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Note that these Lecture Notes have been last modified on January 10, 2012. I guess most
of you will have printed the Lecture Notes of December 6, 2011(see “document last
modified” date on your printout). I therefore keep track of the changes that I made since
then below. I also mark these changes as “[major]” or “[minor]”, depending on their
importance.

Changes made with respect to Lecture Notes of December 6, 2011:

• [major ] Introducing the notion of a pseudoflow on page 42: corrected“it need
to satisfy the flow balance constraints” to “it neednot satisfy the flow balance
constraints”.

Changes made with respect to Lecture Notes of December 20, 2011: (Thanks to Rutger
Kerkkamp for pointing these out.)

• [minor] Symbol for symmetric difference on page 4 is now the same as the one
used in Chapter 7 (“△”).
• [minor] Strictly speaking we would have to add a constraintx j ≤ 1 for every j ∈
{1, . . . ,n} to the LP relaxation (2) of the integer linear program (1) on page 5.
However, these constraints are often (but not always) redundant because of the
minimization objective. Note that the discussion that follows refers to the LP
relaxation as stated in (2) (see also remark after statementof LP (2)).
• [minor] Corrected “multiplies” to “multipliers” in last paragraph on page 5.
• [minor] Lower part of Figure 2 on page 2: changed edgee from solid to dotted

line.
• [minor] At various places in Chapter 3, Condition (M1) of theindependent set sys-

tem has not been mentioned explicitly (Example 3.1, Examples 3.3–3.5, Theorem
3.1). Mentioned now.
• [minor] Corrected “many application” to “many applications” in first paragraph

on page 27.
• [minor] Corrected “δ (v)” and “δ (u)” to “ δ (s,v)” and “δ (s,u)” in last paragraph

of the proof of Lemma 5.5. on page 34 (3 occurrences).
• [minor] Algorithms 7 and 8 should mention that the capacity function is non-

negative.
• [major ] There was a mistake in the objective function of the dual linear program

(6) on page 46: The sign in front of the second summation must be negative.
• [minor] Algorithms 9, 10 and 11 should mention that the capacity function is non-

negative.
• [minor] Proof of Theorem 7.3 on page 56: corrected “O(mα(n,m))” to

“O(mα(n, m
n ))”.

• [minor] Caption of the illustration on page 71 has been put onthe same page.
• [minor] Typo in the second last sentence of the proof of Theorem 6.7 on page 47:

“cπ(u,v)< 0” corrected to “cπ(u,v)≤ 0”.
• [minor] Statement of Theorem 10.8 on page 90 has been corrected (FPTAS instead

of 2-approximation).



Changes made with respect to Lecture Notes of January 5, 2012: (Thanks to Tara van
Zalen and Arjan Dijkstra for pointing these out.)

• [minor] Example 3.2 on page 21 (uniform matroids): corrected “I = {I ⊆S | |S|≤
k}” to “ I = {I ⊆ S | |I | ≤ k}”
• [minor] Statement of Lemma 5.4 on page 32: corrected “The flowof any flow” to

“The flow value of any flow”.
• [minor] There was a minus sign missing in the equation (7) on page 43.
• [minor] Second paragraph of Section 8.3 on page 60: Corrected “hyperplance” to

“hyperplane”.
• [minor] Removed sentence “We state the following proposition without proof”

before statement of Lemma 8.4 on page 62.
• Corrected “Note hatb is integral” to “Note thatb is integral” in the proof of The-

orem 8.7 on page 63.

Please feel free to report any mistakes, inconsistencies, etc. that you encounter.

Guido
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1. Preliminaries

1.1 Optimization Problems

We first formally define what we mean by anoptimization problem. The definition be-
low focusses onminimization problems. Note that it extends naturally tomaximization
problems.

Definition 1.1. A minimization problemΠ is given by a set of instancesI. Each instance
I ∈ I specifies

• a setF of feasible solutions forI ;
• a cost functionc : F →R.

Given an instanceI = (F ,c) ∈ I, the goal is to find a feasible solutionS∈ F such that
c(S) is minimum. We call such a solution anoptimal solutionof I .

In discrete (or combinatorial) optimizationwe concentrate on optimization problemsΠ,
where for every instanceI = (F ,c) the setF of feasible solutions isdiscrete, i.e.,F is
finite or countably infinite. We give some examples below.

Minimum Spanning Tree Problem (MST):

Given: An undirected graphG= (V,E) with edge costsc : E→ R.
Goal: Find a spanning tree ofG of minimum total cost.

We have

F = {T ⊆ E | T is a spanning tree ofG} and c(T) = ∑
e∈T

c(e).

Traveling Salesman Problem (TSP):

Given: An undirected graphG= (V,E) with distancesd : E→R.
Goal: Find a tour ofG of minimum total length.

Here we have

F = {T ⊆ E | T is a tour ofG} and c(T) = ∑
e∈T

d(e)

Linear Programming (LP):

Given: A setF of feasible solutionsx= (x1, . . . ,xn) defined bym linear constraints

F =

{

(x1, . . . ,xn) ∈ Rn
≥0 |

n

∑
i=1

ai j xi ≥ b j ∀ j = 1, . . . ,m

}

and an objective functionc(x) = ∑n
i=1cixi .

Goal: Find a feasible solutionx∈ F that minimizesc(x).
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Note that in this example the number of feasible solution inF is uncountable. So why
does this problem qualify as adiscreteoptimization problem? The answer is thatF
defines a feasible set that corresponds to the convex hull of afinite number of vertices.
It is not hard to see that if we optimize a linear function overa convex hull then there
always exists an optimal solution that is a vertex. We can thus equivalently formulate the
problem as finding a vertexx of the convex hull defined byF that minimizesc(x).

1.2 Algorithms and Efficiency

Intuitively, an algorithm for an optimization problemΠ is a sequence of instructions
specifying a computational procedure that solves every given instanceI of Π. Formally,
the computational model underlying all our considerationsis the one of aTuring machine
(which we will not define formally here).

A main focus of this course is onefficientalgorithms. Here, efficiency refers to the overall
running time of the algorithm. We actually do not care about the actual runningtime
(in terms of minutes, seconds, etc.), but rather about the number of basic operations.
Certainly, there are different ways to represent the overall running time of an algorithm.
The one that we will use here (and which is widely used in the algorithms community)
is the so-calledworst-caserunning time. Informally, the worst-case running time of an
algorithm measures the running time of an algorithm on the worst possible input instance
(of a given size).

There are at least two advantages in assessing the algorithm’s performance by means
of its worst-case running time. First, it is usually rather easy to estimate. Second, it
provides a very strong performance guarantee: The algorithm is guaranteed to compute a
solution toeveryinstance (of a given size), using no more than the stated number of basic
operations. On the downside, the worst-case running time ofan algorithm might be an
overly pessimistic estimation of its actual running time. In the latter case, assessing the
performance of an algorithm by itsaverage caserunning time or itssmoothedrunning
time might be suitable alternatives.

Usually, the running time of an algorithm is expressed as a function of thesizeof the input
instanceI . Note that a-priori it is not clear what is meant by the size ofI because there
are different ways to represent (or encode) an instance.

Example 1.1. Many optimization problems have a graph as input. Suppose weare given
an undirected graphG= (V,E) with n nodes andm edges. One way of representingG is
by itsn×n adjacency matrixA= (ai j ) with ai j = 1 if (i, j) ∈E andai j = 0 otherwise. The
size needed to representG by its adjacency matrix is thusn2. Another way to representG
is by itsadjacency lists: For every nodei ∈ V, we maintain the setLi ⊆V of nodes that
are adjacent toi in a list. Note that each edge occurs on two adjacency lists. The size to
representG by adjacency lists isn+2m.

The above example illustrates that the size of an instance depends on the underlyingdata
structurethat is used to represent the instance. Depending on the kindof operations that
an algorithm uses, one might be more efficient than the other.For example, checking
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whether a given edge(i, j) is part ofG takes constant time if we use the adjacency matrix,
while it takes time|Li | (or |L j |) if we use the adjacency lists. On the other hand, listing all
edges incident toi takes timen if we use the adjacency matrix, while it takes time|Li | if
we use the adjacency lists.

Formally, we define the size of an instanceI as the number of bits that are needed to store
all data ofI using encodingL on a digital computer and use|L(I)| to refer to this number.
Note that according to this definition we also would have to account for the number of bits
needed to store the numbers associated with the instance (like nodes or edges). However,
most computers nowadays treat all integers in their range, say from 0 to 231, the same and
allocate aword to each such number. We therefore often take the freedom to rely on a
more intuitive definition of size by counting the number of objects (like nodes or edges)
of the instance rather than their total binary length.

Definition 1.2. Let Π be an optimization problem and letL be an encoding of the in-
stances. Then algorithmALG solvesΠ in (worst-case) running timef if ALG computes
for every instanceI of sizenI = |L(I)| an optimal solutionS∈F using at mostf (nI ) basic
operations.

1.3 Growth of Functions

We are often interested in theasymptotic runningtime of the algorithm. The following
definitions will be useful.

Definition 1.3. Let g : N→R+. We define

O(g(n)) = { f : N→R+ | ∃c> 0, n0 ∈N such thatf (n)≤ c ·g(n) ∀n≥ n0}
Ω(g(n)) = { f : N→R+ | ∃c> 0, n0 ∈N such thatf (n)≥ c ·g(n) ∀n≥ n0}
Θ(g(n)) = { f : N→R+ | f (n) ∈O(g(n)) and f (n) ∈Ω(g(n))}

We will often write, e.g.,f (n) = O(g(n)) instead off (n) ∈ O(g(n)), even though this is
notationally somewhat imprecise.

We consider a few examples: We have 10n2 = O(n2), 1
2n2 = Ω(n2), 10nlogn = Ω(n),

10nlogn= O(n2), 2n+1 = Θ(2n) andO(logm) = O(logn)1 if m≤ nc for some constant
c.

1.4 Graphs

An undirected graphG consists of a finite setV(G) of nodes (or vertices) and a finite set
E(G) of edges. For notational convenience, we will also writeG = (V,E) to refer to a
graph with nodes setV = V(G) and edge setE = E(G). Each edgee∈ E is associated
with anunorderedpair (u,v) ∈V×V; u andv are called theendpointsof e. If two edges
have the same endpoints, then they are calledparallel edges. An edge whose endpoints

1Recall that log(nc) = clog(n).
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are the same is called aloop. A graph that has neither parallel edges nor loops is said to
be simple. Note that in a simple graph every edgee= (u,v) ∈ E is uniquely identified
by its endpointsu andv. Unless stated otherwise, we assume that undirected graphsare
simple. We denote byn andm the number of nodes and edges ofG, respectively. A
completegraph is a graph that contains an edge for every (unordered) pair of nodes. That
is, a complete graph hasm= n(n−1)/2 edges.

A subgraph Hof G is a graph such thatV(H)⊆V andE(H)⊆ E and eache∈ E(H) has
the same endpoints inH as inG. Given a subsetV ′ ⊆V of nodes and a subsetE′ ⊆ E of
edges ofG, the subgraphH of G induced byV ′ andE′ is defined as the (unique) subgraph
H of G with V(H) = V ′ andE(H) = E′. Given a subsetE′ ⊆ E, G\E′ refers to the
subgraphH of G that we obtain if we delete all edges inE′ from G, i.e.,V(H) = V and
E(H) = E \E′. Similarly, given a subsetV ′ ⊆V, G\V ′ refers to the subgraph ofG that
we obtain if we delete all nodes inV ′ and its incident edges fromG, i.e.,V(H) =V \V ′

andE(H) = E \ {(u,v) ∈ E | u∈V ′}. A subgraphH of G is said to bespanningif it
contains all nodes ofG, i.e.,V(H) =V.

A path P in an undirected graphG is a sequenceP = 〈v1, . . . ,vk〉 of nodes such that
ei = (vi ,vi+1) (1≤ i < k) is an edge ofG. We say thatP is a pathfrom v1 to vk, or a
v1,vk-path. P is simpleif all vi (1≤ i ≤ k) are distinct. Note that if there is av1,vk-path
in G, then there is a simple one. Unless stated otherwise, thelengthof P refers to the
number of edges ofP. A pathC= 〈v1, . . . ,vk = v1〉 that starts and ends in the same node
is called acycle. C is simpleif all nodesv1, . . . ,vk−1 are distinct. A graph is said to be
acyclic if it does not contain a cycle.

A connected component C⊆ V of an undirected graphG is a maximal subset of nodes
such that for every two nodesu,v∈C there is au,v-path inG. A graphG is said to be
connectedif for every two nodesu,v∈V there is au,v-path inG. A connected subgraph
T of G that does not contain a cycle is called atreeof G. A spanningtreeT of G is a tree
of G that contains all nodes ofG. A subgraphF of G is aforestif it consists of a (disjoint)
union of trees.

A directedgraphG = (V,E) is defined analogously with the only difference that edges
are directed. That is, every edgee is associated with anorderedpair (u,v) ∈V×V. Here
u is called thesource(or tail) of e andv is called thetarget (or head) of e. Note that,
as opposed to the undirected case, edge(u,v) is different from edge(v,u) in the directed
case. All concepts introduced above extend in the obvious way to directed graphs.

1.5 Sets, etc.

Let Sbe a set ande /∈ S. We will write S+eas a short forS∪{e}. Similarly, fore∈ Swe
write S−eas a short forS\ {e}.

Thesymmetric differenceof two setsSandT is defined asS△T = (S\T)∪ (T \S).

We useN, Z, Q andR to refer to the set of natural, integer, rational and real numbers,
respectively. We useQ+ andR+ to refer to the nonnegative rational and real numbers,
respectively.
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1.6 Basics of Linear Programming Theory

Many optimization problems can be formulated as aninteger linear program (ILP). Let
Π be a minimization problem. ThenΠ can often be formulated as follows:

minimize
n

∑
j=1

c jx j

subject to
n

∑
j=1

ai j x j ≥ bi ∀i ∈ {1, . . . ,m}

x j ∈ {0,1} ∀ j ∈ {1, . . . ,n}

(1)

Here,x j is a decision variable that is either set to 0 or 1. The above ILP is therefore also
called a0/1-ILP. The coefficientsai j , bi andc j are given rational numbers.

If we relax the integrality constraint onx j , we obtain the followingLP-relaxationof the
above ILP (1):

minimize
n

∑
j=1

c jx j

subject to
n

∑
j=1

ai j x j ≥ bi ∀i ∈ {1, . . . ,m}

x j ≥ 0 ∀ j ∈ {1, . . . ,n}

(2)

In general, we would have to enforce thatx j ≤ 1 for every j ∈ {1, . . . ,n} additionally.
However, these constraints are often redundant because of the minimization objective
and this is what we assume subsequently. LetOPT andOPTLP refer to the objective
function values of an optimal integer and fractional solution to the ILP (1) and LP (2),
respectively. Because every integer solution to (1) is also a feasible solution for (2), we
haveOPTLP ≤ OPT. That is, the optimal fractional solution provides a lower bound on
the optimal integer solution. Recall that establishing a lower bound on the optimal cost
is often the key to deriving good approximation algorithms for the optimization problem.
The techniques that we will discuss subsequently exploit this observation in various ways.

Let (x j) be an arbitrary feasible solution. Note that(x j) has to satisfy each of them
constraints of (2). Suppose we multiply each constrainti ∈ {1, . . . ,m}with a non-negative
valueyi and add up all these constraints. Then

m

∑
i=1

( n

∑
j=1

ai j x j

)

yi ≥
m

∑
i=1

biyi .

Suppose further that the multipliersyi are chosen such that∑m
i=1ai j yi ≤ c j . Then

n

∑
j=1

c jx j ≥
n

∑
j=1

( m

∑
i=1

ai j yi

)

x j =
m

∑
i=1

( n

∑
j=1

ai j x j

)

yi ≥
m

∑
i=1

biyi (3)

That is, every such choice of multipliers establishes a lower bound on the objective func-
tion value of(x j). Because this holds for an arbitrary feasible solution(x j) it also holds
for the optimal solution. The problem of finding the best suchmultipliers (providing the
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largest lower bound onOPTLP) corresponds to the so-calleddual programof (2).

maximize
m

∑
i=1

biyi

subject to
m

∑
i=1

ai j yi ≤ c j ∀ j ∈ {1, . . . ,n}

yi ≥ 0 ∀i ∈ {1, . . . ,m}

(4)

We useOPTDP to refer to the objective function value of an optimal solution to the dual
linear program (4).

There is a strong relation between the primal LP (2) and its corresponding dual LP (4).
Note that (3) shows that the objective function value of an arbitrary feasible dual solution
(yi) is less than or equal to the objective function value of an arbitrary feasible primal
solution (x j). In particular, this relation also holds for the optimal solutions and thus
OPTDP ≤ OPTLP. This is sometimes calledweak duality. From linear programming
theory, we know that even a stronger relation holds:

Theorem 1.1(strong duality). Let x= (x j) and y= (yi) be feasible solutions to the LPs
(2) and (4), respectively. Then x and y are optimal solutions if and onlyif

n

∑
j=1

c jx j =
m

∑
i=1

biyi .

An alternative characterization is given by thecomplementary slackness conditions:

Theorem 1.2. Let x= (x j) and y= (yi) be feasible solutions to the LPs(2) and (4),
respectively. Then x and y are optimal solutions if and only if the following conditions
hold:

1. Primal complementary slackness conditions: for every j∈ {1, . . . ,n}, either xj =0
or the corresponding dual constraint is tight, i.e.,

∀ j ∈ {1, . . . ,n} : x j > 0 ⇒
m

∑
i=1

ai j yi = c j .

2. Dual complementary slackness conditions: for every i∈ {1, . . . ,m}, either yi = 0
or the corresponding primal constraint is tight, i.e.,

∀i ∈ {1, . . . ,m} : yi > 0 ⇒
n

∑
j=1

ai j x j = bi .
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2. Minimum Spanning Trees

2.1 Introduction

We consider theminimum spanning tree problem (MST), which is one of the simplest and
most fundamental problems in network optimization:

Minimum Spanning Tree Problem (MST):

Given: An undirected graphG= (V,E) and edge costsc : E→ R.
Goal: Find a spanning treeT of G of minimum total cost.

Recall thatT is aspanning treeof G if T is a spanning subgraph ofG that is a tree. The
costc(T) of a treeT is defined asc(T) = ∑e∈T c(e). Note that we can assume without
loss of generality thatG is connected because otherwise no spanning tree exists.

If all edges have non-negative costs, then theMSTproblem is equivalent to theconnected
subgraph problemwhich asks for the computation of a minimum cost subgraphH of G
that connects all nodes ofG.

2.2 Coloring Procedure

Most known algorithms for theMST problem belong to the class ofgreedy algorithms.
From a high-level point of view, such algorithms iteratively extend a partial solution to
the problem by always adding an element that causes the minimum cost increase in the
objective function. While in general greedy choices may lead to suboptimal solutions,
such choices lead to an optimal solution for theMSTproblem.

We will get to know different greedy algorithms for theMST problem. All these algo-
rithms can be described by means of anedge-coloring process: Initially, all edges are
uncolored. In each step, we then choose an uncolored edge andcolor it eitherred (mean-
ing that the edge is rejected) orblue(meaning that the edge is accepted). The process ends
if there are no uncolored edges. Throughout the process, we make sure that we maintain
the followingcolor invariant:

Invariant 2.1 (Color invariant). There is a minimum spanning tree containing all the blue
edges and none of the red edges.

The coloring process can be seen as maintaining a forest ofblue trees. Initially, the
forest consists ofn isolated blue trees corresponding to the nodes inV. The edges are
then iteratively colored red or blue. If an edge is colored blue, then the two blue trees
containing the endpoints of this edge are combined into one new blue tree. If an edge is
colored red, then this edge is excluded from the blue forest.The color invariant ensures
that the forest of blue trees can always be extended to a minimum spanning tree (by using
some of the uncolored edges and none of the red edges). Note that the color invariant
ensures that the final set of blue edges constitutes a minimumspanning tree.
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We next introduce two coloring rules on which our algorithmsare based. We first need
to introduce the notion of acut. Let G= (V,E) be an undirected graph. Acut of G is a
partition of the node setV into two sets:X andX̄ =V \X. An edgee= (u,v) is said to
crossa cut(X, X̄) if its endpoints lie in different parts of the cut, i.e.,u∈ X andv∈ X̄. Let
δ (X) refer to the set of all edges that cross(X, X̄), i.e.,

δ (X) = {(u,v) ∈ E | u∈ X, v∈V \X}.

Note thatδ (·) is symmetric, i.e.,δ (X) = δ (X̄).

We can now formulate the two coloring rules:

Blue rule: Select a cut(X, X̄) that is not crossed by any blue edge. Among the uncolored
edges inδ (X), choose one of minimum cost and color it blue.

Red rule: Select a simple cycleC that does not contain any red edge. Among the uncol-
ored edges inC, choose one of maximum cost and color it red.

Our greedy algorithm is free to apply any of the two coloring rules in an arbitrary order
until all edges are colored either red or blue. The next theorem proves correctness of the
algorithm.

Theorem 2.1. The greedy algorithm maintains the color invariant in each step and even-
tually colors all edges.

Proof. We show by induction on the numbert of steps that the algorithm maintains the
color invariant. Initially, no edges are colored and thus the color invariant holds true
for t = 0 (recall that we assume thatG is connected and thus a minimum spanning tree
exists). Suppose the color invariant holds true aftert−1 steps (t≥ 1). LetT be a minimum
spanning tree satisfying the color invariant (after stept−1).

Assume that in stept we color an edgee using the blue rule. Ife∈ T, thenT satisfies
the color invariant after stept and we are done. Otherwise,e /∈ T. Consider the cut
(X, X̄) to which the blue rule is applied to colore= (u,v) (see Figure1). BecauseT
is a spanning tree, there is a pathPuv in T that connects the endpointsu and v of e.
At least one edge, saye′, of Puv must cross(X, X̄). Note thate′ cannot be red because
T satisfies the color invariant. Alsoe′ cannot be blue because of the pre-conditions of
applying the blue rule. Thus,e′ is uncolored and by the choice ofe, c(e) ≤ c(e′). By
removinge′ from T and addinge, we obtain a new spanning treeT ′ = (T−e′)+eof cost
c(T ′) = c(T)− c(e′)+ c(e) ≤ c(T). Thus,T ′ is a minimum spanning tree that satisfies
the color invariant after stept.

Assume that in stept we color an edgee using the red rule. Ife /∈ T, theT satisfies the
color invariant after stept and we are done. Otherwise,e∈ T. Consider the cycleC to
which the red rule is applied to colore= (u,v) (see Figure2). By removinge from T, we
obtain two trees whose node sets induce a cut(X, X̄). Note thatecrosses(X, X̄). Because
C is a cycle, there must exist at least one other edge, saye′, in C that crosses(X, X̄). Note
thate′ cannot be blue becausee′ /∈ T and the color invariant. Moreover,e′ cannot be red
because of the pre-conditions of applying the red rule. Thus, e′ is uncolored and by the
choice ofe, c(e)≥ c(e′). By removinge from T and addinge′, we obtain a new spanning
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Figure 1: Illustration of the exchange argument used in the proof of Theorem2.1 (blue
rule).

treeT ′ = (T−e)+e′ of costc(T ′) = c(T)−c(e)+c(e′)≤ c(T). Thus,T ′ is a minimum
spanning tree that satisfies the color invariant after stept.

Finally, we show that eventually all edges are colored. Suppose the algorithm stops be-
cause neither the blue rule nor the red rule applies but thereis still some uncolored edge
e= (u,v). By the color invariant, the blue edges constitute a forest of blue trees. If both
endpointsu andv of e are part of the same blue treeT, then we can apply the red rule
to the cycle induced by the unique pathPuv from u to v in T ande to colore red. If the
endpointsu andv are contained in two different blue trees, sayTu andTv, then the node
set of one of these trees, sayX =V(Tu), induces a cut(X, X̄) to which the blue rule can be
applied to color an uncolored edge (which must exist becauseof the presence ofe). Thus
an uncolored edge guarantees that either the red rule or the blue rule can be applied.

9



T

X X̄

C

e′

u

e

v

T ′

X X̄

C

e′

u

e

v

Figure 2: Illustration of the exchange argument used in the proof of Theorem2.1 (red
rule).

2.3 Kruskal’s Algorithm

Kruskal’s algorithm sorts the edges by non-decreasing costand then considers the edges
in this order. If the current edgeei = (u,v) has both its endpoints in the same blue tree, it
is colored red; otherwise, it is colored blue. The algorithmis summarized in Algorithm1.

