Document last modified: January 10, 2012

Lecture Notes of the Master Course:

Discrete Optimization

Utrecht University
Academic Year 2011/2012

Course websitehttp://www.cwi.nl/"schaefer/courses/Inmb-do11

Prof. dr. Guido Schafer

Center for Mathematics and Computer Science (CWI)
Algorithms, Combinatorics and Optimization Group
Science Park 123, 1098 XG Amsterdam, The Netherlands

VU University Amsterdam
Department of Econometrics and Operations Research
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Website:http://www.cwi.nl/"schaefer
Email: g.schaefer@cwi.nl

Document last modified:
January 10, 2012

Disclaimer: These notes contain (most of) the material of the lecturéiseo€ourse “Dis-
crete Optimization”, given at Utrecht University in the deanic year 2011/2012. The
course is organized by tHeutch Network on the Mathematics of Operations Research
(LNMB) and is part of thédutch Master’s Degree Programme in Mathematics (Master-
math) Note that the lecture notes have undergone some rough-pgading only. Please
feel free to report any typos, mistakes, inconsistencies,that you observe by sending
me an email (g.schaefer@cwi.nl).

http://homepages.cwi.nl/~schaefer/courses/lnmb-do11/main.html
http://www.cwi.nl/~schaefer
file:g.schaefer@cwi.nl
http://www.lnmb.nl/
http://www.mastermath.nl/

Note that these Lecture Notes have been last modified on 3ab0a2012. | guess most
of you will have printed the Lecture Notes of December 6, 2Q8gle “document last
modified” date on your printout). | therefore keep track ¢f thanges that | made since
then below. | also mark these changes as “[major]” or “[mjhodepending on their
importance.

Changes made with respect to Lecture Notes of December 6, 201

e [major] Introducing the notion of a pseudoflow on page 42: corretitedeed
to satisfy the flow balance constraints” to “it nerdt satisfy the flow balance
constraints”.

Changes made with respect to Lecture Notes of December 20,20 (Thanks to Rutger
Kerkkamp for pointing these out.)

e [minor] Symbol for symmetric difference on page 4 is now theng as the one
used in Chapter 7 ¢\").

¢ [minor] Strictly speaking we would have to add a constrajnt 1 for everyj €
{1,...,n} to the LP relaxation (2) of the integer linear program (1) @y 5.
However, these constraints are often (but not always) réaluinbecause of the
minimization objective. Note that the discussion thatda refers to the LP
relaxation as stated in (2) (see also remark after stateafiét (2)).

e [minor] Corrected “multiplies” to “multipliers” in last pagraph on page 5.

e [minor] Lower part of Figure 2 on page 2: changed eédeom solid to dotted
line.

e [minor] At various places in Chapter 3, Condition (M1) of ihdependent set sys-
tem has not been mentioned explicitly (Example 3.1, Exampla—3.5, Theorem
3.1). Mentioned now.

e [minor] Corrected “many application” to “many applicat&nin first paragraph
on page 27.

e [minor] Corrected 8(v)” and “d(u)” to “d(s,v)” and “d(s,u)” in last paragraph
of the proof of Lemma 5.5. on page 34 (3 occurrences).

e [minor] Algorithms 7 and 8 should mention that the capaciindtion is non-
negative.

e [major] There was a mistake in the objective function of the duadinprogram
(6) on page 46: The sign in front of the second summation meigielgative.

e [minor] Algorithms 9, 10 and 11 should mention that the catydanction is non-
negative.

e [minor] Proof of Theorem 7.3 on page 56: correcte@(tha(n,m))” to
“O(ma (n,T))".

e [minor] Caption of the illustration on page 71 has been puthensame page.

e [minor] Typo in the second last sentence of the proof of Teav6.7 on page 47:
“c(u,v) < 0” corrected to £(u,v) <0".

e [minor] Statement of Theorem 10.8 on page 90 has been ced@EPTAS instead
of 2-approximation).

Changes made with respect to Lecture Notes of January 5, 201¢Thanks to Tara van
Zalen and Arjan Dijkstra for pointing these out.)

e [minor] Example 3.2 on page 21 (uniform matroids): corrd¢e= {1 CS| |5 <
ki"to“Z={ICS| |l|<k}"

e [minor] Statement of Lemma 5.4 on page 32: corrected “The @bany flow” to
“The flow value of any flow”.

e [minor] There was a minus sign missing in the equation (7) age4 3.

e [minor] Second paragraph of Section 8.3 on page 60: Corebigerplance” to
“hyperplane”.

e [minor] Removed sentence “We state the following propositivithout proof”
before statement of Lemma 8.4 on page 62.

e Corrected “Note hab is integral” to “Note thab is integral” in the proof of The-
orem 8.7 on page 63.

Please feel free to report any mistakes, inconsistendeshat you encounter.

Guido

Contents

1 Preliminaries
1.1 Optimization Problems L.
1.2 Algorithms and Efficiency. oo
1.3 GrowthofFunctions.,
1.4 Graphs e e e
15 Sets,etC. e

1.6 Basics of Linear Programming Theory.

2 Minimum Spanning Trees
2.1 Introduction. e
2.2 ColoringProcedure
2.3 Kruskal's Algorithm

2.4 PrimsAlgorithm

3 Matroids
3.1 Introduction. e e
3.2 Matroids. e e

3.3 Greedy Algorithm for Matroids

4 Shortest Paths
4.1 Introduction.
4.2 Single Source Shortest Path Problem.
4.2.1 Basic properties of shortestpaths.
4.2.2 Arbitrary costfunctions.
4.2.3 Nonnegative cost functions.

4.3 All-pairs Shortest-path Problem

5 Maximum Flows

14
14
15

16

18
18
18
19
21
22
23

27

5.1 Introduction.
5.2 Residual Graph and AugmentingPaths.
5.3 Ford-Fulkerson Algorithm.
5.4 Max-Flow Min-CutTheorem

5.5 Edmonds-Karp Algorithm.

Minimum Cost Flows

6.1 Introduction. e e

6.4 Successive Shortest Path Algorithm.

6.5 Primal-Dual Algorithm.

Matchings

7.1 Introduction.
7.2 AugmentingPaths. 0oL
7.3 Bipartite Graphs

7.4 GeneralGraphs

Integrality of Polyhedra

8.1 Introduction.
8.2 ConvexHulls.
8.3 Polytopes.
8.4 IntegralPolytopes L

8.5 Example Applications. L

Complexity Theory
9.1 Introduction. e
9.2 ComplexityClasseBandNP

9.3 Polynomial-time Reductions ahP-completeness.

36
36
37
40
42
46

51
51
51
52
54

58
58
58
60
62
63

9.4 Examples oNP-completenessProofs 72

9.5 Moreon Complexity Theory. 76
9.5.1 NP-hardProblems. 76
9.5.2 ComplexityClasscbiP 77
9.5.3 Pseudo-polynomiality and StroNg-completeness 78
9.5.4 Complexity ClasBSPACE. 79

10 Approximation Algorithms 80

10.1 Introduction. 80

10.2 Approximation Algorithm foiertex Cover 81

10.3 Approximation AlgorithmsfofSP 82

10.4 Approximation Algorithm foSteiner Tree. 85

10.5 Approximation Scheme fé&tnapsack 87
10.5.1 Dynamic Programming Approach. 88
10.5.2 Deriving a FPTAS foknapsack. 89

1. Preliminaries

1.1 Optimization Problems

We first formally define what we mean by aptimization problem The definition be-
low focusses ominimization problemsNote that it extends naturally tmaximization
problems

Definition 1.1. A minimization problenfil is given by a set of instanc&s Each instance
| € 7 specifies

e a setF of feasible solutions fol;
e a cost functiorc: F — R.

Given an instancé = (F,c) € Z, the goal is to find a feasible soluti®e F such that
¢(S) is minimum. We call such a solution aptimal solutionof I.

In discrete (or combinatorial) optimizatiome concentrate on optimization probleims
where for every instance= (F,c) the setF of feasible solutions igliscrete i.e., F is
finite or countably infinite. We give some examples below.

Minimum Spanning Tree Problem (MST)

Given: An undirected grap8 = (V, E) with edge costs: E — R.
Goal: Find a spanning tree & of minimum total cost.

We have

F={TCE | Tisaspanningtreedd} and c(T)= Zrc(e).
ec

Traveling Salesman Problem (TSP)

Given: An undirected grapB8 = (V, E) with distancesl : E — R.
Goal: Find a tour of5 of minimum total length.

Here we have

F={TCE | TisatourofG} and c(T)= Zrd(e)
ec

Linear Programming (LP}
Given: A setF of feasible solutiong = (xy,...,X,) defined bymlinear constraints

n
]-'{(xl,...,xn)eR';o | Za”-xi >bj Vj 1,...,m}
i=

and an objective functioa(x) = 3! ; CiX;.
Goal: Find a feasible solutione F that minimizes:(x).

Note that in this example the number of feasible solutiotFiis uncountable. So why
does this problem qualify as @iscreteoptimization problem? The answer is that
defines a feasible set that corresponds to the convex hulfiofta number of vertices.
It is not hard to see that if we optimize a linear function ogeconvex hull then there
always exists an optimal solution that is a vertex. We cas #guivalently formulate the
problem as finding a vertexof the convex hull defined b§ that minimizesc(x).

1.2 Algorithms and Efficiency

Intuitively, an algorithm for an optimization problenil is a sequence of instructions
specifying a computational procedure that solves evergrginstanceé of . Formally,
the computational model underlying all our consideratisrthe one of &uring machine
(which we will not define formally here).

A main focus of this course is afficientalgorithms. Here, efficiency refers to the overall
running time of the algorithm. We actually do not care abdwt &ctual runnindgime
(in terms of minutes, seconds, etc.), but rather about teben of basic operations.
Certainly, there are different ways to represent the olanahing time of an algorithm.
The one that we will use here (and which is widely used in tige@thms community)

is the so-calledvorst-caserunning time. Informally, the worst-case running time of an
algorithm measures the running time of an algorithm on thistymossible input instance
(of a given size).

There are at least two advantages in assessing the alg@rifiemiormance by means
of its worst-case running time. First, it is usually rathesy to estimate. Second, it
provides a very strong performance guarantee: The algoiglyuaranteed to compute a
solution toeveryinstance (of a given size), using no more than the stated auailbasic
operations. On the downside, the worst-case running tinenadlgorithm might be an
overly pessimistic estimation of its actual running tima.the latter case, assessing the
performance of an algorithm by iverage caseunning time or itssmoothedunning
time might be suitable alternatives.

Usually, the running time of an algorithm is expressed asatfan of thesizeof the input
instancel. Note that a-priori it is not clear what is meant by the sizé bécause there
are different ways to represent (or encode) an instance.

Example 1.1. Many optimization problems have a graph as input. Supposara/given
an undirected grapB = (V, E) with n nodes andn edges. One way of representi@gs
by itsn x n adjacency matri® = (&) with & = 1if (i, j) € E anda;; = 0 otherwise. The
size needed to represdBby its adjacency matrix is thug. Another way to represef@
is by itsadjacency lists For every nodé € V, we maintain the sdt; C V of nodes that
are adjacent toin a list. Note that each edge occurs on two adjacency lidtg. size to
represenG by adjacency lists is+ 2m.

The above example illustrates that the size of an instanperdis on the underlyingata
structurethat is used to represent the instance. Depending on theoKioperations that
an algorithm uses, one might be more efficient than the otRer.example, checking

whether a given edgg, j) is part ofG takes constant time if we use the adjacency matrix,
while it takes timgL;| (or |L;|) if we use the adjacency lists. On the other hand, listing all
edges incident totakes timen if we use the adjacency matrix, while it takes tifhg if

we use the adjacency lists.

Formally, we define the size of an instariaes the number of bits that are needed to store
all data ofl using encodindL on a digital computer and usk(l)| to refer to this number.
Note that according to this definition we also would have twoanit for the number of bits
needed to store the numbers associated with the instakea@des or edges). However,
most computers nowadays treat all integers in their rarsyefrem 0 to 21, the same and
allocate aword to each such number. We therefore often take the freedonmiyt@mea
more intuitive definition of size by counting the number ofedts (like nodes or edges)
of the instance rather than their total binary length.

Definition 1.2. Let N be an optimization problem and letbe an encoding of the in-
stances. Then algorithmL G solvesll in (worst-case) running timé if ALG computes
for every instancé of sizen; = |L(1)| an optimal solutiors € F using at mosf (n;) basic

operations.

1.3 Growth of Functions

We are often interested in tlesymptotic runnindgime of the algorithm. The following
definitions will be useful.

Definition 1.3. Letg: N — R*. We define

O(g(n)) = {f:N—R" | 3c> 0, np € N such thatf(n) < c-g(n) Vn>ng}
Q(g(n))={f:N—R*" | 3c> 0, ng € N such thatf (n) > c-g(n) Vn>np}
O(g(m) = {f:N—R" | f(n) € O(g(n)) andf(n) € Q(g(n))}

We will often write, e.g.,f(n) = O(g(n)) instead off (n) € O(g(n)), even though this is
notationally somewhat imprecise.

We consider a few examples: We havende= O(n?), in? = Q(n?), 10nlogn = Q(n),
10nlogn = O(n?), 21 = ©(2") andO(logm) = O(logn)* if m < n° for some constant
c.

1.4 Graphs

An undirected grapks consists of a finite s&t(G) of nodes (or vertices) and a finite set
E(G) of edges. For notational convenience, we will also wéite- (V,E) to refer to a
graph with nodes sat =V (G) and edge set = E(G). Each edge € E is associated
with anunorderedpair (u,v) € V x V; uandv are called thendpointof e. If two edges
have the same endpoints, then they are calk@llel edges. An edge whose endpoints

!Recall that logn®) = clog(n).

are the same is calledlaop. A graph that has neither parallel edges nor loops is said to
besimple Note that in a simple graph every edge- (u,v) € E is uniquely identified

by its endpointa1 andv. Unless stated otherwise, we assume that undirected gaaphs
simple. We denote by and m the number of nodes and edges@frespectively. A
completegraph is a graph that contains an edge for every (unordeadddinodes. That

is, a complete graph has= n(n—1)/2 edges.

A subgraph Hof G is a graph such that(H) CV andE(H) C E and eacle€ E(H) has
the same endpoints 4 as inG. Given a subset’ C V of nodes and a subset C E of
edges of5, the subgraphi of G induced by’ andE’ is defined as the (unique) subgraph
H of G with V(H) =V’ andE(H) = E’. Given a subseE’ C E, G\ E’ refers to the
subgrapt of G that we obtain if we delete all edgeshti from G, i.e.,V(H) =V and
E(H) = E\E'. Similarly, given a subs&t’ CV, G\ V’ refers to the subgraph & that
we obtain if we delete all nodes W and its incident edges fro, i.e.,V(H) =V \V’
andE(H) =E\ {(u,v) € E | ueV’}. A subgraptH of G is said to bespanningif it
contains all nodes dg, i.e.,V(H) =V.

A path Pin an undirected grapls is a sequenc® = (vi,...,v) of nodes such that

e = (vi,vi+1) (1 <i<K)is an edge ofs. We say thaP is a pathfrom v to \, or a

vy, Vk-path P is simpleif all v; (1 <i < k) are distinct. Note that if there is\a, vi-path

in G, then there is a simple one. Unless stated otherwiseletigthof P refers to the
number of edges d?. A pathC = (v4,...,v = v1) that starts and ends in the same node
is called acycle C is simpleif all nodesvy, ...,V 1 are distinct. A graph is said to be
acyclicif it does not contain a cycle.

A connected componentCV of an undirected grap® is a maximal subset of nodes
such that for every two nodesv € C there is au,v-path inG. A graphG is said to be
connectedf for every two nodesi, v € V there is au,v-path inG. A connected subgraph
T of G that does not contain a cycle is callettee of G. A spanningreeT of Gis a tree
of Gthat contains all nodes @. A subgraph- of G is aforestif it consists of a (disjoint)
union of trees.

A directedgraphG = (V,E) is defined analogously with the only difference that edges
are directed. That is, every edgés associated with aorderedpair (u,v) €V x V. Here

u is called thesource(or tail) of e andv is called thetarget (or head of e. Note that,

as opposed to the undirected case, edge) is different from edgév, u) in the directed
case. All concepts introduced above extend in the obvioystavdirected graphs.

1.5 Sets, etc.

Let Sbhe a set and ¢ S. We will write S+ eas a short foBU {e}. Similarly, fore € Swe
write S— e as a short foS\ {e}.

Thesymmetric differencef two setsSandT is defined aSAT = (S\T)U(T\).

We useN, Z, Q andR to refer to the set of natural, integer, rational and real neirs,
respectively. We us@* andRR™ to refer to the nonnegative rational and real numbers,
respectively.

1.6 Basics of Linear Programming Theory

Many optimization problems can be formulated asrdeger linear program (ILP)Let
M be a minimization problem. Thdn can often be formulated as follows:

n
minimize CjX;
5
subject to Zaijj > by vie{l,...,m} (1)
=1
xj € {01} Vje{l,...,n}

Here,x; is a decision variable that is either set to 0 or 1. The abotis$ltherefore also
called a0/1-ILP. The coefficients;j, bj andc; are given rational numbers.

If we relax the integrality constraint ax), we obtain the followind P-relaxationof the
above ILP ():

n
minimize Z CjX]
=1

n
subject to Zaijj > b vie{l,...m} (2)
=1

V

Xj > 0 Vje{l,...,n}

In general, we would have to enforce thqt< 1 for everyj € {1,...,n} additionally.
However, these constraints are often redundant becaude ahinimization objective
and this is what we assume subsequently. QBT and OPT_p refer to the objective
function values of an optimal integer and fractional santto the ILP () and LP @),
respectively. Because every integer solutionipig also a feasible solution foR), we
haveOPT p < OPT. That is, the optimal fractional solution provides a loweuhd on
the optimal integer solution. Recall that establishingwdpbound on the optimal cost
is often the key to deriving good approximation algorithmmisthe optimization problem.
The techniques that we will discuss subsequently explisitthservation in various ways.

Let (xj) be an arbitrary feasible solution. Note thag) has to satisfy each of the
constraints of%). Suppose we multiply each constrairt{1,..., m} with a non-negative
valuey; and add up all these constraints. Then

ii < Jilaijxj))/i > iibiyi.

Suppose further that the multiplieysare chosen such th&t" ; ajyi <c;. Then

That is, every such choice of multipliers establishes a tdve@ind on the objective func-
tion value of(x;). Because this holds for an arbitrary feasible solufigy) it also holds
for the optimal solution. The problem of finding the best soalitipliers (providing the

largest lower bound 0®PT | p) corresponds to the so-callddal programof (2).
m
maximize biyi
i; 1Yl
. i : 4)
subject to Za”-yi < ¢ Vjed{l....n}
i=
yi > 0 Vie{l... m}
We useOPTpp to refer to the objective function value of an optimal salatto the dual
linear program4).

