonalization algorithm from Section 2.1. This also provides us with a suitable
vectora in caseS is not negative semidefinite.)
The theoretical aspects of this approach will be discussed in the context of the ellipsoid
method in Section??. In practice, analogues of the interior point method for linear pro-
grams (cf. Chapter??) solve semidefinite programs more efficiently.

We want to emphasize that the approach of dualizing the binary constraints in a
general integer program

max cTx s.t. Ax ≤ b; x ∈ {0;1}n

is limited. If we dualize only the binary constraintsx2
i − xi = 0 using Lagrangian

multipliersui ∈ R, the Lagrangian function becomes

L.u/ = max xTUx+ .c− u/Tx s.t. Ax ≤ b :

In contrast to (5.38), this is a quadratic optimization problem withinequality con-
straints, which is in general difficult (NP-hard,cf. Section??).



List of frequently used Symbols

R set of real numbers
N;Z;Q set of natural, integer, rational numbers
Rn Euclideann-space
Rn
+

set of non-negative vectors inRn

RE set of real vectors indexed by the setE
Rm×n set of realm× n matrices
Sn×n set of real symmetricn× n matrices
x ∈ Rn column vector with componentsx1; : : : ; xn

‖x‖ Euclidean norm
U".x/ "-neighborhood ofx
e1; : : : ;en standard unit vectors inRn

〈x|y〉 inner product
xTy standard inner product inRn

A = .ai j / ∈ Rm×n real.m× n/ matrix
AT transpose ofA
A i·; A· j row vectors, column vectors ofA
A ◦B =

∑
i

∑
j ai j bi j “inner product” of matrices

‖A‖F =
√

A ◦A Frobenius norm of the matrixA.
A � 0 positive semidefinite matrix (p.s.d.)
A � 0 positive definite matrix
A � B A −B is positive semidefinite
I unit matrix
diag.d1; : : : ;dn/ diagonal matrix
α vector with all components equal to� ∈ R
spanA linear hull (span) of a setA
aff A affine hull (affine span) of a setA
coneA convex cone of a setA
conv A convex hull of a setA
cl C closure of a setC
int C interior of a setC
L⊥ orthogonal complement ofL
C0 dual cone ofC
Ppol polar of P
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114 LIST OF FREQUENTLY USED SYMBOLS

[x;y] line segment betweenx;y ∈ Rn

P.A;b/ polyhedron of solutions ofAx ≤ b
kerA kernel of the matrixA

∇ f .x/ =
(
@ f .x/
@x1
; : : : ;

@ f .x/
@xn

)
gradient of f : Rn

→ R atx (row vector)
[∇ f .x/]T or∇T f .x/ transpose of the gradient (column vector)
∇ f .x/ =

(
@ fi .x/
@x j

)
Jacobian off : Rn

→ Rm atx
[∇ f .x/]T or∇T f .x/ transpose of the Jacobian
∇xg.x;y/ partial derivative with respect to thex-variable
∇

2 f .x/ Hessian off : Rn
→ R atx

@ f .x/ subdifferential of f : Rn
→ R atx

log logarithm to base 2
ln natural logarithm

〈q〉 size ofq ∈ Q
〈x〉 size ofx ∈ Qn

〈I 〉 size of a problem instanceI
[�] nearest integer
d�e, b�c smallest integer≥ � resp. largest integer≤ �

w:l :o:g: without loss of generality
⊆ containment
⊂ proper containment
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Index

accumulation point, 11
active, 66, 86

index set, 86, 88
affine

combination, 4
hull, 4
map, 7
space, 1
subspace, 3
transformation, 7

backward substitution, 24
basic

solution, 70, 71
basis, 3
best fit, 36
binary

constraint, 110
search, 41
tree, 101
variable, 50

Bolzano-Weierstrass
theorem of, 12

boolean function, 49
boundary, 12
branch and bound, 102
breadth first search, 103

Carath́eodory’s Theorem, 71
Cauchy-Schwarz inequality, 8
chain rule, 18
Cholesky factorization, 33
clique

inequality, 99
closed set, 12
closure of a set, 12
CNF, 50
column space, 3, 28
compact convex problem, 81

compact set, 12
complementary, 76, 87

slackness, 66
complete graph, 90
completeness property, 11
cone, 58

duality, 61, 83
of positive semidefinite matrices, 63
of feasible directions, 86

conic hull, 58
conjunctive normal form (CNF), 50
constraint functions, 75
constraint qualification, 88
continuous, 12
convex

hull, 58
program, 80
set, 58

Cramer’s rule, 30
critical

equation, 15, 17, 77
point, 17

cut
inequality, 100

cutting plane, 93

derivative, 14
derived inequality, 51
determinant, 28
diagonalization, 31
dimension, 3, 4