It is easy to verify that in each case the pre-conditions of the respective rule are met: If
the red rule applies, then the unique pathPuv in the blue tree containing both endpoints of
ei together withei forms a cycleC. The edges inC∩Puv are blue andei is uncolored. We
can thus apply the red rule toei . Otherwise, if the blue rule applies, thenei connects two
blue trees, sayTu andTv, in the current blue forest. Consider the cut(X, X̄) induced by the
node set ofTu, i.e.,X =V(Tu). No blue edge crosses this cut. Moreover,ei is an uncolored
edge that crosses this cut. Also observe that every other uncolored edgee∈ δ (X) has cost
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Input : undirected graphG= (V,E) with edge costsc : E→R

Output : minimum spanning treeT

1 Initialize: all edges are uncolored
(Remark: we implicitly maintain a forest of blue trees below)

2 Let 〈e1, . . . ,em〉 be the list of edges ofG, sorted by non-decreasing cost
3 for i← 1 to m do
4 if ei has both endpoints in the same blue treethen colorei redelsecolorei

blue
5 end
6 Output the resulting treeT of blue edges

Algorithm 1: Kruskal’sMSTalgorithm.

c(e) ≥ c(ei) because we color the edges by non-decreasing cost. We can therefore apply
the blue rule toei . An immediate consequence of Theorem2.1is that Kruskal’s algorithm
computes a minimum spanning tree.

We next analyze the time complexity of the algorithm: The algorithm needs to sort the
edges ofG by non-decreasing cost. There are different algorithms to do this with different
running times. The most efficient algorithms sort a list ofk elements inO(k logk) time.
There is also a lower bound that shows that one cannot do better than that. That is, in our
context we spendΘ(mlogm) time to sort the edges by non-decreasing cost.

We also need to maintain a data structure in order to determine whether an edgeei has both
its endpoints in the same blue tree or not. A trivial implementation stores for each node
a unique identifier of the tree it is contained in. Checking whether the endpointsu andv
of edgeei = (u,v) are part of the same blue tree can then be done inO(1) time. Merging
two blue trees needs timeO(n) in the worst case. Thus, the trivial implementation takes
O(m+n2) time in total (excluding the time for sorting).

One can do much better by using a so-calledunion-finddata structure. This data struc-
ture keeps track of the partition of the nodes into blue treesand allows only two types of
operations:unionandfind. Thefind operation identifies the node set of the partition to
which a given node belongs. It can be used to check whether theendpointsu andv of edge
ei = (u,v) belong to the same tree or not. Theunionoperation unites two node sets of the
current partition into one. This operation is needed to update the partition whenever we
color ei = (u,v) blue and have to join the respective blue treesTu andTv. Sophisticated
union-find data structures support a series ofn unionandm findoperations on a universe
of n elements in timeO(n+mα(n, m

n )), whereα(n,d) is theinverse Ackerman function
(see [8, Chapter 2] and the references therein).α(n,d) is increasing inn but grows ex-
tremely slowly for every fixedd, e.g.,α(265536,0) = 4; for most practical situations, it
can be regarded as a constant.

The overall time complexity of Kruskal’s algorithm is thusO(mlogm+n+mα(n, m
n )) =

O(mlogm) = O(mlogn) (think about it!).

Corollary 2.1. Kruskal’s algorithm solves the MST problem in time O(mlogn).
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2.4 Prim’s Algorithm

Prim’s algorithm grows a single blue tree, starting at an arbitrary nodes∈ V. In every
step, it chooses among all edges that are incident to the current blue treeT containingsan
uncolored edgeei of minimum cost and colors it blue. The algorithm stops ifT contains
all nodes. We implicitly assume that all edges that are not part of the final tree are colored
red in a post-processing step. The algorithm is summarized in Algorithm2.

Input : undirected graphG= (V,E) with edge costsc : E→R

Output : minimum spanning treeT

1 Initialize: all edges are uncolored
(Remark: we implicitly maintain a forest of blue trees below)

2 Choose an arbitrary nodes
3 for i← 1 to n−1 do
4 Let T be the current blue tree containings
5 Select a minimum cost edgeei ∈ δ (V(T)) incident toT and color it blue
6 end
7 Implicitly: color all remaining edges red
8 Output the resulting treeT of blue edges

Algorithm 2: Prim’s MSTalgorithm.

Note that the pre-conditions are met whenever the algorithmapplies one of the two col-
oring rules: If the blue rule applies, then the node setV(T) of the current blue treeT
containings induces a cut(X, X̄) with X = V(T). No blue edge crosses(X, X̄) by con-
struction. Moreover,ei is among all uncolored edges crossing the cut one of minimum
cost and can thus be colored blue. If the red rule applies to edgee= (u,v), both endpoints
u andv are contained in the final treeT. The pathPuv in T together withe induce a cycle
C. All edges inC∩Puv are blue and we can thus colore red.

The time complexity of the algorithm depends on how efficiently we are able to identify
a minimum cost edgeei that is incident toT. To this aim, good implementations use a
priority queuedata structure. The idea is to keep track of the minimum cost connections
between nodes that are outside ofT to nodes inT. Suppose we maintain two data entries
for every nodev /∈ V(T): π(v) = (u,v) refers to the edge that minimizesc(u,v) among
all u∈V(T) andd(v) = c(π(v)) refers to the cost of this edge; we defineπ(v) = nil and
d(v) = ∞ if no such edge exists. Initially, we have for every nodev∈V \ {s}:

π(v) =

{

(s,v) if (s,v) ∈ E

nil otherwise.
and d(v) =

{

c(s,v) if (s,v) ∈ E

∞ otherwise.

The algorithm now repeatedly chooses a nodev /∈ V(T) with d(v) minimum, adds it to
the tree and colors its connecting edgeπ(v) blue. Becausev is part of the new tree,
we need to update the above data. This can be accomplished by iterating over all edges
(v,w) ∈ E incident tov and verifying for every adjacent nodew with w /∈V(T) whether
the connection cost fromw to T via edge(v,w) is less than the one stored ind(w) (via
π(w)). If so, we update the respective data entries accordingly.Note that if the value of
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d(w) changes, then it can only decrease.

There are several priority queue data structures that support all operations needed above:
insert, find-min, delete-minanddecrease-priority. In particular, usingFibonacci heaps,
m decrease-priorityandn insert/find-min/delete-minoperations can be performed in time
O(m+nlogn).

Corollary 2.2. Prim’s algorithm solves the MST problem in time O(m+nlogn).

References

The presentation of the material in this section is based on [8, Chapter 6].
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3. Matroids

3.1 Introduction

In the previous section, we have seen that the greedy algorithm can be used to solve the
MST problem. An immediate question that comes to ones mind iswhich other problems
can be solved by such an algorithm. In this section, we will see that the greedy algorithm
applies to a much broader class of optimization problems.

We first define the notion of anindependent set system.

Definition 3.1. Let Sbe a finite set and letI be a collection of subsets ofS. (S,I) is an
independent set systemif

(M1) /0∈ I ;
(M2) if I ∈ I andJ⊆ I , thenJ ∈ I.

Each setI ∈ I is called anindependent set; every other subsetI ⊆ Swith I /∈ I is called a
dependent set. Further, suppose we are given a weight functionw : S→R on the elements
in S.

Maximum Weight Independent Set Problem (MWIS):

Given: An independent set system(S,I) and a weight functionw : S→R.
Goal: Find an independent setI ∈ I of maximum weightw(I) = ∑x∈I w(x).

If w(x) < 0 for somex∈ S, thenx will not be included in any optimum solution because
I is closed under taking subsets. We can thus safely exclude such elements from the
ground setS. Subsequently, we assume without loss of generality that all weights are
nonnegative.

As an example, consider the following independent set system: Suppose we are given
an undirected graphG = (V,E) with weight functionw : E→ R+. DefineS= E and
I = {F ⊆ E | F induces a forest inG}. Note that /0∈ I andI is closed under taking
subsets because each subsetJ of a forestI ∈ I is a forest. Now, the problem of finding an
independent setI ∈ I that maximizesw(I) is equivalent to finding a spanning tree ofG
of maximum weight. (Note that the latter can also be done by one of the MST algorithms
that we have considered in the previous section.)

The greedy algorithm given in Algorithm3 is a natural generalization of Kruskal’s algo-
rithm to independent set systems. It starts with the empty set I = /0 and then iteratively
extendsI by always adding an elementx∈ S\ I of maximum weight, ensuring thatI + x
remains an independent set.

Unfortunately, the greedy algorithm does not work for general independent set systems
as the following example shows:
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Input : independent set system(S,I) with weight functionw : S→R

Output : independent setI ∈ I of maximum weight

1 Initialize: I = /0.
2 while there is some x∈ S\ I with I + x∈ I do
3 Choose such anx with w(x) maximum
4 I ← I + x
5 end
6 return I

Algorithm 3: Greedy algorithm for matroids.

Example 3.1.

9

p s

q r

3

7

8

Suppose that we are given an undirected graphG = (V,E) with
weight functionw : E → R. Let S= E and defineI = {M ⊆
E | M is a matching ofG}. (Recall that a subsetM ⊆ E of the
edges ofG is called amatchingif no two edges ofM share a com-
mon endpoint.) It is not hard to see that /0∈ I andI is closed
under taking subsets. Thus Conditions (M1) and (M2) are sat-
isfied and(S,I) is an independent set system. Note that finding
an independent setI ∈ I of maximum weightw(I) is equivalent to finding a maximum
weight matching inG. Suppose we run the above greedy algorithm on the independent
set system induced by the matching instance depicted on the right. The algorithm re-
turns the matching{(p,q),(r,s)} of weight 12, which is not a maximum weight matching
(indicated in bold).

3.2 Matroids

Even though the greedy algorithm described in Algorithm3 does not work for general
independent set systems, it does work for independent set systems that arematroids.

Definition 3.2 (Matroid). An independent set systemM = (S,I) is amatroid if

(M3) if I ,J ∈ I and|I |< |J|, thenI + x∈ I for somex∈ J\ I .

Note that Condition (M3) essentially states that ifI andJ are two independent sets with
|I | < |J|, then there must exist an elementx∈ J \ I that can be added toI such that the
resulting setI + x is still an independent set.

Given a subsetU ⊆ S, a subsetB⊆ U is called abasisof U if B is an inclusionwise
maximal independent subset ofU , i.e.,B∈ I and there is noI ∈ I with B⊂ I ⊆U . It is
not hard to show that Condition (M3) is equivalent to

(M4) for every subsetU ⊆ S, any two bases ofU have the same size.

The common size of the bases ofU ⊆ S is called therank of U and denoted byr(U).
An independent set is simply called abasisif it is a basis ofS. The common size of the
bases ofS is called therank of the matroidM. Note that if all weights are nonnegative,
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the MWIS problem is equivalent to finding a maximum weight basis of M.

We give some examples of matroids.

Example 3.2(Uniform matroid). One of the simplest examples of a matroid is the so-
calleduniform matroid. Suppose we are given some setS and an integerk. Define the
independent setsI as the set of all subsets ofSof size at mostk, i.e.,I = {I ⊆S | |I | ≤ k}.
It is easy to verify thatM = (S,I) is a matroid.M is also called thek-uniform matroid.

Example 3.3(Partition matroid). Another simple example of a matroid is thepartition
matroid. SupposeS is partitioned intom setsS1, . . . ,Sm and we are givenm integers
k1, . . . ,km. DefineI = {I ⊆ S | |I ∩Si | ≤ ki for all 1≤ i ≤m}. Conditions (M1) and
(M2) are trivially satisfied. To see that Condition (M3) is satisfied as well, note that if
I ,J ∈ I and|I |< |J|, then there is somei (1≤ i ≤m) such that|J∩Si |> |I ∩Si | and thus
adding any elementx ∈ Si ∩ (J \ I) to I maintains independence. Thus,M = (S,I) is a
matroid.

Example 3.4(Graphic matroid). Suppose we are given an undirected graphG= (V,E).
Let S= E and defineI = {F ⊆ E | F induces a forest inG}. We already argued above
that Conditions (M1) and (M2) are satisfied. We next show that Conditions (M4) is satis-
fied too. LetU ⊆ E. Consider the subgraph(V,U) of G induced byU and suppose that it
consists ofk components. By definition, each basisB of U is an inclusionwise maximal
forest contained inU . Thus,B consists ofk spanning trees, one for each component of
the subgraph(V,U). We conclude thatB contains|V|− k elements. Because this holds
for every basis ofU , Condition (M4) is satisfied. We remark that any matroidM = (S,I)
obtained in this way is also called agraphic matroid(or cycle matroid).

Example 3.5(Matching matroid). The independent set system of Example3.1 is not a
matroid. However, there is another way of defining a matroid based on matchings. Let
G = (V,E) be an undirected graph. Given a matchingM ⊆ E of G, let V(M) refer to
the set of nodes that are incident to the edges ofM. A node setI ⊆ V is coveredby
M if I ⊆ V(M). DefineS= V andI = {I ⊆ V | I is covered by some matchingM}.
Condition (M1) holds trivially. Condition (M2) is satisfied because if a node setI ∈ I is
covered by a matchingM, then each subsetJ⊆ I is also covered byM and thusJ ∈ I. It
can also be shown that Condition (M3) is satisfied and thusM = (S,I) is a matroid.M is
also called amatching matroid.

3.3 Greedy Algorithm for Matroids

The next theorem shows that the greedy algorithm given in Algorithm3 always computes
a maximum weight independent set if the underlying independent set system is a ma-
troid. The theorem actually shows something much stronger:Matroids are precisely the
independent set systems for which the greedy algorithm computes an optimal solution.

Theorem 3.1. Let (S,I) be an independent set system. Further, let w: S→ R+ be a
nonnegative weight function on S. The greedy algorithm (Algorithm3) computes an inde-
pendent set of maximum weight if and only if M= (S,I) is a matroid.
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Proof. We first show that the greedy algorithm computes a maximum weight independent
set if M is a matroid. LetX be the independent set returned by the greedy algorithm and
let Y be a maximum weight independent set. Note that bothX andY are bases ofM.
Order the elements inX = {x1, . . . ,xm} such thatxi (1≤ i ≤m) is thei-th element chosen
by the algorithm. Clearly,w(x1) ≥ ·· · ≥ w(xm). Also orderY = {y1, . . . ,ym} such that
w(y1)≥ ·· · ≥w(ym). We will show thatw(xi)≥w(yi) for everyi. Letk+1 be the smallest
integer such thatw(xk+1)< w(yk+1). (The claim follows if no such choice exists.) Define
I = {x1, . . . ,xk} andJ = {y1, . . . ,yk+1}. BecauseI ,J ∈ I and|I | < |J|, Condition (M3)
implies that there is someyi ∈ J \ I such thatI + yi ∈ I. Note thatw(yi) ≥ w(yk+1) >

w(xk+1). That is, in iterationk+1, the greedy algorithm would prefer to addyi instead of
xk+1 to extendI , which is a contradiction. We conclude thatw(X)≥w(Y) and thusX is a
maximum weight independent set.

Next assume that the greedy algorithm always computes an independent set of maximum
weight for every independent set system(S,I) and weight functionw : S→ R+. We
show thatM = (S,I) is a matroid. Conditions (M1) and (M2) is satisfied by assumption.
It remains to show that Condition (M3) holds. LetI ,J ∈ I with |I |< |J| and assume, for
the sake of a contradiction, thatI + x /∈ I for everyx∈ J\ I . Let k= |I | and consider the
following weight function onS:

w(x) =











k+2 if x∈ I

k+1 if x∈ J\ I

0 otherwise.

Now, in the firstk iterations, the greedy algorithms picks the elements inI . By assumption,
the algorithm cannot add any other element fromJ\ I and thus outputs a solution of weight
k(k+2). However, the independent setJ has weight at least|J|(k+1)≥ (k+1)(k+1)>
k(k+2). That is, the greedy algorithm does not compute a maximum weight independent
set, which is a contradiction.

References

The presentation of the material in this section is based on [2, Chapter 8] and [7, Chapters
39 & 40].
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4. Shortest Paths

4.1 Introduction

We next consider shortest path problems. These problems areusually defined fordirected
networks. Let G = (V,E) be a directed graph with cost functionc : E→ R. Consider a
(directed) pathP= 〈v1, . . . ,vk〉 from s= v1 to t = vk. The lengthof pathP is defined as
c(P) = ∑k−1

i=1 c(vi ,vi+1). We can then ask for the computation of ans, t-path whose length
is shortest among all directed paths froms to t. There are different variants of shortest
path problems:

1. Single source single target shortest path problem: Given two nodessandt, deter-
mine a shortest path froms to t.

2. Single source shortest path problem: Given a nodes, determine all shortest paths
from s to every other node inV.

3. All-pairs shortest path problem: For every pair(s, t) ∈V×V of nodes, compute a
shortest path froms to t.

The first problem is a special case of the second one. However,every known algorithm for
the first problem implicitly also solves the second one (at least partially). We therefore
focus here on thesingle source shortest path problemand theall-pairs shortest path
problem.

4.2 Single Source Shortest Path Problem

We consider the following problem:

Single Source Shortest Path Problem (SSSP):

Given: A directed graphG= (V,E) with cost functionc : E→ R and a source
nodes∈V.

Goal: Compute a shortest path froms to every other nodev∈V.

Note that a shortest path froms to a nodev might not necessarily exist because of the
following two reasons: First,v might not be reachable fromsbecause there is no directed
path froms to v in G. Second, there might be arbitrarily short paths froms to v because
of the existence of ans,v-path that contains a cycle of negative length (which can be
traversed arbitrarily often). We call a cycle of negative total length also anegative cycle.
The following lemma shows that these are the only two cases inwhich no shortest path
exists.

Lemma 4.1. Let v be a node that is reachable from s. Further assume that there is no
path from s to v that contains a negative cycle. Then there exists a shortest path from s to
v which is a simple path.

Proof. Let P be a path froms to v. We can repeatedly remove cycles fromP until we
obtain a simple pathP′. By assumption, all these cycles have non-negative lengthsand
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thusc(P′) ≤ c(P). It therefore suffices to show that there is a shortest path among all
simples,v-paths. But this is obvious because there are only finitely many simple paths
from s to v in G.

4.2.1 Basic properties of shortest paths

We define adistance functionδ : V→R as follows: For everyv∈V,

δ (v) = inf{c(P) | P is a path froms to v}.

With the above lemma, we have

δ (v) = ∞ if there is no path froms to v
δ (v) = −∞ if there is a path froms to v that contains a negative cycle
δ (v) ∈ R if there is a shortest (simple) path froms to v.

The next lemma establishes thatδ satisfies the triangle inequality.

Lemma 4.2. For every edge e= (u,v) ∈ E, we haveδ (v)≤ δ (u)+ c(u,v).

Proof. Clearly, the relation holds ifδ (u) = ∞. Supposeδ (u) =−∞. Then there is a path
P from s to u that contains a negative cycle. By appending edgee to P, we obtain a path
from s to v that contains a negative cycle and thusδ (v) = −∞. The relation again holds.
Finally, assumeδ (u)∈R. Then there is a pathP from s to u of lengthδ (u). By appending
edgee to P, we obtain a path froms to v of lengthδ (u)+ c(u,v). A shortest path froms
to v can only have shorter length and thusδ (v)≤ δ (u)+ c(u,v).

The following lemma shows that subpaths of shortest paths are shortest paths.

Lemma 4.3. Let P= 〈v1, . . . ,vk〉 be a shortest path from v1 to vk. Then every subpath
P′ = 〈vi , . . . ,v j〉 of P with1≤ i ≤ j ≤ k is a shortest path from vi to vj .

Proof. Suppose there is a pathP′′ = 〈vi ,u1, . . . ,ul ,v j〉 from vi to v j that is shorter thanP′.
Then the path〈v1, . . . ,vi ,u1, . . . ,ul ,v j , . . . ,vk〉 is av1,vk-path that is shorter thanP, which
is a contradiction.

Consider a shortest pathP= 〈s= v1, . . . ,vk = v〉 from s to v. The above lemma enables
us to show that every edgee= (vi ,vi+1) of P must betight with respect to the distance
functionδ , i.e.,δ (v) = δ (u)+ c(u,v).

Lemma 4.4. Let P= 〈s, . . . ,u,v〉 be a shortest s,v-path. Thenδ (v) = δ (u)+ c(u,v).

Proof. By Lemma4.3, the subpathP′ = 〈s, . . . ,u〉 of P is a shortests,u-path and thus
δ (u) = c(P′). BecauseP is a shortests,v-path, we haveδ (v) = c(P) = c(P′)+ c(u,v) =
δ (u)+ c(u,v).
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Suppose now that we can computeδ (v) for every nodev∈V. Using the above lemmas, it
is not difficult to show that we can then also efficiently determine the shortest paths from
s to every nodev∈V with δ (v) ∈R: LetV ′ = {v∈V | δ (v) ∈R} be the set of nodes for
which there exists a shortest path froms. Note thatδ (s) = 0 and thuss∈V ′. Further, let
E′ be the set of edges that are tight with respect toδ , i.e.,

E′ = {(u,v) ∈ E | δ (v) = δ (u)+ c(u,v)}.

Let G′ = (V ′,E′) be the subgraph ofG induced byV ′ and E′. Observe that we can
constructG′ in time O(n+m). By Lemma4.4, every edge of a shortest path froms to
some nodev∈ V ′ is tight. Thus every nodev∈V ′ is reachable froms in G′. Consider a
pathP= 〈s= v1, . . . ,vk = v〉 from s to v in G′. Then

c(P) =
k−1

∑
i=1

c(vi ,vi+1) =
k−1

∑
i=1

(δ (vi+1)− δ (vi)) = δ (v)− δ (s) = δ (v).

That is,P is a shortest path froms to v in G. G′ therefore represents all shortest paths from
s to nodesv∈V ′. We can now extract a spanning treeT from G′ that is rooted ats, e.g.,
by performing a depth-first search froms. Such a tree can be computed in timeO(n+m).
Observe thatT contains for every nodev∈V ′ a uniques,v-path which is a shortest path
in G. T is therefore also called ashortest-path tree. Note thatT is a very compact way to
store for every nodev∈ V ′ a shortest path froms to v. This tree needsO(n) space only,
while listing all these paths explicitly may needO(n2) space.

In light of the above observations, we will subsequently concentrate on the problem of
computing the distance functionδ efficiently. To this aim, we introduce a functiond :
V → R of tentativedistances. The algorithm will used to compute a more and more
refined approximation ofδ until eventuallyd(v) = δ (v) for everyv ∈ V. We initialize
d(s) = 0 andd(v) = ∞ for everyv∈V \ {s}. The only operation that is used to modifyd
is to relax an edgee= (u,v) ∈ E:

RELAX(u,v):
if d(v)> d(u)+ c(u,v) then d(v) = d(u)+ c(u,v)

It is obvious that thed-values can only decrease by edge relaxations.

We show that if we only relax edges then the tentative distances will never be less than
the actual distances.

Lemma 4.5. For every v∈V, d(v)≥ δ (v).

Proof. The proof is by induction on the number of relaxations. The claim holds after
the initialization becaused(v) = ∞ ≥ δ (v) andd(s) = 0= δ (s). For the induction step,
suppose that the claim holds true before the relaxation of anedgee= (u,v). We show
that it remains valid after edgee has been relaxed. By relaxing(u,v), only d(v) can be
modified. If d(v) is modified, then after the relaxation we haved(v) = d(u)+ c(u,v) ≥
δ (u) + c(u,v) ≥ δ (v), where the first inequality follows from the induction hypothesis
and the latter inequality holds because of the triangle inequality (Lemma4.2).
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That is,d(v) decreases throughout the execution but will never be lower than the actual
distanceδ (v). In particular,d(v) = δ (v) = ∞ for all nodesv∈ V that are not reachable
from s. Our goal will be to use only few edge relaxations to ensure that d(v) = δ (v) for
everyv∈V with δ (v) ∈ R.

Lemma 4.6. Let P= 〈s, . . . ,u,v〉 be a shortest s,v-path. If d(u) = δ (u) before the relax-
ation of edge e= (u,v), then d(v) = δ (v) after the relaxation of edge e.

Proof. Note that after the relaxation of edgee, we haved(v) = d(u)+ c(u,v) = δ (u)+
c(u,v) = δ (v), where the last equality follows from Lemma4.4.

4.2.2 Arbitrary cost functions

The above lemma makes it clear what our goal should be. Namely, ideally we should
relax the edges ofG in the order in which they appear on shortest paths. The dilemma, of
course, is that we do not know these shortest paths. The following algorithm, also known
as theBellman-Fordalgorithm, circumvents this problem by simply relaxing every edge
exactlyn−1 times, thereby also relaxing all edges along shortest pathin the right order.
An illustration is given in Figure4.