There is a strong relation between the primal 2Pgnd its corresponding dual LE)(
Note that 8) shows that the objective function value of an arbitrarysiiele dual solution
(yi) is less than or equal to the objective function value of artrary feasible primal
solution (xj). In particular, this relation also holds for the optimalwg@ns and thus
OPTpp < OPTLp. This is sometimes calledeak duality From linear programming
theory, we know that even a stronger relation holds:

Theorem 1.1(strong duality) Let x= (x;) and y= (y;) be feasible solutions to the LPs
(2) and(4), respectively. Then x and y are optimal solutions if and dnly

n m
Xi= N bV
JZlCJXJ i; i Yi

An alternative characterization is given by tt@mplementary slackness conditions

Theorem 1.2. Let x= (x;) and y= (y;) be feasible solutions to the LR8) and (4),
respectively. Then x and y are optimal solutions if and ohtié following conditions
hold:

1. Primal complementary slackness conditions: for every{],...,n}, eitherx =0
or the corresponding dual constraint is tight, i.e.,

m
Vjed{1,...,n}: Xj>0 = Zajyi:Cj.
i=

2. Dual complementary slackness conditions: for every{1,...,m}, eithery =0
or the corresponding primal constraint is tight, i.e.,

n
Vie{l,....m}: >0 = 3 ajx=h.
=1

2. Minimum Spanning Trees

2.1 Introduction

We consider theninimum spanning tree problem (MSWhich is one of the simplest and
most fundamental problems in network optimization:

Minimum Spanning Tree Problem (MST)

Given: An undirected grap8 = (V,E) and edge cosis: E — R.
Goal: Find a spanning tree of G of minimum total cost.

Recall thafT is aspanning treef G if T is a spanning subgraph G&fthat is a tree. The
costc(T) of a treeT is defined a€(T) = .7 c(e). Note that we can assume without
loss of generality the® is connected because otherwise no spanning tree exists.

If all edges have non-negative costs, thenNt&T problem is equivalent to theonnected
subgraph problemvhich asks for the computation of a minimum cost subgrdpbf G
that connects all nodes 6.

2.2 Coloring Procedure

Most known algorithms for th&1ST problem belong to the class gfeedy algorithms
From a high-level point of view, such algorithms iterativeiktend a partial solution to
the problem by always adding an element that causes the mmmicost increase in the
objective function. While in general greedy choices mayl leasuboptimal solutions,
such choices lead to an optimal solution for M8T problem.

We will get to know different greedy algorithms for th&ST problem. All these algo-
rithms can be described by means ofedge-coloring processinitially, all edges are
uncolored. In each step, we then choose an uncolored edgmbondt eitherred (mean-

ing that the edge is rejected)blue (meaning that the edge is accepted). The process ends
if there are no uncolored edges. Throughout the process,ale sure that we maintain
the followingcolor invariant

Invariant 2.1 (Color invariant) There is a minimum spanning tree containing all the blue
edges and none of the red edges.

The coloring process can be seen as maintaining a forelstueftrees Initially, the
forest consists of isolated blue trees corresponding to the nodeg.inThe edges are
then iteratively colored red or blue. If an edge is colorageblthen the two blue trees
containing the endpoints of this edge are combined into emebiue tree. If an edge is
colored red, then this edge is excluded from the blue forEsé color invariant ensures
that the forest of blue trees can always be extended to a mmispanning tree (by using
some of the uncolored edges and none of the red edges). Natthéhcolor invariant
ensures that the final set of blue edges constitutes a minispamning tree.

We next introduce two coloring rules on which our algorithans based. We first need
to introduce the notion of aut Let G = (V,E) be an undirected graph. éutof Gis a
partition of the node sef into two sets:X andX =V \ X. An edgee = (u,V) is said to

crossa cut(X, X) if its endpoints lie in different parts of the cut, i.e.¢ X andv € X. Let
0(X) refer to the set of all edges that crd3s X), i.e.,

O0(X)={(uv)eE | ueX, veV\X}.

Note thatd(-) is symmetric, i.e.d(X) = o(X).

We can now formulate the two coloring rules:

Blue rule: Select a cutX, X) that is not crossed by any blue edge. Among the uncolored
edges ind(X), choose one of minimum cost and color it blue.

Red rule: Select a simple cycl€ that does not contain any red edge. Among the uncol-
ored edges i, choose one of maximum cost and color it red.

Our greedy algorithm is free to apply any of the two colorines in an arbitrary order
until all edges are colored either red or blue. The next #@agproves correctness of the
algorithm.

Theorem 2.1. The greedy algorithm maintains the color invariant in eat¢psand even-
tually colors all edges.

Proof. We show by induction on the numbeof steps that the algorithm maintains the
color invariant. Initially, no edges are colored and thus tlolor invariant holds true
for t = 0 (recall that we assume th@tis connected and thus a minimum spanning tree
exists). Suppose the color invariant holds true dftet stepst(> 1). LetT be a minimum
spanning tree satisfying the color invariant (after stefl).

Assume that in stepwe color an edge using the blue rule. 18 € T, thenT satisfies
the color invariant after stepand we are done. Otherwiseg T. Consider the cut
(X, X) to which the blue rule is applied to coler= (u,v) (see Figurel). Becauserl

is a spanning tree, there is a pa&jfy in T that connects the endpointssandv of e.

At least one edge, sag, of R,y must crosgX,X). Note thate' cannot be red because
T satisfies the color invariant. Alsg cannot be blue because of the pre-conditions of
applying the blue rule. Thu€ is uncolored and by the choice ef c(e) < c(€¢/). By
removinge’ from T and adding, we obtain a new spanning tréé= (T —€') + e of cost
c(T')=c(T) —c(€) +c(e) < c(T). Thus, T’ is a minimum spanning tree that satisfies
the color invariant after step

Assume that in stepwe color an edge using the red rule. 1&€¢ T, theT satisfies the
color invariant after step and we are done. Otherwisec T. Consider the cycl€ to
which the red rule is applied to coler= (u,v) (see Figure). By removingefrom T, we
obtain two trees whose node sets induce g XuK). Note thate crossegX, X). Because
Cis a cycle, there must exist at least one other edgeg’sayC that crossesx,)?). Note
thate’ cannot be blue because¢ T and the color invariant. Moreove¥, cannot be red
because of the pre-conditions of applying the red rule. THus uncolored and by the
choice ofe, c(e) > c(€/). By removingefrom T and adding, we obtain a new spanning

Figure 1: lllustration of the exchange argument used in tio®fpof Theorem?2.1 (blue
rule).

treeT’ = (T —e) + € of costc(T’) = ¢(T) —c(e) +c(¢) < c(T). Thus, T’ is a minimum
spanning tree that satisfies the color invariant after tstep

Finally, we show that eventually all edges are colored. $8pphe algorithm stops be-
cause neither the blue rule nor the red rule applies but ieestll some uncolored edge
e= (u,v). By the color invariant, the blue edges constitute a foréblue trees. If both
endpointsu andv of e are part of the same blue trée then we can apply the red rule
to the cycle induced by the unique pa&fy fromutovin T andeto colorered. If the
endpointau andv are contained in two different blue trees, SayandT,, then the node
set of one of these trees, séy=V(T,), induces a cutX, X) to which the blue rule can be
applied to color an uncolored edge (which must exist becafee presence @). Thus

an uncolored edge guarantees that either the red rule ohtbelle can be applied. O

Figure 2: lllustration of the exchange argument used in tlo®foof Theorem?2.1 (red
rule).

2.3 Kruskal’'s Algorithm

Kruskal’s algorithm sorts the edges by non-decreasingamdthen considers the edges
in this order. If the current edg® = (u,Vv) has both its endpoints in the same blue tree, it
is colored red; otherwise, it is colored blue. The algoriiermummarized in Algorithm.

It is easy to verify that in each case the pre-conditions efré#spective rule are met: If
the red rule applies, then the unique pBthin the blue tree containing both endpoints of
g together withg forms a cycleC. The edges i€ N R,y are blue and is uncolored. We
can thus apply the red rule &. Otherwise, if the blue rule applies, thenconnects two
blue trees, say, andT,, in the current blue forest. Consider the (:)Sit)?) induced by the
node set offy, i.e., X =V (Ty). No blue edge crosses this cut. Moreoeeis an uncolored
edge that crosses this cut. Also observe that every othetaned edge € 6(X) has cost

10

Input: undirected grapls = (V,E) with edge costs: E — R
Output: minimum spanning tre@

1 Initialize: all edges are uncolored
(Remark: we implicitly maintain a forest of blue trees bélow
2 Let(ey,...,em) be the list of edges db, sorted by non-decreasing cost
3 for i+ 1tomdo
4 if & has both endpoints in the same blue tiieen color g redelsecolor g
blue
end
Output the resulting tre€ of blue edges

[62]

[«2]

Algorithm 1: Kruskal'sMST algorithm.

c(e) > c(g) because we color the edges by non-decreasing cost. We cafotieeapply
the blue rule tag. Animmediate consequence of Theor2ris that Kruskal’s algorithm
computes a minimum spanning tree.

We next analyze the time complexity of the algorithm: Theoaltpm needs to sort the
edges ofs by non-decreasing cost. There are different algorithmsetihis with different
running times. The most efficient algorithms sort a liskalements irO(klogk) time.
There is also a lower bound that shows that one cannot da Iiedtie that. That is, in our
context we spen®(mlogm) time to sort the edges by non-decreasing cost.

We also need to maintain a data structure in order to deterwlirether an edge has both

its endpoints in the same blue tree or not. A trivial impletaéion stores for each node
a unique identifier of the tree it is contained in. Checkingethler the endpoints andv

of edgeg = (u,v) are part of the same blue tree can then be doi@ I) time. Merging
two blue trees needs tin@(n) in the worst case. Thus, the trivial implementation takes
O(m+r?) time in total (excluding the time for sorting).

One can do much better by using a so-call@ibn-finddata structure. This data struc-
ture keeps track of the partition of the nodes into blue teeekallows only two types of
operations:unionandfind. Thefind operation identifies the node set of the partition to
which a given node belongs. It can be used to check whethenifiygointsi andv of edge

& = (u,v) belong to the same tree or not. Tineionoperation unites two node sets of the
current partition into one. This operation is needed to tgtlee partition whenever we
color e = (u,v) blue and have to join the respective blue trégandT,. Sophisticated
union-find data structures support a series ahionandm findoperations on a universe
of n elements in time&(n+ ma(n,T)), wherea (n,d) is theinverse Ackerman function
(see B, Chapter 2] and the references thereia)n,d) is increasing im but grows ex-
tremely slowly for every fixedl, e.g.,a(2%5%6 0) = 4; for most practical situations, it
can be regarded as a constant.

The overall time complexity of Kruskal's algorithm is thGgmlogm-+n-+ma(n, 7)) =
O(mlogm) = O(mlogn) (think about it!).

Corollary 2.1. Kruskal's algorithm solves the MST problem in timégx@ogn).

11

2.4 Prim’s Algorithm

Prim’s algorithm grows a single blue tree, starting at arteaty nodes € V. In every
step, it chooses among all edges that are incident to therdurlue tre@ containingsan
uncolored edge; of minimum cost and colors it blue. The algorithm stop$ i€ontains
all nodes. We implicitly assume that all edges that are ndtgiahe final tree are colored
red in a post-processing step. The algorithm is summarizédgorithm 2.

Input: undirected grapls = (V,E) with edge costs: E -+ R
Output: minimum spanning tre@

1 Initialize: all edges are uncolored
(Remark: we implicitly maintain a forest of blue trees bélow

Choose an arbitrary node
fori«+ lton—1do

Let T be the current blue tree containiag

Select a minimum cost edge< 6(V(T)) incident toT and color it blue
end
Implicitly: color all remaining edges red
Output the resulting tre€ of blue edges

0o N o g b~ W N

Algorithm 2: Prim’s MST algorithm.

Note that the pre-conditions are met whenever the algoréppiies one of the two col-
oring rules: If the blue rule applies, then the node\$€T) of the current blue tre@
containings induces a cutX, X) with X =V(T). No blue edge crosséX, X) by con-
struction. Moreoverg is among all uncolored edges crossing the cut one of minimum
cost and can thus be colored blue. If the red rule appliesdeeg (u,v), both endpoints

u andv are contained in the final trde The pathP,, in T together withe induce a cycle

C. All edges inC N R,y are blue and we can thus colered.

The time complexity of the algorithm depends on how effidiente are able to identify

a minimum cost edge that is incident toT. To this aim, good implementations use a
priority queuedata structure. The idea is to keep track of the minimum cmshections
between nodes that are outsidelofo nodes inl. Suppose we maintain two data entries
for every nodev ¢ V(T): m(v) = (u,v) refers to the edge that minimize&u,v) among
allueV(T) andd(v) = c(m(v)) refers to the cost of this edge; we defimgy) = nil and
d(v) = » if no such edge exists. Initially, we have for every nadeV \ {s}:

c(sv) if (sv)eE

nil otherwise. [otherwise.

n(v):{(s,v) if (s,v) €E and d(v):{

The algorithm now repeatedly chooses a nageV (T) with d(v) minimum, adds it to
the tree and colors its connecting edg@y) blue. Because is part of the new tree,
we need to update the above data. This can be accomplishéeratjrig over all edges
(v,w) € E incident tov and verifying for every adjacent nodewith w ¢ V (T) whether
the connection cost frow to T via edge(v,w) is less than the one stored difw) (via
r(w)). If so, we update the respective data entries accordiidpye that if the value of

12

d(w) changes, then it can only decrease.

There are several priority queue data structures that stipboperations needed above:
insert, find-min delete-minanddecrease-priority In particular, using-ibonacci heaps
m decrease-prioritandn insertfind-mindelete-miroperations can be performed in time
O(m+nlogn).

Corollary 2.2. Prim’s algorithm solves the MST problem in timén®+ nlogn).

References

The presentation of the material in this section is base@oGHapter 6].

13

3. Matroids

3.1 Introduction

In the previous section, we have seen that the greedy digodan be used to solve the
MST problem. An immediate question that comes to ones mimdish other problems
can be solved by such an algorithm. In this section, we wéltbat the greedy algorithm
applies to a much broader class of optimization problems.

We first define the notion of andependent set system

Definition 3.1. Let Sbe a finite set and lef be a collection of subsets & (S Z) is an
independent set systafm

(M1) 0e7;
(M2) ifleZandJCl,thend € Z.

Each set € 7 is called arindependent seevery other subsétC Swith | ¢ 7 is called a
dependent seFurther, suppose we are given a weight functiars — R on the elements
inS.

Maximum Weight Independent Set Problem (MWIS)

Given: An independent set systé® 7) and a weight functiom : S— R.
Goal: Find an independent de¢ Z of maximum weightv(l) = 5 4| W(X).

If w(x) < 0 for somex € S, thenx will not be included in any optimum solution because
7 is closed under taking subsets. We can thus safely excluzte edements from the
ground setS. Subsequently, we assume without loss of generality thaveibhts are
nonnegative.

As an example, consider the following independent set Byst&uppose we are given
an undirected grapts = (V,E) with weight functionw : E — R*. DefineS=E and
Z={F CE | FinducesaforestiG}. Note that &< Z andZ is closed under taking
subsets because each sulisefta forestl € 7 is a forest. Now, the problem of finding an
independent sdt< 7 that maximizesv(1) is equivalent to finding a spanning tree &f
of maximum weight. (Note that the latter can also be done leyaithe MST algorithms
that we have considered in the previous section.)

The greedy algorithm given in Algorith@is a natural generalization of Kruskal’s algo-
rithm to independent set systems. It starts with the empity sed and then iteratively
extendd by always adding an elemext S\ | of maximum weight, ensuring th&t+ x
remains an independent set.

Unfortunately, the greedy algorithm does not work for gahardependent set systems
as the following example shows:

14

Input: independent set syste(8, 7) with weight functionw: S— R
Output: independent sdte Z of maximum weight

1 Initialize: 1 = 0.

2 while there is some x S\ | with | +x€ Z do
3 Choose such axawith w(x) maximum
4 [—1+x
5 end

6 return |

Algorithm 3: Greedy algorithm for matroids.

Example 3.1.

Suppose that we are given an undirected gr@ph (V,E) with p 7 s
weight functionw : E — R. Let S=E and defineZ = {M C
E | Mis amatching of5}. (Recall that a subséfl C E of the
edges ofG is called anatchingf no two edges oM share a com-
mon endpoint.) It is not hard to see that@ andZ is closed q 8 1

under taking subsets. Thus Conditionsi)Mand (M2) are sat-

isfied and(S,Z) is an independent set system. Note that finding

an independent séte Z of maximum weightw(l) is equivalent to finding a maximum
weight matching inG. Suppose we run the above greedy algorithm on the independen
set system induced by the matching instance depicted orighe rThe algorithm re-
turns the matching(p,q), (r,s)} of weight 12, which is not a maximum weight matching
(indicated in bold).

3.2 Matroids

Even though the greedy algorithm described in AlgoritBmoes not work for general
independent set systems, it does work for independent sietrayg that arenatroids

Definition 3.2 (Matroid). Anindependent set systelvh= (S,7) is amatroidif
(M3) if 1,Je Z and|l| < |J|, thenl +x € Z for somex € J\ I.

Note that Condition (N3) essentially states thatlifandJ are two independent sets with
[l] < [J], then there must exist an element J\ | that can be added tosuch that the
resulting set 4 x s still an independent set.

Given a subsey C S, a subseB C U is called abasisof U if B is an inclusionwise
maximal independent subsetdf i.e.,B<€ Z and thereisné e ZwithBc | CU. ltis
not hard to show that Condition (Bjlis equivalent to

(M4) for every subset) C S, any two bases df have the same size.

The common size of the basesWfC Sis called therank of U and denoted by(U).
An independent set is simply calledbasisif it is a basis ofS. The common size of the
bases ofSis called therank of the matroidM. Note that if all weights are nonnegative,

15

the MWIS problem is equivalent to finding a maximum weightibas M.

We give some examples of matroids.

Example 3.2(Uniform matroid) One of the simplest examples of a matroid is the so-
calleduniform matroid Suppose we are given some Sand an integek. Define the
independent sefBas the set of all subsets 8bf size at mosk, i.e.,Z={1 CS| |I| <k}.

It is easy to verify thaM = (S, Z) is a matroid M is also called thé&-uniform matroid

Example 3.3(Partition matroid) Another simple example of a matroid is tpartition
matroid SupposeS is partitioned intom setsS,...,Sy and we are givem integers
Ki,...,km. DefineZ ={I CS | |INnS|<kforall1<i<m}. Conditions (M) and
(M2) are trivially satisfied. To see that Condition 8Mis satisfied as well, note that if
I,J € Z and|l| < |J|, then there is somig(1 < i < m) such thatJNS| > || NS| and thus
adding any elemente SN (J\) to | maintains independence. Thid,= (SZ) is a
matroid.

Example 3.4(Graphic matroid) Suppose we are given an undirected gréph (V,E).

Let S=E and defineZ = {F CE | F induces a forest i6}. We already argued above
that Conditions (M) and (M2) are satisfied. We next show that ConditionsijNé satis-
fied too. LetU C E. Consider the subgragh,U) of G induced byJ and suppose that it
consists ok components. By definition, each baBi®f U is an inclusionwise maximal
forest contained itJ. Thus,B consists ok spanning trees, one for each component of
the subgrapltV,U). We conclude thaB contains|V| — k elements. Because this holds
for every basis o, Condition (M4) is satisfied. We remark that any matréid= (S, 7)
obtained in this way is also calledg@aphic matroid(or cycle matroid.