of a polyhedron, 68
directional derivative, 16
distance, 34
dual, 75

cone, 61, 83
duality gap, 78
dualize, 76
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eigenvalue, 40
eigenvector, 40
elementary

row operation, 6
operation, 1

enumeration, 101
equilibrium strategies, 79
Euclid’s algorithm, 43
Euclidean

distance, 11
norm, 10

extremum principle, 15, 17

face, 66
lattice, 70

facet, 68
generating, 69

Farkas lemma, 51
feasible

curve, 88
direction, 86, 88
solution, 85

Fourier-Motzkin, 49
Frobenius norm, 10

Gale’s Theorem, 27
Gauss-Jordan, 28
Gauss-Markov, 37
Gaussian elimination, 23, 25
generalized inverse, 38
global maximizer, 85
Gomory sequence, 94
Gordan, 52
gradient, 16
Gram matrix, 8
Gram-Schmidt, 38
greatest common divisor, 42

Hadamard’s inequality, 39
halfspace, 57
Hamilton circuit, 90
Hermite normal form, 25
hyperplane, 4, 57

identity matrix, 9
implied inequality, 53
independent, 3

vectors, 3
inequality

Cauchy-Schwarz, 8
infimum, 11
injective map, 6

inner product, 7
integer linear program, 89
integer solution, 42
integral

part, 93
integrality property, 105
interior of a set, 12
inverse

image, 7
of a matrix, 6

irredundant, 68

Jacobian, 17

Karush-Kuhn-Tucker (KKT), 87
kernel

of a map, 5
of a matrix, 6

KKT
condition, 87
point, 87

Kuhn-Tucker point
see KKT point, 87

Lagrangian
dual, 76, 80, 82
function, 78
multipliers, 76
relaxation, 75, 76, 103, 104

lattice, 44, 69
basis, 44

least square problem, 34, 36
line segment, 58
linear

combination, 2
map, 4
variety, 3

linear model, 36
linearize, 88
local maximizer, 85
local minimizer, 17
local search, 102
locally optimal solutions, 85
lower triangular, 25
LP-relaxation, 97, 104
LU-factorization, 27

matching
polytope, 97

matrix
Hessian, 20
positive definite, 8
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product, 5
maximizer, 85
maximum weighted clique problem, 91
mean value theorem, 15
min-max problem, 77
minimizer, 85
Minkowski sum, 59

nabla, 16
necessary optimality condition, 87
negative semidefinite, 111
node coloring problem, 89
nonlinear

problem, 75
program, 85

norm, 9

objective function, 75
open

ball, 12
set, 12

optimality condition, 15, 17
necessary, 86

orthogonal
complement, 35
matrix, 9
projection, 34
vectors, 9

orthonormal system, 9

parallelogram equality, 10
partial derivative, 16
partial pivoting, 25
partial relaxation, 78
penalized, 77
penalty, 82
perfect matching, 97
permutation, 28

matrix, 26
perpendicular, 10
piecewise linear, 105
pivot, 24
polar, 64
polar cone, 61

relative to L, 63
polyhedral cone, 57
polyhedron, 57
polytope, 59
positive definite, 8, 9
positive semidefinite, 30, 32
primal

feasible, 76

primal-dual
Lagrangian problems, 79

probability distribution, 52
product rule, 19
projection, 34

quadratic boolean problem, 98, 111
quotient rule, 19

rank, 28
rational

polyhedron, 73
recession cone, 66
redundant, 55
relax, 76
relaxation

Lagrangian, 75, 103
LP, 97, 104
partial, 78
semidefinite, 111

resolution, 50
rounding, 94
row echelon form, 25
row space, 3, 27

saddle point, 79
satisfiability problem, 49
satisfiable, 49
scalar, 1
search

breadth first, 103
depth first, 103
local, 102

semidefinite
program, 85, 112
relaxation, 111

separating hyperplane, 60
sign of a permutation, 29
spectral decomposition, 40
standard

basis, 3
cone, 60
inner product, 7
simplex, 60

steady state distribution, 53
stochastic matrix, 52
strong duality, 78
subgradient

method, 82, 106
subspace, 2
subtour elimination constraints, 91
supporting hyperplane, 66
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supremum, 11
surjective map, 5, 6
symmetric matrix, 8, 30

Taylor formula, 15, 20
tight, 66, 86
trace, 8
transpose, 2
traveling salesman problem, 90
trivial face, 66

unit spere, 13
unit vector, 3
upper triangular, 25

valid, 60
vector space, 1
vertex solution, 70
vertex-arc incidence vector

of a clique, 107
vertex-edge incidence vector

of a clique, 92
volume, 29