Input : directed graphG= (V,E), cost functionc : E→R, source nodes∈V
Output : shortest path distancesd : V→ R

1 Initialize: d(s) = 0 andd(v) = ∞ for everyv∈V \ {s}
2 for i← 1 to n−1 do
3 foreach(u,v) ∈ E do RELAX(u,v)
4 end
5 return d

Algorithm 4: Bellman-Ford algorithm for the SSSP problem.

Lemma 4.7. After the Bellman-Ford algorithm terminates, d(v) = δ (v) for all v∈V with
δ (v)>−∞.

Proof. As argued above, after the initialization we haved(v) = δ (v) for all v∈ V with
δ (v) =∞. Consider a nodev∈V with δ (v)∈R. LetP= 〈s= v1, . . . ,vk = v〉 be a shortest
s,v-path. Define aphaseof the algorithm as the execution of the inner loop. That is, the
algorithm consists ofn−1 phases and in each phase every edge ofG is relaxed exactly
once. Note thatd(s) = δ (s) after the initialization. Using induction oni and Lemma4.6,
we can show thatd(vi+1) = δ (vi+1) at the end of phasei. Thus, after at mostn−1 phases
d(v) = δ (v) for everyv∈V with δ (v) ∈ R.

Note that the algorithm does not identify nodesv ∈ V with δ (v) = −∞. However, this
can be accomplished in a post-processing step (see exercises). The time complexity of
the algorithm is obviouslyO(nm). Clearly, we might improve on this by stopping the
algorithm as soon as all tentative distances remain unchanged in a phase. However, this
does not improve on the worst case running time.
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Figure 3: Illustration of the Bellman-Ford algorithm. The order in which the edges are
relaxed in this example is as follows: We start with the upperright node and proceed in
a clockwise order. For each node, edges are relaxed in clockwise order. Tight edges are
indicated in bold. Only the first three phases are depicted (no change in the final phase).

Theorem 4.1. The Bellman-Ford algorithm solves the SSSP problem withoutnegative
cycles in timeΘ(nm).

4.2.3 Nonnegative cost functions

The running time ofO(nm) of the Bellman-Ford algorithm is rather large. We can signif-
icantly improve upon this in certain special cases. The easiest such special case is if the
graphG is acyclic.

Another example is if the edge costs are nonnegative. Subsequently, we assume that the
cost functionc : E→R+ is nonnegative.

The best algorithm for the SSSP with nonnegative cost functions is known asDijkstra’s
algorithm. As before, the algorithm starts withd(s) = 0 andd(v) = ∞ for everyv ∈
V \{s}. It also maintains a setV∗ of nodes whose distances are tentative. Initially,V∗=V.
The algorithm repeatedly chooses a nodeu ∈ V∗ with d(u) minimum, removes it from
V∗ and relaxes all outgoing edges(u,v). The algorithm stops whenV∗ = /0. A formal
description is given in Algorithm5.

Note that the algorithm relaxes every edge exactly once. Intuitively, the algorithm can
be viewed as maintaining a “cloud” of nodes (V \V∗) whose distance labels are exact. In
each iteration, the algorithm chooses a nodeu∈V∗ that is closest to the cloud, declares its
distance label as exact and relaxes all its outgoing edges. As a consequence, other nodes
outside of the cloud might get closer to the cloud. An illustration of the execution of the
algorithm is given in Figure4.
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Input : directed graphG= (V,E), nonnegative cost functionc : E→R, source node
s∈V

Output : shortest path distancesd : V→ R

1 Initialize: d(s) = 0 andd(v) = ∞ for everyv∈V \ {s}
2 V∗ =V
3 while V∗ 6= /0 do
4 Choose a nodeu∈V∗ with d(u) minimum.
5 Removeu fromV∗.
6 foreach(u,v) ∈ E do RELAX(u,v)
7 end
8 return d

Algorithm 5: Dijkstra’s algorithm for the SSSP problem.

The correctness of the algorithm follows from the followinglemma.

Lemma 4.8. Whenever a node u is removed from V∗, we have d(u) = δ (u).

Proof. The proof is by contradiction. Consider the first iteration in which a nodeu is
removed fromV∗ while d(u)> δ (u). Let A⊆V be the set of nodesv with d(v) = δ (v).
Note thatu is reachable froms becauseδ (u) < ∞. Let P be a shortests,u-path. If we
traverseP from s to u, then there must be an edge(x,y) ∈ P with x∈ A andy /∈ A because
s∈A andu /∈A. Let(x,y) be the first such edge onP. We haved(x)= δ (x)≤ δ (u)< d(u),
where the first inequality holds because all edge costs are nonnegative. Consequently,x
was removed fromV∗ beforeu. By the choice ofu, d(x) = δ (x) whenx was removed
fromV∗. But then, by Lemma4.6, we must haved(y) = δ (y) after the relaxation of edge
(x,y), which is a contradiction to the assumption thaty /∈ A.

The running time of Dijkstra’s algorithm crucially relies on the underlying data structure.
An efficient way to keep track of the tentative distance labels and the setV∗ is to use
priority queues. We need at mostn insert(initialization),n delete-min(removing nodes
with minimumd-value) andm decrease-priorityoperations (updating distance labels after
edge relaxations).Fibonacci heapssupport these operations in timeO(m+nlogn).

Theorem 4.2. Dijkstra’s algorithm solves the SSSP problem with nonnegative edge costs
in time O(m+nlogn).

4.3 All-pairs Shortest-path Problem

We next consider the following problem:

All-pairs Shortest Path Problem (APSP):

Given: A directed graphG= (V,E) with cost functionc : E→ R.
Goal: Determine a shortests, t-path for every pair(s, t) ∈V×V.
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Figure 4: Illustration of Dijsktra’s algorithm. The nodes in V \V∗ are depicted in gray.
The current node that is removed fromV∗ is drawn in bold. The respective edge relax-
ations are indicated in bold.
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Input : directed graphG= (V,E), nonnegative cost functionc : E→ R

Output : shortest path distancesd : V×V→ R

1 Initialize: foreach(u,v) ∈V×V do d(u,v) =











0 if u= v

c(u,v) if (u,v) ∈ E

∞ otherwise.
2 for k← 1 to n do
3 foreach(u,v) ∈V×V do
4 if d(u,v)> d(u,k)+d(k,v) then d(u,v) = d(u,k)+d(k,v)
5 end
6 end
7 return d

Algorithm 6: Floyd-Warshall algorithm for the APSP problem.

We assume thatG contains no negative cycle.

Define a distance functionδ : V×V→ R as

δ (u,v) = inf{c(P) | P is a path fromu to v}.

Note thatδ is not necessarily symmetric. As for the SSSP problem, we canconcentrate
on the computation of the distance functionδ because the actual shortest paths can be
extracted from these distances.

Clearly, one way to solve the APSP problem is to simply solven SSSP problems: For
every nodes∈ V, solve the SSSP problem with source nodes to compute all distances
δ (s, ·). Using the Bellman-Ford algorithm, the worst-case runningtime of this algorithm
is O(n2m), which for dense graphs isΘ(n4). We will see that we can do better.

The idea is based on a general technique to derive exact algorithms known asdynamic
programming. Basically, the idea is to decompose the problem into smaller sub-problems
which can be solved individually and to use these solutions to construct a solution for the
whole problem in a bottom-up manner.

Suppose the nodes inV are identified with the set{1, . . . ,n}. In order to define the
dynamic program, we need some more notion. Consider a simpleu,v-pathP = 〈u =

v1, . . . ,vl = v〉. We call the nodesv2, . . . ,vl−1 the interior nodesof P; P has no interior
nodes ifl ≤ 2. A u,v-pathP whose interior nodes are all contained in{1, . . . ,k} is called
a (u,v,k)-path. Define

δk(u,v) = inf{c(P) | P is a(u,v,k)-path}

as the shortest path distance of a(u,v,k)-path. Clearly, with this definition we have
δ (u,v) = δn(u,v). Our task is therefore to computeδn(u,v) for everyu,v∈V.

Our dynamic program is based on the following observation. Suppose we are able to
computeδk−1(u,v) for all u,v∈V. Consider a shortest(u,v,k)-pathP= 〈u= v1, . . . ,vl =

v〉. Note thatP is simple because we assume thatG contains no negative cycles. By
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definition, the interior nodes ofP belong to the set{1, . . . ,k}. There are two cases that
can occur: Either nodek is an interior node ofP or not.

First, assume thatk is not an interior node ofP. Then all interior nodes ofP must belong
to the set{1, . . . ,k− 1}. That is,P is a shortest(u,v,k− 1)-path and thusδk(u,v) =
δk−1(u,v).

Next, supposek is an interior node ofP, i.e.,P= 〈u= v1, . . . ,k, . . . ,vl = v〉. We can then
breakP into two pathsP1 = 〈u, . . . ,k〉 andP2 = 〈k, . . . ,v〉. Note that the interior nodes of
P1 andP2 are contained in{1, . . . ,k−1} becauseP is simple. Moreover, because subpaths
of shortest paths are shortest paths, we conclude thatP1 is a shortest(u,k,k−1)-path and
P2 is a shortest(k,v,k−1)-path. Therefore,δk(u,v) = δk−1(u,k)+ δk−1(k,v).

The above observations lead to the following recursive definition of δk(u,v):

δ0(u,v) =











0 if u= v

c(u,v) if (u,v) ∈ E

∞ otherwise.

and
δk(u,v) = min{δk−1(u,v), δk−1(u,k)+ δk−1(k,v)} if k≥ 1

The Floyd-Warshall algorithm simply computesδk(u,v) in a bottom-up manner. The
algorithm is given in Algorithm6.

Theorem 4.3. The Floyd-Warshall algorithm solves the APSP problem without negative
cycles in timeΘ(n3).

References

The presentation of the material in this section is based on [3, Chapters 25 and 26].
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5. Maximum Flows

5.1 Introduction

Themaximum flow problemis a fundamental problem in combinatorial optimization with
many applications in practice. We are given a network consisting of a directed graph
G= (V,E) and nonnegative capacitiesc : E→ R+ on the edges and a source nodes∈V
and a target nodet ∈V.

Intuitively, think of G being a water network and suppose that we want to send as much
water as possible (say per second) from a source nodes (producer) to a target nodet
(consumer). An edge ofG corresponds to a pipeline of the water network. Every pipeline
comes with a capacity which specifies the maximum amount of water that can be sent
through it (per second). Basically, themaximum flow problemasks how the water should
be routed through the network such that the total amount of water that can be sent froms
to t (per second) is maximized.

We assume without loss of generality thatG is complete. IfG is not complete, then we
simply add every missing edge(u,v) ∈ V ×V \E to G and definec(u,v) = 0. We also
assume that every nodeu∈V lies on a path froms to t (other nodes will be irrelevant).

Definition 5.1. A flow (or s, t-flow) in G is a function f : V ×V → R that satisfies the
following three properties:

1. Capacity constraint: For all u,v∈V, f (u,v)≤ c(u,v).
2. Skew symmetry: For allu,v∈V, f (u,v) =− f (v,u).
3. Flow conservation: For everyu∈V \ {s, t}, we have

∑
v∈V

f (u,v) = 0.

The quantityf (u,v) can be interpreted as thenet flowfrom u to v (which can be positive,
zero or negative). The capacity constraint ensures that theflow value of an edge does not
exceed the capacity of the edge. Note that skew symmetry expresses that the net flow
f (u,v) that is sent fromu to v is equal to the net flowf (v,u) =− f (u,v) that is sent from
v to u. Also the total net flow fromu to itself is zero becausef (u,u) =− f (u,u) = 0. The
flow conservation constraints make sure that the total flow out of a nodeu∈V \ {s, t} is
zero. Because of skew symmetry, this is equivalent to stating that the total flow intou is
zero.

Another way of interpreting the flow conservation constraints is that the total positive net
flow entering a nodeu∈V \ {s, t} is equal to the total positive net flow leavingu, i.e.,

∑
v∈V: f (v,u)>0

f (v,u) = ∑
v∈V: f (u,v)>0

f (u,v).

Thevalue| f | of a flow f refers to the total net flow out ofs (which by the flow conserva-
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Figure 5: On the left: Input graphG with capacitiesc : E→ R+. Only the edges with
positive capacity are shown. On the right: A flowf of G with flow value| f | = 19. Only
the edges with positive net flow are shown.

tion constraints is the same as the total flow intot):

| f |= ∑
v∈V

f (s,v).

An example of a network and a flow is given in Figure5.

The maximum flow reads as follows:

Maximum Flow Problem:

Given: A directed graphG= (V,E) with capacitiesc : E→R+, a source node
s∈V and a destination nodet ∈V.

Goal: Compute ans, t-flow f of maximum value.

We introduce some more notation. Given two setsX,Y⊆V, define

f (X,Y) = ∑
x∈X

∑
y∈Y

f (x,y).

We state a few properties. (You should try to convince yourself that these properties hold
true.)

Proposition 5.1. Let f be a flow in G. Then the following holds true:

1. For every X⊆V, f(X,X) = 0.
2. For every X,Y ⊆V, f(X,Y) =− f (Y,X).
3. For every X,Y,Z⊆V with X∩Y = /0,

f (X∪Y,Z) = f (X,Z)+ f (Y,Z) and f(Z,X∪Y) = f (Z,X)+ f (Z,Y).

5.2 Residual Graph and Augmenting Paths

Consider ans, t-flow f . Let theresidual capacityof an edgee= (u,v) ∈ E with respect
to f be defined as

r f (u,v) = c(u,v)− f (u,v).
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Figure 6: On the left: Residual graphGf with respect to the flowf given in Figure5. An
augmenting pathP with r f (P) = 4 is indicated in bold. On the right: The flowf ′ obtained
from f by augmentingr f (P) units of flow alongP. Only the edges with positive flow are
shown. The flow value off ′ is | f ′|= 23. (Note thatf ′ is optimal because the cut(X, X̄)
of G with X̄ = {q, t} has capacityc(X, X̄) = 23.)

Intuitively, the residual capacityr f (u,v) is the amount of flow that can additionally be
sent fromu to v without exceeding the capacityc(u,v). Call an edgee∈ E a residual
edgeif it has positive residual capacity and asaturatededge otherwise. Theresidual
graph Gf = (V,Ef ) with respect tof is the subgraph ofG whose edge setEf consists of
all residual edges, i.e.,

Ef = {e∈ E | r f (e)> 0}.

See Figure6 (left) for an example.

Lemma 5.1. Let f be a flow in G. Let g be a flow in the residual graph Gf respecting
the residual capacities rf . Then the combined flow h= f + g is a flow in G with value
|h|= | f |+ |g|.

Proof. We show that all properties of Definition5.1are satisfied.

First,h satisfies the skew symmetry property because for everyu,v∈V

h(u,v) = f (u,v)+g(u,v) =−( f (v,u)+g(v,u)) =−h(v,u).

Second, observe that for everyu,v∈V, g(u,v)≤ r f (u,v) and thus

h(u,v) = f (u,v)+g(u,v)≤ f (u,v)+ r f (u,v) = f (u,v)+ (c(u,v)− f (u,v)) = c(u,v).

That is, the capacity constraints are satisfied.

Finally, we have for everyu∈V \ {s, t}

∑
v∈V

h(u,v) = ∑
v∈V

f (u,v)+ ∑
v∈V

g(u,v) = 0

and thus flow conservation is satisfied too.
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Similarly, we can show that

|h|= ∑
v∈V

h(s,v) = ∑
v∈V

f (s,v)+ ∑
v∈V

g(s,v) = | f |+ |g|.

An augmenting pathis a simples, t-pathP in the residual graphGf . Let P be an aug-
menting path inGf . All edges ofP are residual edges. Thus, there exists somex> 0 such
that we can sendx flow units additionally alongP without exceeding the capacity of any
edge. In fact, we can choosex to be as large as theresidual capacity rf (P) of P which is
defined as

r f (P) = min{r f (u,v) | e∈ P}.

Note that if we increase the flow of an edge(u,v) ∈ P by x = r f (P), then we also have
to decrease the flow value on(v,u) by x because of the skew symmetry property. We will
also say that weaugment the flow f along path P. See Figure6 for an example.

Lemma 5.2. Let f be a flow in G and let P be an augmenting path in Gf . Then f′ :
V×V→ R with

f ′(u,v) =











f (u,v)+ r f (P) if (u,v) ∈ P

f (u,v)− r f (P) if (v,u) ∈ P

f (u,v) otherwise

is a flow in G of value| f ′|= | f |+ r f (P).

Proof. Observe thatf ′ can be decomposed into the original flowf and a flow fP that
sendsr f (P) units of flow alongP and−r f (P) flow units along thereversedpath ofP, i.e.,
the path that we obtain fromP if we reverse the direction of every edgee∈ P. Clearly, fP
is a flow inGf of valuer f (P). By Lemma5.1, the combined flowf ′ = f + fP is a flow in
G of value| f ′|= | f |+ r f (P).

5.3 Ford-Fulkerson Algorithm

The observations above already suggest a first algorithm forthe max-flow problem: Ini-
tialize f to be the zero flow, i.e.,f (u,v) = 0 for all u,v∈V. Let Gf be the residual graph
with respect tof . If there exists an augmenting pathP in the residual graphGf , then
augmentf alongP and repeat; otherwise terminate. This algorithm is also known as the
Ford-Fulkersonalgorithm and is summarized in Algorithm7.

Note that it is not clear that the algorithm terminates nor that the computed flow is of
maximum value. The correctness of the algorithm will followfrom themax-cut min-flow
theorem(Theorem5.3) discussed in the next section.

The running time of the algorithm depends on the number of iterations that we need
to perform. Every single iteration can be implemented to runin time O(m). If all edge
capacities are integral, then it is easy to see that after each iteration the flow value increases
by at least one. The total number of iterations is therefore at most | f ∗|, where f ∗ is a
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Input : directed graphG= (V,E), capacity functionc : E→R+, source and
destination nodess, t ∈V

Output : maximum flow f : V×V→R

1 Initialize: f (u,v) = 0 for everyu,v∈V
2 while there exists an augmenting path P in Gf do
3 augment flowf alongP
4 end
5 return f

Algorithm 7: Ford-Fulkerson algorithm for the max-flow problem.

maximum flow. Note that we can also handle the case when each capacity is a rational
number by scaling all capacities by a suitable integerD. However, note that the worst case
running time of the Ford-Fulkerson algorithm can be prohibitively large. An instance on
which the algorithm admits a bad running time is given in Figure7.

Theorem 5.1. The Ford-Fulkerson algorithm solves the max-flow problem with integer
capacities in time O(m| f ∗|), where f∗ is a maximum flow.

Ford and Fulkerson gave an instance of the max-flow problem that shows that for irrational
capacities the algorithm might fail to terminate.

Note that if all capacities are integers then the algorithm maintains an integral flow. That
is, the Ford-Fulkerson also gives an algorithmic proof of the following integrality prop-
erty.

Theorem 5.2(Integrality property). If all capacities are integral, then there is an integer
maximum flow.

5.4 Max-Flow Min-Cut Theorem

A cut (or s, t-cut) of G is a partition of the node setV into two sets:X andX̄ =V \X such
thats∈ X andt ∈ X̄. Recall thatG is directed. Thus, there are two types of edges crossing
the cut(X, X̄), namely the ones that leaveX and the ones that enterX. As for flows, it
will be convenient to define forX,Y ⊆V,

c(X,Y) = ∑
u∈X

∑
v∈Y

c(u,v).

Thecapacityof a cut(X, X̄) is defined as the total capacityc(X, X̄) of the edges leaving
X. Fix an arbitrary flowf in G and consider an an arbitrary cut(X, X̄) of G. The total net
flow leavingX is | f |.

Lemma 5.3. Let f be a flow and let(X, X̄) be a cut of G. Then the net flow leaving X is
f (X, X̄) = | f |.
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Figure 7: A bad instance for the Ford-Fulkerson algorithm (left). Suppose thatB is a
large integer. The algorithm alternately augments one unitof flow along the two paths
〈s,u, p, t〉 and〈s, p,u, t〉. The flow after two augmentations is shown on the right. The
algorithm needs 2B augmentations to find a maximum flow.

Proof.

f (X,V \X) = f (X,V)− f (X,X) = f (X,V) = f (s,V)+ f (X− s,V) = f (s,V) = | f |.

Intuitively, it is clear that if we consider an arbitrary cut(X, X̄) of G, then the total flow
f (X, X̄) that leavesX is at mostc(X, X̄). The next lemma shows this formally.

Lemma 5.4. The flow value of any flow f in G is at most the capacity of any cut(X, X̄)

of G, i.e., f(X, X̄)≤ c(X, X̄).

Proof. By Lemma5.3, we have

| f |= f (X, X̄) = ∑
u∈X

∑
v∈V\X

f (u,v) ≤ ∑
u∈X

∑
v∈V\X

c(u,v) = c(X, X̄).

A fundamental result for flows is that the value of a maximum flow is equal to the mini-
mum capacity of a cut.

Theorem 5.3(Max-Flow Min-Cut Theorem). Let f be a flow in G. Then the following
conditions are equivalent:

1. f is a maximum flow of G.
2. The residual graph Gf contains no augmenting path.
3. | f |= c(X, X̄) for some cut(X, X̄) of G.

Proof. (1)⇒ (2): Suppose for the sake of contradiction thatf is a maximum flow ofG
and there is an augmenting pathP in Gf . By Lemma5.2, we can augmentf alongP and
obtain a flow of value strictly larger than| f |, which is a contradiction.

(2)⇒ (3): Suppose thatGf contains no augmenting path. LetX be the set of nodes that
are reachable froms in Gf . Note thatt /∈ X because there is no path froms to t in Gf .
That is,(X, X̄) is a cut ofG. By Lemma5.3, | f | = f (X, X̄). Moreover, for everyu∈ X
andv∈ X̄, we must havef (u,v) = c(u,v) because otherwise(u,v) ∈ Ef andv would be
part ofX. We conclude| f |= f (X, X̄) = c(X, X̄).
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(3)⇒ (1): By Lemma5.4, the value of any flow is at most the capacity of any cut. The
condition| f |= c(X, X̄) thus implies thatf is a maximum flow. (Also note that this implies
that(X, X̄) must be a cut of minimum capacity.)

5.5 Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm works almost identical to the Ford-Fulkerson algorithm.
The only difference is that it chooses in each iteration ashortestaugmenting path in
the residual graphGf . An augmenting path is ashortestaugmenting path if it has the
minimum number of edges among all augmenting paths inGf . The algorithm is given in
Algorithm 8.

Input : directed graphG= (V,E), capacity functionc : E→R+, source and
destination nodess, t ∈V

Output : maximum flow f : V×V→R

1 Initialize: f (u,v) = 0 for everyu,v∈V
2 while there exists an augmenting path in Gf do
3 determine a shortest augmenting pathP in Gf

4 augmentf alongP
5 end
6 return f

Algorithm 8: Edmonds-Karp algorithm for the max-flow problem.

Note that each iteration can still be implemented to run in timeO(m). A shortest augment-
ing path inGf can be found by using a breadth-first search algorithm. As we will show,
this small change makes a big difference in terms of the running time of the algorithm.

Theorem 5.4. The Edmonds-Karp algorithm solves the max-flow problem in time
O(nm2).

Note that the correctness of the Edmonds-Karp algorithm follows from the max-flow
min-cut theorem: The algorithm halts when there is not augmenting path inGf . By
Theorem5.3, the resulting flow is a maximum flow. It remains to show that the algorithm
terminates afterO(nm) iterations. The crucial insight in order to prove this is that the
shortest path distance of a node can only increase as the algorithm progresses.

Fix an arbitrary iteration of the algorithm. Letf be the flow at the beginning of the itera-
tion and letf ′ be the flow at the end of the iteration. We obtainf ′ from f by augmenting
f along an augmenting pathP in Gf . Further,P must be a shortest augmenting path in
Gf . Let P= 〈s= v0, . . . ,vk = t〉. We define two distance functions (in terms of number of
edges on a path): Letδ (u,v) be the number of edges on a shortest path fromu to v in Gf .
Similarly, letδ ′(u,v) be the number of edges on a shortest path fromu to v in Gf ′ .

Note thatδ (s,vi) = i. Also observe that if an edge(u,v) is part of Gf ′ but not part
of Gf , thenu = vi andv = vi−1 for somei. To see this observe thatf (u,v) = c(u,v)
because(u,v) /∈ Ef . On the other hand,f ′(u,v)< c(u,v) because(u,v) ∈ Ef ′ . That is, by
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augmentingf alongP, the flow on edge(u,v) was decreased. That means that the flow
on the reverse edge(v,u) was increased and thus(v,u) must be part ofP.

The next lemma shows that for every nodev∈ V, the shortest path distance froms to v
does not decrease.

Lemma 5.5. For each v∈V, δ ′(s,v)≥ δ (s,v).