Example 3.5(Matching matroid) The independent set system of Exampl&is not a
matroid. However, there is another way of defining a matraisdl on matchings. Let
G = (V,E) be an undirected graph. Given a matchMgC E of G, let V(M) refer to
the set of nodes that are incident to the edgeMofA node setl CV is coveredby
M if | CV(M). DefineS=V andZ = {I CV | |is covered by some matchilg}.
Condition (ML) holds trivially. Condition (M) is satisfied because if a node $et 7 is
covered by a matchini, then each subsétC | is also covered b and thus) € Z. It
can also be shown that Condition 8)is satisfied and thuldl = (S,7) is a matroid M is
also called anatching matroid

3.3 Greedy Algorithm for Matroids

The next theorem shows that the greedy algorithm given irodigm 3 always computes
a maximum weight independent set if the underlying indepandget system is a ma-
troid. The theorem actually shows something much strongatroids are precisely the
independent set systems for which the greedy algorithm cbesan optimal solution.

Theorem 3.1.Let (SZ) be an independent set system. Further, letSv— R, be a

nonnegative weight function on S. The greedy algorithmdptigm 3) computes an inde-
pendent set of maximum weight if and only iEMS 7) is a matroid.

16

Proof. We first show that the greedy algorithm computes a maximurghtéidependent
set if M is a matroid. LeX be the independent set returned by the greedy algorithm and
let Y be a maximum weight independent set. Note that botndY are bases of.
Order the elements X = {Xy,...,Xm} such that; (1 <i < m) is thei-th element chosen
by the algorithm. Clearlyw(x;) > --- > wW(Xm). Also orderY = {y,...,ym} such that
w(y1) > -+ > w(ym). We will show thatv(x) > w(y;) for everyi. Letk+ 1 be the smallest
integer such thaw(xc;1) < W(Yk+1). (The claim follows if no such choice exists.) Define
I = {x1,...,%} andJ = {y1,...,Y¥ks1}. Becausd,J € Z and|l| < |J|, Condition (M3)
implies that there is somg € J\ | such that +y; € Z. Note thatw(y;) > W(Yiy1) >
w(xkr1). Thatis, in iteratiork+ 1, the greedy algorithm would prefer to agdnstead of
Xk+1 to extend, which is a contradiction. We conclude thatX) > w(Y) and thusX is a
maximum weight independent set.

Next assume that the greedy algorithm always computes apémdient set of maximum
weight for every independent set systé®7) and weight functiorw: S— R.. We
show thatM = (S, 7) is a matroid. Conditions (¥) and (M2) is satisfied by assumption.
It remains to show that Condition (&) holds. Letl,J € Z with ||| < |J| and assume, for
the sake of a contradiction, thiat- x ¢ 7 for everyx € J\ |. Letk = |I| and consider the
following weight function orfs:

k+2 ifxel
w(x) =< k+1 ifxed\l
0 otherwise.

Now, in the firstk iterations, the greedy algorithms picks the elemenits By assumption,
the algorithm cannot add any other element fdbph and thus outputs a solution of weight
k(k+2). However, the independent skhas weight at leagf|(k+ 1) > (k+1)(k+1) >
k(k+2). That s, the greedy algorithm does not compute a maximurghwé@idependent
set, which is a contradiction. O

References

The presentation of the material in this section is base@o@hapter 8] andq, Chapters
39 & 40].

17

4. Shortest Paths

4.1 Introduction

We next consider shortest path problems. These problemsaadly defined fodirected
networks Let G = (V,E) be a directed graph with cost function E — R. Consider a
(directed) pattP = (v1,...,w) froms=v; tot = vw. Thelengthof pathP is defined as
c(P) = z!‘;ll c(vi,Vi+1). We can then ask for the computation ofsatpath whose length
is shortest among all directed paths frarto t. There are different variants of shortest
path problems:

1. Single source single target shortest path prohl&iven two nodes andt, deter-
mine a shortest path frosto t.

2. Single source shortest path proble@iven a nodes, determine all shortest paths
from sto every other node i

3. All-pairs shortest path problentor every pair(s,t) € V x V of nodes, compute a
shortest path frorstot.

The first problem is a special case of the second one. Howaxety known algorithm for
the first problem implicitly also solves the second one (asigartially). We therefore
focus here on thaingle source shortest path problesnd theall-pairs shortest path
problem

4.2 Single Source Shortest Path Problem

We consider the following problem:

Single Source Shortest Path Problem (SSSP)

Given: A directed grapks = (V, E) with cost functionc: E — R and a source
nodesec V.
Goal: Compute a shortest path fr@to every other nodec V.

Note that a shortest path frogto a nodev might not necessarily exist because of the
following two reasons: Firsy might not be reachable frosbecause there is no directed
path fromsto vin G. Second, there might be arbitrarily short paths freta v because

of the existence of as,v-path that contains a cycle of negative length (which can be
traversed arbitrarily often). We call a cycle of negativiatdength also anegative cycle
The following lemma shows that these are the only two caseghioh no shortest path
exists.

Lemma 4.1. Let v be a node that is reachable from s. Further assume tleaetis no
path from s to v that contains a negative cycle. Then thest®aishortest path from s to
v which is a simple path.

Proof. Let P be a path frons to v. We can repeatedly remove cycles fréhuntil we
obtain a simple patF’. By assumption, all these cycles have non-negative leraytis

18

thusc(P’) < ¢(P). It therefore suffices to show that there is a shortest patbngnall
simple s, v-paths. But this is obvious because there are only finitelgyrsmple paths
fromstovin G. O

4.2.1 Basic properties of shortest paths

We define alistance functiod : V — R as follows: For every €V,
o(v) =inf{c(P) | Pis a path fronstov}.
With the above lemma, we have

o0(v) = o ifthereis no path fronsto v
o(v) = —oo ifthereis a path frons to v that contains a negative cycle
o0(v) € R ifthereis a shortest (simple) path fresto v.

The next lemma establishes tiéasatisfies the triangle inequality.

Lemma 4.2. For every edge e- (u,v) € E, we haved(v) < d(u) 4 c(u,v).

Proof. Clearly, the relation holds ib(u) = . Suppose(u) = —c. Then there is a path
P from sto u that contains a negative cycle. By appending egltgeP, we obtain a path
from sto v that contains a negative cycle and tl(s) = —c. The relation again holds.
Finally, assumé(u) € R. Then there is a pathfrom sto u of lengthd(u). By appending
edgeeto P, we obtain a path fromto v of lengthd(u) + c(u,v). A shortest path frors
to v can only have shorter length and thaiw) < 6(u) +c(u, V). O

The following lemma shows that subpaths of shortest pathstaortest paths.

Lemma 4.3. Let P= (v1,...,V) be a shortest path fromy\to &. Then every subpath
P = (vi,...,vj) of Pwithl <i < j <k is a shortest path from vo v;.

Proof. Suppose there is a paf = (vi,uy,...,u;,vj) fromy; tov; that is shorter thaR’.
Then the pathvy,...,Vi,u1,...,U,Vj,...,Vk) IS avy, vi-path that is shorter tha®, which
is a contradiction. O

Consider a shortest path= (s=vy,...,V = V) from sto v. The above lemma enables
us to show that every edge= (vi,vi+1) of P must betight with respect to the distance
functiond, i.e.,d(v) = 6(u) 4+ c(u,v).

Lemma 4.4. Let P= (s,...,u,V) be a shortest,&¥-path. Therd(v) = d(u) + c(u,v).

Proof. By Lemma4.3, the subpat? = (s,...,u) of P is a shortess, u-path and thus
d(u) =c(P'). BecauseP is a shortess, v-path, we haveéd(v) = ¢(P) = c(P’) + c(u,v) =
o(u) +c(u,v). O

19

Suppose now that we can compdi@) for every nodev € V. Using the above lemmas, it
is not difficult to show that we can then also efficiently detire the shortest paths from
sto every noder € V with d(v) e R: LetV' ={veV | d(v) € R} be the set of nodes for
which there exists a shortest path framNote thatd(s) = 0 and thus € V'. Further, let
E’ be the set of edges that are tight with resped,toe.,

E'={(u,v) €E | 8(v) =5(u)+c(u,v)}.

Let G = (V/,E’) be the subgraph o& induced byV’ andE’. Observe that we can
constructG’ in time O(n+ m). By Lemma4.4, every edge of a shortest path framo
some node& € V' is tight. Thus every nodee V' is reachable fronsin G'. Consider a
pathP = (s=v1,...,w = V) fromstovin G. Then

k-1 k—1

c(P) = ; (Vi Vit1) = _;(5(Vi+1) —0(vi)) = 8(v) = &(s) = 3(v).

Thatis,Pis a shortest path frosito vin G. G’ therefore represents all shortest paths from
sto nodesy € V'. We can now extract a spanning tfedrom G’ that is rooted as, e.g.,

by performing a depth-first search franSuch a tree can be computed in ti@&+ m).
Observe thaT contains for every nodec V' a uniques, v-path which is a shortest path
in G. T is therefore also calledshortest-path treeNote thafT is a very compact way to
store for every node € V' a shortest path frorato v. This tree need®(n) space only,
while listing all these paths explicitly may ne@dn?) space.

In light of the above observations, we will subsequentlyaamrate on the problem of
computing the distance functiah efficiently. To this aim, we introduce a functiah:

V — R of tentativedistances. The algorithm will us to compute a more and more
refined approximation od until eventuallyd(v) = d(v) for everyv € V. We initialize
d(s) = 0 andd(v) = e for everyv € V \ {s}. The only operation that is used to moddy
is torelaxan edgee = (u,v) € E:

RELAX (u,V):
if d(v) > d(u)+c(u,v) thend(v) = d(u) +c(u,v)

It is obvious that thel-values can only decrease by edge relaxations.

We show that if we only relax edges then the tentative digtandll never be less than
the actual distances.

Lemma 4.5. For every ve V, d(v) > &(v).

Proof. The proof is by induction on the number of relaxations. Translholds after
the initialization becausd(v) = o > §(v) andd(s) = 0 = J(s). For the induction step,
suppose that the claim holds true before the relaxation afdgee = (u,v). We show
that it remains valid after edgehas been relaxed. By relaxirg,v), only d(v) can be
modified. 1fd(v) is modified, then after the relaxation we half&) = d(u) + c(u,v) >
o(u) + c(u,v) > d(v), where the first inequality follows from the induction hypesis
and the latter inequality holds because of the triangleuaéty (Lemma4.2). O

20

That is,d(v) decreases throughout the execution but will never be lohaar the actual
distanced(v). In particular,d(v) = d(v) = o for all nodesv € V that are not reachable
from s. Our goal will be to use only few edge relaxations to ensuaedfv) = o(v) for
everyv e V with 6(v) € R.

Lemma 4.6. Let P=(s,...,u,v) be a shortest,v-path. If du) = d(u) before the relax-
ation of edge e= (u,v), then dv) = d(v) after the relaxation of edge e.

Proof. Note that after the relaxation of edgewe haved(v) = d(u) +c(u,v) = d(u) +
c(u,v) = d(v), where the last equality follows from Lemmdad. O

4.2.2 Arbitrary cost functions

The above lemma makes it clear what our goal should be. Nandelglly we should
relax the edges d& in the order in which they appear on shortest paths. The dienof

course, is that we do not know these shortest paths. Theviolipalgorithm, also known
as theBellman-Fordalgorithm, circumvents this problem by simply relaxing svedge

exactlyn— 1 times, thereby also relaxing all edges along shortestipdtte right order.
An illustration is given in Figuré.

Input: directed graplt = (V, E), cost functiorc: E — R, source nods eV
Output: shortest path distancds V — R

1 Initialize: d(s) = 0 andd(v) = « for everyv e V \ {s}
2 fori<1ton—1do

3 | foreach(u,v) € E do RELAX(u,V)

4 end

5 return d

Algorithm 4: Bellman-Ford algorithm for the SSSP problem.

Lemma 4.7. After the Bellman-Ford algorithm terminategy) = 6(v) for all v € V with
O(V) > —oo,

Proof. As argued above, after the initialization we hal(@) = &(v) for all v € V with
0(v) = c0. Consider a nodecV with d(v) € R. LetP = (s=vj,...,v = V) be a shortest
s, v-path. Define ghaseof the algorithm as the execution of the inner loop. Thaths, t
algorithm consists ofi— 1 phases and in each phase every edg®e frelaxed exactly
once. Note thatl(s) = &(s) after the initialization. Using induction drand Lemma.6,
we can show thad(vi4+1) = d(vi11) at the end of phase Thus, after at most— 1 phases
d(v) = o(v) for everyv € V with 5(v) € R. O

Note that the algorithm does not identify nodes V with d(v) = —c. However, this
can be accomplished in a post-processing step (see exgrcilee time complexity of
the algorithm is obviouslyD(nm). Clearly, we might improve on this by stopping the
algorithm as soon as all tentative distances remain un&thimga phase. However, this
does not improve on the worst case running time.

21

Figure 3: lllustration of the Bellman-Ford algorithm. Theder in which the edges are
relaxed in this example is as follows: We start with the upfeggit node and proceed in
a clockwise order. For each node, edges are relaxed in cleelovder. Tight edges are
indicated in bold. Only the first three phases are depictedfmnge in the final phase).

Theorem 4.1. The Bellman-Ford algorithm solves the SSSP problem withegative
cycles in timed(nm).

4.2.3 Nonnegative cost functions

The running time oD(nm) of the Bellman-Ford algorithm is rather large. We can signif
icantly improve upon this in certain special cases. Theesasiuch special case is if the
graphG is acyclic.

Another example is if the edge costs are nonnegative. Subs#ly, we assume that the
cost functionc: E — R™ is nonnegative.

The best algorithm for the SSSP with nonnegative cost fanstis known a®ijkstra’s
algorithm As before, the algorithm starts with(s) = 0 andd(v) = « for everyv €
V\ {s}. Italso maintains a s&t* of nodes whose distances are tentative. Initidly=V.
The algorithm repeatedly chooses a nade V* with d(u) minimum, removes it from
V* and relaxes all outgoing edgés,v). The algorithm stops whevi* = 0. A formal
description is given in Algorithn.

Note that the algorithm relaxes every edge exactly onceuitively, the algorithm can
be viewed as maintaining a “cloud” of nod&s\(V*) whose distance labels are exact. In
each iteration, the algorithm chooses a nodeV* that is closest to the cloud, declares its
distance label as exact and relaxes all its outgoing edges. ddnsequence, other nodes
outside of the cloud might get closer to the cloud. An illastin of the execution of the
algorithm is given in Figuré.

22

Input: directed grapl@ = (V, E), nonnegative cost functia E — R, source node
seV
Output: shortest path distancds V — R

1 Initialize: d(s) = 0 andd(v) = « for everyv e V \ {s}
2 V*¥=V

3 while V* £ 0 do

4 Choose a node € V* with d(u) minimum.
5 Removeu fromV*.
6 foreach (u,v) € E do RELAX (u,V)
7 end
8 return d

Algorithm 5: Dijkstra’s algorithm for the SSSP problem.

The correctness of the algorithm follows from the followirgima.

Lemma 4.8. Whenever a node u is removed frorfy We have du) = &(u).

Proof. The proof is by contradiction. Consider the first iterationmihich a nodeu is
removed fromV* while d(u) > d(u). Let A CV be the set of nodeswith d(v) = d(v).
Note thatu is reachable frons becaused(u) < ». Let P be a shortess, u-path. If we
traverseP from sto u, then there must be an edgey) € P with x e Aandy ¢ A because
scAandu¢ A. Let(x,y) be the first such edge ¢h We haved(x) = d(x) < (u) < d(u),
where the first inequality holds because all edge costs areagative. Consequently,
was removed fronv* beforeu. By the choice olu, d(x) = d(x) whenx was removed
fromV*. But then, by Lemmad.6, we must havel(y) = d(y) after the relaxation of edge
(x,¥), which is a contradiction to the assumption that A. O

The running time of Dijkstra’s algorithm crucially relies ¢he underlying data structure.
An efficient way to keep track of the tentative distance latmid the se¥* is to use
priority queues We need at most insert(initialization), n delete-minremoving nodes
with minimumd-value) andn decrease-prioritpperations (updating distance labels after
edge relaxations}ibonacci heapsupport these operations in tif@m+ nlogn).

Theorem 4.2. Dijkstra’s algorithm solves the SSSP problem with nonnegatdge costs

in time Qm+ nlogn).

4.3 All-pairs Shortest-path Problem

We next consider the following problem:

All-pairs Shortest Path Problem (APSP)

Given: A directed grapl® = (V, E) with cost functiorc: E — R.
Goal: Determine a shortestt-path for every paifs,t) €V x V.

23

Figure 4: lllustration of Dijsktra’s algorithm. The nodes\V \ V* are depicted in gray.
The current node that is removed frdfi is drawn in bold. The respective edge relax-
ations are indicated in bold.

24

Input: directed grapl = (V, E), nonnegative cost functiao: E — R
Output: shortest path distanceds V xV — R

0 ifu=v

1 Initialize: foreach (u,v) eV xV do d(u,v) = ¢ c(u,v) if (u,v)€E
o0 otherwise.

2 for k« 1tondo

3 foreach (u,v) eV xV do

4 | if d(u,v) > d(u,k) +d(k,v) thend(u,v) = d(u,k) +d(k,V)

5 end

6 end

7 return d

Algorithm 6: Floyd-Warshall algorithm for the APSP problem.

We assume thdb contains no negative cycle.

Define a distance functiof:V xV — R as
o(u,v) =inf{c(P) | Pis a path fromu to v}.

Note thatd is not necessarily symmetric. As for the SSSP problem, wecoanentrate
on the computation of the distance functidrbecause the actual shortest paths can be
extracted from these distances.

Clearly, one way to solve the APSP problem is to simply soi&SSP problems: For
every nodes € V, solve the SSSP problem with source nede compute all distances
0(s,-). Using the Bellman-Ford algorithm, the worst-case runmimg of this algorithm
is O(n?m), which for dense graphs 8(n*). We will see that we can do better.

The idea is based on a general technique to derive exacttalgsrknown aglynamic
programming Basically, the idea is to decompose the problem into smsilie-problems
which can be solved individually and to use these solutiornstruct a solution for the
whole problem in a bottom-up manner.

Suppose the nodes M are identified with the sefl,...,n}. In order to define the
dynamic program, we need some more notion. Consider a simpipathP = (u=
vi,...,vi = V). We call the nodes,,...,v,_; theinterior nodesof P; P has no interior
nodes ifl <2. A u,v-pathP whose interior nodes are all contained(ih ... ,k} is called
a(u,v,k)-path Define

&(u,v) =inf{c(P) | Pis a(u,v,k)-path}

as the shortest path distance ofiwav,k)-path. Clearly, with this definition we have
O(u,v) = d(u,Vv). Our task is therefore to compudg(u, v) for everyu,ve V.

Our dynamic program is based on the following observationpp®se we are able to
computed_1(u,V) for all u,v € V. Consider a shortegt, v,k)-pathP = (u=v,...,vy =
v). Note thatP is simple because we assume tatontains no negative cycles. By

25

definition, the interior nodes d? belong to the sef1,...,k}. There are two cases that
can occur: Either nodeis an interior node oP or not.

First, assume thatis not an interior node d?. Then all interior nodes d? must belong
to the set{1,...,k—1}. That is,P is a shortestu,v,k — 1)-path and thusx(u,v) =
o-_1(u,v).