Proof. Suppose there exists a nodev with δ ′(s,v) < δ (s,v). Among all such nodes, let
v be one withδ ′(s,v) being smallest. Note thatv 6= s becauseδ (s,s) = δ ′(s,s) = 0 by
definition. LetP′ be a shortests,v-path inGf ′ of distanceδ ′(s,v) and letu be the second-
last node ofP′. BecauseP′ is a shortest path and by the choice ofv, we have

δ (s,v)> δ ′(s,v) = δ ′(s,u)+1≥ δ (s,u)+1. (5)

Note that the distance functionδ satisfies the triangle inequality. Therefore, edge(u,v)
cannot be part ofGf because otherwise we would haveδ (s,v)≤ δ (s,u)+1. That is,(u,v)
is contained inGf ′ but not contained inGf . Using our observation above, we conclude
that there is somei (1≤ i ≤ k) such thatu= vi andv= vi−1. But thenδ (s,v) = i−1 and
δ (s,u) = i which is a contradiction to (5).

Consider an augmentation of the current flowf along pathP. We say that an edgee=

(u,v) is critical with respect tof andP if (u,v) is part of the augmenting pathP and its
residual capacity coincides with the amount of flow that is pushed alongP, i.e.,r f (u,v) =
r f (P). Note that after the augmentation off alongP, every critical edge onP will be
saturated and thus vanishes from the residual network.

Lemma 5.6. The number of times an edge e= (u,v) is critical throughout the execution
of the algorithm is bounded by O(n).

Proof. Suppose edgee= (u,v) is critical with respect to flowf and pathP. Let δ refer
to the shortest path distances inGf . We have

δ (s,v) = δ (s,u)+1.

After the augmentation off alongP, edgee is saturated and thus disappears from the
residual graph. It can only reappear in the residual graph when in a successive iteration
some positive flow is pushed over the reverse edge(v,u). Suppose edge(v,u) is part of an
augmenting pathP′ that is used to augment the current flow, sayf ′. Letδ ′ be the distance
function with respect toGf ′ . We have

δ ′(s,u) = δ ′(s,v)+1.

By Lemma5.5, δ (s,v) ≤ δ ′(s,v) and thus

δ ′(s,u) = δ ′(s,v)+1≥ δ (s,v)+1= δ (s,u)+2.

That is, between any two augmentations for which edgee= (u,v) is critical, the distance
of u from smust increases by at least 2.

34



Note that the distance ofu from s is at least 0 initially and can never be more thann−2.
The number of times edgee= (u,v) is critical is thus bounded byO(n).

The proof of Theorem5.4now follows trivially:

Proof of Theorem5.4. As argued above, the Edmonds-Karp algorithm computes a maxi-
mum flow if it terminates. Note that in every iteration of the algorithm at least one edge
is critical. By Lemma5.6, every edge is at mostO(n) times critical. The number of
iterations is thus bounded byO(nm).

References

The presentation of the material in this section is based on [3, Chapter 27] and [2, Chapter
3]
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6. Minimum Cost Flows

6.1 Introduction

We consider theminimum cost flow problem.

Minimum Cost Flow Problem:

Given: A directed graphG= (V,E) with capacitiesw : E→ R+ and costsc :
E→R+ and a balance functionb : V→R.

Goal: Compute a feasible flowf such that the overall cost∑e∈E c(e) f (e) is
minimized.

Here, a flowf : E→R+ is said to befeasibleif it respects the capacity constraints and the
total flow at every nodeu∈V is equal to the balanceb(u). More formally, f is feasible if
the following two conditions are satisfied:

1. Capacity constraint: for every(u,v) ∈ E, f (u,v)≤ w(u,v).
2. Flow balance constraints:for everyu∈V,

∑
(u,v)∈E

f (u,v)− ∑
(v,u)∈E

f (v,u) = b(u).

Intuitively, a positive balance indicates that nodeu has asupplyof b(u) units of flow,
while a negative balance indicates that nodeu has ademandof −b(u) units of flow. A
feasible flowf that satisfies the flow balance constraints withb(u) = 0 for everyu∈V is
called acirculation.

Theminimum cost flow problemcan naturally be formulated as a linear program:

minimize ∑
e∈E

c(e) f (e)

subject to ∑
(u,v)∈E

f (u,v)− ∑
(v,u)∈E

f (v,u) = b(u) ∀u∈V

f (e) ≤ w(e) ∀e∈ E
f (e) ≥ 0 ∀e∈ E

(6)

We usec( f ) = ∑e∈E c(e) f (e) to refer to the total cost of a feasible flowf . We make a few
assumptions throughout this section:

Assumption 6.1. Capacities, costs and balances are integral.

Note that we can enforce this assumption if all input numbersare rational numbers by
multiplying by a suitably large constant.

Assumption 6.2. The balance function satisfies∑u∈V b(u) = 0 and there is a feasible
flow satisfying these balances.

Note that we can test whether a feasible flow exists by a singlemax-flow computation
as follows: Augment the network by adding a super-sources and a super-targett. Add
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Figure 8: (a) Minimum cost flow instance. Every edge(u,v) is labeled withc(u,v),w(u,v)
and every nodeu is labeled withb(u). (b) Augmented network to test feasibility. Every
edge(u,v) is labeled withw(u,v).

an edge(s,u) for every nodeu∈V with b(u) > 0 of capacityw(s,u) = b(u). Similarly,
add an edge(u, t) for every nodeu∈V with b(u)< 0 of capacityw(u, t) =−b(u). Now,
compute a maximums, t-flow in the augmented network. It is not hard to see that there
is a feasible flow for the original instance if and only if the maximum flow saturates all
edges out ofs (or, equivalently, intot).

Subsequently, letW = maxe∈E w(e) refer to the maximum capacity of an edge,C =

maxe∈E c(e) to the maximum edge cost andB= maxu∈V b(u) to the maximum balance.

6.2 Flow Decomposition and Residual Graph

We establish a few basic properties of flows and circulationsand introduce the important
concept of residual graphs.

Lemma 6.1. Let f be circulation of G. Then f can be decomposed into at mostm= |E|
directed simple cycle flows.

Proof. Let G+
f = (V,E+

f ) be thesupport subgraphof G that contains all edges with posi-
tive flow value with respect tof , i.e.,

E+
f = {e∈ E | f (e) > 0}.

Consider an arbitrary directed simple cycleC in G+
f . Let x be the smallest flow value of

an edge inC, i.e., x = mine∈C f (e). We can decomposef such thatf = f ′+ fC, where
fC(u,v) = x for every(u,v) ∈C and fC(u,v) = 0 otherwise. Note thatf ′ is a circulation
and fC is a cycle flow. We can now repeat this procedure withf ′ instead off . Note that
at least one edgee of C must satisfyf ′(e) = 0 and thus vanishes from the support graph
of f ′. After at mostm iterations, we therefore obtain a decomposition off consisting of
at mostm directed simple cycle flows.

As for the maximum flow problem, the concept of aresidual graphwill play a crucial
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role: Supposef is a feasible flow ofG. We introduce for each edgee= (u,v) ∈ E the
reverse edge(v,u) with costc(v,u) = −c(u,v). Subsequently, these edges will be called
backward edges. In contrast, we refer to the original edges(u,v) ∈ E asforward edges.
The residual capacityof a forward edge(u,v) is defined asr f (u,v) = w(u,v)− f (u,v).
The residual capacity of a backward edge(v,u) is r f (v,u) = f (u,v). Theresidual graph
Gf = (V,Ef ) with respect tof is the graph that contains all edges with positive residual
capacity.

Consider a directed simple cycleC in the residual graphGf . Let theresidual capacityof
C ber f (C) = mine∈C r f (e). We can then pushx= r f (C) additional units of flow alongC
to obtain a feasible flowf ′. Observe that an increase ofx units on a backward edge(v,u)
corresponds to a decrease ofx units on the forward edge(u,v) ∈ E. More formally, the
flow f ′ that we obtain fromf by augmenting x units of flow along Cis defined as follows:
for every edgee= (u,v) ∈ E, we have

f ′(u,v) =











f (u,v)+ x if (u,v) ∈C

f (u,v)− x if (v,u) ∈C

f (u,v) otherwise.

Let the total cost of a cycleC in Gf bec(C) = ∑e∈C c(e).

Lemma 6.2. Let f be a feasible flow of G and let C be a directed simple cycle in Gf .
Suppose f′ is a flow that is obtained from f by augmenting x= r f (C) units of flow along
C. Then f′ is a feasible flow of G. Moreover, we have c( f ′) = c( f )+ x ·c(C).

Proof. Observe thatx ≤ r f (u,v) for every edge(u,v) ∈ C. If (u,v) ∈ C is a forward
edge, thenf ′(u,v) = f (u,v)+ x≤ f (u,v) +w(u,v)− f (u,v) ≤ w(u,v). If (v,u) ∈ C is
a backward edge, thenf ′(u,v) = f (u,v)− x ≥ f (u,v)− f (u,v) = 0. The new flowf ′

therefore respects the capacity and non-negativity constraints.

Note that by pushingx units of flow alongC, the flow at a nodeu that is not part ofC
remains the same. Consider a nodeu that is part ofC. BecauseC is simple there are
exactly two edges ofC incident tou, saye1 ande2. Note that the flow on all other edges
incident tou remains the same. Also, the flow atu remains the same by pushingx units of
flow alonge1 ande2. (Note that in order to verify this we need to consider four different
cases, depending on whethere1 ande2 are forward or backward edges.) We therefore
have

∑
(u,v)∈E

f ′(u,v)− ∑
(v,u)∈E

f ′(v,u) = ∑
(u,v)∈E

f (u,v)− ∑
(v,u)∈E

f (v,u) = b(u).

The flow balance constraints are therefore satisfied.

Finally, observe that by pushingx units of flow alongC we effectively increase the cost
of the flow byx·c(u,v) for every forward edge(u,v) ∈C∩E and decrease the cost of the
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flow by x ·c(u,v) for every backward edge(v,u) ∈C\E. The total cost off ′ is

c( f ′) = ∑
e∈E

c(e) f ′(e) = ∑
e∈E

c(e) f (e)+ ∑
(u,v)∈C∩E

x ·c(u,v)− ∑
(v,u)∈C\E

x ·c(u,v)

= c( f )+ x ∑
e∈C

c(e) = c( f )+ x ·c(C).

We can generalize the above lemma as follows:

Lemma 6.3. Let f be a feasible flow of G and let g be a circulation of Gf that respects
the residual capacities rf . Then f′ can be obtained from f by augmenting along k simple
cycles C1, . . . ,Ck with k≤ 2m such that c( f ′) = c( f )+c(g), where c(g) = ∑e∈Ef

c(e)g(e)
is the total cost of g in the residual graph Gf .

Proof. Using Lemma6.1, we can decomposeg into at mostk directed simple cycle flows
fC1, . . . , fCk with k ≤ 2m. (Recall thatGf has at most 2m edges.) Each cycleCi cor-
responds to a directed cycle inGf . By pushing fCi units of flow along every cycleCi

(1≤ i ≤ k), we obtain a new flowf ′.2 From Lemma6.2 it follows that f ′ is a feasible
flow of G of total cost

c( f ′) = c( f )+
k

∑
i=1

fCi ·c(Ci) = c( f )+ ∑
e∈Ef

c(e)g(e) = c( f )+ c(g).

Lemma 6.4. Let f and f′ be two feasible flows of G. Then f′ can be obtained from f by
augmenting flow along at most m cycles in Gf .

Proof. Consider the differenceh = f ′− f . Let E+ be the set of edges(u,v) ∈ E with
h(u,v)> 0. Similarly, letE− be the set of edges(u,v) ∈ E with h(u,v)< 0. Define a flow
g as follows: g(u,v) = h(u,v) for every edgeE+ andg(v,u) = −h(u,v) for every edge
(u,v) ∈ E−. We claim thatg is a circulation inGf .

Note that for every edge(u,v) ∈ E+ we have 0< g(u,v) = h(u,v) = f ′(u,v)− f (u,v) ≤
w(u,v)− f (u,v) = r f (u,v). Thus,(u,v) ∈ Ef andg(u,v)≤ r f (u,v). Similarly, for every
edge(u,v) ∈ E− we have 0< g(v,u) =−h(u,v) = f (u,v)− f ′(u,v)≤ f (u,v) = r f (v,u).
Thus,(v,u) ∈ Ef andg(v,u)≤ r f (v,u). The flowg therefore respects the residual capaci-
ties ofGf .

It remains to be shown thatg satisfies the flow balance constraints: Note that because both
f ′ and f are feasible flows inG we have for every nodeu∈V

∑
(u,v)∈E

h(u,v)− ∑
(v,u)∈E

h(v,u) = 0.

2We slightly abuse notation here and letfCi also refer to the flow value that is pushed alongCi .
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Using this and the definition ofh, we obtain

0= ∑
(u,v)∈E+

g(u,v)− ∑
(u,v)∈E−

g(v,u)− ∑
(v,u)∈E+

g(v,u)+ ∑
(v,u)∈E−

g(u,v)

= ∑
(u,v)∈Ef

g(u,v)− ∑
(v,u)∈Ef

g(v,u)− ∑
(v,u)∈Ef

g(v,u)+ ∑
(u,v)∈Ef

g(u,v)

= 2
(

∑
(u,v)∈Ef

g(u,v)− ∑
(v,u)∈Ef

g(v,u)
)

.

Here the second equality follows from the observations above: for every(u,v) ∈ E+ we
have(u,v) ∈ Ef , for every(u,v) ∈ E− we have(v,u) ∈ Ef , andg(u,v) is non-zero only
on the edges inE+ andE−. We conclude thatg is a circulation ofGf .

The proof now follows from Lemma6.3. (Note that there are at mostm edges with
positive flow ing. Thus,g can be decomposed into at mostmcycles flows.)

6.3 Cycle Canceling Algorithm

Lemma6.2 shows that if we are able to find a cycleC in Gf of negative costc(C) < 0,
then we can augmentr f (C) units of flow along this cycle and obtain a flowf ′ of cost
strictly smaller thanc( f ). This observation gives rise to our first optimality condition:

Theorem 6.1(Negative cycle optimality condition). A feasible flow f of G is a minimum
cost flow if and only if Gf does not contain a negative cost cycle.

Proof. Supposef is a minimum cost flow andGf contains a negative cost cycleC. By
Lemma6.2, we can augmentr f (C) units of flow alongC and obtain a feasible flowf ′

with
c( f ′) = c( f )+ r f (C) ·c(C)< c( f ),

which is a contradiction.

Next suppose thatf is a feasible flow andGf contains no negative cycle. Letf ∗ be a
minimum cost flow and assumef ∗ 6= f . By Lemma6.4, f ∗ can be obtained fromf by
augmenting alongk cyclesC1, . . . ,Ck in Gf , wherek ≤ m. Let fCi be the flow that is
pushed alongCi . By Lemma6.3, the cost off ∗ is equal to

c( f ∗) = c( f )+
k

∑
i=1

fCi ·c(Ci).

By assumption, each such cycle has nonnegative cost and thusc( f ∗)≥ c( f ). We conclude
that f is a minimum cost flow.

This leads to our first algorithm:

Note that we can establish a feasible flowf by computing a maximum flow as explained
above. This takesO(nm2) using the Edmonds-Karp algorithm. Also observe that in each
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Input : directed graphG= (V,E), capacity functionw : E→ R+, cost function
c : E→ R+ and balance functionb : V→R.

Output : minimum cost flowf : E→R+.

1 Initialize: compute a feasible flowf
2 while Gf contains a negative cost cycledo
3 find a directed simple negative cycleC of Gf

4 pushr f (C) flow units alongC and let f be the new flow
5 end
6 return f

Algorithm 9: Cycle canceling algorithm.

iteration we have to determine a cycle of negative cost inGf . Using the Bellman-Ford
algorithm, this can be done in timeO(nm).

We next bound the number of iterations that the algorithm needs to compute a minimum
cost flow. Note that an arbitrary flow has cost at mostmWCbecause every edge has flow
value at mostW and cost at mostC. On the other hand, a trivial lower bound on the cost
of a minimum cost flow is 0, because all edge costs are nonnegative. Every iteration of
the above algorithm strictly decreases the cost of the current flow f . Since we assume
that all input data is integral, the cost off decreases by at least 1. The algorithm therefore
terminates after at mostO(mWC) iterations.

Theorem 6.2. The cycle canceling algorithm computes a minimum cost flow intime
O(nm2WC).

Note that the running time of the cycle canceling algorithm is not polynomial becauseW
andC might be exponential inn andm. Algorithms whose running time is polynomial
in the input size (heren andm) and the magnitude of the largest number in the instance
(hereW andC) are said to havepseudo-polynomial running time.

As a byproduct, the cycle canceling algorithm shows that there always exists a minimum
cost flow that is integral if all capacities and balances are integral (see Assumption6.1).

Theorem 6.3(Integrality property). If all capacities and balances are integral, then there
is an integer minimum cost flow.

Proof. The proof is by induction on the number of iterations. We can assume without loss
of generality that the flowf after the initialization is integral: Recall thatf is obtained
by computing a maximum flow in an augmented network as indicated above. Because all
capacities and balances are integral, this augmented network has integral capacities. The
resulting flow is therefore integral by Theorem5.2. Suppose that the current flowf is
integral afteri iterations. The residual capacities inGf are then also integral and a push
along an augmenting cycle maintains the integrality of the resulting flow.

We remark that the above algorithm can be turned into a polynomial-time algorithm if in
each iterations one augments along aminimum mean cost cycle, i.e., a cycle that mini-
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mizes the ratioc(C)/|C|. A minimum mean cost cycle can be computed in timeO(nm).
Using this idea, one can show that the resulting algorithm has an overall running time of
O(n2m3 logn).

6.4 Successive Shortest Path Algorithm

We derive an alternative optimality condition. Suppose we associate apotentialπ(u) with
every nodeu∈V. Define thereduced cost cπ(u,v) of an edge(u,v) as

cπ(u,v) = c(u,v)−π(u)+π(v).

Note that this definition is applicable to both the original network and the residual graph.

Theorem 6.4(Reduced cost optimality conditions). A feasible flow f of G is a minimum
cost flow if and only if there exist some node potentialsπ : V→ R such that cπ(u,v)≥ 0
for every edge(u,v) ∈ Ef of Gf .

Proof. Suppose that there exist node potentials such thatcπ(u,v) ≥ 0 for every edge
(u,v) ∈ Ef of the residual graphGf . Let C be an arbitrary simple directed cycle inGf .
Then

∑
e∈C

c(e) = ∑
e∈C

cπ(e)≥ 0.

We conclude thatGf does not contain any negative cost cycle. By Theorem6.1, f is a
minimum cost flow.

Let f be a minimum cost flow. By Theorem6.1, Gf contains no negative cycle. Let
δ : V → R be the shortest path distances from an arbitrarily chosen source nodes∈ V
to every other nodeu ∈ V (with respect toc). Note thatδ is well-defined becauseGf

contains no negative cycles. The distance functionδ must satisfy the triangle inequality
(see Lemma4.2), i.e., for every edge(u,v) ∈ Ef , δ (v) ≤ δ (u)+ c(u,v). Defineπ(u) =
−δ (u) for every nodeu∈V. With this definition, we have for every(u,v) ∈ Ef :

cπ(u,v) = c(u,v)−π(u)+π(v)= c(u,v)+ δ (u)− δ (v)≥ 0,

which concludes the proof.

We next introduce the notion of apseudoflow. A pseudoflowx of G is a functionx : E→
R+ that satisfies the nonnegativity and capacity constraints;it neednot satisfy the flow
balance constraints. Given a pseudoflowx, define theexcessof a nodeu∈V as

exs(u) = b(u)+ ∑
(v,u)∈E

x(v,u)− ∑
(u,v)∈E

x(u,v).

Intuitively, exs(u)> 0 means that nodeu has an excess ofexs(u) units of flow;exs(u)< 0
means that nodeu has a deficit of−exs(u) units of flow. We refer to such nodes asexcess
anddeficit nodes, respectively. A nodeu with exs(u) = 0 is said to bebalanced. Let
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V+
x andV−x , respectively, be the sets of excess and deficit nodes with respect tox. (For

notational convenience, we will omit the subscriptx subsequently.) Observe that

∑
u∈V

exs(u) = ∑
u∈V

b(u) = 0 and thus ∑
u∈V+

exs(u) =− ∑
u∈V−

exs(u). (7)

That is, if the network contains an excess node then it must also contain a deficit node.

The residual graphGx of a pseudoflowx is defined in the same way as we defined the
residual graph of a flow.

Lemma 6.5. Suppose that a pseudoflow x satisfies the reduced cost optimality conditions
with respect to some node potentialsπ . Letδ : V→R be the shortest path distances from
some node s∈ V to all other nodes in Gx with respect to cπ and defineπ ′ = π − δ . The
following holds:

1. The pseudoflow x also satisfies the reduced cost optimalityconditions with respect
to the node potentialsπ ′.

2. The reduced cost cπ ′(u,v) is zero for every edge(u,v)∈Ex that is part of a shortest
path from s to some other node in Gx.

Proof. Sincex satisfies the reduced cost optimality conditions with respect to π , we have
cπ(u,v) ≥ 0 for every edge(u,v) ∈ Ex. Moreover,δ is a distance function and therefore
satisfies the triangle inequality, i.e.,δ (v)≤ δ (u)+cπ(u,v) for every(u,v)∈ Ex. Thus, for
every edge(u,v) ∈ Ex

cπ ′(u,v) = c(u,v)− (π(u)− δ (u))+ (π(v)− δ (v))
= c(u,v)−π(u)+π(v)+ δ (u)−δ (v)
= cπ(u,v)+ δ (u)− δ (v)≥ 0.

This proves the first part of the lemma.

Consider a shortest pathP from nodes to some other nodet in Gx. Every edge(u,v) ∈ P
must be tight, i.e.,δ (v) = δ (u)+ cπ(u,v). Substitutingcπ(u,v) = c(u,v)−π(u)+π(v),
we obtainδ (v) = δ (u)+ c(u,v)−π(u)+π(v). Thus,

cπ ′(u,v) = c(u,v)−π(u)+π(v)+ δ (u)−δ (v)= 0,

which proves the second part of the lemma.

Corollary 6.1. Suppose that a pseudoflow x satisfies the reduced cost optimality condi-
tions and we obtain x′ from x by sending flow along a shortest path P (with respect to cπ )
from node s to some other node t in Gx. Then x′ also satisfies the reduced cost optimality
conditions.

Proof. Define the potentialsπ ′ = π − δ as in the statement of Lemma6.5. Then
cπ ′(u,v)= 0 for every edge(u,v)∈P. Sending flow along an edge(u,v)∈P might add the
reversed edge(v,u) to the residual graph. It is not hard to verify thatcπ ′(v,u) =−cπ ′(u,v)
and thus the new edge(v,u) also satisfies the reduced cost optimality condition. The claim
follows.
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This corollary leads to the following idea: Start with an arbitrary pseudoflowx and poten-
tials π such that the reduced cost optimality conditions are satisfied. We then repeatedly
compute a shortest pathP from some excess nodes∈V+ to a deficit nodet ∈V− in Gx

with respect tocπ and push the maximum possible amount of flow froms to t alongP.
The shortest path distances are used to updateπ . The algorithm stops if no further ex-
cess node exists. Note that by the above corollary the pseudoflow x satisfies the reduced
cost optimality conditions at all times. Eventually,x becomes a feasible flow. By Theo-
rem6.4, x is then a minimum cost flow. The algorithm is summarized in Algorithm 10;
see Figure9 for an illustration.

Input : directed graphG= (V,E), capacity functionw : E→ R+, cost function
c : E→ R+ and balance functionb : V→R.

Output : minimum cost flowx : E→R+.

1 Initialize: x(u,v) = 0 for every(u,v) ∈ E andπ(u) = 0 for everyu∈V
2 exs(u) = b(u) for everyu∈V
3 let V+ = {u∈V | exs(u)> 0} andV− = {u∈V | exs(u)< 0}
4 while V+ 6= /0 do
5 choose a source nodes∈V+

6 compute shortest path distancesδ : V→ R from s to all other nodesu∈V in
Gx with respect tocπ

7 let P be a shortest path froms to some nodet ∈V−

8 updateπ ← π− δ
9 augment∆ = min{exs(s), −exs(t), rx(P)} units of flow alongP

10 updatex, Gx, exs(s), exs(t), V+, V− andcπ

11 end
12 return x

Algorithm 10: Successive shortest path algorithm.

Theorem 6.5. The successive shortest path algorithm computes a minimum cost flow in
time O(nB(m+nlogn)).

Proof. We show by induction on the number of iterations that the pseudoflow x satisfies
the reduced cost optimality conditions with respect toπ . This is sufficient to establish the
correctness of the algorithm because the algorithm terminates withV+ =V− = /0 and the
final pseudoflowx is thus a flow. It then follows from Theorem6.4 thatx is a minimum
cost flow.