Next, supposé& is an interior node oP, i.e.,P = (u=vy,...,k,...,vy = V). We can then
breakP into two paths?; = (u,...,k) andP, = (k;...,v). Note that the interior nodes of
P, andP, are contained if1,...,k— 1} becaus® is simple. Moreover, because subpaths
of shortest paths are shortest paths, we concludéthiata shortestu,k, k — 1)-path and

P, is a shortestk, v,k — 1)-path. Therefored(u,v) = &_1(u,k) + &_1(k,V).

The above observations lead to the following recursive difinof d(u,v):

0 ifu=v
do(u,v) = ¢ c(u,v) if (uv)€E
0 otherwise.

and

&(u,v) =min{d_1(u,v), &_1(uk) +&_1(kv)} ifk>1

The Floyd-Warshall algorithm simply computég(u,v) in a bottom-up manner. The
algorithm is given in Algorithn®.

Theorem 4.3. The Floyd-Warshall algorithm solves the APSP problem witi@gative
cycles in timed(n3).

References

The presentation of the material in this section is base®o8liapters 25 and 26].

26

5. Maximum Flows

5.1 Introduction

Themaximum flow probleris a fundamental problem in combinatorial optimizationtwit
many applications in practice. We are given a network ctingiof a directed graph
G = (V,E) and nonnegative capacities E — R™ on the edges and a source nadeV
and a target nodec V.

Intuitively, think of G being a water network and suppose that we want to send as much
water as possible (say per second) from a source sq@eoducer) to a target node
(consumer). An edge @ corresponds to a pipeline of the water network. Every piygeli
comes with a capacity which specifies the maximum amount eémthat can be sent
through it (per second). Basically, theaximum flow problerasks how the water should

be routed through the network such that the total amount ténthat can be sent from

tot (per second) is maximized.

We assume without loss of generality titais complete. IfG is not complete, then we
simply add every missing edde,v) €V xV \ E to G and definec(u,v) = 0. We also
assume that every nodec V lies on a path fronsto t (other nodes will be irrelevant).

Definition 5.1. A flow (or s,t-flow) in G is a functionf : V xV — R that satisfies the
following three properties:

1. Capacity constraint: For allu,v eV, f(u,v) <c(u,v).
2. Skew symmetry. For allu,veV, f(u,v) = —f(v,u).
3. Flow conservation For everyu € V \ {s,t}, we have

;f(u,v):o.

The quantityf (u,v) can be interpreted as tinet flowfrom u to v (which can be positive,
zero or negative). The capacity constraint ensures thdlaveralue of an edge does not
exceed the capacity of the edge. Note that skew symmetryesses that the net flow
f(u,v) that is sent fronu to v is equal to the net flow (v,u) = —f(u,v) that is sent from
vto u. Also the total net flow fronu to itself is zero becausiu,u) = —f(u,u) = 0. The
flow conservation constraints make sure that the total flowoba nodeu € V \ {s,t} is
zero. Because of skew symmetry, this is equivalent to gfdliat the total flow intai is
zero.

Another way of interpreting the flow conservation constisia that the total positive net
flow entering a node € V \ {s,t} is equal to the total positive net flow leavingi.e.,

f(u,v).

f(v,u) =
veV:f(vu)>0 veV:f(uyv)>0

Thevalue|f| of a flow f refers to the total net flow out af(which by the flow conserva-

27

Figure 5: On the left: Input grapB with capacitiexc: E — R™. Only the edges with
positive capacity are shown. On the right: A fldwof G with flow value|f| = 19. Only
the edges with positive net flow are shown.

tion constraints is the same as the total flow it)to

|f|:vg/f(s,v).

An example of a network and a flow is given in Figue

The maximum flow reads as follows:

Maximum Flow Problem

Given: A directed grapls = (V, E) with capacitiex : E — R™, a source node
seV and a destination nodez V.
Goal: Compute ag,t-flow f of maximum value.

We introduce some more notation. Given two s¢f¥ C V, define

f(X,Y) = % f(x,y).
XEX yE

We state a few properties. (You should try to convince ydtitsat these properties hold
true.)

Proposition 5.1. Let f be a flow in G. Then the following holds true:

1. Forevery XCV, f(X,X)=0.
2. Forevery XY CV, f(X,Y) =—1(Y,X).
3. Forevery XY,Z CV with XNY =0,

f(XUY,Z) = f(X,2)+ f(Y,Z) and f(Z,XUY)=f(Z,X)+ f(Z,Y).

5.2 Residual Graph and Augmenting Paths

Consider ars,t-flow f. Let theresidual capacityf an edgee = (u,v) € E with respect
to f be defined as
rs{(u,v) =c(u,v) — f(u,v).

28

Figure 6: On the left: Residual gra@y with respect to the flow given in Figures. An
augmenting patP with r; (P) = 4 is indicated in bold. On the right: The flof¥ obtained
from f by augmenting ¢ (P) units of flow alongP. Only the edges with positive flow are
shown. The flow value of’ is | f’| = 23. (Note thatf’ is optimal because the c(X, X)
of G with X = {q,t} has capacitg(X,X) = 23.)

Intuitively, the residual capacitys (u,Vv) is the amount of flow that can additionally be
sent fromu to v without exceeding the capacitfu,v). Call an edgee € E aresidual
edgeif it has positive residual capacity andsaturatededge otherwise. Theesidual
graph G = (V,E¢) with respect tof is the subgraph o& whose edge sé; consists of
all residual edges, i.e.,

Eit ={ecE | r¢(e) > 0}.

See Figures (left) for an example.

Lemma 5.1. Let f be a flow in G. Let g be a flow in the residual graph Bspecting
the residual capacitiessr Then the combined flows f + g is a flow in G with value
lh[=[f]+1g].

Proof. We show that all properties of Definitidh1 are satisfied.
First, h satisfies the skew symmetry property because for everg V

h(u,v) = f(u,v) +g(u,v) = —(f(v,u) +g(v,u)) = —h(v,u).

Second, observe that for evaryw € V, g(u,v) < r¢(u,v) and thus
h(,v) = F(U,V) +9UV) < FUY)+re(uv) = FUv)+ (c(uv) - F(u,v) = c(u,v).
That is, the capacity constraints are satisfied.

Finally, we have for every e V\ {s;t}

Z/h(u,v) = Z/ f(u,v) + Z/g(u,v) =0

and thus flow conservation is satisfied too.

29

Similarly, we can show that

= 3 hsv) = 5 (59 + 5 olsv) = 1] +[gl
O

An augmenting patlis a simples,t-pathP in the residual grapke;. Let P be an aug-
menting path irG¢. All edges ofP are residual edges. Thus, there exists semé such
that we can seng flow units additionally alond® without exceeding the capacity of any
edge. In fact, we can chooszeo be as large as thesidual capacity f(P) of P which is
defined as

r{(P)=min{rs(u,v) | ecP}.

Note that if we increase the flow of an ed@ev) € P by x = r¢(P), then we also have
to decrease the flow value dn u) by x because of the skew symmetry property. We will
also say that waugment the flow f along path Bee Figure for an example.

Lemma 5.2. Let f be a flow in G and let P be an augmenting path in Ghen f :
V xV — R with
f(uv)+r¢(P) if (uv)eP
f'(uv) = ¢ f(uv)—r¢(P) if (vu)eP
f(u,v) otherwise

is a flow in G of valuef’| = [f| +r¢(P).

Proof. Observe thatf’ can be decomposed into the original fldwand a flowfp that
sends ¢ (P) units of flow along® and—r ¢ (P) flow units along theeversedath ofP, i.e.,
the path that we obtain frof if we reverse the direction of every edge P. Clearly, fp
is a flow inG; of valuer¢ (P). By Lemmab.1, the combined flowf’ = f + fp is a flow in
G of value|f'| = [f|+ ¢ (P). O

5.3 Ford-Fulkerson Algorithm

The observations above already suggest a first algorithitihéomax-flow problem: Ini-
tialize f to be the zero flow, i.ef(u,v) =0 forallu,veV. LetG¢ be the residual graph
with respect tof. If there exists an augmenting pathin the residual grapless, then
augmentf alongP and repeat; otherwise terminate. This algorithm is alsawknas the
Ford-Fulkersonalgorithm and is summarized in Algorithim

Note that it is not clear that the algorithm terminates nat the computed flow is of
maximum value. The correctness of the algorithm will follfram themax-cut min-flow
theorem(Theorenb.3) discussed in the next section.

The running time of the algorithm depends on the number ohtiens that we need
to perform. Every single iteration can be implemented toirutime O(m). If all edge
capacities are integral, then it is easy to see that aftériezration the flow value increases
by at least one. The total number of iterations is therefomaast|f*|, wheref* is a

30

Input : directed grapl@ = (V, E), capacity functiore : E — R, source and
destination nodest € V
Output: maximum flowf :V xV — R

1 Initialize: f(u,v) =0 for everyu,veV

2 while there exists an augmenting path P in Go
3 | augmentflowf alongP

4 end

5 return f

Algorithm 7: Ford-Fulkerson algorithm for the max-flow problem.

maximum flow. Note that we can also handle the case when egeititais a rational
number by scaling all capacities by a suitable intdgelHowever, note that the worst case
running time of the Ford-Fulkerson algorithm can be prahiely large. An instance on
which the algorithm admits a bad running time is given in Feju

Theorem 5.1. The Ford-Fulkerson algorithm solves the max-flow problerh witeger
capacities in time Qm|f*|), where f is a maximum flow.

Ford and Fulkerson gave an instance of the max-flow problatstiows that for irrational
capacities the algorithm might fail to terminate.

Note that if all capacities are integers then the algorithamntains an integral flow. That
is, the Ford-Fulkerson also gives an algorithmic proof @f thllowing integrality prop-
erty.

Theorem 5.2(Integrality property) If all capacities are integral, then there is an integer
maximum flow.

5.4 Max-Flow Min-Cut Theorem

A cut(or s,t-cut) of Gis a partition of the node s&tinto two setsX andX =V \ X such
thatse X andt € X. Recall that is directed. Thus, there are two types of edges crossing
the cut(X,X), namely the ones that leaveand the ones that ent&r. As for flows, it

will be convenient to define fox,Y CV,

c(X,Y) = U;V;c(u,v).

The capacityof a cut(X, X) is defined as the total capacityX, X) of the edges leaving

X. Fix an arbitrary flowf in G and consider an an arbitrary diX, X) of G. The total net
flow leavingX is | f|.

Lemma 5.3. Let f be a flow and letX, X) be a cut of G. Then the net flow leaving X is

F(X,X) =|f].

31

Figure 7: A bad instance for the Ford-Fulkerson algoritheitl Suppose thaB is a
large integer. The algorithm alternately augments one afrffiow along the two paths
(s,u,p,t) and (s, p,u,t). The flow after two augmentations is shown on the right. The
algorithm needsR augmentations to find a maximum flow.

Proof.
FOGVAX) = (X, V)= (X X)=f(X,V)=f(sV)+ f(X=sV)=f(sV)=|f].
O

Intuitively, it is clear that if we consider an arbitrary o, X) of G, then the total flow

f(X,X) that leave is at mostc(X, X). The next lemma shows this formally.
Lemma 5.4. The flow value of any flow f in G is at most the capacity of any(xuf)
of G, i.e., f{(X,X) <c(X,X).

Proof. By Lemmabs.3, we have

[fl=f(X,X) = Z(f(u,v) < Z(2\ c(u,v) = c(X,X).
ueXveV\X ueXveV\X

O

A fundamental result for flows is that the value of a maximurwfis equal to the mini-
mum capacity of a cut.

Theorem 5.3(Max-Flow Min-Cut Theorem) Let f be a flow in G. Then the following
conditions are equivalent:

1. fis a maximum flow of G.
2. The residual graph Gcontains no augmenting path.

3. |f] =c(X,X) for some cutX, X) of G.

Proof. (1) = (2): Suppose for the sake of contradiction ttiais a maximum flow oG
and there is an augmenting p&lin Gs. By Lemma5.2, we can augmentt alongP and
obtain a flow of value strictly larger thar|, which is a contradiction.

(2) = (3): Suppose thaBs contains no augmenting path. Létbe the set of nodes that
are reachable frorain G¢. Note thatt ¢ X because there is no path frago t in Gy.
That is, (X, X) is a cut ofG. By Lemma5.3, |f| = f(X,X). Moreover, for every € X

andv € X, we must have (u,v) = c(u,v) because otherwis@l,v) € E+ andv would be

part of X. We concludéf| = (X, X) = c¢(X, X).

32

(3) = (1): By Lemmas5.4, the value of any flow is at most the capacity of any cut. The

condition| f| = c(X, X) thus implies thaf is a maximum flow. (Also note that this implies
that(X, X) must be a cut of minimum capacity.) O

5.5 Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm works almost identical to thed-Bulkerson algorithm.
The only difference is that it chooses in each iteratioghartestaugmenting path in
the residual grapks:. An augmenting path is shortestaugmenting path if it has the
minimum number of edges among all augmenting patt@;inThe algorithm is given in
Algorithm 8.

Input : directed graplG = (V, E), capacity functiorc: E — R*, source and
destination nodest € V
Output: maximum flowf :V xV — R

1 Initialize: f(u,v) =0 for everyu,veV

2 while there exists an augmenting path in @Go

3 determine a shortest augmenting pRtim G¢
4 augmentf alongP

5 end

6 return f

Algorithm 8: Edmonds-Karp algorithm for the max-flow problem.

Note that each iteration can still be implemented to rummetd(m). A shortest augment-
ing path inG; can be found by using a breadth-first search algorithm. As eskow,
this small change makes a big difference in terms of the nmtime of the algorithm.

Theorem 5.4. The Edmonds-Karp algorithm solves the max-flow problem rime ti

o(nn?).

Note that the correctness of the Edmonds-Karp algorithovi@ from the max-flow
min-cut theorem: The algorithm halts when there is not augimg path inGs. By

Theorenb.3, the resulting flow is a maximum flow. It remains to show thatalhgorithm
terminates afte©(nm) iterations. The crucial insight in order to prove this istttiee

shortest path distance of a node can only increase as thétlalg@rogresses.

Fix an arbitrary iteration of the algorithm. Létbe the flow at the beginning of the itera-
tion and letf’ be the flow at the end of the iteration. We obtéirfrom f by augmenting

f along an augmenting pafhin Gs. Further,P must be a shortest augmenting path in
Gi. LetP = (s=vyp,...,w =1). We define two distance functions (in terms of number of
edges on a path): Léi(u,v) be the number of edges on a shortest path fudmv in Gs.
Similarly, let ' (u,v) be the number of edges on a shortest path fodow in Gy/.

Note thatd(s,vi) =i. Also observe that if an edg@l,V) is part of Gy but not part
of G¢, thenu =v; andv =v;_; for somei. To see this observe thé{u,v) = c(u,v)
becausé€u,v) ¢ E;. On the other hand(u,v) < c(u,v) becauséu,v) € E¢.. That is, by

33

augmentingf alongP, the flow on edg€u,v) was decreased. That means that the flow
on the reverse edge, u) was increased and thg u) must be part oP.

The next lemma shows that for every node V, the shortest path distance frao v
does not decrease.

Lemma 5.5. For each veV, &'(s,v) > (s, v).

Proof. Suppose there exists a nod&ith &'(s,v) < d(s,v). Among all such nodes, let
v be one withd'(s,v) being smallest. Note that# s becausei(s,s) = d'(s,s) = 0 by
definition. LetP’ be a shortest v-path inG;: of distanced’(s,v) and letu be the second-
last node of’. Becausé” is a shortest path and by the choicevpive have

d(s,v) > d'(s,v) = d'(s,u)+1> d(s,u) + 1. (5)

Note that the distance functiansatisfies the triangle inequality. Therefore, edge)
cannot be part 0B; because otherwise we would ha¥s,v) < d(s,u)+1. Thatis,(u,v)
is contained inGy but not contained if5s. Using our observation above, we conclude
that there is some(1 < i <Kk) such that=v; andv=v;_;. But thend(s,v) =i—1and
o(s,u) =i which is a contradiction to5). O

Consider an augmentation of the current flovelong pathP. We say that an edge=
(u,v) is critical with respect tof andP if (u,v) is part of the augmenting pathand its
residual capacity coincides with the amount of flow that ishmd alond?, i.e.,r; (u,v) =
r{(P). Note that after the augmentation bfalongP, every critical edge of® will be
saturated and thus vanishes from the residual network.

Lemma 5.6. The number of times an edge=g(u, v) is critical throughout the execution
of the algorithm is bounded by(@).

Proof. Suppose edge= (u,v) is critical with respect to flowf and pathP. Let J refer
to the shortest path distancesGn. We have

o(s,v) = d(s,u) + 1.

After the augmentation of alongP, edgee is saturated and thus disappears from the
residual graph. It can only reappear in the residual grapénwh a successive iteration
some positive flow is pushed over the reverse €dge. Suppose edgg, u) is part of an
augmenting patP®’ that is used to augment the current flow, $aylet &’ be the distance
function with respect t&¢/. We have

d'(s,u)=08'(s,v) + 1.
By Lemma5.5, §(s,v) < &'(s,v) and thus
&' (s,u)=0'(s,v)+1>d(s,v)+1=93(su)+2

That is, between any two augmentations for which eglge(u, v) is critical, the distance
of ufrom smust increases by at least 2.

34

Note that the distance affrom sis at least O initially and can never be more then 2.
The number of times edge= (u,V) is critical is thus bounded b®(n). O

The proof of Theoreny.4 now follows trivially:

Proof of Theorend.4. As argued above, the Edmonds-Karp algorithm computes a-maxi
mum flow if it terminates. Note that in every iteration of tHgaithm at least one edge

is critical. By Lemmab.6, every edge is at mo$d(n) times critical. The number of
iterations is thus bounded t&(nm). O

References

The presentation of the material in this section is base@o@ijapter 27] and], Chapter
3]

35

6. Minimum Cost Flows

6.1 Introduction

We consider theninimum cost flow problem

Minimum Cost Flow Problem
Given: A directed graplé = (V, E) with capacitiesw: E — R* and costs :
E — R* and a balance functidn: V — R.
Goal: Compute a feasible flos such that the overall coSteg c(e)f(e) is
minimized.

Here, a flowf : E — R™ is said to bdeasibleif it respects the capacity constraints and the
total flow at every node €V is equal to the balandgu). More formally, f is feasible if
the following two conditions are satisfied:

1. Capacity constraint: for every(u,v) € E, f(u,v) <w(u,v).
2. Flow balance constraints:for everyu € V,

f(u,v) — Z f(v,u) = b(u).
(uv)eE (wu)eE
Intuitively, a positive balance indicates that nadéas asupplyof b(u) units of flow,
while a negative balance indicates that nodeas ademandof —b(u) units of flow. A
feasible flowf that satisfies the flow balance constraints vbith) = O for everyu e V is
called acirculation.

Theminimum cost flow problean naturally be formulated as a linear program:

minimize EEc(e)f(e)

subject to z f(u,v) — z f(vyu) = b(u) YueV

(uv)eE (wu)eE (6)
w(e) VeeE
0 VecE

O
IV IA

We usec(f) = Yece C(€) f(e) to refer to the total cost of a feasible fldw We make a few
assumptions throughout this section:

Assumption 6.1. Capacities, costs and balances are integral.

Note that we can enforce this assumption if all input numlaeesrational numbers by
multiplying by a suitably large constant.

Assumption 6.2. The balance function satisfi€g,cy b(u) = 0 and there is a feasible
flow satisfying these balances.