After the initialization,x is a pseudoflow andGx = G. Sinceπ(u) = 0 for everyu ∈ V,
cπ(u,v) = c(u,v) for every(u,v) ∈ Ex. Since all edge costs are assumed to be nonneg-
ative, x satisfies the reduced cost optimality conditions with respect to π . Let x be the
pseudoflow at the beginning of iterationi and assume that it satisfies the reduced cost
optimality conditions with respect toπ . The shortest path distancesδ are well-defined
becauseGx does not contain a negative cycle with respect tocπ . By (7), V+ is nonempty
iff V− is nonempty. The algorithm therefore succeeds in finding a shortest path froms
to some nodet ∈ V− because otherwise the problem would be infeasible. (Recallthat
we assume that there is a feasible solution; see Assumption6.2.) By Corollary6.1, the
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Figure 9: Illustration of the successive shortest path algorithm. The residual graphGx

with respect to the current pseudoflowx is depicted. Every edge(u,v) is labeled with
cπ(u,v), rx(u,v) and every nodeu is labeled withexs(u),π(u). (a) Gx with respect to
x= 0 andπ = 0. (b)Gx after potential update: two units of flow are sent along the bold
path. (c)Gx after flow augmentation. (d)Gx after potential update: two units of flow are
sent along the bold path. (e)Gx after flow augmentation: no further excess/deficit nodes
exist and the resulting flow is optimal.
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pseudoflow that we obtain fromx by sending∆ units alongP satisfies the reduced cost
optimality conditions with respect toπ− δ .

It remains to be shown that the algorithm terminates. In eachiteration,∆ is chosen such
that eithers or t become balanced or one of the edge onP becomes saturated. Each
iteration therefore strictly reduces the excess of the chosen source nodes. Since we
assume that all input data is integral, the excess ofs is reduced by at least 1. The algorithm
therefore terminates after at mostnB iterations. Each iteration requires to solve a single
source shortest path problem with respect tocπ . Because the reduced costscπ are non-
negative, we can use Dijkstra’s algorithm which requiresO(m+nlogn) time. The overall
running time of the successive shortest path algorithm is thusO(nB(m+nlogn)).

6.5 Primal-Dual Algorithm

We use linear programming duality to derive our third algorithm for the minimum cost
flow problem. We associate a dual variableπ(u) with every nodeu ∈ V andα(e) with
every edgee∈ E. The dual of the linear program (6) is as follows:

maximize ∑
u∈V

b(u)π(u)−∑
e∈E

w(e)α(e)

subject to π(u)−π(v)−α(u,v) ≤ c(u,v) ∀(u,v) ∈ E
α(e) ≥ 0 ∀e∈ E

(8)

As in the previous section, let the reduced cost of an edge(u,v) ∈ E be defined as
cπ(u,v) = c(u,v)− π(u) + π(v). The above constraints then require that−α(u,v) ≤
cπ(u,v) andα(u,v) ≥ 0 for every edge(u,v) ∈ E. Since the dual has a maximization
objective and because capacities are nonnegative, an optimal solution to (8) satisfies
α(u,v) = max{0,−cπ(u,v)}. In a sense, the dual variableα(u,v) are therefore redun-
dant: Given optimal dual valuesπ(u) for everyu ∈ V, we can extend this solution to a
feasible dual solution(π ,α) of (8) using the above relation.

We next derive thecomplementary slackness conditionsof the primal linear program (6)
and the dual linear program (8):

1. Primal complementary slackness condition:for every edgee∈ E:

f (e)> 0 ⇒ α(e) =−cπ(e),

which is equivalent to

f (e) > 0 ⇒ cπ(e)≤ 0.

2. Dual complementary slackness condition:for every edgee∈ E:

α(e)> 0 ⇒ f (e) = w(e),
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which is equivalent to

cπ(e)< 0 ⇒ f (e) = w(e).

Theorem 6.6(Complementary slackness optimality conditions). A feasible flow f of G is
a minimum cost flow if and only if there exist dual valuesπ(u) for every u∈V satisfying
that for every edge e∈ E:

1. If cπ(e)> 0 then f(e) = 0.
2. If cπ(e)< 0 then f(e) = w(e).

Proof. The proof follows directly from the complementary slackness conditions.

The complementary slackness optimality conditions can actually be seen to be equivalent
to the reduced cost optimality conditions that we introduced earlier:

Theorem 6.7. A feasible flow f satisfies the reduced cost optimality conditions with re-
spect to node potentialsπ : V→ R if and only if f satisfies the complementary slackness
optimality conditions with respect toπ .

Proof. Supposecπ(u,v)≥ 0 for every(u,v) ∈ Ef . Let (u,v) ∈ E and supposecπ(u,v)<
0. Then(u,v) /∈ Ef and thusf (u,v) = w(u,v). Next supposecπ(u,v) > 0. Because
cπ(v,u) =−cπ(u,v)< 0, the backward edge(v,u) is not part ofGf and thusf (u,v) = 0.

Assume that the complementary slackness conditions are satisfied for every edge(u,v) ∈
E. Consider a forward edge(u,v) ∈ Ef . Then f (u,v) < w(u,v) and thuscπ(u,v) ≥ 0.
Next consider a backward edge(v,u) ∈ Ef . Then f (u,v)> 0 and thuscπ(u,v)≤ 0. Since
cπ(v,u) =−cπ(u,v), we conclude thatcπ(v,u)≥ 0.

The primal-dual algorithm for the minimum cost flow problem follows a generalprimal-
dual paradigm: We start with an infeasible primal solutionx and a feasible dual solution
π . We ensure that the algorithm satisfies the complementary slackness conditions with
respect tox andπ throughout the entire execution of the algorithm. The algorithm suc-
cessively reduces the degree of infeasibility of the primalsolutionx with respect to the
current dual solutionπ . If no further improvement is possible, thenπ will be updated so
as to ensure that the infeasibility ofx can be further reduced. The dual solutionπ remains
feasible throughout the entire process. Eventually,x is a feasible primal solution and thus
a minimum cost flow.

The algorithm works with a transformed instance of the problem having exactly one ex-
cess and one deficit node: Augment the original graph by adding a super-sources and
a super-target. Add an edge(s,u) for every nodeu ∈ V with b(u) > 0 of capacity
w(s,u) = b(u) and costc(s,u) = 0. Similarly, add an edge(u, t) for every nodeu∈V with
b(u) < 0 of capacityw(u, t) = −b(u) and costc(u, t) = 0. Let b(s) = ∑u∈V:b(u)>0b(u)
andb(t) = ∑u∈V:b(u)<0b(u). All other balances are set to zero. Clearly, every minimum
cost flow in the augmented network corresponds to a minimum cost flow in the original
network and vice versa. Subsequently, we will use the augmented network.
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The algorithm starts with the pseudoflowx(e) = 0 for everye∈ E and dualπ(u) = 0
for everyu ∈ V. Note thatx is an infeasible primal solution andπ is a feasible dual
solution. Alsox andπ satisfy the complementary slackness conditions because for every
edgee∈ E, x(e) = 0 andcπ(e) = c(e)≥ 0.

In order to reduce the infeasibility ofx, the algorithm basically pushes as much flow as
possible froms to t along shortests, t-paths inGx. Let δ : V → R be the shortest path
distances froms to all other nodesu ∈ V in Gx with respect tocπ . Defineπ ′ = π − δ .
Then every shortests, t-path inGx with respect tocπ is a zero cost path with respect tocπ ′

and vice versa. Let theadmissible graph G0x be the subgraph ofGx = (V,Ex) that consists
of all edgese∈ Ex with cπ ′(e) = 0. The algorithm computes a maximum flowg0 in G0

x,
where the capacities of the edges are their respective residual capacities. We can then
augmentx by g0 in the obvious way: Increase the flow valuex(u,v) of every forward edge
(u,v) ∈ E by g0(u,v) and decrease the flow valuex(u,v) of every backward edge(v,u)
by g0(v,u). As a result, the excess ats is reduced by the flow value|g0|. It is not hard
to see that the resulting flowx′ is a pseudoflow. Moreover, in light of Theorem6.7 and
Corollary6.1, x′ satisfies the complementary slackness conditions with respect to the new
feasible dualπ ′.

The algorithm continues in this manner until eventually thetotal excess ofs is exhausted
and the pseudoflowx becomes a flow. Since the algorithm maintains the invariant thatx
andπ satisfy the complementary slackness conditions andπ is a feasible dual solution,x
(and alsoπ) are eventually optimal solutions to the respective linearprograms in (6) (and
(8)).

The algorithm is summarized in Algorithm11; see Figure10 for an illustration.

Input : directed graphG= (V,E), capacity functionw : E→ R+, cost function
c : E→ R+ and balance functionb : V→R.

Output : minimum cost flowx : E→R+.

1 Initialize: x(u,v) = 0 for every(u,v) ∈ E andπ(u) = 0 for everyu∈V
2 exs(s) = b(s)
3 while exs(s)> 0 do
4 compute shortest path distancesδ : V→ R from s to all other nodesu∈V in

Gx with respect tocπ

5 updateπ ← π− δ
6 construct the admissible networkG0

x

7 compute a maximum flowg0 from s to t in G0
x

8 augmentx by g0

9 updatex, exs(s), Gx andcπ

10 end
11 return x

Algorithm 11: Primal-dual algorithm.

Theorem 6.8. The primal-dual algorithm computes a minimum cost flow in time
O(min{nC,nB} ·nm2).
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Figure 10: Illustration of the primal-dual algorithm. The residual graphGx with respect
to the current pseudoflowx is depicted. Every edge(u,v) is labeled withcπ(u,v), rx(u,v)
and every nodeu is labeled withexs(u),π(u). (a) Gx with respect tox = 0 andπ = 0
of the transformed network of the example instance depictedin Figure8(a). (b)Gx after
potential update: max flow inG0

x has value 2. (c)Gx after flow augmentation. (d)Gx after
potential update: max flow inG0

x has value 2. (e)Gx after flow augmentation: excess of
source nodes is zero and the resulting flow is optimal.
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Proof. The correctness of the algorithm follows from the discussion above.

Observe that in each iteration, the excess ofs is reduced by at least 1 (assuming integer
capacities and balances). The maximum number of iterationsis thus at mostnB, which is
the maximum excess ofsat the beginning of the algorithm.

We can establish a second bound on the number of iterations: In each iteration,g0 is a
maximum flow inG0

x. By the max-flow min-cut theorem, there is a cut(X, X̄) in G0
x such

that for every edge(u,v) with u ∈ X andv ∈ X̄, g0(u,v) = rx(u,v). As a consequence,
after the augmentation, all these edges vanish from the residual graphGx′ of the new flow
x′. Thus, everys, t-path inGx′ has length at least 1 with respect tocπ ′(u,v) (because edge
costs are integral). The potential oft therefore reduces by at least 1 in the next iteration.
Note that no node potentialπ(u) for u 6= s can ever be less than−nC (think about it!).
The total number of iterations is therefore bounded bynC.

The running time of each iteration is dominated by the shortest path and max flow com-
putations. The total running time is thus at mostO(min{nC,nB} ·nm2).

References

The presentation of the material in this section is based on [1, Chapter 9].

50



M M∗ M△M∗

Figure 11: Illustration of the existence of anM-augmenting path.

7. Matchings

7.1 Introduction

Recall that amatching Min an undirected graphG= (V,E) is a subset of edges satisfying
that no two edges share a common endpoint. More formally,M ⊆ E is a matching if for
every two distinct edges(u,v),(x,y) ∈M we have{u,v}∩{x,y} = /0. Every nodeu∈V
that is incident to a matching edge is said to bematched; all other nodes are said to be
free. A matchingM is perfectif every nodeu∈V is matched byM.

We consider the following optimization problem:

Maximum Matching Problem:

Given: An undirected graphG= (V,E).
Goal: Compute a matchingM ⊆ E of G of maximum size.

Note that if the underlying graph is bipartite, then we can solve the maximum matching
problem by a maximum flow computation.

Given two setsS,T ⊆ E, let S△ T denote thesymmetric differenceof S and T, i.e.,
S△T = (S\T)∪ (T \S).

7.2 Augmenting Paths

Given a matchingM, a pathP is calledM-alternating(or simplyalternating) if the edges
of P are alternately inM and not inM. If the first and last node of anM-alternating
pathP are free, thenP is called anM-augmenting(or augmenting) path. Note that an
augmenting path must have an odd number of edges. AnM-augmenting pathP can be
used to increase the size ofM: Simply make every non-matching edge onP a matching
edge and vice versa. We also say that weaugment M along P.
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Figure 12: Illustration of an alternating tree. The nodes inX andY are indicated in white
and gray, respectively. Note that there is an augmenting path from r to v.

Theorem 7.1. A matching M in a graph G= (V,E) is maximum if and only if there is no
M-augmenting path.

Proof. SupposeM is maximum and there is anM-augmenting pathP. Then augmenting
M alongP gives a new matchingM′ = M△P of size|M|+1, which is a contradiction.

Suppose thatM is not maximum. LetM∗ be a maximum matching. Consider the symmet-
ric differenceM△M∗. BecauseM andM∗ are matchings, the subgraphG′= (V,M△M∗)
consists of isolated nodes and node-disjoint paths and cycles. The edges of every such
path or cycle belong alternately toM andM∗. Each cycle therefore has an even number
of edges. Because|M∗|> |M| there must exist one pathP that has more edges ofM∗ than
of M. P is anM-augmenting path; see Figure11for an illustration.

7.3 Bipartite Graphs

The above theorem gives an idea how to compute a maximum matching: Start with the
empty matchingM = /0. Find anM-augmenting pathP and augmentM alongP. Repeat
this procedure until noM-augmenting path exists andM is maximum.

A natural approach to search for augmenting paths is to iteratively build analternating
tree. SupposeM is a matching andr is a free node. We inductively construct a treeT
rooted atr as follows. We partition the node set ofT into two setsX andY: For every
nodeu∈X, there is an even-length alternating path fromr to u in T; for every nodeu∈Y,
there is an odd-length alternating path fromr to u in T. We start withX = {r} andY = /0
and then iteratively extendT using the following operation:

EXTEND TREE USING(u,v):
(Precondition:(u,v) ∈ E, u∈ X, v /∈ X∪Y and(v,w) ∈M)
Add edge(u,v) to T, v to Y, edge(v,w) to T andw to X

This way we obtain a layered tree rooted atr (starting with layer 0); see Figure12 for
an illustration. All nodes inX are on even layers and all nodes inY are on odd layers.
Moreover, every node in layer 2i−1 (i ≥ 1) is matched to a node in layer 2i. In particular,
|X|= |Y|+1.
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Input : undirected bipartite graphG= (V,E).
Output : maximum matchingM.

1 Initialize: M = /0
2 foreach r ∈V do
3 if r is matchedthen continue
4 else
5 X = {r}, Y = /0, T = /0
6 while there exists an edge(u,v) ∈ E with u∈ X and v/∈ X∪Y do
7 if v is freethen AUGMENT MATCHING USING (u,v)
8 elseEXTEND TREE USING(u,v)
9 end

10 end
11 end
12 return M

Algorithm 12: Augmenting path algorithm.

Suppose that during the extension of the alternating treeT we encounter an edge(u,v)∈E
with u∈X andv /∈ X∪Y being a free node. We have then found an augmenting path from
r to v; see Figure12.

AUGMENT MATCHING USING (u,v)
(Precondition:(u,v) ∈ E, u∈ X, v /∈ X∪Y free)
AugmentM along the concatenation of ther,u-path inT with edge(u,v)

These two operations form the basis of the augmeting path algorithm given in Algo-
rithm 12.

The correctness of the algorithm depends on whether alternating trees truly capture all
augmenting paths. Clearly, whenever the algorithm finds an augmenting path starting at
r, this is an augmenting path. But can we conclude that there isno augmenting path if
the algorithm does not find one? As it turns out, the algorithmworks correctly if the
underlying graph satisfies theunique label property: A graph satisfies theunique label
propertywith respect to a given matchingM and a root noder if the above tree building
procedure uniquely assigns every nodeu∈V(T) to one of the setsX andY, irrespective
of the order in which the nodes are examined.

Lemma 7.1. Suppose a graph satisfies the unique label property. If thereexists an M-
augmenting path, then the augmenting path algorithm finds it.

Proof. Let P = 〈r, . . . ,u,v〉 be an augmenting path with respect toM. Because of the
unique label property, the algorithm always ends up with adding nodeu to X and thus
discovers an augmenting path via edge(u,v).

Using the above characterization, we can show that the augmenting path algorithm given
in Algorithm 12 is correct for bipartite graphs: Recall that in a bipartite graph, the node
setV is partitioned into two setsV0 andV1. Every node that is part ofV(T) and belongs
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Figure 13: Illustration of a blossom shrinking. (a) The odd cycle B = 〈b, p,u,v,q,b〉
constitutes a blossom with baseb and stem〈r,x,b〉. Note that there is an augmenting
path fromz to r via edge(u,v). (b) The resulting graph after shrinking blossomB into a
super-nodeb.

to the setVi with r ∈ Vi is added toX; those that belong toV1−i are added toY. Thus
bipartite graphs satisfy the unique label property.

Theorem 7.2. The augmenting path algorithm computes a maximum matching in bipar-
tite graphs in time O(nm).

Proof. The correctness of the algorithm follows from the discussion above. Note that each
iteration can be implemented to run in timeO(n+m) and there are at mostn iterations.

7.4 General Graphs

It is not hard to see that graphs do in general not satisfy the unique label property. Consider
an odd cycle consisting of three edges(r,u),(u,v),(v, r) and suppose that(u,v) ∈M and
r is free. Then the algorithm addsu to Y if it considers edge(r,u) first, while it addsu
to X if it considers edge(r,v) first. Odd cycles are precisely the objects that cause this
dilemma (and which are not present in bipartite graphs).

A deep insight that was first gained by Edmonds in 1965 is that one can “shrink” such odd
cycles. Suppose during the construction of the alternatingtree, the algorithm encounters
an edge(u,v) with u,v∈ X; see Figure13(a). Letb be the lowest common ancestor of
u andv in T. Note thatb∈ X. Consider the cycleB that follows the uniqueb,u-path in
T, then edge(u,v) and then the uniquev,b-path inT. B is an odd length cycle, which
is also called ablossom. The nodeb is called thebaseof B. The even length path from
b to the root noder is called thestemof B; if r = b then we say that the stem ofB is
empty. Suppose we shrink the cycleB to a super-node, which we identify withb; see
Figure13(b). Note that the super-nodeb belongs toX after shrinking.

SHRINK BLOSSOM USING(u,v):
(Precondition:(u,v) ∈ E andu,v∈ X)
Let b be the lowest common ancestor ofu andv in T.
Shrink the blossomB= 〈b, . . . ,u,v, . . . ,b〉 to a super-nodeb.
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Let G′ be the resulting graph and letM′ be the restriction ofM to the edges ofG′. The
next two lemmas show that by shrinking blossoms, we do not addor lose any augmenting
paths.

Lemma 7.2. Suppose there is an M′-augmenting path P′ from r to v (or the respective
super-node) in G′. Then there is an M-augmenting path from r to v in G.

Proof. If P′ does not involve the super-nodeb, thenP′ is also an augmenting path inG.
SupposeP′ contains the super-nodeb. There are two cases we need to consider:

Case 1:r 6= b. Let P′ = 〈r, . . . ,x,b,z, . . . ,v〉 be the augmenting path inG′. Let P′rx andP′zv
refer to the subpaths〈r, . . . ,x〉 and〈z, . . . ,v〉 of P′, respectively. Note that(x,b) ∈M′ and
(b,z) /∈M′. If we expand the blossomB corresponding to super-nodeb, thenb is the base
of B with incident matching edge(x,b). Let p be the node ofB such that(p,z) is part of
G. Then there is an even lengthM-alternating pathPbp= 〈b, . . . , p〉 from b to p in B. The
pathP= 〈P′rx,(x,b),Pbp,(p,z),P′zv〉 is anM-augmenting path inG.

Case 2:r = b. Let P′ = 〈b,z, . . . ,v〉 be the augmenting path inG′. Let P′zv refer to the
subpath〈z, . . . ,v〉 of P′. If we expand the blossomB corresponding to super-nodeb, then
b is the base ofB which is free. Letp be the node ofB such that(p,z) is part ofG. Then
there is an even lengthM-alternating pathPbp = 〈b, . . . , p〉 from b to p in B. The path
P= 〈b,Pbp,(p,z),P′zv〉 is anM-augmenting path inG.

Lemma 7.3. Suppose there is an M-augmenting path P from r to v in G. Then there is an
M′-augmenting path from r to v (or the respective super-nodes)in G′.

Proof. We assume without loss of generality thatr andv are the only free nodes with
respect toM. (Otherwise, we can remove all other free nodes fromG without affecting
P.) If P has no nodes in common with the nodes of the blossomB, thenP is an M′-
augmenting path inG′ and we are done. SupposeP= 〈r, . . . ,v〉 contains some nodes of
B. We consider two cases:

Case 1: The stem ofB is empty. The baseb of B is then a free node and therefore coincides
with one of the endpoints ofP. Assume thatr = b; the other case follows similarly. Letp
be the last node ofP that is part ofB and letPpv= 〈p,z, . . . ,v〉 be the subpath ofP starting
at p. Note that(p,z) /∈M. The pathP′ = 〈b,z, . . . ,v〉 is then anM′-augmenting path in
G′.

Case 2: The stem ofB is non-empty. LetPrb = 〈r, . . . ,b〉 be the stem ofB. Consider the
matchingM̂ = M△Prb. Thenr is matched inM̂ and thusb andv are the only free nodes
with respect toM̂. Further,|M̂|= |M|. Note thatM is not a maximum matching (because
there is anM-augmenting path inG) and thus alsoM̂ is not a maximum matching. Thus,
there is anM̂-augmenting patĥP in G that starts atb and ends atv. Note that the stem
of B with respect toP̂ is empty and we can thus use the proof of Case 1 to show that the
contracted graphG′ contains anM̂′-augmenting path fromb to v. Note thatM̂′ is different
from M′. However, because|M′|= |M̂′| we conclude thatG′ must contain an augmenting
path with respect toM′ as well.
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The matching algorithm for general graphs is also known as the blossom-shrinkingalgo-
rithm. The algorithm maintains a graphG′ of super-nodes and a respective matchingM′

on the super-nodes throughout each iteration. At the end of each iteration, all super-nodes
of G′ are expanded and the matchingM on the original graph is obtained fromM′ as
described in the proof of Lemma7.2.

Input : undirected graphG= (V,E).
Output : maximum matchingM.

1 Initialize: M = /0
2 foreach r ∈V do
3 if r is matchedthen continue
4 else
5 G′←G andM′←M.
6 X←{r}, Y← /0, T ← /0
7 while there exists an edge(u,v) ∈ E′ with u∈ X and v/∈Y do
8 if v is free, v6= r then AUGMENT MATCHING USING (u,v)
9 else ifv /∈ X∪Y, (v,w) ∈M′ then EXTEND TREE USING(u,v)

10 elseSHRINK BLOSSOM USING(u,v)
11 end
12 ExtendM′ to a matchingM of G by expanding all super-nodes ofG′.
13 end
14 end
15 return M

Algorithm 13: Blossom shrinking algorithm.

Theorem 7.3. The blossom-shrinking algorithm computes a maximum matching in gen-
eral graphs in time O(nmα(n, m

n )).

Proof. The correctness of the algorithm follows from Lemmas7.2 and 7.3 and The-
orem 7.1. It remains to show that the algorithm can be implemented to run in time
O(mα(n, m

n )) per iteration. The key here is to maintain an implicit representation of
the graphG′ of super-nodes: We keep track of the partition of the original nodes into
super-nodes by means of aunion-finddata structure. Considering an edge(u,v) ∈ E dur-
ing an iteration, we need to check whether edge(u,v) is part ofG′. This can be done by
verifying whetheru andv belong to the same set of the partition. Shrinking a blossom is
tantamount to uniting the node sets of the respective super-nodes. We have at most 2mfind
andn union operations per iterations and these operations take timeO(n+mα(n, m

n )). All
remaining operations (extending the tree, augmenting the matching, extracting the match-
ing onG) can be done in timeO(n+m) per iteration. The time bound follows.