Note that we can test whether a feasible flow exists by a simgbe-flow computation
as follows: Augment the network by adding a super-sograed a super-targét Add

36

(a) (b)

Figure 8: (a) Minimum cost flow instance. Every edgev) is labeled withc(u, v), w(u, v)
and every node is labeled withb(u). (b) Augmented network to test feasibility. Every
edge(u,v) is labeled withw(u, v).

an edges,u) for every nodeu € V with b(u) > 0 of capacityw(s,u) = b(u). Similarly,

add an edgéu,t) for every nodas € V with b(u) < 0 of capacityw(u,t) = —b(u). Now,
compute a maximurs,t-flow in the augmented network. It is not hard to see that there
is a feasible flow for the original instance if and only if theximum flow saturates all
edges out o§ (or, equivalently, intd).

Subsequently, 189V = maxce W(e) refer to the maximum capacity of an edde =
maxck c(€) to the maximum edge cost aBd= max,ey b(u) to the maximum balance.

6.2 Flow Decomposition and Residual Graph

We establish a few basic properties of flows and circulatansintroduce the important
concept of residual graphs.

Lemma 6.1. Let f be circulation of G. Then f can be decomposed into at mest/E|
directed simple cycle flows.

Proof. LetG{ = (V,E{) be thesupport subgraplef G that contains all edges with posi-
tive flow value with respect té, i.e.,

Ef ={ecE | f(e) >0}

Consider an arbitrary directed simple cy€lén G{. Letx be the smallest flow value of
an edge irC, i.e.,x = minecc f(e). We can decomposk such thatf = ' + fc, where
fc(u,v) = x for every(u,v) € C and fc(u,v) = 0 otherwise. Note that’ is a circulation
and fc is a cycle flow. We can now repeat this procedure wWitinstead off. Note that

at least one edgeof C must satisfyf’(e) = 0 and thus vanishes from the support graph
of f'. After at mostm iterations, we therefore obtain a decompositiorf @onsisting of

at mostmdirected simple cycle flows. O

As for the maximum flow problem, the concept ofesidual graphwill play a crucial

37

role: Supposd is a feasible flow ofG. We introduce for each edge= (u,v) € E the
reverse edgév,u) with costc(v,u) = —c(u,v). Subsequently, these edges will be called
backward edgesln contrast, we refer to the original edgesv) € E asforward edges
Theresidual capacityof a forward edgeu,v) is defined as ¢ (u,v) = w(u,v) — f(u,v).
The residual capacity of a backward edggy) is r;(v,u) = f(u,v). Theresidual graph

Gt = (V, Ef) with respect tof is the graph that contains all edges with positive residual
capacity.

Consider a directed simple cydlzin the residual grapfs;. Let theresidual capacityof
Cber¢(C) = mineccr¢(e). We can then pusk=r;(C) additional units of flow alon@¢
to obtain a feasible flowW’. Observe that an increaseofinits on a backward edde u)
corresponds to a decreasexafinits on the forward edg@i,v) € E. More formally, the
flow ' that we obtain fronf by augmenting x units of flow alongi€ defined as follows:
for every edgee= (u,v) € E, we have

f(u,v)+x if (uv)eC
f'(u,v) =< f(uv)—x if (vu)eC
f(u,v) otherwise.

Let the total cost of a cycl€ in Gt bec(C) = JgcC(€).

Lemma 6.2. Let f be a feasible flow of G and let C be a directed simple cycl&i.
Suppose ‘fis a flow that is obtained from f by augmentingx ; (C) units of flow along
C. Then fis a feasible flow of G. Moreover, we havydQ = c(f) +x-¢(C).

Proof. Observe thak < r¢(u,v) for every edgeu,v) € C. If (u,v) € C is a forward
edge, thenf’(u,v) = f(u,v) +x < f(u,v) +w(u,v) — f(u,v) <w(u,v). If (vu)eCis
a backward edge, thefi(u,v) = f(u,v) —x > f(u,v) — f(u,v) = 0. The new flowf’
therefore respects the capacity and non-negativity caingst

Note that by pushing units of flow alongC, the flow at a node that is not part ofC
remains the same. Consider a nadthat is part ofC. BecauseC is simple there are
exactly two edges df incident tou, saye; ande,. Note that the flow on all other edges
incident tou remains the same. Also, the flomatemains the same by pushirgnits of
flow alonge; ande,. (Note that in order to verify this we need to consider fodfedent
cases, depending on whetlmrande, are forward or backward edges.) We therefore
have

(uv)eE (wu)eE (uv)eE (wu)eE
The flow balance constraints are therefore satisfied.

Finally, observe that by pushingunits of flow alongC we effectively increase the cost
of the flow byx- c(u, V) for every forward edgéu,v) € CNE and decrease the cost of the

38

flow by x- c(u,v) for every backward edg@,u) € C\ E. The total cost off’ is

c(f’):Z;c(e)f’(e)ngc(e)f(e)Jr S oxcuv)— Y xcuv)

ec ec (uv)eCnNE (vu)eC\E

=c(f)+x zcc(e) =c(f)+x-¢(C).

ec

We can generalize the above lemma as follows:

Lemma 6.3. Let f be a feasible flow of G and let g be a circulation of tBat respects
the residual capacitiesit Then f can be obtained from f by augmenting along k simple
cycles G, ...,C with k< 2m such that €f') = ¢(f) 4 c(g), where ¢g) = Y e, C(€)9(€)

is the total cost of g in the residual graph G

Proof. Using Lemma&5.1, we can decompogginto at mosk directed simple cycle flows
fc,. .., fg, with k < 2m. (Recall thatGs has at most h edges.) Each cycl€; cor-
responds to a directed cycle @. By pushingfc, units of flow along every cycl€
(1 <i <K), we obtain a new flowf’.? From Lemmab.2 it follows that f' is a feasible
flow of G of total cost

k
c(f') =C(f)+_;fq -¢(Gi) =c(f)+ Z c(e)g(e) = c(f) +c(g).

O

Lemma 6.4. Let f and f be two feasible flows of G. Thehdan be obtained from f by
augmenting flow along at most m cycles ip.G

Proof. Consider the difference = f’ — f. Let E™ be the set of edgei,v) € E with
h(u,v) > 0. Similarly, letE~ be the set of edg€s,v) € E with h(u,v) < 0. Define a flow
g as follows: g(u,v) = h(u,v) for every edgeE" andg(v,u) = —h(u,Vv) for every edge
(u,v) € E~. We claim thag is a circulation inGs.

Note that for every edgeu,v) € ET we have 0< g(u,v) = h(u,v) = f'(u,v) — f(u,v) <
w(u,v) — f(u,v) =r¢(u,v). Thus,(u,v) € Ef andg(u,v) <r¢(u,v). Similarly, for every
edge(u,v) € E~ we have 0< g(v,u) = —h(u,v) = f(u,v) — f'(u,v) < f(u,v) =r¢(vu).
Thus,(v,u) € E; andg(v,u) < r¢(v,u). The flowg therefore respects the residual capaci-
ties of Gg¢.

It remains to be shown thgtsatisfies the flow balance constraints: Note that becauke bot
f” andf are feasible flows i we have for every nodec V

h(u,v) — z h(v,u) =0.
(uv)eE (wu)eE

2We slightly abuse notation here and fet also refer to the flow value that is pushed al@g

39

Using this and the definition df, we obtain

0= Z g(U,V)— Z g(V,U)— Z g(V,U)+ Z g(U,V)

(uv)eE* (uv)eE~ (vu)eE+ (Wu)ee~
= Y guv- ¥ guu- 3T guu+ Y guy)
(uv)€E¢ (vu)<Es (vu)<Es (uv)€E¢
=2(Y guv- Y gwu).

(u,v)EEs (WU)EE¢

Here the second equality follows from the observations abénr every(u,v) € E* we
have(u,v) € E;s, for every(u,v) € E~ we have(v,u) € E;, andg(u,Vv) is non-zero only
on the edges iE™ andE~. We conclude thag is a circulation ofGs.

The proof now follows from Lemm#.3. (Note that there are at most edges with
positive flow ing. Thus,g can be decomposed into at mastycles flows.) O

6.3 Cycle Canceling Algorithm

Lemma6.2 shows that if we are able to find a cycein G; of negative cost(C) < 0,
then we can augmenmt(C) units of flow along this cycle and obtain a floft of cost
strictly smaller thare(f). This observation gives rise to our first optimality conafiti

Theorem 6.1(Negative cycle optimality condition)A feasible flow f of G is a minimum
cost flow if and only if G does not contain a negative cost cycle.

Proof. Supposef is a minimum cost flow an; contains a negative cost cydle By
Lemma6.2, we can augment; (C) units of flow alongC and obtain a feasible flow’
with

c(f') =c(f)+r¢(C)-c(C) < c(f),

which is a contradiction.

Next suppose that is a feasible flow and>¢ contains no negative cycle. Lét be a
minimum cost flow and assumie £ f. By Lemma6.4, f* can be obtained fronf by

augmenting alongx cyclesCy,...,C¢ in G, wherek < m. Let fc, be the flow that is
pushed alon@;. By Lemma6.3, the cost off* is equal to

k
c(f*):c(f)—i-zlfq.c(ci).

By assumption, each such cycle has nonnegative cost and(thiys> c(f). We conclude
that f is a minimum cost flow. O

This leads to our first algorithm:

Note that we can establish a feasible flovay computing a maximum flow as explained
above. This take®(nn?) using the Edmonds-Karp algorithm. Also observe that in each

40

Input : directed graplG = (V, E), capacity functiomw : E — R, cost function
c:E — R™ and balance functioh:V — R.
Output: minimum cost flowf : E — R™.

1 Initialize: compute a feasible flov

2 while G; contains a negative cost cyalie

3 find a directed simple negative cydeof Gt

4 pushr ¢ (C) flow units alongC and letf be the new flow
5 end

6 return f

Algorithm 9: Cycle canceling algorithm.

iteration we have to determine a cycle of negative coskin Using the Bellman-Ford
algorithm, this can be done in tin@nm).

We next bound the number of iterations that the algorithndae¢e compute a minimum
cost flow. Note that an arbitrary flow has cost at mag¥Cbhecause every edge has flow
value at mostV and cost at mosE. On the other hand, a trivial lower bound on the cost
of a minimum cost flow is 0, because all edge costs are nonmeg&very iteration of
the above algorithm strictly decreases the cost of the nuflew f. Since we assume
that all input data is integral, the cost bfiecreases by at least 1. The algorithm therefore
terminates after at moS(mwQ iterations.

Theorem 6.2. The cycle canceling algorithm computes a minimum cost flotinie

O(nmPWC).

Note that the running time of the cycle canceling algoritsmat polynomial becaus¥
andC might be exponential im andm. Algorithms whose running time is polynomial

in the input size (hera andm) and the magnitude of the largest number in the instance
(hereW andC) are said to havpseudo-polynomial running time

As a byproduct, the cycle canceling algorithm shows thakthévays exists a minimum
cost flow that is integral if all capacities and balances aregral (see Assumptidi 1).

Theorem 6.3(Integrality property) If all capacities and balances are integral, then there
is an integer minimum cost flow.

Proof. The proofis by induction on the number of iterations. We cgsuane without loss
of generality that the flowf after the initialization is integral: Recall thétis obtained
by computing a maximum flow in an augmented network as inditabove. Because all
capacities and balances are integral, this augmented rieha&s integral capacities. The
resulting flow is therefore integral by Theorén?. Suppose that the current flofvis
integral after iterations. The residual capacities@ are then also integral and a push
along an augmenting cycle maintains the integrality of #=ilting flow. O

We remark that the above algorithm can be turned into a pohyaletime algorithm if in
each iterations one augments alonm@imum mean cost cyglee., a cycle that mini-

41

mizes the rati@(C)/|C|. A minimum mean cost cycle can be computed in ti@@m).
Using this idea, one can show that the resulting algorithexdmoverall running time of
o(n’mlogn).

6.4 Successive Shortest Path Algorithm

We derive an alternative optimality condition. Suppose ssoaiate @otentialrz(u) with
every nodal € V. Define thereduced cost&u,v) of an edgdu,v) as

c"(u,v) = c(u,v) — 1(u) + 11(Vv).
Note that this definition is applicable to both the originatwiork and the residual graph.

Theorem 6.4(Reduced cost optimality conditionsh feasible flow f of G is a minimum
cost flow if and only if there exist some node potentiely/ — R such that &(u,v) > 0
for every edgéu,v) € E; of G;.

Proof. Suppose that there exist node potentials such ¢f@at,v) > 0 for every edge
(u,v) € Es of the residual grapls:. LetC be an arbitrary simple directed cycle Gy.

Then
Zc(e) = ;c"(e) >0.

We conclude thaGs does not contain any negative cost cycle. By TheoBeinf is a
minimum cost flow.

Let f be a minimum cost flow. By Theoref1, G; contains no negative cycle. Let
J:V — R be the shortest path distances from an arbitrarily chosarcemodes € V

to every other node € V (with respect tac). Note thatd is well-defined becausé
contains no negative cycles. The distance funcianust satisfy the triangle inequality
(see Lemmat.2), i.e., for every edgéu,v) € E¢, d(v) < d(u) 4 c(u,v). Definen(u) =
—0o(u) for every nodeu € V. With this definition, we have for every,v) € E;:

c™(u,v) = c(u,v) — m(u) + m(v) = c(u,V) + d(u) — d(v) > 0,

which concludes the proof. O

We next introduce the notion offgseudoflowA pseudoflowx of G is a functionx: E —
R™ that satisfies the nonnegativity and capacity constrainteednot satisfy the flow
balance constraints. Given a pseudofiquefine theexces®f a nodeu €V as

exgu) = b(u) + z X(v,u) — Z X(u,v).
(vwu)eE (uv)eE

Intuitively, exgu) > 0 means that nodehas an excess ekgu) units of flow;exgu) <0
means that node has a deficit of-exgu) units of flow. We refer to such nodes ecess
anddeficit nodes, respectively. A nodewith exgu) = 0 is said to bebalanced Let

42

V. andV,, respectively, be the sets of excess and deficit nodes wsgieot tox. (For
notational convenience, we will omit the subscrimubsequently.) Observe that

z/exs{u): Z/b(u)zo and thus z exqu) = — z exgu). (7)

ueVv+ uev-
That is, if the network contains an excess node then it mest@ntain a deficit node.

The residual grapkey of a pseudoflowx is defined in the same way as we defined the
residual graph of a flow.

Lemma 6.5. Suppose that a pseudoflow x satisfies the reduced cost ojpficaiditions
with respect to some node potentialsLetd : V — R be the shortest path distances from
some node s V to all other nodes in Gwith respect to € and definem’ = m— 3. The
following holds:

1. The pseudoflow x also satisfies the reduced cost optiralityitions with respect
to the node potentialg’.

2. Thereduced cosf’qu,v) is zero for every edg@y, v) € Ex thatis part of a shortest
path from s to some other node iR.G

Proof. Sincex satisfies the reduced cost optimality conditions with resper, we have
c(u,v) > 0 for every edgdu,v) € Ex. Moreover,d is a distance function and therefore
satisfies the triangle inequality, i.é.(v) < d(u)+c™(u,v) for every(u,v) € Ex. Thus, for
every edgdu,v) € Ex
¢ (u,v) = ¢(u,v) — (7(u) — &(u)) + (7(v) — 5(V))
= c(u,Vv) — m(u) + 1(V) + 6(u) — O(V)

=c(u,v)+ d(u) — d(v) > 0.
This proves the first part of the lemma.

Consider a shortest pafhfrom nodes to some other nodein Gx. Every edg€u,v) € P
must be tight, i.e.d(v) = d(u) 4+ c(u,v). Substitutingc™(u,v) = c(u,v) — m(u) + 11(Vv),
we obtaind(v) = d(u) + c(u,v) — 1(u) + (V). Thus,

cﬁ(u,v) = c(u,v) — 1(u) + (V) + d(u) — d(v) = 0,
which proves the second part of the lemma. O

Corollary 6.1. Suppose that a pseudoflow x satisfies the reduced cost opficahdi-
tions and we obtain’¥rom x by sending flow along a shortest path P (with respect}o ¢
from node s to some other node t in.@hen X also satisfies the reduced cost optimality
conditions.

Proof. Define the potentialst = m— d as in the statement of Lemnf5. Then
c” (u,v) = 0for every edgéu,v) € P. Sending flow along an eddae, v) € P might add the
reversed edgéy, u) to the residual graph. It is not hard to verify tiedt(v,u) = —¢™ (u, V)
and thus the new edde u) also satisfies the reduced cost optimality condition. Thercl
follows. O

43

This corollary leads to the following idea: Start with anitndry pseudoflowx and poten-
tials 1T such that the reduced cost optimality conditions are sadisfiVe then repeatedly
compute a shortest pathfrom some excess nodes V™ to a deficit node € V~ in Gy
with respect tac”™ and push the maximum possible amount of flow freto t alongP.
The shortest path distances are used to updatéhe algorithm stops if no further ex-
cess node exists. Note that by the above corollary the pflewdosatisfies the reduced
cost optimality conditions at all times. Eventuabiypecomes a feasible flow. By Theo-
rem6.4, x is then a minimum cost flow. The algorithm is summarized inokithm 10;
see Figur® for an illustration.

Input : directed graplG = (V, E), capacity functiorw : E — R, cost function
c:E — R* and balance functiob:V — R.
Output: minimum cost flowx: E — R*.

Initialize: x(u,v) = 0 for every(u,v) € E andm(u) = O for everyu € V
exgu) = b(u) for everyu e V

letVT ={ueV | exgu) >0}andV- ={ueV | exgu) < 0}

while V* £ 0 do

choose a source nodes V*

compute shortest path distangesV — R from sto all other nodes €V in
Gy with respect ta”™

let P be a shortest path frosto some nodéc VvV~

updaterr < m— 90

augmeniA = min{exgs), —exst), ry(P)} units of flow alongP

10 | updatex, Gy, exgs), exgt), V™, V™~ andc™

11 end

12 return x

o U~ W N P

0 ~

Algorithm 10: Successive shortest path algorithm.

Theorem 6.5. The successive shortest path algorithm computes a minirogtiflow in
time Q(nB(m+ nlogn)).

Proof. We show by induction on the number of iterations that the ge#law x satisfies
the reduced cost optimality conditions with respectitd his is sufficient to establish the
correctness of the algorithm because the algorithm tetesnaithV * =V~ = 0 and the
final pseudoflowk is thus a flow. It then follows from Theoref4thatx is a minimum
cost flow.

After the initialization,x is a pseudoflow any = G. Sincer(u) = 0 for everyu € V,
c(u,v) = c(u,v) for every(u,v) € Ex. Since all edge costs are assumed to be nonneg-
ative, x satisfies the reduced cost optimality conditions with resper. Let x be the
pseudoflow at the beginning of iteratiorand assume that it satisfies the reduced cost
optimality conditions with respect ta. The shortest path distancésare well-defined
becausdsy does not contain a negative cycle with respeatoBy (7), V' is nonempty

iff V~ is nonempty. The algorithm therefore succeeds in findingaatsht path frons

to some nodeé € V~ because otherwise the problem would be infeasible. (Réuail

we assume that there is a feasible solution; see AssumptionBy Corollary6.1, the

44

Figure 9: lllustration of the successive shortest pathrittym. The residual grapfy
with respect to the current pseudoflows depicted. Every edggu,v) is labeled with
c(u,v),rx(u,v) and every node is labeled withexgu), r(u). (a) Gx with respect to
x=0andmr= 0. (b) Gy after potential update: two units of flow are sent along thie bo
path. (c)Gx after flow augmentation. (d}y after potential update: two units of flow are
sent along the bold path. (& after flow augmentation: no further excess/deficit nodes
exist and the resulting flow is optimal.