There are algorithms with better running times for the matching problem. For the bipartite
case, Hopcroft and Karp showed that the running time of the augmenting path algorithm
can be reduced toO(

√
nm). The basic idea is to augment the current matching in each

iteration by a maximal set of node-disjoint shortest paths (in terms of number of edges).
Using this idea, one can show that the shortest path lengths increase with each iteration.
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Now, fix an arbitrary matchingM and suppose|M| ≤ k−
√

k, wherek = |M∗| is the car-
dinality of a maximum matching. It is not hard to see that thenthere is anM-augmenting
path of length at most 2

√
k+1. That is, after at most 2

√
k+1 iterations, the algorithm

has found a matchingM of size at leastk−
√

k. After at most
√

k additional iterations,
the algorithm terminates with a maximum matching. Each iteration can be implemented
to run in timeO(n+m), which gives a total running timeO(

√
km) = O(

√
nm). A similar

idea can be used in the general case to obtain an algorithm that computes a maximum
matching in timeO(

√
nm).

References

The presentation of the material in this section is based on [1, Chapter 12] and [2, Chapter
5].
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Figure 14: (a) Finite point setS. (b) Convex hullconv-hull(S) and a separating inequality
for v /∈ conv-hull(S).

8. Integrality of Polyhedra

8.1 Introduction

Many algorithms for combinatorial optimization problems crucially exploit min-max re-
lations in order to prove optimality of the computed solution. We have seen examples
of such algorithms for the maximum flow problem, minimum costflow problem and the
matching problem. A question that arises is whether there isa general approach to derive
such min-max relations. As we will see in this section, such relations can often be derived
via polyhedral methods.

8.2 Convex Hulls

Suppose we are given a finite setS= {s1, . . . ,sk}⊆Rn of n-dimensional vectors. A vector
x ∈ Rn is a convex combinationof the vectors inS if there exist non-negative scalars
λ1, . . . ,λk with ∑k

i=1 λi = 1 such thatx= ∑k
i=1 λisi . Theconvex hullof S is defined as the

set of all convex combinations of vectors inS. Subsequently, we useconv-hull(S) to refer
to the convex hull ofS.

Suppose we want to solve the following mathematical programming problem: Given
somew ∈ Rn, max{wTx | x ∈ S}. Intuitively, it is clear that this is the same as maxi-
mizingwTx over the convex hull ofS.

Theorem 8.1. Let S⊆Rn be a finite set and let w∈ Rn. Then

max{wTx | x∈ S}= max{wTx | x∈ conv-hull(S)}.
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Proof. Let x∈ conv-hull(S). Then

wTx= λ1wTs1+ · · ·+λkw
Tsk ≤max{wTx | x∈ S}.

Thus max{wTx | x∈ conv-hull(S)} ≤max{wTx | x∈ S}. Equality now follows because
S⊆ conv-hull(S).

The next proposition states that ifv∈Rn\conv-hull(S) then there must exist aseparating
inequality wTx≤ t that separatesv from conv-hull(S), i.e.,wTx≤ t for all x∈ conv-hull(S)
butwTv> t.

Theorem 8.2. Let S⊆ Rn be a finite set and let v∈ Rn \ conv-hull(S). Then there is a
separating inequality wTx≤ t that separates v from conv-hull(S).

Proof. Note that verifying whetherv ∈ conv-hull(S) is equivalent to checking whether
there is a solution(λ1, . . . ,λk) to the following linear system:

k

∑
i=1

λisi = v (9)

k

∑
i=1

λi = 1 (10)

λi ≥ 0 ∀i ∈ {1, . . . ,k} (11)

Conversely,v ∈ Rn \ conv-hull(S) iff the above linear system has no solution. Using
Farkas Lemma (see below) with

A=











s1,1 . . . sk,1
... . . .

...
s1,n . . . sk,n

1 . . . 1











, x=







λ1
...

λk






and b=











v1
...

vn

1











we obtain thatv∈ Rn \ conv-hull(S) iff there exists ay∈ Rn andz∈ R such that

(yT z)A≥ 0 and (yT z)b< 0,

or, equivalently,

yTsi ≥−z ∀i ∈ {1, . . . ,k}
yTv<−z.

By settingw=−y andt = z, we obtain thatwTsi ≤ t for everyi ∈ {1, . . . ,k}. Theorem8.1
implies thatwTx≤ t for everyx∈ conv-hull(S). Moreover,wTv> t, which concludes the
proof.

We state the following proposition without proof.
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Figure 15: (a) Polytope described by five linear inequalities. (b) Faces of the polytope
(indicated in bold).

Proposition 8.1(Farkas Lemma). The system Ax= b has a non-negative solution x≥ 0
if and only if there is no vector y such that yTA≥ 0 and yTb< 0.

8.3 Polytopes

A polyhedron P⊆ Rn is described by a system of linear inequalities, i.e.,P = {x ∈
Rn | Ax≤ b}. A polyhedronP is a polytopeif P is bounded, i.e., there existl ,u ∈ Rn

such thatl ≤ x≤ u for everyx∈ P.

An inequalitywTx≤ t is calledvalid for a polyhedronP if P⊆ {x∈ Rn | wTx≤ t}. A
hyperplaneis given by{x∈Rn | wTx= t}. It is called asupporting hyperplaneif wTx≤ t
is valid for P andP∩{x | wTx = t} 6= /0. The intersection of a supporting hyperplane
with P is called aface. In the plane, the faces of a polyhedron are the edges and corner
points ofP.

Lemma 8.1. A non-empty set F⊆ P= {x | Ax≤ b} is a face of P if and only if for some
subsystem A◦x≤ b◦ of Ax≤ b, we have F= {x∈ P | A◦x = b◦}. Moreover, if F is an
(inclusionwise) minimal face of P, then the rank of A◦ is equal to the rank of A.

A vectorv∈ P is avertexof P if {v} is a face ofP. A polyhedronP is pointedif it has at
least one vertex.

Lemma 8.2. If a polyhedron P is pointed then every minimal non-empty face of P is a
vertex.

Lemma 8.3. Let P= {x | Ax≤ b} and v∈ P. Then v is a vertex of P if and only if v
cannot be written as a convex combination of vectors in P\ {v}.

Proof. Supposev is a vertex ofP and letA◦x≤ b◦ be a subsystem ofAx≤ b such that
{v} = {x∈ P | A◦x = b◦}. Supposev can be written as a convex combinationλ1x1+
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· · ·+λkxk of vectorsx1, . . . ,xk ∈ P. ThenA◦xi = b◦ for everyi ∈ {1, . . . ,k}. But this is a
contradiction to the assumption thatv is the unique solution to the systemA◦x= b◦.

Conversely, supposev cannot be written as a convex combination of vectors inP\ {v}.
Let A◦x≤ b◦ consist of the inequalities ofAx≤ b which v satisfies with equality. Let
F = {x | A◦x= b◦}. It suffices to show thatF = {v}. Suppose that this is not true. Let
u∈ F \{v} and consider the lineL= {v+λ (u−v) | λ ∈R} throughu andv. Clearly,L⊆
F . For every inequalityaix≤ bi of Ax≤ b which is not part ofA◦x≤ b◦, we haveaix< bi .
We can therefore determine a sufficiently smallε > 0 such thatv+ = v+ε(u−v)∈ P and
v− = v− ε(u− v)∈ P. But v= 1

2(v
++ v−), which is a contradiction.

Theorem 8.3. A polytope is equal to the convex hull of its vertices.

Proof. Let P be a polytope. SinceP is bounded,P must be pointed. LetV = {v1, . . . ,vk}
be the vertices ofP. Clearly, conv-hull(V) ⊆ P. It remains to be shown thatP ⊆
conv-hull(V). Suppose there exists someu ∈ P\ conv-hull(V). Then by Theorem8.2,
there exists an inequalitywTx≤ t that separatesu from conv-hull(V), i.e., wTx≤ t for
everyx∈ conv-hull(V) andwTu> t. Let t∗ = max{wTx | x∈ P} and consider the face
F = {x∈ P | wTx= t∗}. Becauseu∈ P, we havet∗ ≥ wTu> t. That is,F contains no
vertex ofP, which is a contradiction.

Theorem 8.4. A set P is a polytope if and only if there exists a finite set V such that P is
the convex hull of V .

The above theorem suggests the following approach to obtaina min-max relation for a
combinatorial optimization problem.

1. Formulate the combinatorial problemΠ as an optimization problem over a finite
setSof feasible solutions (e.g., by considering all characteristic vectors).

2. Determine a linear description ofconv-hull(S).
3. Use duality of linear programming theory to obtain a min-max relation.

Note that by Theorem8.1, solving the problemΠ over S is equivalent to solving the
problem overconv-hull(S). By Theorem8.4, there must exist a polyhedral description of
conv-hull(S). Thus,Π can be described as a linear program. Dualizing and using strong
duality, we can deduce a min-max relation for the problem.

We remark that the results given above show that the above approach as such is applicable.
However, there are (at least) two difficulties here: (i) It isnot clear how to derive a linear
description ofconv-hull(S) above. (ii) Even though such a description is guaranteed to
exist, the number of linear inequalities might be by far larger than the size of the original
problem. That is, even if we are able to come up with such a description, this might not
lead to a polynomial-time algorithm.

We exemplify the above approach for theperfect matching problemin bipartite graphs.
Let G= (V,E) be a bipartite graph. Recall that a matching isperfectif every node of the
graph is matched. DefinePM(G) ⊆ RE as the set of characteristic vectors of the perfect
matchings ofG.

Theorem 8.5(Birkhoff’s Theorem). Let G= (V,E) be a bipartite graph. The convex hull
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of PM(G) is defined as

∑
e=(u,v)∈E

xe = 1 ∀u∈V

xe ≥ 0 ∀e∈ E
(12)

Proof. Let P be the polytope defined by (12). Clearly, each perfect matchingx∈ PM(G)

is contained inP. It suffices to show that all vertices ofP are integral. Suppose for the sake
of contradiction thatx is a vertex ofP that is not integral. Let̄E = {e∈ E | 0< xe < 1}
be the fractional edges ofx. Because∑e=(u,v)∈E xe = 1 for every nodeu∈V, each node
incident to an edge in̄E is incident to at least two edges in̄E. Thus, there exists a cycle
C in Ē. Also,C must be even becauseG is bipartite. Letd ∈ RE be a vector that is 0 for
all edges not inC and alternately 1 and−1 for the edges alongC. Because all edges of
C are contained in̄E, there is anε > 0 such thatx+ = x+ εd andx− = x− εd are inP.
Note thatx= 1

2(x
++ x−). But this is a contradiction to the assumption thatx is a vertex

of P.

8.4 Integral Polytopes

Many combinatorial optimization problems can naturally beformulated as an integer lin-
ear program. Such programs are in general hard to solve. However, sometimes we are
able to derive a polyhedral description of the problem: Suppose that by relaxing the in-
tegrality constraints of the IP formulation of the optimization we obtain a linear program
whose feasible region is an integral polyhedron. We can thensolve the optimization prob-
lem in polynomial time simply by computing an optimal solution to the LP, e.g., by using
Khachiyan’s ellipsoid method. An important question in this context is therefore whether
a resulting polyhedron is integral. Proving integrality ofpolyhedra is often a difficult task.
We next consider a technique that facilitates showing that apolyhedron is integral.

Subsequently, we concentrate on rational polyhedra, i.e.,polyhedra that are defined by
rational linear inequalities. A rational polyhedronP is calledintegral if every non-empty
faceF of P contains an integral vector. Clearly, it suffices to show that every minimal
face ofP is integral because every face contains a minimal face. Notethat if P is pointed
then this is equivalent to showing that every vertex ofP is integral.

Lemma 8.4. Let B∈ Zm×m be an invertible matrix. Then B−1b is integral for every
integral vector b if and only ifdet(B) =±1.

Proof. Suppose det(B) =±1. By Cramer’s Rule,B−1 is integral, which implies thatB−1b
is integral for every integralb. Conversely, supposeB−1b is integral for every integral
vectorb. Then alsoB−1ei is integral for alli ∈ {1, . . . ,m}, whereei is theith unit vector.
As a consequence,B−1 is integral. Thus, det(B) and det(B−1) are both integers. This in
combination with det(B)det(B−1) = 1 implies that det(B) =±1.

A matrix A is totally unimodularif every square submatrix ofA has determinant 0, 1 or
−1. Clearly, every entry in a totally unimodular matrix is 0, 1or−1.
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Theorem 8.6. Let A∈ Zm×n be a totally unimodular matrix and let b∈ Zm. Then the
polyhedron P= {x | Ax≤ b} is integral.

Proof. Let F be a minimal face ofP. ThenF = {x | A◦x = b◦} for some subsystem
A◦x≤ b◦ of Ax≤ b andA◦ has full row rank. By reordering the columns ofA◦ we may
write A◦ as(B N), whereB is a basis ofA◦. BecauseA is totally unimodular andB is a
basis, det(B) = ±1. By Lemma8.4, it follows thatx = (B−1b◦

0 ) is an integral vector in
F .

Let A∈ Rm×n be a matrix of full row rank. Abasis Bof A is a non-singular submatrix of
A of orderm. A matrix A of full row rank isunimodularif A is integral and each basisB
of A has det(B) =±1.

Theorem 8.7. Let A∈ Zm×n be a matrix of full row rank. Then the polyhedron P=
{x | Ax= b, x≥ 0} is integral for every vector b∈ Zm if and only if A is unimodular.

Proof. SupposeA is unimodular. Letb∈Zm and letx be a vertex ofP. (Note that the non-
negativity constraint ensures thatP has vertices.) Then there aren linearly independent
constraints satisfied byx with equality. The columns ofA corresponding to non-zero
entries ofx are linearly independent. We can extend these columns to a basis B of A.
Note that det(B) = ±1 becauseA is unimodular. Thenx restricted to the coordinates
corresponding toB is B−1b, which is integral by Lemma8.4. The remaining entries ofx
are zero. Thus,x is integral.

Assume thatP is integral for every integer vectorb. Let B be a basis ofA. We need
to show that det(B) = ±1. By Lemma8.4, it suffices to show thatB−1v is integral for
every integral vectorv. Let v be an integral vector. Lety be an integral vector such that
z= y+B−1v≥ 0 and letb = Bz= B(y+B−1v) = By+ v. Note thatb is integral. By
adding zero components toz, we obtain a vectorz′ ∈ Zn such thatAz′ = Bz= b. Thenz′

is a vertex of{x | Ax= b, x≥ 0}, becausez′ is in the polyhedron and satisfiesn linearly
independent constraints with equality: them equationsAx= b and then−m equations
xi = 0 for the columnsi outside ofB. Soz′ is integral and thusB−1v= z−y is integral.

Theorem 8.8. Let A∈ Zm×n. The polyhedron P= {x | Ax≤ b, x≥ 0} is integral for
every vector b∈ Zm if and only if A is totally unimodular.

Proof. It is not hard to show thatA is totally unimodular if and only if(A I) is unimodular,
whereI is them×m identity matrix. By Theorem8.7, (A I) is unimodular if and only
if P′ = {z | (A I)z= b, z≥ 0} is integral for everyb ∈ Zm. The latter is equivalent to
P= {x | Ax≤ b, x≥ 0} being integral for everyb∈ Zm.

8.5 Example Applications

Theorem 8.9. A matrix A is totally unimodular if

1. each entry is0, 1 or −1;

63



2. each column contains at most two non-zeros;
3. the set N of row indices of A can be partitioned into N1∪N2 so that in each column

j with two non-zeros we have∑i∈N1
ai, j = ∑i∈N2

ai, j .

Proof. Suppose thatA is not totally unimodular. Lett be the smallest integer such thatB
is a t× t square submatrix ofA with det(B) /∈ {−1,0,1}. SupposeB has a column with
a single non-zero entry, saybk, j . By expanding the determinant along rowj (Laplace
expansion), we obtain

det(B) =
t

∑
i=1

(−1)i+ jbi, jMi, j = (−1)k+ jbk, jMk, j

whereMi, j is theminordefined as the determinant of the submatrix obtained by removing
row i and columnj from B. By (1), bk, j ∈ {−1,0,1} and because det(B) /∈ {−1,0,1},
Mk, j /∈ {−1,0,1}, which is a contradiction to the choice ofB. By (2), every column of
B must therefore contain exactly two non-zero entries. By (3), adding up the rows ofB
(N1 with positive sign,N2 with negative sign) yields the zero vector. The row vectors are
therefore linearly dependent and thus det(B) = 0, which is a contradiction.

The incidence matrix A= (au,e) of an undirected graphG = (V,E) is ann×m matrix
(n= |V| andm= |E|) such that for everyu∈V ande∈ E:

au,e =

{

1 if e= (u,v) ∈ E

0 otherwise.

The incidence matrix A= (au,e) of a directed graphG= (V,E) is ann×m matrix such
that for everyu∈V ande∈ E:

au,e =











1 if e= (u,v) ∈ E

−1 if e= (v,u) ∈ E

0 otherwise.

The following corollary follows immediately from Theorem8.9.

Corollary 8.1. If A is an incidence matrix of an undirected bipartite graph or an inci-
dence matrix of a directed graph, then A is totally unimodular.

Proof. The proof follows from Theorem8.9 by choosingN1 = V0 andN2 = V1 in the
bipartite case (whereV =V0∪V1) andN1 =V andN2 = /0 in the directed case.

Recall that anode coverof an undirected graphG= (V,E) is a subsetC⊆V such that for
every edgee= (u,v) at least one of the endpoints is inC, i.e.,{u,v}∩C 6= /0. Letν(G) be
the size of a maximum matching ofG and letτ(G) be the size of a minimum node cover
of G.
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The size of a maximum matching can be formulated as an integerprogram:

ν(G) = maximize ∑
e∈E

xe

subject to ∑
e=(u,v)∈E

xe ≤ 1 ∀u∈V

xe ∈ {0,1} ∀e∈ E

Equivalently, we can write this IP in a more compact way:

ν(G) = {1Tx | Ax≤ 1, x≥ 0, x∈ Zm}, (13)

whereA∈ Zn×m is the incidence matrix ofG with n= |V| andm= |E|.

Similarly, the size of a minimum node cover can be expressed as

τ(G) = minimize ∑
u∈V

yu

subject to yu+ yv ≥ 1 ∀(u,v) ∈ E
yu ∈ {0,1} ∀u∈V

or, equivalently,

τ(G) = {yT1 | ATy≥ 1, y≥ 0, y∈ Zn} (14)

Theorem 8.10. Let G= (V,E) be a bipartite graph. The size of a maximum matching of
G is equal to the size of a minimum node cover of G, i.e.,ν(G) = τ(G).

Proof. Let A∈ Zn×m be the incidence matrix ofG with n= |V| andm= |E|. As observed
above, we can expressν(G) andτ(G) by the two integer linear programs (13) and (14).
Consider the respective LP relaxations of (13) and (14):

ν ′(G) = {1Tx | Ax≤ 1, x≥ 0} (15)

τ ′(G) = {yT1 | ATy≥ 1, y≥ 0} (16)

Note that both LPs are feasible. BecauseA is totally unimodular, both LPs have integral
optimal solutions and thusν(G) = ν ′(G) andτ(G) = τ ′(G). Finally, observe that (16) is
the dual of (15). By strong duality,ν ′(G) = τ ′(G), which proves the claim.

A matrix A is called aninterval matrixif every entry ofA is either 0 or 1 and the the 1’s
of each row appear consecutively (without interfering zeros).

Theorem 8.11. Each interval matrix A is totally unimodular.
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Proof. Let B be at× t submatrix ofA. Define at× t matrixN as follows:

N =















1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1















Note that det(N) = 1. ConsiderNBT . ThenNBT is a submatrix of an incident matrix
of some directed graph. (Think about it!) Therefore,NBT is totally unimodular. We
conclude

det(B) = det(N)det(BT) = det(NBT) ∈ {−1,0,1}.

References

The presentation of the material in this section is based on [2, Chapter 6].
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9. Complexity Theory

9.1 Introduction

The problems that we have considered in this course so far areall solvableefficiently.
This means that we were always able to design an algorithm forthe respective optimiza-
tion problem that solves every instance in time that is polynomially bounded in the size
of the instance. For example, we have seen that every instance of theminimum spanning
tree problemwith n vertices andm edges can be solved in timeO(m+nlogn). Unfortu-
nately, for many natural and fundamental optimization problems efficient algorithms are
not known to exist. A well-known example of such a problem is the traveling salesman
problem.

Traveling Salesman Problem (TSP):

Given: An undirected graphG= (V,E) and non-negative distancesd : E→Z+

on the edges.
Goal: Find a tour that visits every vertex ofGexactly once (starting and ending

in the same vertex) and has minimum total length.

Despite 50 years of intensive research, no efficient algorithm has been found for the TSP
problem. On the other hand, researchers have also not been able to disprove the existence
of such algorithms. Roughly speaking, complexity theory aims to answer the question
if the research community has been too stupid or unlucky to find efficient algorithms
for optimization problems such as the TSP problem, or that these problem are in fact
intrinsically more difficult than other problems. It provides a mathematical framework to
separate problems that are computationally hard to solve from the ones that are efficiently
solvable.

In complexity theory one usually considers decision problems instead of optimization
problems.

Definition 9.1. A decision problemΠ is given by a set of instancesI. Each instance
I ∈ I specifies

• a setF of feasible solutions forI ;
• a cost functionc : F → Z;
• an integerK.

Given an instanceI = (F ,c,K) ∈ I, the goal is to decide whether there exists a feasible
solutionS∈ F whose costc(S) is at mostK. If there is such a solution, we say thatI is a
“yes-instance”; otherwise,I is a “no-instance”.

Example 9.1. The decision problem of the TSP problem is to determine whether for a
given instanceI = (G,d,K) ∈ I there exists a tour inG of total length at mostK.

Many decision problems can naturally be described without the need of introducing a cost
functionc and a parameterK. Some examples are the following ones.
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Prime:

Given: A natural numbern.
Goal: Determine whethern is a prime.

Graph Connectedness:

Given: An undirected graphG= (V,E).
Goal: Determine whetherG is connected.

Hamiltonian Cycle:

Given: An undirected graphG= (V,E).
Goal: Determine whetherG has a Hamiltonian cycle.

Subsequently, we will mostly focus on decision problems. For notational convenience we
will use the same naming as for the respective optimization counterparts (e.g.,TSPwill
refer to the decision problem of TSP); no confusion should arise from this.

Recall that an algorithmALG for a problemΠ is said to beefficient if it solves every
instanceI ∈ I of Π in time that is bounded by a polynomial function of the size ofI .
It is not hard to see that the decision version of an optimization problem is easier than
the optimization problem itself. But in most cases, an efficient algorithm for solving
the decision version can also be turned into an efficient algorithm for the optimization
problem (e.g., by using binary search on the possible optimal value).

9.2 Complexity ClassesP and NP

Intuitively, the complexity classesP andNP refer to decision problems that can besolved
efficiently and those for which yes-instances can beverifiedefficiently, respectively. If we
insisted on formal correctness here, we would define these classes in terms of a specific
computer model calledTuring machines. However, this is beyond the scope of this course
and we therefore take the freedom to introduce these classesusing a more high-level (but
essentially equivalent) point of view.

We define the complexity classP (which stands forpolynomial-time).

Definition 9.2. A decision problemΠ belongs to the complexity classP if there exists
an algorithm that for every instanceI ∈ I determines in polynomial time whetherI is a
yes-instance or a no-instance.

All problems that we have treated so far in this course belongto this class. But also thelin-
ear programming problem (LP)belongs to this class, even though the simplex algorithm
is not a polynomial-time algorithm for LP (the interested reader is referred to Section 8.6
in [6]). The simplex algorithm works almost always very fast in practice for any LP of
whatever size, but as mentioned before the running time of analgorithm is determined by
its worst-case running time. For most pivoting rules devised for the simplex algorithm,
there have been constructed instances on which the algorithm has to visit an exponential
number of basic feasible solutions in order to arrive at an optimal one. A polynomial-time
algorithm for LP is theellipsoid method(the interested reader is referred to Section 8.7 in
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[6]). This algorithm is an example where the time bound is polynomial in the logarithm
of the largest coefficient in the instance next to the number of variables and number of
restrictions. One of the most interesting open research questions in Operations Research
is whether there exists an algorithm for LP whose running time is a polynomial in the
number of variables and the number of restrictions only.

Next we define the complexity classNP. NP does not stand for “non-polynomial-time”
as one might guess, but for “non-deterministic polynomial-time” because this class is
formally defined in terms of non-deterministic Turing machines.

Given a yes-instanceI ∈ I of a decision problemΠ, we say thatS is a certificatefor
I if S∈ F andc(S) ≤ K. Note that every yes-instanceI must have a certificate. The
specialty of a problem inNP is that yes-instances admit certificates that can be verifiedin
polynomial time.

Definition 9.3. A decision problemΠ belongs to the complexity classNP if every yes-
instanceI ∈ I admits a certificate whose validity can be verified in polynomial time.

Note that the polynomial-time verifiability ofS implies that the size ofS must be poly-
nomially bounded in|I | (because we need to look atS to verify its validity). That is, the
definition above also states that yes-instances of problemsin NP haveshort, i.e., polyno-
mially bounded, certificates.