45

pseudoflow that we obtain fromby sendingA units alongP satisfies the reduced cost
optimality conditions with respect ta— 9.

It remains to be shown that the algorithm terminates. In dé®cation,A is chosen such
that eithers or t become balanced or one of the edgeFobecomes saturated. Each
iteration therefore strictly reduces the excess of the eéh@®urce nods. Since we
assume that all input data is integral, the excesi®feduced by at least 1. The algorithm
therefore terminates after at mod iterations. Each iteration requires to solve a single
source shortest path problem with respect’o Because the reduced costsare non-
negative, we can use Dijkstra’s algorithm which requi®és+ nlogn) time. The overall
running time of the successive shortest path algorithmus@{nB(m+ nlogn)). O

6.5 Primal-Dual Algorithm

We use linear programming duality to derive our third altfori for the minimum cost
flow problem. We associate a dual varialbt@) with every nodeu € V anda(e) with
every edges € E. The dual of the linear prograngis as follows:

maximize Z/b(u)rr(u) - Z;W(e)a(e)
subject to lﬁ(u) — (V) — oﬁu,v) < c¢(uv) Y(uv)eE (8)
ae) > 0 VeeE

As in the previous section, let the reduced cost of an gdge) € E be defined as
c(u,v) = ¢(u,v) — (u) + m(v). The above constraints then require thad (u,v) <
c(u,v) and o (u,v) > 0 for every edg€u,v) € E. Since the dual has a maximization
objective and because capacities are nonnegative, an alpdimfution to 8) satisfies
o(u,v) = max{0,—c(u,v)}. In a sense, the dual variabégu,v) are therefore redun-
dant: Given optimal dual values(u) for everyu € V, we can extend this solution to a
feasible dual solutiofr, a) of (8) using the above relation.

We next derive theomplementary slackness conditimighe primal linear prograntj
and the dual linear prograrB)

1. Primal complementary slackness conditionfor every edges € E:
fe>0 = a(e)=-c"(e),
which is equivalent to
fey>0 = c"(e)<0.
2. Dual complementary slackness conditionfor every edges € E:

a(e)>0 = f(e)=w(e),

46

which is equivalent to
c(e)<0 = f(e)=w(e).

Theorem 6.6(Complementary slackness optimality condition&)feasible flow f of G is
a minimum cost flow if and only if there exist dual valugs) for every uc V satisfying
that for every edge € E:

1. Ifc"(e) > Othen f(e) = 0.
2. If c'(e) < Othen f(e) = w(e).

Proof. The proof follows directly from the complementary slacknesnditions. O

The complementary slackness optimality conditions canadlgtbe seen to be equivalent
to the reduced cost optimality conditions that we introdlLearlier:

Theorem 6.7. A feasible flow f satisfies the reduced cost optimality camtbtwith re-
spect to node potentials: V — R if and only if f satisfies the complementary slackness
optimality conditions with respect tw.

Proof. Suppose&™(u,v) > 0 for every(u,v) € E¢. Let (u,v) € E and suppose’(u,v) <
0. Then(u,v) ¢ Es and thusf(u,v) = w(u,v). Next suppose™(u,v) > 0. Because
c(v,u) = —c™(u,v) < 0, the backward edge, u) is not part ofG; and thusf (u,v) = 0.

Assume that the complementary slackness conditions aséieafor every edgéu,v) €
E. Consider a forward edge,v) € E;. Thenf(u,v) < w(u,v) and thusc™(u,v) > 0.
Next consider a backward ed@eu) € E;. Thenf(u,v) > 0 and thus™(u,v) < 0. Since
c(v,u) = —c™(u,v), we conclude that™(v,u) > 0. O

The primal-dual algorithm for the minimum cost flow probleatiéws a genergbrimal-
dual paradigm We start with an infeasible primal soluticrand a feasible dual solution
1. We ensure that the algorithm satisfies the complementackiséss conditions with
respect tax and 1T throughout the entire execution of the algorithm. The &tor suc-
cessively reduces the degree of infeasibility of the prismlitionx with respect to the
current dual solutiort. If no further improvement is possible, therwill be updated so
as to ensure that the infeasibility wtan be further reduced. The dual solutmremains
feasible throughout the entire process. Eventuglly,a feasible primal solution and thus
a minimum cost flow.

The algorithm works with a transformed instance of the pobhaving exactly one ex-
cess and one deficit node: Augment the original graph by adalisuper-source and

a super-targeé. Add an edge(s,u) for every nodeu € V with b(u) > 0 of capacity
w(s,u) = b(u) and cost(s,u) = 0. Similarly, add an edgg,t) for every nodes € V with

b(u) < 0 of capacityw(u,t) = —b(u) and costc(u,t) = 0. Letb(s) = ¥ ,cv:pu)>ob(U)
andb(t) = ¥ yev:nu)<ob(u). All other balances are set to zero. Clearly, every minimum
cost flow in the augmented network corresponds to a minimwhféaw in the original
network and vice versa. Subsequently, we will use the autgderetwork.

47

The algorithm starts with the pseudofloie) = 0 for everye € E and dualm(u) = 0
for everyu € V. Note thatx is an infeasible primal solution ant is a feasible dual
solution. Alsox andrt satisfy the complementary slackness conditions becaunsvéoy
edgee € E, x(e) = 0 andc™(e) = c(e) > 0.

In order to reduce the infeasibility of the algorithm basically pushes as much flow as
possible froms to t along shortess, t-paths inG4. Letd : V — R be the shortest path
distances frons to all other nodesi € V in G with respect toc™. Definerr’ = m— 9.
Then every shortestt-path inG, with respect t&” is a zero cost path with respectct’é
and vice versa. Let thedmissible graph &be the subgraph @ = (V, E) that consists
of all edgese € Ex with c’{(e) = 0. The algorithm computes a maximum flgfin G2,
where the capacities of the edges are their respectiveuadsidpacities. We can then
augmenk by g° in the obvious way: Increase the flow valk(@, v) of every forward edge
(u,v) € E by g°u,v) and decrease the flow valuéu,v) of every backward edggv, u)
by g°(v,u). As a result, the excess ais reduced by the flow valuggP|. It is not hard
to see that the resulting flow is a pseudoflow. Moreover, in light of Theores7 and
Corollary6.1, X satisfies the complementary slackness conditions witlesp the new
feasible dualt'.

The algorithm continues in this manner until eventuallytihtal excess of is exhausted
and the pseudoflow becomes a flow. Since the algorithm maintains the invarfsatix
andrr satisfy the complementary slackness conditionsraigla feasible dual solutiorx,
(and alsar) are eventually optimal solutions to the respective liragrams in §) (and

(8))-

The algorithm is summarized in Algorithfrl; see FigurelOfor an illustration.

Input : directed graplt@ = (V,E), capacity functiomw : E — R, cost function
c:E — R" and balance functiob:V — R.
Output: minimum cost flowx: E — R™.

1 Initialize: x(u,v) = 0 for every(u,v) € E andr(u) = O for everyu € V
2 exgs) = b(s)
3 while exgs) > 0do

4 compute shortest path distan@esV — R from sto all other nodesi €V in
Gy with respect ta”™
5 updatert < m— 90
6 construct the admissible netwo@{
7 | compute a maximum flog® fromstot in G2
8 | augmenk by g°
9 updatex, exgs), Gx andc™
10 end
11 return x

Algorithm 11: Primal-dual algorithm.

Theorem 6.8. The primal-dual algorithm computes a minimum cost flow inetim
O(min{nC,nB} - nn¥).

48

@) (b)

(© (d)

0,0

0,1
(e)

Figure 10: lllustration of the primal-dual algorithm. Thesidual graplGy with respect
to the current pseudoflowis depicted. Every edge, v) is labeled withc™(u,v), ry(u, V)
and every node is labeled withexgu), i(u). (a) Gx with respect tax =0 andrr=0

of the transformed network of the example instance depict&dgure8(a). (b) Gy after
potential update: max flow i60 has value 2. (cf5« after flow augmentation. (d3y after
potential update: max flow iG has value 2. (ef5« after flow augmentation: excess of
source nodsis zero and the resulting flow is optimal.

49

Proof. The correctness of the algorithm follows from the discussibove.

Observe that in each iteration, the excess isfreduced by at least 1 (assuming integer
capacities and balances). The maximum number of iteraisathsis at moshB, which is
the maximum excess afat the beginning of the algorithm.

We can establish a second bound on the number of iterationsadh iterationg® is a
maximum flow inG2. By the max-flow min-cut theorem, there is a ¢t X) in G2 such
that for every edgéu,v) with ue X andv € X, g°(u,v) = r«(u,v). As a consequence,
after the augmentation, all these edges vanish from theualksjraphG,, of the new flow

X. Thus, eveng,t-path inG, has length at least 1 with respemdé(u,v) (because edge
costs are integral). The potentialtotherefore reduces by at least 1 in the next iteration.
Note that no node potentiat(u) for u # s can ever be less thannC (think about it!).
The total number of iterations is therefore bounded8y

The running time of each iteration is dominated by the slsbath and max flow com-
putations. The total running time is thus at m@gmin{nC, nB} - nn). O

References

The presentation of the material in this section is based pGlapter 9].

50

M M* M A M*

Figure 11: lllustration of the existence of draugmenting path.

7. Matchings

7.1 Introduction

Recall that anatching Min an undirected grapB = (V, E) is a subset of edges satisfying
that no two edges share a common endpoint. More formdll¢ E is a matching if for
every two distinct edge@u, v), (x,y) € M we have{u,v} N {x,y} = 0. Every nodai € V
that is incident to a matching edge is said torbatched all other nodes are said to be
free. A matchingM is perfectif every nodeu € V is matched by.

We consider the following optimization problem:

Maximum Matching Problem

Given: An undirected grapB = (V,E).
Goal: Compute a matching C E of G of maximum size.

Note that if the underlying graph is bipartite, then we calwesthe maximum matching
problem by a maximum flow computation.

Given two setsS T C E, let SA T denote thesymmetric differencef S andT, i.e.,
SAT=(S\T)U(T\9).

7.2 Augmenting Paths

Given a matchingM, a pathP is calledM-alternating(or simplyalternating if the edges
of P are alternately irM and not inM. If the first and last node of all-alternating
pathP are free, therP is called anM-augmentingor augmentiny path. Note that an
augmenting path must have an odd number of edgesMAgugmenting patf® can be
used to increase the size . Simply make every non-matching edge B matching
edge and vice versa. We also say thataugment M along P

51

O
Q
O

Figure 12: lllustration of an alternating tree. The nodeX iandY are indicated in white
and gray, respectively. Note that there is an augmentirtgfpatnr to v.

Theorem 7.1. A matching M in a graph G= (V,E) is maximum if and only if there is no
M-augmenting path.

Proof. SupposéM is maximum and there is dfi-augmenting patP. Then augmenting
M alongP gives a new matchinyl’ = M A P of size|M| + 1, which is a contradiction.

Suppose thatl is not maximum. LeM* be a maximum matching. Consider the symmet-
ric differenceM A M*. Becausé/ andM* are matchings, the subgra@h= (V,M A M*)
consists of isolated nodes and node-disjoint paths anésydhe edges of every such
path or cycle belong alternately & andM*. Each cycle therefore has an even number
of edges. Becaug®*| > |M| there must exist one pakhthat has more edges bf* than

of M. P is anM-augmenting path; see Figuté for an illustration. O

7.3 Bipartite Graphs

The above theorem gives an idea how to compute a maximum imgtcBtart with the
empty matchingVl = 0. Find anM-augmenting patl? and augmenil alongP. Repeat
this procedure until né-augmenting path exists amlis maximum.

A natural approach to search for augmenting paths is totifeip build analternating
tree SupposeM is a matching and is a free node. We inductively construct a tiee
rooted atr as follows. We partition the node set dfinto two setsX andY: For every
nodeu € X, there is an even-length alternating path frotauin T; for every nodei €'Y,
there is an odd-length alternating path froto u in T. We start withX = {r} andY =0
and then iteratively extentl using the following operation:

EXTEND TREE USING(U,V):
(Precondition(u,v) € E,ue X,v¢ XUY and(v,w) € M)
Add edge(u,v) to T, vtoY, edge(v,w) to T andw to X

This way we obtain a layered tree rooted gstarting with layer 0); see Figurg2 for
an illustration. All nodes ifX are on even layers and all nodesYirare on odd layers.
Moreover, every node in layei 2 1 (i > 1) is matched to a node in layei. 2n particular,
IX|=1]Y|+1.

52

Input: undirected bipartite grap8 = (V,E).
Output: maximum matchingJ.

1 Initialize: M =0

2 foreachr €V do

3 if r is matchedhen continue
4 else

5 X={r},Y=0T=0
6 while there exists an edge,v) € E with ue X and v¢ X UY do
7 if v is freethen AUGMENT MATCHING USING (u,V)

8 elseEXTEND TREE USING(U,V)

9 end

10 end

11 end

12 return M

Algorithm 12: Augmenting path algorithm.

Suppose that during the extension of the alternatingftree encounter an edda,v) € E
with u € X andv ¢ XUY being a free node. We have then found an augmenting path from
r tov; see Figure 2.

AUGMENT MATCHING USING (U,V)
(Precondition(u,v) € E,ue X,v¢ XUY free)
AugmentM along the concatenation of thes-path inT with edge(u, v)

These two operations form the basis of the augmeting patbritiigh given in Algo-
rithm 12.

The correctness of the algorithm depends on whether attegniwees truly capture all
augmenting paths. Clearly, whenever the algorithm findsugmenting path starting at
r, this is an augmenting path. But can we conclude that theme Bugmenting path if
the algorithm does not find one? As it turns out, the algorithonks correctly if the
underlying graph satisfies thenique label property A graph satisfies thenique label
propertywith respect to a given matchirg and a root node if the above tree building
procedure uniquely assigns every nade V(T) to one of the setX andY, irrespective
of the order in which the nodes are examined.

Lemma 7.1. Suppose a graph satisfies the unique label property. If thrigts an M-
augmenting path, then the augmenting path algorithm finds it

Proof. Let P = {(r,...,u,v) be an augmenting path with respectNb Because of the
unique label property, the algorithm always ends up withirgidhodeu to X and thus
discovers an augmenting path via edgev). O

Using the above characterization, we can show that the aotimyepath algorithm given
in Algorithm 12 is correct for bipartite graphs: Recall that in a bipartitepgh, the node
setV is partitioned into two setgy andV;. Every node that is part & (T) and belongs

53

o
O— =0 O——(>)
0

(@) (b)

Figure 13: lllustration of a blossom shrinking. (a) The ogdle B = (b, p,u,v,q,b)
constitutes a blossom with babeand stem(r,x,b). Note that there is an augmenting
path fromz to r via edge(u,v). (b) The resulting graph after shrinking bloss@&nnto a
super-nodé.

to the setv; with r € V; is added taX; those that belong td;_; are added t¢&y. Thus
bipartite graphs satisfy the unique label property.

Theorem 7.2. The augmenting path algorithm computes a maximum matchibigpar-
tite graphs in time @nm).

Proof. The correctness of the algorithm follows from the discussioove. Note that each
iteration can be implemented to run in tif®&n+ m) and there are at mostiterations.
O

7.4 General Graphs

Itis not hard to see that graphs do in general not satisfyrigie label property. Consider
an odd cycle consisting of three eddea), (u,v), (v,r) and suppose thdt,v) € M and

r is free. Then the algorithm addsto Y if it considers edgér,u) first, while it addsu

to X if it considers edgér,v) first. Odd cycles are precisely the objects that cause this
dilemma (and which are not present in bipartite graphs).

A deep insight that was first gained by Edmonds in 1965 is thaian “shrink” such odd
cycles. Suppose during the construction of the alternatewy the algorithm encounters
an edgeg(u,v) with u,v € X; see Figurel3(a). Letb be the lowest common ancestor of
uandvin T. Note thatb € X. Consider the cycl® that follows the uniqué, u-path in
T, then edg€u,v) and then the uniqueb-path inT. B is an odd length cycle, which
is also called &lossom The nodeb is called thebaseof B. The even length path from
b to the root node is called thestemof B; if r = b then we say that the stem Bfis
empty. Suppose we shrink the cyd@eto a super-node, which we identify with) see
Figure13(b). Note that the super-notebelongs toX after shrinking.

SHRINK BLOSSOM USING (U, V):
(Precondition{u,v) € E andu,v € X)
Letb be the lowest common ancestonoandvin T.
Shrink the blossorB = (b,...,u,V,...,b) to a super-nodb.

54

Let G’ be the resulting graph and Ist’ be the restriction oM to the edges ofs’. The
next two lemmas show that by shrinking blossoms, we do nobatltse any augmenting
paths.

Lemma 7.2. Suppose there is an’Miwugmenting path Pfrom r to v (or the respective
super-node) in G Then there is an M-augmenting path from r to v in G.

Proof. If P’ does not involve the super-nobethenP’ is also an augmenting path @&
Suppose?’ contains the super-node There are two cases we need to consider:

Case 1r #b. LetP’ = {r,...,x,b,z...,Vv) be the augmenting path {#. Let P, andP,,

refer to the subpath,...,x) and(z,...,v) of P, respectively. Note thdi,b) € M’ and

(b,z) ¢ M. If we expand the blosso corresponding to super-nobiethenb is the base
of B with incident matching edgéx, b). Let p be the node oB such that(p, z) is part of

G. Then there is an even length-alternating patt®,, = (b,...,p) frombto pin B. The

pathP = (P, (X,b),Pyp, (P, 2), P, is anM-augmenting path its.

Case 2:;r =b. LetP' = (b,z...,v) be the augmenting path i@. LetP,, refer to the
subpath(z,...,v) of P’. If we expand the blossom corresponding to super-nobtethen
bis the base oB which is free. Letp be the node oB such tha{p,z) is part ofG. Then
there is an even lengthl-alternating pattf,, = (b,...,p) from b to pin B. The path
P = (b,Ryp, (p,2),P,,) is anM-augmenting path ig®. O

Lemma 7.3. Suppose there is an M-augmenting path P from r to v in G. Theretls an
M’-augmenting path from r to v (or the respective super-noite§).

Proof. We assume without loss of generality thhadndv are the only free nodes with
respect tavl. (Otherwise, we can remove all other free nodes f@mithout affecting
P.) If P has no nodes in common with the nodes of the blosBprthenP is anM’-
augmenting path 6’ and we are done. SuppoBe= {r,...,V) contains some nodes of
B. We consider two cases:

Case 1: The stem &is empty. The baseof Bis then a free node and therefore coincides
with one of the endpoints d¥. Assume that = b; the other case follows similarly. Let

be the last node d? that is part oB and letPp, = (p,z ..., V) be the subpath d? starting

at p. Note that(p,z) ¢ M. The pathP’ = (b,z ...,v) is then anM’-augmenting path in
G.

Case 2: The stem @& is non-empty. LeBy, = {r,...,b) be the stem oB. Consider the
matchingM = M A Py,. Thenr is matched ifVl and thusb andv are the only free nodes
with respect tdvi. Further|M| = |M|. Note thatM is not a maximum matching (because
there is arM-augmenting path i6) and thus als®/ is not a maximum matching. Thus,
there is arM-augmenting pati® in G that starts ab and ends av. Note that the stem

of B with respect td® is empty and we can thus use the proof of Case 1 to show that the
contracted grapB’ contains aM’-augmenting path frorato v. Note thatV’ is different

from M. However, becausd!’| = |M’| we conclude thaB’ must contain an augmenting
path with respect tv’ as well. O

55

The matching algorithm for general graphs is also known ablthssom-shrinkinglgo-
rithm. The algorithm maintains a gra@i of super-nodes and a respective matchitig
on the super-nodes throughout each iteration. At the endaif geration, all super-nodes
of G’ are expanded and the matchikon the original graph is obtained froM’ as
described in the proof of Lemm&a2.

Input: undirected grapls = (V,E).
Output: maximum matchingu.

1 Initialize: M =0

2 foreachr €V do

3 if r is matchedhen continue

4 else

5 G + GandM’ + M.

6 X+ {r},,Y«<0T<+0

7 while there exists an edgel,v) € E' withue X and v¢ Y do

8 if vis free, v=£ r then AUGMENT MATCHING USING (U, V)

9 else ifv ¢ XUY, (v,w) € M’ then EXTEND TREE USING (U, V)
10 elseSHRINK BLOSSOM USING (u, V)

11 end

12 ExtendM’ to a matchingvl of G by expanding all super-nodes Gf.
13 end
14 end
15 return M

Algorithm 13: Blossom shrinking algorithm.

Theorem 7.3. The blossom-shrinking algorithm computes a maximum nragdhigen-
eral graphs in time Qhma (n, 7).

Proof. The correctness of the algorithm follows from Lemmag and 7.3 and The-
orem7.1 It remains to show that the algorithm can be implementedutoin time
O(ma(n,)) per iteration. The key here is to maintain an implicit repreation of
the graphG’ of super-nodes: We keep track of the partition of the origimades into
super-nodes by means otiaion-finddata structure. Considering an edgev) € E dur-
ing an iteration, we need to check whether ege) is part ofG'. This can be done by
verifying whetheru andv belong to the same set of the partition. Shrinking a blossom i
tantamount to uniting the node sets of the respective supées. We have at mostifind
andn union operations per iterations and these operationsitakd(n+ma (n,T)). All
remaining operations (extending the tree, augmenting titelmimg, extracting the match-
ing onG) can be done in tim®(n+ m) per iteration. The time bound follows. O

There are algorithms with better running times for the miatgproblem. For the bipartite
case, Hopcroft and Karp showed that the running time of tlggreanting path algorithm
can be reduced t®(,/nm). The basic idea is to augment the current matching in each
iteration by a maximal set of node-disjoint shortest paih$erms of number of edges).
Using this idea, one can show that the shortest path lengtihedse with each iteration.

56

Now, fix an arbitrary matchinl and supposéM| < k — vk, wherek = |M*| is the car-
dinality of a maximum matching. It is not hard to see that tthere is arM-augmenting
path of length at mostwk+ 1. That is, after at most\Zk + 1 iterations, the algorithm
has found a matchinlyl of size at leask — v/k. After at mosty/k additional iterations,
the algorithm terminates with a maximum matching. Eaclatten can be implemented
to run in imeO(n+ m), which gives a total running tim®(vkm) = O(y/nm). A similar
idea can be used in the general case to obtain an algorithnedhgutes a maximum
matching in timeO(,/nm).

References

The presentation of the material in this section is based o@Hapter 12] andg, Chapter
5].

57

wix<t

° oV

S conv-hul(S)

@) (b)

Figure 14: (a) Finite point s& (b) Convex huliconv-hul(S) and a separating inequality
for v ¢ conv-hul(S).

8. Integrality of Polyhedra

8.1 Introduction

Many algorithms for combinatorial optimization problemsdally exploit min-max re-
lations in order to prove optimality of the computed solatioMe have seen examples
of such algorithms for the maximum flow problem, minimum dibst problem and the
matching problem. A question that arises is whether theaegisneral approach to derive
such min-max relations. As we will see in this section, swations can often be derived
via polyhedral methods

8.2 Convex Hulls

Suppose we are given a finite 8¢ {s1,...,5} C R" of n-dimensional vectors. A vector
x € R" is a convex combinationf the vectors inS if there exist non-negative scalars
A1,..., A with K Ai = 1 such thak = YK ; Ais. Theconvex hulbf Sis defined as the
set of all convex combinations of vectors3nSubsequently, we usnv-hul(S) to refer
to the convex hull of.

Suppose we want to solve the following mathematical prognarg problem: Given
somew € R", max{w'x | x € S}. Intuitively, it is clear that this is the same as maxi-
mizingw' x over the convex hull o§.

Theorem 8.1. Let SC R" be a finite set and let w R". Then

max{w'x | x€ S} = max{w'x | x € conv-hul(S)}.

58

Proof. Letx € conv-hul(S). Then
WX =AW s+ -+ AW’ s < max{w'x | x e S}.

Thus maXw'x | x € conv-hul(S)} < max{w'x | x € S}. Equality now follows because
SC conv-hul(S). O

The next proposition states thawit R"\ conv-hul(S) then there must existseparating
inequality w x < t that separatesfrom conv-hul(S), i.e.,w" x <t for all x € conv-hul(S)
butw’v > t.

Theorem 8.2. Let SC R" be a finite set and let & R"\ conv-hul(S). Then there is a
separating inequality Wx < t that separates v from conv-h(g).

Proof. Note that verifying whethev € conv-hul(S) is equivalent to checking whether
there is a solutioriA, ..., Ay) to the following linear system:

k
_Zl/\is =V 9)
- k
_ZAi =1 (10)
A>0 Vvie{l,.. . k} (11)

Conversely,v € R"\ conv-hul(S) iff the above linear system has no solution. Using
Farkas Lemma (see below) with

S11 - S A V1
A= oo, x=| and b=

Stn .- Skin A Vi

1 ... 1 k 1

we obtain thav € R"\ conv-hul(S) iff there exists &y € R" andz € R such that
(y'2A>0 and (y' 2b<0,
or, equivalently,

yis>-z vie{l...k
ylv< -z
By settingw = —y andt = z, we obtain thaw's <t for everyi € {1,...,k}. TheorenB.1

implies thatw" x < t for everyx € conv-hullS). Moreoverwv > t, which concludes the
proof. O

We state the following proposition without proof.

59

—’
(@) (b)

Figure 15: (a) Polytope described by five linear inequalitiéh) Faces of the polytope
(indicated in bold).

Proposition 8.1 (Farkas Lemma) The system Ax b has a non-negative solutionx0
if and only if there is no vector y such thatA> 0 and y' b < 0.

8.3 Polytopes

A polyhedron PC R" is described by a system of linear inequalities, iR+~ {x €
R" | Ax< b}. A polyhedronP is apolytopeif P is bounded, i.e., there exiktu € R"
such that <x < uforeveryx e P.

An inequalityw”x < t is calledvalid for a polyhedrorP if PC {x c R" | w'x<t}. A
hyperplanas given by{xc R" | w'x=t}. Itis called asupporting hyperplanié w'x <t

is valid for P andPN {x | w'x =t} # 0. The intersection of a supporting hyperplane
with P is called aface In the plane, the faces of a polyhedron are the edges andrcorn
points ofP.

Lemma 8.1. A non-empty set E P = {x | Ax< b} is a face of P if and only if for some
subsystem & < b° of Ax< b, we have = {x€ P | A°x=b°}. Moreover, if F is an
(inclusionwise) minimal face of P, then the rank Sfi&\equal to the rank of A.

A vectorv € Pis avertexof P if {v} is a face ofP. A polyhedronP is pointedif it has at
least one vertex.

Lemma 8.2. If a polyhedron P is pointed then every minimal non-empteg faflcP is a
vertex.

Lemma 8.3. Let P= {x | Ax< b} and ve P. Then v is a vertex of P if and only if v
cannot be written as a convex combination of vectors\{#.

Proof. Supposer is a vertex ofP and letA°x < b° be a subsystem @&x < b such that
{v} ={xe P | A°x=b°}. Supposes can be written as a convex combinatidx; +

60

-+ 4+ AX¢ of vectorsxy, ..., x € P. ThenA°x = b° for everyi € {1,...,k}. Butthisis a
contradiction to the assumption thais the unique solution to the systeffix = b°.

Conversely, supposecannot be written as a convex combination of vectorB in{v}.
Let A°x < b° consist of the inequalities d&x < b which v satisfies with equality. Let
F ={x | A°x=Db°}. It suffices to show that = {v}. Suppose that this is not true. Let
ue F\{v}andconsidertheline={v+A(u—v) | A € R} throughuandv. Clearly,L C

F. For every inequalitg;x < b; of Ax< bwhich is not part ofA°x < b°, we haveax < b;.
We can therefore determine a sufficiently sneatt 0 such that™ = v+ e(u—v) e Pand
v- =v—g(u—v) € P. Butv= 3(v* +v~), which is a contradiction. O

Theorem 8.3. A polytope is equal to the convex hull of its vertices.

Proof. Let P be a polytope. SincB is boundedP must be pointed. L&t = {vy,...,W}
be the vertices oP. Clearly, conv-hullV) C P. It remains to be shown thd& C
conv-hullV). Suppose there exists somes P\ conv-hul(V). Then by Theoren8.2,
there exists an inequality” x < t that separates from conv-hullV), i.e.,w'x < t for
everyx € conv-hullV) andw'u > t. Lett* = max{w'x | x € P} and consider the face
F={xecP | wx=t*}. Becausal € P, we havet* > w'u >t. Thatis,F contains no
vertex ofP, which is a contradiction. O

Theorem 8.4. A set P is a polytope if and only if there exists a finite set Vhdhat P is
the convex hull of V.

The above theorem suggests the following approach to ohbtaiin-max relation for a
combinatorial optimization problem.

1. Formulate the combinatorial probldrhas an optimization problem over a finite
setSof feasible solutions (e.g., by considering all charasterivectors).

2. Determine a linear description cbnv-hul(S).

3. Use duality of linear programming theory to obtain a miaxmelation.

Note that by Theorend.1, solving the problenil over Sis equivalent to solving the
problem overconv-hul(S). By Theoren8.4, there must exist a polyhedral description of
conv-hullS). Thus,IN can be described as a linear program. Dualizing and usinggtr
duality, we can deduce a min-max relation for the problem.

We remark that the results given above show that the aboveagipas such is applicable.
However, there are (at least) two difficulties here: (i) Ih@t clear how to derive a linear
description ofconv-hul(S) above. (ii) Even though such a description is guaranteed to
exist, the number of linear inequalities might be by far d&arthan the size of the original
problem. That is, even if we are able to come up with such arifg®m, this might not
lead to a polynomial-time algorithm.

We exemplify the above approach for therfect matching problerm bipartite graphs.
Let G = (V,E) be a bipartite graph. Recall that a matchingésfectif every node of the
graph is matched. DefieM(G) C RF as the set of characteristic vectors of the perfect
matchings ofG.

Theorem 8.5(Birkhoff’s Theorem) Let G= (V,E) be a bipartite graph. The convex hull

61

of PM(G) is defined as
Xe = 1 YueV
e=(uV)cE (12)
Xe > 0 VecE

Proof. Let P be the polytope defined by ?). Clearly, each perfect matchimxgs PM(G)

is contained irP. It suffices to show that all vertices Bfare integral. Suppose for the sake
of contradiction thak is a vertex ofP that is not integral. LeE = {ec E | 0 < xe < 1}

be the fractional edges af Because€ ¢y v)ce Xe = 1 for every nodeu € V, each node
incident to an edge ik is incident to at least two edgesn Thus, there exists a cycle
Cin E. Also,C must be even becausis bipartite. Letd € RF be a vector that is 0 for
all edges not irC and alternately 1 and 1 for the edges alon@. Because all edges of
C are contained iffE, there is are > 0 such thak' = x+ ed andx™ = x— &d are inP.
Note thatx = %(XJr +Xx7). But this is a contradiction to the assumption tkig a vertex
of P. O

8.4 Integral Polytopes

Many combinatorial optimization problems can naturallyfdmenulated as an integer lin-

ear program. Such programs are in general hard to solve. Wonwsmetimes we are
able to derive a polyhedral description of the problem: Sgepthat by relaxing the in-

tegrality constraints of the IP formulation of the optintioa we obtain a linear program
whose feasible region is an integral polyhedron. We cangbére the optimization prob-

lem in polynomial time simply by computing an optimal sotutito the LP, e.g., by using

Khachiyan'’s ellipsoid method. An important question irstbontext is therefore whether
a resulting polyhedronis integral. Proving integralitypolyhedra is often a difficult task.

We next consider a technique that facilitates showing theetighedron is integral.

Subsequently, we concentrate on rational polyhedra,dayhedra that are defined by
rational linear inequalities. A rational polyhedrBns calledintegral if every non-empty
faceF of P contains an integral vector. Clearly, it suffices to showt theery minimal
face ofP is integral because every face contains a minimal face. thatsf P is pointed
then this is equivalent to showing that every verte®ads integral.

Lemma 8.4. Let Be Z™™ be an invertible matrix. Then Bb is integral for every
integral vector b if and only ifle{B) = +1.

Proof. Suppose d¢B) = +1. By Cramer’s RuleB~ is integral, which implies tha8 b
is integral for every integrah. Conversely, suppos® b is integral for every integral
vectorb. Then alsdB3~1g is integral for alli € {1,...,m}, whereg is theith unit vector.
As a consequenc®! is integral. Thus, déB) and detB~1) are both integers. This in
combination with deB) detB~!) = 1 implies that deB) = +1. O

A matrix A is totally unimodularif every square submatrix & has determinant O, 1 or
—1. Clearly, every entry in a totally unimodular matrix is Oprl—1.

62

Theorem 8.6. Let Ac Z™" be a totally unimodular matrix and let & Z™. Then the
polyhedron P= {x | Ax< b} is integral.

Proof. Let F be a minimal face oP. ThenF = {x | A°x = b°} for some subsystem
A°x < b° of Ax< b andA° has full row rank. By reordering the columnsAf we may
write A° as(B N), whereB is a basis ofA°. BecauseA is totally unimodular and is a
basis, deB) = +1. By Lemma3.4, it follows thatx = (B’éb‘)) is an integral vector in
F. (|

Let A e R™" be a matrix of full row rank. Abasis Bof A is a non-singular submatrix of
A of orderm. A matrix A of full row rank isunimodularif A is integral and each badss
of Ahas detB) = £1.

Theorem 8.7. Let Ac Z™" be a matrix of full row rank. Then the polyhedron=P
{x | Ax=h, x> 0} is integral for every vector k& Z™ if and only if A is unimodular.

Proof. Supposé\is unimodular. Leb € Z™ and letx be a vertex oP. (Note that the non-
negativity constraint ensures thathas vertices.) Then there amdinearly independent
constraints satisfied by with equality. The columns of corresponding to non-zero
entries ofx are linearly independent. We can extend these columns tsia Baf A.
Note that deB) = +1 becauseA is unimodular. Therx restricted to the coordinates
corresponding t@ is B~'b, which is integral by Lemma&.4. The remaining entries of
are zero. Thusgis integral.

Assume thaP is integral for every integer vectdr. Let B be a basis oA. We need
to show that déB) = 1. By Lemmas8.4, it suffices to show thaB~'v is integral for
every integral vectoy. Letv be an integral vector. Letbe an integral vector such that
z=y+B v>0 and leto = Bz= B(y+B~!v) = By+v. Note thatb is integral. By
adding zero components mwe obtain a vectoz € Z" such thatAZ = Bz=b. ThenZ

is a vertex of{x | Ax=h, x> 0}, because is in the polyhedron and satisfiadinearly
independent constraints with equality: thmeequationsAx = b and then — m equations
x; = 0 for the columns outside oB. SoZ is integral and thuB~lv=z—yisintegral. O

Theorem 8.8. Let Ac Z™". The polyhedron P- {x | Ax< b, x > 0} is integral for
every vector k= Z™M if and only if A is totally unimodular.

Proof. Itis not hard to show thais totally unimodular if and only ifA I) is unimodular,

wherel is them x midentity matrix. By Theoren8.7, (A) is unimodular if and only
if P={z| (Al)z=h, z> 0} is integral for everyb € Z™. The latter is equivalent to
P = {x | AX<b, x> 0} being integral for every € Z™. O

8.5 Example Applications

Theorem 8.9. A matrix A is totally unimodular if

1. eachentryi®, 1or -1,

63

2. each column contains at most two non-zeros;
3. the set N of row indices of A can be partitioned inta_N, so that in each column
j with two non-zeros we havg ey, & j = Yicn, i j-

Proof. Suppose thaA is not totally unimodular. Let be the smallest integer such tliat
is at x t square submatrix oA with detB) ¢ {—1,0,1}. Suppose has a column with
a single non-zero entry, sdy, ;. By expanding the determinant along rgw{Laplace
expansion), we obtain

t o .
de(B) = _Z(*l)'“bi,j'\/'i,j = (=1 by M
i=

whereM; j is theminor defined as the determinant of the submatrix obtained by rérmgov
row i and columnj from B. By (1), b; € {—1,0,1} and because d&) ¢ {—1,0,1},

M j ¢ {—1,0,1}, which is a contradiction to the choice Bf By (2), every column of
B must therefore contain exactly two non-zero entries. By 4dding up the rows d8
(N1 with positive sign N, with negative sign) yields the zero vector. The row vectoes a
therefore linearly dependent and thus(>= 0, which is a contradiction. O

Theincidence matrix A= (aye) of an undirected grap® = (V,E) is ann x m matrix
(n=|V|andm= |E|) such that for every € V ande € E:

1 ife=(uv)eE
Aue= .
0 otherwise

Theincidence matrix A= (aye) of a directed grapks = (V,E) is ann x m matrix such
that for everyu € V ande € E:

1 ife=(uv)eE
aye=4-1 ife=(vu)eE
0 otherwise

The following corollary follows immediately from Theoresno.

Corollary 8.1. If A is an incidence matrix of an undirected bipartite grapham inci-
dence matrix of a directed graph, then A is totally unimodula

Proof. The proof follows from Theoren8.9 by choosingN; = Vp andN, = V; in the
bipartite case (wher¢ =VyUV1) andN; =V andN; = 0 in the directed case. O

Recall that anode covenof an undirected grapB = (V, E) is a subse€ C V such that for
every edge = (u,Vv) at least one of the endpoints is@pi.e.,{u,v} N"C # 0. Letv(G) be
the size of a maximum matching Gfand lett(G) be the size of a minimum node cover
of G.

64

The size of a maximum matching can be formulated as an infrggram:

v(G) = maximize EExe
ec
subject to Xe < 1 YueV
e=(u,v)eE

xe € {0,1} VecE

Equivalently, we can write this IP in a more compact way:

V(G) ={1"x | Ax< 1, x>0, xe Z™, (13)

whereA € Z™Mis the incidence matrix d& with n= [V| andm= |E|.

Similarly, the size of a minimum node cover can be expressed a

7(G) = minimize Y

subjectto yy+yw > 1 Y(u,v) € E
ya € {0,1} VueV
or, equivalently,
1(G)={y'L | Aly>1,y>0,yecZ" (14)

Theorem 8.10. Let G= (V,E) be a bipartite graph. The size of a maximum matching of
G is equal to the size of a minimum node cover of G,w.65) = 7(G).