We consider some examples:

Example 9.2. The Hamiltonian cycle problem is inNP: A certificate for a yes-instance
corresponds to a set of edgesS⊆ E. One can verify inO(n) time whetherSconstitutes a
cycle inG that visits all vertices exactly once.

Example 9.3. Consider the decision variant of the linear programming problem:

Linear Programming Problem (LP):

Given: A setF of feasible solutionsx= (x1, . . . ,xn) defined bym linear constraints

F =

{

(x1, . . . ,xn) ∈ Rn
≥0 :

n

∑
i=1

ai j xi ≥ b j for every j = 1, . . . ,m

}

together with an objective functionc(x) = ∑n
i=1cixi and a parameterK.

Goal: Determine whether there exists a feasible solutionx ∈ F that satisfies
c(x)≤ K.

LP is in NP: A certificate for a yes-instance corresponds to a solutionx= (x1, . . . ,xn). We
needO(n) time to verify each of themconstraints andO(n) time to compute the objective
function valuec(x). The total time needed to check whetherx∈ F andc(x) ≤ K is thus
O(nm).
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9.3 Polynomial-time Reductions andNP-completeness

After thinking for a little while, we conclude thatP⊆ NP. Several decades of intensive
research seem to suggest that there are problems inNP that are intrinsically more difficult
than the ones inP and thusP 6= NP: Despite the many research efforts, no polynomial-
time algorithms have been found for problems inNP such asTSP, Hamiltonian cycle,
Steiner tree, etc. On the other hand, all attempts to show that these problems are in fact
harder than the ones inP failed as well. The question whetherP 6= NP is one of the
biggest mysteries in mathematics to date and constitutes one of the seven millennium-
prize problems; seehttp://www.claymath.org/millenniumfor more information.

Complexity theory attempts to give theoretical evidence tothe conjecture thatP 6= NP. It
defines within the complexity classNPa subclass of most difficult problems, the so-called
NP-completeproblems. This subclass is defined in such a way that if foranyof theNP-
complete problems there will ever be found a polynomial-time algorithm then this implies
that foreveryproblem inNP there exists a polynomial-time algorithm, and thusP= NP.
The definition of this class crucially relies on the notion ofpolynomial-time reductions:

Definition 9.4. A polynomial-time reductionfrom a decision problemΠ1 to a decision
problemΠ2 is a functionϕ : I1→I2 that maps every instanceI1∈ I1 of Π1 to an instance
I2 = ϕ(I1) ∈ I2 of Π2 such that:

1. the mapping can be done in time that is polynomially bounded in the size ofI1;
2. I1 is a yes-instance ofΠ1 if and only if I2 is a yes-instance ofΠ2.

If there exist such a polynomial-time reduction fromΠ1 to Π2 then we say thatΠ1 can be
reduced toΠ2, and we will writeΠ1�Π2.

Lets think about some consequences of the above definition interms of polynomial-time
computability. SupposeΠ1�Π2. ThenΠ2 is more difficult to solve thanΠ1 (which also
justifies the use of the symbol�). To see this, note that every polynomial-time algorithm
ALG2 for Π2 can be used to derive a polynomial-time algorithmALG1 for Π1 as follows:

1. Transform the instanceI1 of Π1 to a corresponding instanceI2 = ϕ(I1) of Π2.
2. RunALG2 on I2 and report thatI1 is a yes-instance if and only ifALG2 concluded

thatI2 is a yes-instance.

By the first property of Definition9.4, the transformation in Step 1 above takes time poly-
nomial in the sizen1 = |I1| of I1. As a consequence, the sizen2 = |I2| of I2 is polynomially
bounded inn1. (Think about it!) In Step 2,ALG2 solvesI2 in time polynomial in the size
n2 of I2, which is polynomial in the sizen1.3 The overall time needed byALG1 to output
a solution forI1 is thus bounded by a polynomial inn1. Note that the second property of
Definition9.4ensures thatALG1 correctly identifies whetherI1 is a yes-instance or not.

Observe the existence of a polynomial-time algorithm forΠ1 has in general no implica-
tions for the existence of a polynomial-time algorithm forΠ2, even if we assume that we
can compute the inverse ofϕ efficiently. The reason for that is thatϕ is not necessarily a
one-to-one mapping and may thus map the instances ofΠ1 to a subset of the instances of

3Observe that we exploit here that ifp1, p2 are polynomial functions inn then p2(p1(n)) is a polynomial
function inn.
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Π2 which correspond to easy instances ofΠ2. Thus, being able to efficiently solve every
instance ofΠ1 reveals nothing about the problem of solvingΠ2.

It is not hard to show that polynomial-time reductions are transitive:

Lemma 9.1. If Π1�Π2 andΠ2�Π3 thenΠ1�Π3.

We can now define the class ofNP-completeproblems.

Definition 9.5. A decision problemΠ is NP-completeif

1. Π belongs toNP;
2. every problem inNP is polynomial-time reducible toΠ.

Intuitively, the above definition states that anNP-complete problem is as difficult as any
other problem inNP. The above definition may not seem very helpful at first sight:How
do we prove thateveryproblem inNP is polynomial-time reducible to the problemΠ we
are interested in? Lets assume for the time being that there are some problems that are
known to beNP-complete. In order to proveNP-completeness ofΠ it is then sufficient to
show thatΠ is in NP and thatsome NP-complete problem is polynomial-time reducible
to Π. (Think about it!) That is, showingNP-completeness of a problem becomes much
easier now because we “just” need to find an appropriateNP-complete problem that can
be reduced to it. Nevertheless, we remark that the reductions of manyNP-completeness
proofs are highly non-trivial and often require a deep understanding of the structural prop-
erties of the problem.

The classNP has a very precise definition in terms of executions of non-deterministic
Turning machines (which we skipped and persist in skipping), which enabled Steven
Cook in 1974 to prove that any such execution can be reduced toan instance of a fa-
mous problem in Boolean logic called thesatisfiability problem (SAT)(stated below).
Thus, Cook provided us with a problem that isNP-complete. Starting from this, many
other problems were proven to beNP-complete.

In a way, proving that a problem isNP-complete is a beautiful way of stating:4

“I can’t find an efficient algorithm, but neither can all thesefamous people.”

4The illustration is taken from the book [4], which is an excellent book on the complexity of algorithms
containing many fundamentalNP-completeness proofs.

71



SAT

3-SAT
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TSP

(⋆)

(⋆)

(⋆)

(⋆)

Figure 16: Reductions to proofNP-completeness of the example problems considered
here; proofs are given for the ones marked with(⋆).

9.4 Examples ofNP-completeness Proofs

We introduce some more problems and show that they areNP-complete. However, most
of the reductions are technically involved and will be omitted here because the intention
is to gain some basic understanding of the proof methodologyrather than diving into
technical details.

We first introduce thesatisfiability problemfor which Cook establishedNP-completeness.
The basic ingredients arevariables. A variable reflects an expression which can beTRUE

or FALSE. For example,

x1 = Koen is taller than Michael and x2 = Soup is always eaten with a fork.

A variable can also occur negated. For example, we write¬x1 to express thatKoen is
not taller than Michael. A literal refers to a negated or unnegated variable. We compose
more complicated expressions, calledclauses, from literals. An example of a clause is

C1 = (x1∨¬x2∨x3∨x4).

The interpretation is that clauseC1 is TRUE if and only if x1 is TRUE or (indicated by∨)
not-x2 is TRUE or x3 is TRUE or x4 is TRUE. That is, a clause isTRUE if at least one of
its literals isTRUE. An instance of the SAT problem is aBoolean formula Fin so-called
conjunctive normal form (CNF):

F =C1∧C2∧ . . .∧Cm,

where eachCi is a clause.F is TRUE if C1 is TRUE and (indicated by∧) C2 is TRUE and
. . . andCm is TRUE, i.e., if all its clauses areTRUE.

Satisfiability Problem (SAT):

Given: A Boolean formulaF in CNF.
Goal: Determine whether there is aTRUE/FALSE-assignment to the variables

such thatF is TRUE.
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Theorem 9.1. SAT is NP-complete.

The proof is involved and skipped here (the interested reader is referred to Section 15.5
in [6].)

The following restriction ofsatisfiabilityis alsoNP-complete.

3-Satisfiability Problem (3-SAT):

Given: A Boolean formulaF in CNF with each clause consisting of 3 literals.
Goal: Determine whether there is aTRUE/FALSE-assignment to the variables

such thatF is TRUE.

Theorem 9.2. 3-SAT is NP-complete.

The proof reducesSATto 3-SAT. We refer the reader to [6, Theorem 15.2].

We introduce some more problems and give some examples ofNP-completeness proofs.

Let G= (V,E) be an undirected graph. We need the following definitions: Acliqueof G
is a subsetV ′ of the vertices that induces a complete subgraph, i.e., for every two vertices
u,v∈ V ′, (u,v) ∈ E. An independent setof G is a subsetV ′ of vertices such that no two
of them are incident to the same edge, i.e., for every two verticesu,v∈V ′, (u,v) /∈ E. A
vertex coverof G is a subsetV ′ of vertices such that every edge has at least one of its two
incident vertices inV ′, i.e., for every edge(u,v) ∈ E, {u,v}∩V′ 6= /0.

Clique:

Given: An undirected graphG= (V,E) and an integerK.
Goal: Determine whetherG contains a clique of size at leastK.

Independent Set:

Given: An undirected graphG= (V,E) and an integerK.
Goal: Determine whetherG contains an independent set of size at leastK.

Vertex Cover:

Given: An undirected graphG= (V,E) and an integerK.
Goal: Determine whetherG contains a vertex cover of size at mostK.

Theorem 9.3. Vertex cover is NP-complete.

Proof. We first argue thatvertex coveris in NP. A certificate of a yes-instance is a subset
V ′ ⊆ V of vertices with|V ′| ≤ K that forms a vertex cover ofG = (V,E). This can be
verified in time at mostO(n+m) by checking whether each edge(u,v) ∈ E has at least
one of its incident vertices inV ′.

In order to prove thatvertex cover is NP-complete, we will show that3-SAT�
vertex cover. Note that this is sufficient because3-SATis NP-complete.

We transform an instance of3-SATto an instance ofvertex coveras follows: Consider a
Boolean formulaF in CNF with each clause having three literals. Letn andm denote the
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x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

C1 C2 C3

Figure 17: Illustration of the construction in the proof of Theorem9.3 for the formula
F = (x1∨x2∨¬x3)∧ (¬x1∨x2∨x4)∧ (¬x2∨x3∨x4). The red vertices constitute a vertex
cover of sizeK = n+2m= 10.

number of variables and clauses ofF , respectively. We create avariable-gadgetfor each
variablex consisting of two verticesx and¬x that are connected by an edge. Moreover,
we create aclause-gadgetfor each clauseC = (l1∨ l2∨ l3) consisting of three vertices
l1, l2, l3 that are connected by a triangle. Finally, we connect each vertex representing a
literal in a clause-gadget to the corresponding vertex representing the same literal in the
variable-gadget. LetG = (V,E) be the resulting graph; see Figure17 for an example.
Note that this transformation can be done in polynomial time.

We show thatF is satisfiable if and only ifG has a vertex cover of size at mostK = n+2m.
First note that every assignment satisfyingF can be turned into a vertex cover of size
K: For each variable-gadget we pick the vertex that corresponds to the literal which is
TRUE. This covers all edges in the variable-gadgets and their respective connections to the
clause-gadgets. For each clause-gadget we choose two additional vertices so as to ensure
that all remaining edges are covered. The resulting vertex cover has sizeK = n+ 2m
as claimed. Next suppose that we are given a vertex coverV ′ of G of size at mostK.
Note that every vertex cover has to pick at least one vertex for every variable-gadget and
two vertices for each clause-gadget just to cover all edges inside these gadgets. Thus,
V ′ contains exactlyK vertices. The vertices inV ′ now naturally induce an assignment
as described above that satisfiesF. We conclude that yes-instances correspond under the
above reduction, which completes the proof.

Theorem 9.4. Clique is NP-complete.

Proof. We first argue thatclique is in NP. A certificate for a yes-instance is a subsetV ′

of vertices that forms a clique. To verify this, we just need to check that there is an edge
between every pair of vertices inV ′. This can be done inO(n+m) time.

We prove thatvertex cover� clique in order to establishNP-completeness ofclique. We
need the notion of acomplement graphfor this reduction. Given a graphG= (V,E), the
complement graph ofG is defined as the graph̄G= (V, Ē) with (u,v) ∈ Ē if and only if
(u,v) /∈ E.

Given an instanceG= (V,E) with parameterK of vertex cover, we create the complement
graph ofG and letḠ with parametern−K be the respective instance ofclique. Note that
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this mapping can be done in polynomial time by adding an edge(u,v) to Ē for every pair
of verticesu,v∈V with (u,v) /∈ E. This takes at mostO(n2) time.

It remains to show that yes-instances correspond. We claim thatV ′ is a vertex cover inG
if and only if V \V ′ is a clique inḠ. V ′ is a vertex cover inG if and only if every edge
(u,v) ∈ E has not both its endpoints inV \V ′, or, equivalently, every edge(u,v) /∈ Ē has
not both its endpoints inV \V′. The latter statement holds if and only if for every pair
of verticesu,v∈V \V′ there exists an edge(u,v) ∈ Ē in Ḡ, which is equivalent toV \V ′

being a clique ofḠ. This proves the claim. We conclude thatV ′ is a vertex cover of size
K in G if and only if V \V′ is a clique of sizen−K in Ḡ.

Theorem 9.5. Independent set is NP-complete.

Proof. We first argue thatindependent setis in NP. A certificate for a yes-instance is a
subsetV ′ of vertices that forms an independent set. To verify this, wejust need to check
that there is no edge between every pair of vertices inV ′. This can be done inO(n+m)

time.

We prove thatclique� independent setin order to establishNP-completeness ofindepen-
dent set. We need the notion of acomplement graphfor this reduction. Given a graph
G= (V,E), the complement graph ofG is defined as the graph̄G= (V, Ē) with (u,v) ∈ Ē
if and only if (u,v) /∈ E.

Given an instanceG= (V,E) with parameterK of clique, we create the complement graph
of G and letḠ with parameterK be the respective instance ofindependent set. Note that
this mapping can be done in polynomial time by adding an edge(u,v) to Ē for every pair
of verticesu,v∈V with (u,v) /∈ E. This takes at mostO(n2) time.

It remains to show that yes-instances correspond. We claim thatV ′ is a clique ofG if and
only if V ′ is an independent set of̄G. Note thatV ′ is a clique ofG if and only if for each
pair of vertices inV ′ there is an edge inE. The latter is true if and only if for each pair of
vertices inV ′ there is no edge in̄E, which is equivalent toV ′ being an independent set of
Ḡ. This proves the claim. We conclude thatV ′ is a clique of sizeK in G if and only if V ′

is an independent set of sizeK in Ḡ.

Theorem 9.6. Hamiltonian cycle is NP-complete.

The proof follows by reducing3-SATto Hamiltonian cycle. The reader is referred to [6,
Theorem 15.6].

Theorem 9.7. TSP is NP-complete.

Proof. We argued before thatTSP is in NP. The proof now follows trivially because
Hamiltonian cycleis a special case of TSP: Given an instanceG= (V,E) of Hamiltonian
cyclewe construct an instance ofTSPas follows: LetG′ = (V,E′) be the complete graph
onV and definede = 1 if e∈ E andde = 2 otherwise. Now a tour inG′ of length at most
K = n relates to a Hamiltonian cycle inG and vice versa.
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The above proof actually shows that the restriction ofTSPin which all distances are either
1 or 2 isNP-complete. BecauseTSPis in NP and it is a generalization of this problem,
NP-completeness ofTSP follows immediately. The same holds true forsatisfiability:
If we would not know that it isNP-complete but we would know that3-SAT is NP-
complete, thenNP-completeness ofSAT followed automatically using the fact that3-
SATis a special case ofSAT. While restrictions can create an easier subclass of problem
instances, generalizations always create more difficult problems. This gives sometimes
easy ways to showNP-completeness of problems.

We list some moreNP-complete problems (without proof) that are often used in reduc-
tions.

2-Partition:

Given: Integerss1, . . . ,sn.
Goal: Decide whether there is a setS⊆{1, . . . ,n} such that∑i∈Ssi =

1
2 ∑n

i=1si .

3-Partition:

Given: Rational numberss1, . . . ,s3n with 1
4 < si <

1
2 for everyi = 1, . . . ,3n.

Goal: Determine whether the set{1, . . . ,3n} can be partitioned inton triplets
S1, . . . ,Sn such that∑i∈Sk

ai = 1 for everyk= 1, . . . ,n.

Set Cover.:

Given: A universeU = {1, . . . ,n} of n elements, a family ofm subsets
S1, . . . ,Sm⊆U and an integerK.

Goal: Determine whether there is a selection of at mostK subsets such that
their union isU .

9.5 More on Complexity Theory

9.5.1 NP-hard Problems

Sometimes we may be unable to prove that a problemΠ is in NP but nevertheless can
show that all problems inNP are reducible toΠ. According to Definition9.5, Π does
not qualify to be anNP-complete problem because it is not inNP. Yet, Π is as hard as
any other problem inNP and thus probably a difficult problem. We call such problem
NP-hard. An example of such a problem is theLth heaviest subset problem:

Lth Heaviest Subset Problem:

Given: Integersw1, . . . ,wn,L and a parameterK.
Goal: Determine whether the weight of theLth heaviest subset of{1, . . . ,n}

is at leastK. (Formally, determine whether there areL distinct subsets
S1, . . . ,SL ⊆ {1, . . . ,n} such thatw(Si) = ∑ j∈Si

wj ≥ K for every i =
1, . . . ,L.)

It can be proven that all problems inNPare polynomial-time reducible to theLth Heaviest
Subsetproblem (see [6, Theorem 16.8]). However, a proof that short certificates exist for
yes-instance is non-existent. How else could we provide a certificate for a yes-instance
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other than explicitly listingL subsets that are heavier thanK? (Note that this is not a short
certificate becauseL can be exponential inn.)

9.5.2 Complexity Class co-NP

Another complexity class that is related toNP is the classco-NP (which stands forcom-
plement of NP). Here one considers complements of decision problems. As an example,
the complement ofHamiltonian cyclereads as follows:

Hamilton Cycle Complement:

Given: An undirected graphG= (V,E).
Goal: Determine whetherG doesnot contain a Hamiltonian cycle.

There are noshortcertificates known for yes-instances of this problem.

Definition 9.6. A decision problemΠ belongs to the class co-NP if and only if its com-
plement belongs to the classNP. Said differently, a decision problem belongs to co-NP if
every no-instanceI ∈ I admits a certificate whose validity can be verified in polynomial
time.

It is not hard to see that every problem inP also belongs to co-NP. Thus,P⊆NP∩co-NP.
Similar to theP 6= NP conjecture, it is widely believed thatNP 6= co-NP.

Theorem 9.8. If the complement of an NP-complete problem is in NP, then NP= co-NP.

Proof. Assume that the complement̄Π2 of anNP-complete problemΠ2 is is in NP. We
will show that the complement̄Π1 of anarbitrary problemΠ1 ∈ NP is also inNP thus
showing thatNP= co-NP.

BecauseΠ2 is NP-complete, we know thatΠ1 is polynomial-time reducible toΠ2. Note
that the reductionϕ from Π1 to Π2 is also a polynomial-time reduction from̄Π1 to Π̄2.
We can therefore exhibit a short certificate for every yes-instancēI1 of Π̄1 as follows: We
first transformĪ1 to Ī2 = ϕ(Ī1) and then use the short certificate for the yes-instanceĪ2
(which must exist becausēΠ2 ∈ NP). We conclude that̄Π1 is in NP which finishes the
proof.

Note that the above theorem also implies that if the complement of a problem inNP is
also inNP then (unlessNP= co-NP) this problem is notNP-complete. Said differently,
a problem that belongs toNP∩ co-NP is unlikely to beNP-complete. As an example,
consider the linear programming problemLP. Using duality theory, it is not hard to see
thatLP ∈ NP∩ co-NP. BeforeLP was known to be polynomial-time solvable, it was in
fact the above observation that gave strong evidence to the conjecture thatLP∈ P.

Exercise 9.1.Show that LP∈ NP∩co-NP.
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9.5.3 Pseudo-polynomiality and StrongNP-completeness

Sometimes the running time of an algorithm is polynomial in the size of the instanceand
the largest number in the input. As an example, consider theinteger knapsack problem.

Integer Knapsack Problem:

Given: Integersc1, . . . ,cn and a parameterK.
Goal: Determine whether there exist integersx1, . . . ,xn such that∑n

k=1ckxk =

K.

This problem can be solved as follows: Create a directed graph G = (V,A) with K +1
verticesV = {0,1, . . . ,K} andO(nK) arcs:

A= {(i, j) | 0≤ i < j ≤ K and j = i + ck for somek}.

It is not hard to prove that an instanceI of the integer knapsackproblem is a yes-instance
if and only if there exists a path from 0 toK in G. The latter problem can be solved in
time O(n+m) = O(nK). This running time isnot polynomial in the size ofI . To see
this, recall that we defined the size|I | of I to be the number of bits that are needed to
representI in binary. Making the (reasonable) assumption thatc1, . . . ,cn < K, the size
of I is therefore at mostO(nlogK). The running time of the algorithm is therefore not
polynomially bounded in general. However, ifK is bounded by a polynomial function of
n then the algorithm would be a polynomial-time algorithm. That is, depending on the
application the above algorithm might indeed be consideredto be reasonably efficient,
despite the fact that the problem isNP-complete (which it is).

The above observation gives rise to the following definition. Given an instanceI , let
num(I) refer to the largest integer appearing inI .

Definition 9.7. An algorithmALG for a problemΠ ispseudo-polynomialif it solves every
instanceI ∈ I of Π in time bounded by a polynomial function in|I | and num(I).

Problems that remainNP-complete even if the largest integer appearing in its description
is bounded polynomially in the size of the instance is calledstrongly NP-complete.

Definition 9.8. A problemΠ is strongly NP-complete if the restriction ofΠ to instances
I ∈ I satisfying that num(I) is polynomially bounded in|I | is NP-complete.

Note that many problems that we showed to beNP-complete do not involve any numerical
data that is larger than the input size itself. For example, all graph problems such as
Hamiltonian cycle, clique, independent set, vertex cover, etc. satisfy num(I) = O(n) and
are therefore even stronglyNP-complete by definition. In fact, alsoTSPis stronglyNP-
complete because we establishedNP-completeness even for instances with distances 1 or
2.

As the theorem below shows, we cannot expect to find a pseudo-polynomial algorithm for
a stronglyNP-complete problem (unlessP= NP).

Theorem 9.9. There does not exist a pseudo-polynomial algorithm for a strongly NP-
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complete problem, unless P= NP.

Proof. Let Π be a stronglyNP-complete problem and suppose thatALG is a pseudo-
polynomial algorithm forΠ. Consider the restriction̄Π of Π to instancesI ∈ I that
satisfy that num(I) is polynomially bounded in|I |. By Definition9.8, Π̄ is NP-complete.
But ALG can solve every instancēI of Π̄ in time polynomial in|Ī | and num(Ī), which is
polynomial in|Ī |. This is impossible unlessP= NP.

9.5.4 Complexity ClassPSPACE

The common criterion that we used to define the complexity classesP andNPwas time:P
refers to the set of problems that are solvable in polynomialtime;NPcontains all problems
for which yes-instances can be verified in polynomial time. There are other complexity
classes that focus on the criterionspaceinstead: The complexity classPSPACErefers to
the set of problems for which algorithms exist that only require a polynomial amount of
space (in the size of the input).

Definition 9.9. A decision problemΠ belongs to the complexity classPSPACEif there
exists an algorithm that for every instanceI ∈ I determines whetherI is a yes-instance or
a no-instance using space that is polynomially bounded in the size ofI .

Clearly, every polynomial-time algorithm cannot consume more than polynomial space
and thusP ⊆ PSPACE. However, even exponential-time algorithms are feasible as
long as they only require polynomial space. We can use this observation to see that
NP⊆ PSPACE: Consider an arbitrary problemΠ in NP. We know that every yes-
instances ofΠ admits a short certificate. We can therefore generateall potential short
certificates one after another and verify the validity of each one. If we encounter a valid
certificate throughout this procedure then we report that the instance is a yes-instance;
otherwise, we report that it is a no-instance. The algorithmmay take exponential time be-
cause the number of certificates to be checked might be exponential. However, it can be
implemented to use only polynomial space by deleting the previously generated certificate
each time.

As a final remark: We actually just got a tiny glimpse of the many existing com-
plexity classes. There is a whole “zoo” of complexity classes; see, for example, the
wiki pagehttp://qwiki.stanford.edu/index.php/ComplexityZoo if you want to learn more
about many other complexity classes and their relations.

References

The presentation of the material in this section is based on [6, Chapters 8, 15 & 16].
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10. Approximation Algorithms

10.1 Introduction

As we have seen, many combinatorial optimization problems are NP-hard and thus there
is very little hope that we will be able to develop efficient algorithms for these problems.
Nevertheless, many of these problems are fundamental and solving them is of great im-
portance. There are various ways to cope with these hardnessresults:

1. Exponential Algorithms: Certainly, using an algorithm whose running time is ex-
ponential in the worst case might not be too bad after all if weonly insist on
solving instances of small to moderate size.

2. Approximation Algorithms: Approximation algorithms are efficient algorithms
that compute suboptimal solutions with a provable approximation guarantee. That
is, here we insist on polynomial-time computation but relaxthe condition that the
algorithm has to find an optimal solution by requiring that itcomputes a feasible
solution that is “close” to optimal.

3. Heuristics: Any approach that solves the problem without a formal guarantee on
the quality of the solution can be considered as a heuristic for the problem. Some
heuristics provide very good solutions in practice. An example of such an ap-
proach islocal search: Start with an arbitrary solution and perform local improve-
ment steps until no further improvement is possible. Moreover, heuristics are often
practically appealing because they are simple and thus easyto implement.

We give some more remarks:

Some algorithms might perform very well in practice even though their worst-case run-
ning time is exponential. The simplex algorithm solving thelinear programmingproblem
is an example of such an algorithm. Most real-world instances do not correspond to worst-
case instances and thus “typically” the algorithms’ performance in practice is rather good.
In a way, the worst-case running time viewpoint is overly pessimistic in this situation.

A very successful approach to attack optimization problemsoriginating from practical
applications is to formulate the problem as aninteger linear programming (ILP)problem
and to solve the program byILP-solvers such as CPLEX. Such solvers are nowadays very
efficient and are capable to solve large instances. Constructing the rightILP-method for
solving a given problem is a matter of smart engineering. Some ILP-problems can be
solved by just running an ILP-solver; others can only be solved with the help of more
sophisticated methods such as branch-and-bound, cutting-plane, column generation, etc.
Especially rostering problems, like classes of universities or schedules of personnel in
hospitals, are notorious for being extremely hard to solve,already for small sizes. Solving
ILP-problems is an art that can be learned only in practice.

Here we will focus on approximation algorithms in order to cope with NP-hardness of
problems. We give a formal definition of these algorithms first.

Definition 10.1. An algorithmALG for a minimization problemΠ is anα-approximation
algorithmwith α ≥ 1 if it computes for every instanceI ∈ I in polynomial time a feasible
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solutionS∈ F whose costc(S) is at mostα times the costOPT(I) of an optimal solution
for I , i.e.,c(S)≤ α ·OPT(I).

The definition is similar for maximization problems. Here itis more natural to assume
that we want to maximize a weight (or profit) functionw :F →R that maps every feasible
solutionS∈ F of an instanceI ∈ I to some real value.

Definition 10.2. An algorithmALG for a maximization problemΠ is anα-approximation
algorithmwith α ≥ 1 if it computes for every instanceI ∈ I in polynomial time a feasible
solutionS∈ F whose weight (or profit)w(S) is at least1α times the weightOPT(I) of an
optimal (i.e., maximum weight) solution forI , i.e.,w(S)≥ 1

α ·OPT(I).

Note that we would like to design approximation algorithms with the approximation ra-
tio α being as small as possible. A lot of research in theoretical computer science and
discrete mathematics is dedicated to the finding of “good” approximation algorithms for
combinatorial optimization problems.

10.2 Approximation Algorithm for Vertex Cover

We start with an easy approximation algorithm for thevertex coverproblem, which has
been introduced before: Given a graphG = (V,E), find a vertex coverV ′ ⊆V of small-
est cardinality. Recall that we showed that the decision variant of vertex coveris NP-
complete.

One of the major difficulties in the design of approximation algorithms is to come up with
a good estimate for the optimal solution costOPT(I). (We will omit I subsequently.)
Recall that a matchingM is a subset of the edges having the property that no two edges
share a common endpoint. We call a matchingM maximumif the cardinality ofM is
maximum; we call itmaximalif it is inclusion-wisemaximal, i.e., we cannot add another
edge toM without rendering it infeasible. Note that a maximum matching is a maximal
one but not vice versa.

Lemma 10.1. Let G= (V,E) be an undirected graph. If M is a matching of G then
OPT≥ |M|.

Proof. Consider an arbitrary vertex coverV ′ of G. Every matching edge(u,v) ∈M must
be covered by at least one vertex inV ′, i.e.,{u,v}∩V′ 6= /0. Because the edges inM do
not share any endpoints, we have|V ′| ≥ |M|.

We conclude that we can derive an easy 2-approximation algorithm for vertex coveras
follows:

Theorem 10.1. Algorithm14 is a2-approximation algorithm for vertex cover.

Proof. Clearly, the running time of Algorithm14 is polynomial because we can find a
maximal matching in time at mostO(n+m). The algorithm outputs a feasible vertex
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Input : Undirected graphG= (V,E).
Output : Vertex coverV ′ ⊆V.

1 Find a maximal matchingM of G.
2 Output the setV ′ of matched vertices.

Algorithm 14: Approximation algorithm forvertex cover.

cover because of the maximality ofM. To see this, suppose that the resulting setV ′ is
not a vertex cover. Then there is an edge(u,v) with u,v /∈ V ′ and thus bothu andv are
unmatched inM. We can then add the edge(u,v) to M and obtain a feasible matching,
which contradicts the maximality ofM. Finally, observe that|V ′| = 2|M| ≤ 2OPT by
Lemma10.1.

Note that it suffices to compute a maximal (not necessarily maximum) matching in Algo-
rithm 14, which can be done in linear timeO(m).

An immediate question that comes to ones mind is whether the approximation ratio is best
possible. This indeed involves two kinds of questions in general:

1. Is the approximation ratioα of the algorithm tight?
2. Is the approximation ratioα of the algorithm best possible forvertex cover?

The first question essentially asks whether the analysis of the approximation ratio is tight.
This is usually answered by exhibiting an example instance for which the algorithm com-
putes a solution whose cost isα times the optimal one. The second one asks for much
more: Can one show that there is no approximation algorithm with approximation ratio
α−ε for everyε > 0? Such aninapproximability resultusually relies on some conjecture
such as thatP 6= NP.

Lets first argue that the approximation ratio of Algorithm14 is indeed tight.

Example 10.1.Consider a complete bipartite graph withn vertices on each side. The
above algorithm will pick all 2n vertices, while picking one side of the bipartition con-
stitutes an optimal solution of cardinalityn. The approximation ratio of 2 is therefore
tight.

The answer to the second question is not clear, despite intensive research. The currently
best known lower bound on the inapproximability ofvertex coveris as follows (stated
without proof).

Theorem 10.2.Vertex cover cannot be approximated within a factor of1.3606, unless
P= NP.

10.3 Approximation Algorithms for TSP

As introduced before, thetraveling salesman problemasks for the computation of a short-
est tour in a given graphG= (V,E) with non-negative edge costsc : E→R+.
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We first show the following inapproximability result.

Theorem 10.3.For any polynomial-time computable functionα(n), TSP cannot be ap-
proximated within a factor ofα(n), unless P= NP.

Proof. Suppose we have an algorithmALG that approximatesTSPwithin a factorα(n).
We show that we can useALG to decide in polynomial time whether a given graph has a
Hamiltonian cycle or not, which is impossible unlessP= NP.

Let G = (V,E) be a given graph onn vertices. We extendG to a complete graph and
assign each original edge a cost of 1 and every other edge a cost of nα(n). Run the
α(n)-approximation algorithmALG on the resulting instance. We claim thatG contains
a Hamiltonian cycle if and only if the TSP tour computed byALG has cost less than or
equal tonα(n).

SupposeG has a Hamiltonian cycle. Then the optimal TSP tour in the extended graph
has costn. The approximate TSP tour computed byALG must therefore have cost less
than or equal tonα(n). SupposeG does not contain a Hamiltonian cycle. Then every
feasible TSP tour in the extended graph must use at least one edge of costnα(n), i.e., the
cost of the tour is greater thannα(n) (assuming thatG has at leastn≥ 2 vertices). Thus,
the cost of the approximate TSP tour computed byALG is greater thannα(n). The claim
follows.

The above inapproximability result is extremely bad news. The situation changes if we
consider themetric TSPproblem.

Metric Traveling Salesman Problem (Metric TSP):

Given: An undirected complete graphG = (V,E) with non-negative costsc :
E → R+ satisfying thetriangle inequality, i.e., for everyu,v,w ∈ V,
cuw≤ cuv+ cvw.

Goal: Compute a tour inG that minimizes the total cost.

Themetric TSPproblem remainsNP-complete: Recall that we showed that theTSPprob-
lem isNP-complete by reducingHamiltonian Cycleto this problem. The reduction only
used edge costs 1 and 2. Note that such edge costs always constitute a metric. Thus, the
same proof shows thatmetric TSPis NP-complete.

We next derive two constant factor approximation algorithms for this problem.

Given a subsetQ⊆ E of the edges, we definec(Q) as the total cost of all edges inQ, i.e.,
c(Q) = ∑e∈Q ce.

The following lemma establishes a lower bound on the optimalcost:

Lemma 10.2. Let T be a minimum spanning tree of G. ThenOPT≥ c(T).

Proof. Consider an optimalTSPtour and remove an arbitrary edge from this tour. We
obtain a spanning tree ofG whose cost is at mostOPT. The cost ofT is thus at most
OPT.
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This lemma leads to the following idea:5

Input : Complete graphG= (V,E) with non-negative edge costsc : E→R+

satisfying the triangle inequality.
Output : TSPtour ofG.

1 Compute a minimum spanning treeT of G.
2 Double all edges ofT to obtain a Eulerian graphG′.
3 Extract a Eulerian tourC′ from G′.
4 TraverseC′ and short-cut previously visited vertices.
5 Output the resulting tourC.

Algorithm 15: Approximation algorithm formetric TSP.

Theorem 10.4. Algorithm15 is a2-approximation algorithm for metric TSP.

Proof. Note that the algorithm has polynomial running time. Also, the returned tour is a
TSP tour by construction. Because edge costs satisfy the triangle inequality, the tourC
resulting from short-cutting the Eulerian tourC′ in Algorithm 15 has cost at most 2c(T),
whereT is the minimum spanning tree computed in Step1. By Lemma10.2, the cost of
C is thus at most 2OPT.

We can actually derive a better approximation algorithm by refining the idea of Algo-
rithm 15. Note that the reason for doubling the edges of a minimum spanning treeT was
that we would like to obtain a Eulerian graph from which we canthen extract a Eulerian
tour. Are there better ways to construct a Eulerian graph starting with a minimum span-
ning treeT? Certainly, we only have to take care of the odd degree vertices, sayV ′, of T.
Note that in a tree there must be an even number of odd degree vertices.

So one way of making these odd degree vertices become even degree vertices is to add
the edges of a perfect matching onV ′ to T. Intuitively, we would like to keep the total
cost of the augmented tree small and thus compute a minimum cost perfect matching. As
the following lemma shows, the cost of this matching can be related to the optimal cost.

Lemma 10.3. Let V′ ⊆V be a subset containing an even number of vertices. Let M be a
minimum cost perfect matching on V′. ThenOPT≥ 2c(M).

Proof. Consider an optimalTSPtourC of lengthOPT. Traverse this tour and short-cut all
vertices inV \V′. Because of the triangle inequality, the resulting tourC′ onV ′ has length
at mostOPT. C′ can be seen as the union of two perfect matchings onV ′. The cheaper
matching of these two must have cost at most1

2OPT. We conclude that a minimum cost
perfect matchingM onV ′ has cost at most12OPT.

We combine the above observations in the following algorithm, which is also known as
Christofides’ algorithm.

5Recall that aEulerian graphis a connected graph that has no vertices of odd degree. AEulerian tour is a
cycle that visits every edge of the graph exactly once. Givena Eulerian graph, we can always find a Eulerian
tour.
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Input : Complete graphG= (V,E) with non-negative edge costsc : E→R+

satisfying the triangle inequality.
Output : TSPtour ofG.

1 Compute a minimum spanning treeT of G.
2 Compute a perfect matchingM on the odd degree verticesV ′ of T.
3 CombineT andM to obtain a Eulerian graphG′.
4 Extract a Eulerian tourC′ from G′.
5 TraverseC′ and short-cut previously visited vertices.
6 Output the resulting tourC.

Algorithm 16: Approximation algorithm formetric TSP.

Theorem 10.5. Algorithm16 is a 3
2-approximation algorithm for metric TSP.

Proof. Note that the algorithm can be implemented to run in polynomial time (computing
a perfect matching in an undirected graph can be done in polynomial time). The proof
follows because the Eulerian graphG′ has total costc(T)+c(M). Because of the triangle-
inequality, short-cutting the Eulerian tourC′ does not increase the cost. The resulting
tour C has thus cost at mostc(T)+ c(M), which by Lemmas10.2and10.3 is at most
3
2OPT.

The algorithm is tight (example omitted). Despite intensive research efforts, this is still
the best known approximation algorithm for themetric TSPproblem.

10.4 Approximation Algorithm for Steiner Tree

We next consider a fundamental network design problem, namely the Steiner tree prob-
lem. It naturally generalizes theminimum spanning tree problem:

Steiner Tree Problem:

Given: An undirected graphG= (V,E) with non-negative edge costsc : E→
R+ and a set of terminal nodesR⊆V.

Goal: Compute a minimum cost treeT in G that connects all terminals inR.

The nodes inR are usually calledterminals; those inV \R are calledSteinernodes. The
Steiner treeproblem thus asks for the computation of a minimum cost tree,also called
Steiner tree, that spans all terminals inR and possibly some Steiner nodes. The decision
variant of the problem isNP-complete. Note that if we knew the setS⊆V \R of Steiner
nodes that are included in an optimal solution, then we couldsimply compute an optimal
Steiner tree by computing a minimum spanning tree on the vertex setR∪S in G. Thus,
the difficulty of the problems is that we do not know which Steiner nodes to include.

We first show that we can restrict our attention without loss of generality to the so-called
metric Steiner tree problem. In the metric version of the problem, we are given acom-
pletegraphG= (V,E) with non-negative edge costsc : E→ R+ that satisfy thetriangle
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inequality, i.e., for everyu,v,w∈V, cuw≤ cuv+ cvw.

Given a subsetQ⊆ E of the edges, we definec(Q) as the total cost of all edges inQ, i.e.,
c(Q) = ∑e∈Q ce.

Theorem 10.6.There is an approximation preserving polynomial-time reduction from
Steiner tree to metric Steiner tree.

Proof. Consider an instanceI = (G,c,R) of theSteiner tree problemconsisting of a graph
G = (V,E) and edge costsc : E → R+. We construct a corresponding instanceI ′ =
(G′,c′,R) of metric Steiner treeas follows. LetG′ = (V,E′) be the complete undirected
graph on vertex setV and letE′ be its set of edges. Define the costc′e of edgee= (u,v) ∈
E′ as the cost of a shortest path betweenu andv in G. (G′,c′) is called themetric closure
of (G,c). The set of terminals inI andI ′ is identical.

Suppose we are given a Steiner treeT in G. Then the cost of the Steiner treeT in (G′,c′)
can only be smaller. Next suppose we are given a Steiner treeT ′ of (G′,c′). Each edge
e= (u,v) ∈ T ′ corresponds to a shortestu,v-path inG. The subgraph ofG induced by all
edges inT ′ connects all terminals inRand has cost at mostc′(T ′) but may contain cycles
in general. If so, remove edges to obtain a treeT in G. Clearly,c(T)≤ c′(T ′).

In light of Theorem10.6, we concentrate on themetric Steiner tree problemsubsequently.

As mentioned before, the key to derive good approximation algorithms for a problem is
to develop good lower bounds on the optimal costOPT. One such lower bound is the
following:

Lemma 10.4. Let T be a minimum spanning tree on the terminal set R of G. ThenOPT≥
1
2c(T).

Proof. Consider an optimal Steiner tree of costOPT. By doubling the edges of this tree,
we obtain a Eulerian graph of cost 2OPT that connects all terminals inR and a (possibly
empty) subset of Steiner vertices. Find a Eulerian tourC′ in this graph (e.g., by traversing
vertices in their depth-first search order). We obtain a Hamiltonian cycleC on R by
traversingC′ and short-cutting Steiner vertices and previously visitedterminals. Because
of the triangle inequality, this short-cutting will not increase the cost and the cost ofC is
thus at mostc(C′) = 2OPT. Delete an arbitrary edge ofC to obtain a spanning tree onR
of cost at most 2OPT. The cost of a minimum spanning treeT on R is less than or equal
to the cost of this spanning tree, which is at most 2OPT.

Lemma10.4gives rise to the following approximation algorithm.

Theorem 10.7. Algorithm17 is a2-approximation algorithm for metric Steiner tree.

Proof. Certainly, the algorithm has polynomial running time and outputs a feasible solu-
tion. The approximation ratio of 2 follows directly from Lemma10.4.
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Input : Complete graphG= (V,E) with non-negative edge costsc : E→R+

satisfying the triangle inequality and a set of terminal verticesR⊆V.
Output : Steiner treeT onR.

1 Compute a minimum spanning treeT on terminal setR.
2 OutputT.

Algorithm 17: Approximation algorithm formetric Steiner tree.

Figure 18: Example graph

The analysis of Algorithm10.4 is tight as the following
example shows:

Example 10.2. Consider a complete graph that consists of
k outer terminal verticesR= {t1, . . . , tk} that are connected
to one inner Steiner vertex; see Figure18 for an example
with k = 8. The edges to the Steiner vertex have cost 1;
all remaining ones have cost 2. Note that these edge costs
satisfy the triangle inequality. A minimum spanning tree
on the gray vertices has total cost 2(k−1) while the min-
imum Steiner tree has costk. That is, the approximation ratio of Algorithm10.4on this
instance is 2−2/k. As k goes to infinity, this ratio approaches 2.

There are much better approximation algorithms for this problem. The current best ap-
proximation ratio is 1.386. Inapproximability results show that the problem cannot be
approximated arbitrarily well. In particular, there is no 96/95-approximation algorithm
for themetric Steiner treeproblem.

10.5 Approximation Scheme forKnapsack

We next consider theknapsack problem:

Knapsack Problem:

Given: A setN = {1, . . . ,n} of n items with each itemi ∈ N having a profit
pi ∈ Z+ and a weightwi ∈ Z+, and a knapsack whose (weight) capacity
is B∈ Z+.

Goal: Find a subsetX ⊆ N of items whose total weightw(X) = ∑i∈X wi is at
mostB such that the total profitp(X) = ∑i∈X pi is maximum.

We will assume without loss of generality thatwi ≤ B for everyi ∈ N and thatpi > 0 for
everyi ∈ N; items not satisfying one of these conditions can safely be ignored.

Theknapsack problemis NP-hard and we therefore seek a good approximation algorithm
for the problem. As we will see, we can even derive anapproximation schemefor this
problem:

Definition 10.3. An algorithmALG is anapproximation schemefor a maximization prob-
lem Π if for every given error parameterε > 0 and every instanceI ∈ I, it computes a
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feasible solutionS∈ F of profit p(S)≥ (1− ε)OPT(I). An approximation schemeALG

is a

• polynomial time approximation scheme (PTAS)if for every fixedε > 0 its running
time is polynomial in the size of the instanceI ;
• fully polynomial time approximation scheme (FPTAS)if its running time is poly-

nomial in the size of the instanceI and 1
ε .

Note that the running time of a PTAS might grow exponentiallyin 1
ε , e.g., likeO(21/εn2),

while this is not feasible for a FPTAS.

10.5.1 Dynamic Programming Approach

The algorithm is based on the followingdynamic programmingapproach. Let the max-
imum profit of an item in a given instanceI be denoted byP(I) (we will omit I subse-
quently). A trivial upper bound on the total profit that any solution for I can achieve is
nP. Define for everyi ∈N and everyp∈ {0, . . . ,nP}:

A(i, p) = minimum weight of a subsetS⊆ {1, . . . , i} whose profitp(S) is exactlyp.

Let A(i, p) = ∞ if no such set exists. Suppose we were able to computeA(i, p). We can
then easily determine the total profit of an optimal solution:

OPT= max{p∈ {0, . . . ,nP} | A(n, p)≤ B}.

Clearly, A(1, p1) = w1 and A(1, p) = ∞ for every p > 0 with p 6= p1. We further set
A(i,0) = 0 for everyi ∈ N and implicitly assume thatA(i, p) = ∞ for everyp< 0. Lets
see how to computeA(i + 1, p) for i ≥ 1 andp > 0. There are two options: either we
include itemi +1 into the knapsack or not. If we include itemi +1, then it contributes
a profit of pi+1 and thus the minimum weight of a subset of{1, . . . , i +1} with profit p
is equal to the minimum weightA(i, p− pi+1) of the firsti items yielding profitp− pi+1

plus the weightwi+1 of item i+1. If we do not include itemi+1, thenA(i+1, p) is equal
to A(i, p). Thus

A(i +1, p) = min{wi+1+A(i, p− pi+1), A(i, p)}. (17)

We can therefore compute the table of entriesA(i, p) with i ∈ N and p ∈ {0, . . . ,nP} in
timeO(n2P).

Note that the dynamic program haspseudo-polynomialrunning time (cf. Definition9.7),
i.e., the running time of the algorithm is polynomial in the size of the instance (heren) and
the largest integer appearing in the instance (hereP). However, we can use this pseudo-
polynomial algorithm in combination with the following rounding idea to obtain a fully
polynomial-time approximation scheme for this problem.
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Input : A setN = {1, . . . ,n} of items with a profitpi ∈ Z+ and a weightwi ∈ Z+ for
every itemi ∈ N and a knapsack capacityB∈ Z+.

Output : SubsetX′ ⊆ N of items.

1 Sett =
⌊

log10

( εP
n

)⌋

.
2 Definetruncated profitsp̄i = ⌊pi/10t⌋ for everyi ∈ N.
3 Use the dynamic program (17) to compute an optimal solutionX′ for the

knapsack instance(N,(p̄i),(wi),B).
4 OutputX′.

Algorithm 18: Approximation scheme forknapsack.

10.5.2 Deriving a FPTAS forKnapsack

Note that the above algorithm runs in polynomial time if all profits of the items are small
numbers, e.g., if they are polynomially bounded inn. The key idea behind deriving a
FPTAS is to ignore a certain number (depending on the error parameterε) of least sig-
nificant bits of the items’ profits. The modified profits can be viewed as numbers that
are polynomially bounded in|I | and 1

ε . As a consequence, we can compute an optimal
solution for the modified profits in time polynomial in|I | and 1

ε using the above dynamic
program. Because we only ignore the least significant bits, this solution will be a(1− ε)-
approximate solution with respect to the original profits. Subsequently, we elaborate on
this idea in more detail.

Suppose we truncate the lastt digits of each item’s profit. That is, define thetruncated
profit p̄i of item i as p̄i = ⌊pi/10t⌋. Now use the dynamic program above to compute
an optimal solutionX′ for the instance with truncated profits. This takes time at most
O(n2P/10t).

Certainly,X′ may be sub-optimal for the original problem, but its total profit relates to the
one of an optimal solutionX for the original problem as follows:

∑
i∈X′

pi ≥ ∑
i∈X′

10t p̄i ≥ ∑
i∈X

10t p̄i ≥ ∑
i∈X

(pi−10t)≥ ∑
i∈X

pi−n10t .

Here, the first and third inequalities hold because of the definition of truncated profits. The
second inequality follows from the optimality ofX′. Thus, the total profit ofX′ satisfies

p(X′)≥ p(X)−n10t =OPT

(

1− n10t

OPT

)

≥ OPT

(

1− n10t

P

)

.

Note that the last inequality holds becauseOPT ≥ P. Suppose we wish to obtain an
approximation ratio of 1− ε. We can accomplish this by lettingt be the smallest integer
such thatn10t/P≤ ε, or, equivalently,

t =

⌊

log10

(

εP
n

)⌋

.

With this choice, the running time of the dynamic program isO(n2P/10t) = O(n3/ε).
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That is, for anyε > 0 we have an(1−ε)-approximation algorithm whose running time is
polynomial in the size of the instance and1

ε .

We summarize the result in the following theorem.

Theorem 10.8. Algorithm 18 is a fully polynomial time approximation scheme for the
knapsack problem.

References

The presentation of the material in this section is based on [9, Chapters 1 & 3].
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