Proof. LetA € Z™™ be the incidence matrix & with n=|V| andm= |E|. As observed
above, we can expresgG) and1(G) by the two integer linear programs3) and (L4).
Consider the respective LP relaxations d8)and (L4):

V(G)={1"Tx | Ax< 1, x>0} (15)
U(G)={y'1|Aly>1y>0} (16)
Note that both LPs are feasible. Becadsis totally unimodular, both LPs have integral

optimal solutions and thug(G) = v/(G) and1(G) = 1/(G). Finally, observe thatl) is
the dual of ((5). By strong dualityy’(G) = 1/(G), which proves the claim. O

A matrix A is called arinterval matrixif every entry ofA is either 0 or 1 and the the 1's
of each row appear consecutively (without interfering agro

Theorem 8.11. Each interval matrix A is totally unimodular.

65

Proof. Let B be at x t submatrix ofA. Define at x t matrix N as follows:

1 -1 0 .. 0 O
0 1 -1 .. 0 O
N=1: : -
0o 60 0 ... 1 1
0 0 0 .. 0 1

Note that degiN) = 1. ConsidemNB". ThenNB' is a submatrix of an incident matrix
of some directed graph. (Think about it!) TherefoNB' is totally unimodular. We
conclude

detB) = det(N)detB) = de{NB') € {—1,0,1}.

References

The presentation of the material in this section is base@pGhapter 6].

66

9. Complexity Theory

9.1 Introduction

The problems that we have considered in this course so faalbselvableefficiently
This means that we were always able to design an algorithitinéorespective optimiza-
tion problem that solves every instance in time that is poigially bounded in the size
of the instance. For example, we have seen that every instdrtbeminimum spanning
tree problemwith n vertices andn edges can be solved in tin@ m-+ nlogn). Unfortu-
nately, for many natural and fundamental optimization peots efficient algorithms are
not known to exist. A well-known example of such a problemhisttaveling salesman
problem

Traveling Salesman Problem (TSP)

Given: An undirected grapB = (V, E) and non-negative distancésE — Z*
on the edges.

Goal: Find a tour that visits every vertex@fexactly once (starting and ending
in the same vertex) and has minimum total length.

Despite 50 years of intensive research, no efficient algoritas been found for the TSP
problem. On the other hand, researchers have also not besto alisprove the existence
of such algorithms. Roughly speaking, complexity theomsaio answer the question
if the research community has been too stupid or unlucky t difficient algorithms
for optimization problems such as the TSP problem, or theseéhproblem are in fact
intrinsically more difficult than other problems. It proeisla mathematical framework to
separate problems that are computationally hard to sabve the ones that are efficiently
solvable.

In complexity theory one usually considers decision protdenstead of optimization
problems.

Definition 9.1. A decision problentl is given by a set of instancés Each instance
| € 7 specifies

e a setF of feasible solutions fok;
e a cost functiortc: F — Z;
e anintegek.

Given an instancé = (F,c,K) € Z, the goal is to decide whether there exists a feasible
solutionSe F whose cost(S) is at mosK. If there is such a solution, we say thas a
“yes-instance”; otherwiseé,is a “no-instance”.

Example 9.1. The decision problem of the TSP problem is to determine wérdtr a
given instancé = (G,d,K) € Z there exists a tour i@ of total length at mosK.

Many decision problems can naturally be described withweitieed of introducing a cost
functionc and a parameté¢. Some examples are the following ones.

67

Prime:

Given: A natural numben.
Goal: Determine whetheris a prime.

Graph Connectedness

Given: An undirected grapB = (V,E).
Goal: Determine whethds is connected.

Hamiltonian Cycle

Given: An undirected grapB = (V,E).
Goal: Determine whethds has a Hamiltonian cycle.

Subsequently, we will mostly focus on decision problems.riedational convenience we
will use the same naming as for the respective optimizatmmterparts (e.gTSPwill
refer to the decision problem of TSP); no confusion shoukkdrom this.

Recall that an algorithmaLG for a problemll is said to beefficientif it solves every
instancel € Z of N in time that is bounded by a polynomial function of the sizd .of
It is not hard to see that the decision version of an optirfonaproblem is easier than
the optimization problem itself. But in most cases, an effitialgorithm for solving
the decision version can also be turned into an efficientrdlgo for the optimization
problem (e.g., by using binary search on the possible optiaiae).

9.2 Complexity Classe$ and NP

Intuitively, the complexity classeé® andNP refer to decision problems that can $mlved
efficiently and those for which yes-instances canéefiedefficiently, respectively. If we
insisted on formal correctness here, we would define thesses in terms of a specific
computer model calle@iuring machinesHowever, this is beyond the scope of this course
and we therefore take the freedom to introduce these clasg&sa more high-level (but
essentially equivalent) point of view.

We define the complexity clags(which stands fopolynomial-timé.

Definition 9.2. A decision problenil belongs to the complexity clagsif there exists
an algorithm that for every instan¢ez Z determines in polynomial time whethkis a
yes-instance or a no-instance.

All problems that we have treated so far in this course belomigis class. But also tHan-

ear programming problem (LR)elongs to this class, even though the simplex algorithm
is not a polynomial-time algorithm for LP (the interestedder is referred to Section 8.6
in [6]). The simplex algorithm works almost always very fast iagtice for any LP of
whatever size, but as mentioned before the running time afgorithm is determined by
its worst-case running time. For most pivoting rules devi® the simplex algorithm,
there have been constructed instances on which the algohi#is to visit an exponential
number of basic feasible solutions in order to arrive at aimggd one. A polynomial-time
algorithm for LP is theellipsoid methodthe interested reader is referred to Section 8.7 in

68

[6]). This algorithm is an example where the time bound is potyial in the logarithm
of the largest coefficient in the instance next to the numbeadables and number of
restrictions. One of the most interesting open researchtmuns in Operations Research
is whether there exists an algorithm for LP whose runningtima polynomial in the
number of variables and the number of restrictions only.

Next we define the complexity clad#. NP does not stand for “non-polynomial-time”
as one might guess, but for “non-deterministic polynontiiak” because this class is
formally defined in terms of non-deterministic Turing maets.

Given a yes-instanckee 7 of a decision probleniil, we say thatS is a certificatefor

| if Se F andc(S) < K. Note that every yes-instanéemust have a certificate. The
specialty of a problem iNP is that yes-instances admit certificates that can be veiified
polynomial time.

Definition 9.3. A decision problenil belongs to the complexity clad¢P if every yes-
instancd € Z admits a certificate whose validity can be verified in polyiedrtime.

Note that the polynomial-time verifiability d6 implies that the size 0% must be poly-
nomially bounded irjl | (because we need to look @to verify its validity). That is, the
definition above also states that yes-instances of probieiB haveshort i.e., polyno-
mially bounded, certificates.

We consider some examples:

Example 9.2. The Hamiltonian cycle problem is INP: A certificate for a yes-instance
corresponds to a set of edggs E. One can verify irO(n) time whetheiS constitutes a
cycle inG that visits all vertices exactly once.

Example 9.3. Consider the decision variant of the linear programmindpfam:

Linear Programming Problem (LP)
Given: A setF of feasible solutiong = (xy,...,X,) defined bymlinear constraints

n
F = {(xl,...,xn) eRgo : _Za”-xi > bj for everyj = 1,...,m}
i=

together with an objective functiar{x) = S ; cix; and a paramete.
Goal: Determine whether there exists a feasible solutienF that satisfies
c(x) <K.

LPis in NP: A certificate for a yes-instance corresponds to a solutier(xy, ..., X,). We
needO(n) time to verify each of then constraints an@®(n) time to compute the objective
function valuec(x). The total time needed to check whether F andc(x) < K is thus
O(nm).

69

9.3 Polynomial-time Reductions and\NP-completeness

After thinking for a little while, we conclude th& C NP. Several decades of intensive
research seem to suggest that there are probleMB that are intrinsically more difficult
than the ones i? and thusP £ NP: Despite the many research efforts, no polynomial-
time algorithms have been found for problemsNR such asTSR, Hamiltonian cycle
Steiner tregetc. On the other hand, all attempts to show that these gmubare in fact
harder than the ones iR failed as well. The question whethBr£ NP is one of the
biggest mysteries in mathematics to date and constitutesobthe seven millennium-
prize problems; sekttp://www.claymath.org/millenniurfor more information.

Complexity theory attempts to give theoretical evidencih&oconjecture tha # NP. It
defines within the complexity claddP a subclass of most difficult problems, the so-called
NP-completgroblems. This subclass is defined in such a way that idfgrof the NP-
complete problems there will ever be found a polynomialetatgorithm then this implies
that foreveryproblem inNP there exists a polynomial-time algorithm, and tfus NP.
The definition of this class crucially relies on the notiorpofynomial-time reductions

Definition 9.4. A polynomial-time reductiofrom a decision problerfil; to a decision
probleml, is a functiong : Z; — 7, that maps every instantge 7, of I3 to an instance
I = ¢(l1) € Z, of M, such that:

1. the mapping can be done in time that is polynomially bodridehe size of;
2. |1 is a yes-instance dil; if and only if I, is a yes-instance dfl,.

If there exist such a polynomial-time reduction fréh to I, then we say thdfl; can be
reduced td1,, and we will writel1; < 5.

Lets think about some consequences of the above definititamrims of polynomial-time
computability. SupposB1 < I,. Thenll; is more difficult to solve thafl; (which also
justifies the use of the symbel). To see this, note that every polynomial-time algorithm
ALG for M, can be used to derive a polynomial-time algorithn® ; for 1, as follows:

1. Transform the instande of N, to a corresponding instan¢ge= ¢ (11) of M.
2. RunALG», onl, and report thak is a yes-instance if and only #L.G» concluded
thatl, is a yes-instance.

By the first property of Definitio®.4, the transformation in Step 1 above takes time poly-
nomial in the sizen; = |I1] of ;. As a consequence, the size= |I,| of I, is polynomially
bounded im;. (Think about it!) In Step 2ALG> solvesl; in time polynomial in the size
n, of 15, which is polynomial in the siza;.® The overall time needed LG to output

a solution forl; is thus bounded by a polynomial m. Note that the second property of
Definition 9.4 ensures thakLG1 correctly identifies whethdg is a yes-instance or not.

Observe the existence of a polynomial-time algorithmfigrhas in general no implica-
tions for the existence of a polynomial-time algorithm fby, even if we assume that we
can compute the inverse g¢fefficiently. The reason for that is thétis not necessarily a
one-to-one mapping and may thus map the instancElg ¢d a subset of the instances of

3Observe that we exploit here thatpf, p, are polynomial functions im then po(p1(n)) is a polynomial
function inn.

70

http://www.claymath.org/millennium

M, which correspond to easy instancesf Thus, being able to efficiently solve every
instance of 14 reveals nothing about the problem of solvirg.

Itis not hard to show that polynomial-time reductions aam#itive:
Lemma 9.1. If My < M, andM, < M3thenl < Ms.
We can now define the class BP-completgroblems.

Definition 9.5. A decision problenil is NP-completéf

1. M belongs ta\ P,
2. every problem ilNPis polynomial-time reducible tol.

Intuitively, the above definition states that BR-complete problem is as difficult as any
other problem ilNP. The above definition may not seem very helpful at first sigtaw
do we prove thagveryproblem inNP is polynomial-time reducible to the problehwe
are interested in? Lets assume for the time being that thhersceme problems that are
known to beNP-complete. In order to prodP-completeness dil it is then sufficient to
show thatf1 is in NP and thatsome NPcomplete problem is polynomial-time reducible
to M. (Think about it!) That is, showinP-completeness of a problem becomes much
easier now because we “just” need to find an approphié&eomplete problem that can
be reduced to it. Nevertheless, we remark that the reductbmanyNP-completeness
proofs are highly non-trivial and often require a deep ustderding of the structural prop-
erties of the problem.

The classNP has a very precise definition in terms of executions of naerdainistic
Turning machines (which we skipped and persist in skippimg)ich enabled Steven
Cook in 1974 to prove that any such execution can be reduced iostance of a fa-
mous problem in Boolean logic called tisatisfiability problem (SAT{stated below).
Thus, Cook provided us with a problem thatN®-complete. Starting from this, many
other problems were proven to b¥>-complete.

In a way, proving that a problem P-complete is a beautiful way of statirfg:

AL L L L

i
-

“I can't find an efficient algorithm, but neither can all thdaenous people.”

4The illustration is taken from the booK][which is an excellent book on the complexity of algorithms
containing many fundamentdlP-completeness proofs.

71

3-SAT ()
Hamiltonian cycle vertex cover
) | | @
TSP cligue

| @

independent set

Figure 16: Reductions to proddP-completeness of the example problems considered
here; proofs are given for the ones marked with

9.4 Examples ofNP-completeness Proofs

We introduce some more problems and show that thejN&eomplete. However, most
of the reductions are technically involved and will be oedthere because the intention
is to gain some basic understanding of the proof methodotather than diving into
technical details.

We first introduce thesatisfiability problermior which Cook establishedP-completeness.
The basic ingredients axariables A variable reflects an expression which carmeee
or FALSE. For example,

x1 = Koen is taller than Michael and X, = Soup is always eaten with a fork

A variable can also occur negated. For example, we wikgto express thakKoen is
not taller than Michael A literal refers to a negated or unnegated variable. We compose
more complicated expressions, caltddusesfrom literals. An example of a clause is

C = (Xj_\/—|X2\/X3\/X4).

The interpretation is that clau§g is TRUE if and only if x; is TRUE or (indicated byv)
Nnot-Xo iS TRUE Or X3 IS TRUE Or X4 iS TRUE. That is, a clause iSRUE if at least one of
its literals iSTRUE. An instance of the SAT problem isBoolean formula Fn so-called
conjunctive normal form (CNF)

F=CiACyA...ACp,
where eaclg; is a clauseF is TRUE if C; is TRUE and (indicated by\) C, is TRUE and
... andCy, is TRUE, i.e., if all its clauses ar&RUE.

Satisfiability Problem (SAT)

Given: A Boolean formuld in CNF.
Goal: Determine whether there isTeRUE/FALSE-assignment to the variables
such thaF is TRUE.

72

Theorem 9.1. SAT is NP-complete.

The proof is involved and skipped here (the interested meiadeferred to Section 15.5

in [6].)
The following restriction okatisfiabilityis alsoNP-complete.
3-Satisfiability Problem (3-SAT)

Given: A Boolean formuld in CNF with each clause consisting of 3 literals.
Goal: Determine whether there isTRUE/FALSE-assignment to the variables
such thaf is TRUE.

Theorem 9.2. 3-SAT is NP-complete.

The proof reduceSATto 3-SAT We refer the reader t&] Theorem 15.2].
We introduce some more problems and give some exampleB-cbmpleteness proofs.

Let G = (V,E) be an undirected graph. We need the following definitionslidue of G

is a subseV’ of the vertices that induces a complete subgraph, i.e. vienyegwo vertices
u,veV’, (u,v) € E. Anindependent saif G is a subse¥’ of vertices such that no two

of them are incident to the same edge, i.e., for every twacest,ve V', (u,v) ¢ E. A
vertex covepf G is a subse¥’ of vertices such that every edge has at least one of its two
incident vertices itv’, i.e., for every edgéu,v) € E, {u,v} NV' # 0.

Clique:

Given: An undirected grap8 = (V,E) and an integekK.

Goal: Determine whethds contains a clique of size at ledst
Independent Set

Given: An undirected grap8 = (V,E) and an integeK.

Goal: Determine whethd® contains an independent set of size at l&ast

Vertex Cover

Given: An undirected grap8 = (V,E) and an integeK.
Goal: Determine whethds contains a vertex cover of size at mést

Theorem 9.3. Vertex cover is NP-complete.

Proof. We first argue thatertex coveis in NP. A certificate of a yes-instance is a subset
V' CV of vertices with|V’| < K that forms a vertex cover d& = (V,E). This can be
verified in time at mosO(n+ m) by checking whether each edgev) € E has at least
one of its incident vertices i’

In order to prove thatvertex coveris NP-complete, we will show thaB-SAT=
vertex coverNote that this is sufficient becau3eSATis NP-complete.

We transform an instance 8iSATto an instance ofertex covems follows: Consider a
Boolean formuld in CNF with each clause having three literals. hethdm denote the

73

Figure 17: lllustration of the construction in the proof didorem9.3 for the formula
F=(x1VX2V—X3) A (X1 VX2 VXa) A (X2 V X3V Xq). The red vertices constitute a vertex
cover of size&Kk = n+2m=10.

number of variables and clauseskafrespectively. We createvariable-gadgefor each
variablex consisting of two verticex and—x that are connected by an edge. Moreover,
we create alause-gadgetor each claus€ = (I3 V1,V 13) consisting of three vertices
I1,12,13 that are connected by a triangle. Finally, we connect eadiexeepresenting a
literal in a clause-gadget to the corresponding vertexasgmting the same literal in the
variable-gadget. Le® = (V,E) be the resulting graph; see Figuté for an example.
Note that this transformation can be done in polynomial time

We show thaF is satisfiable if and only i has a vertex cover of size at mést n—+2m.
First note that every assignment satisfylgcan be turned into a vertex cover of size
K: For each variable-gadget we pick the vertex that corredpom the literal which is
TRUE. This covers all edges in the variable-gadgets and thedeive connections to the
clause-gadgets. For each clause-gadget we choose twiadbitertices so as to ensure
that all remaining edges are covered. The resulting vereerrchas siz&k = n+ 2m

as claimed. Next suppose that we are given a vertex odvef G of size at mosK.
Note that every vertex cover has to pick at least one verteg\fery variable-gadget and
two vertices for each clause-gadget just to cover all edgeigdé these gadgets. Thus,
V' contains exactlK vertices. The vertices i’ now naturally induce an assignment
as described above that satisfiesWe conclude that yes-instances correspond under the
above reduction, which completes the proof. O

Theorem 9.4. Clique is NP-complete.

Proof. We first argue thatliqueis in NP. A certificate for a yes-instance is a subgét
of vertices that forms a clique. To verify this, we just needheck that there is an edge
between every pair of verticesfi. This can be done i®(n-+ m) time.

We prove thatertex cover< cliquein order to establisiNP-completeness aflique We
need the notion of aomplement grapfor this reduction. Given a grap@ = (V,E), the
complement graph d& is defined as the grap® = (V,E) with (u,v) € E if and only if
(u,v) ¢ E.

Given aninstanc& = (V, E) with parameteK of vertex coverwe create the complement
graph ofG and letG with parameten — K be the respective instanceaigue Note that

74

this mapping can be done in polynomial time by adding an €dgs to E for every pair
of verticesu,v € V with (u,v) ¢ E. This takes at mogd(n?) time.

It remains to show that yes-instances correspond. We clatVt is a vertex cover if

if and only if V \ V' is a clique inG. V' is a vertex cover irG if and only if every edge
(u,v) € E has not both its endpoints 1\ V’, or, equivalently, every edge,v) ¢ E has
not both its endpoints i \ V’. The latter statement holds if and only if for every pair
of verticesu,v € V \ V' there exists an edge, V) € E in G, which is equivalent t& \ V'’
being a clique of5. This proves the claim. We conclude thtis a vertex cover of size
K in Gifand only if V\ V' is a clique of sizen— K in G. O

Theorem 9.5. Independent set is NP-complete.

Proof. We first argue thaindependent sat in NP. A certificate for a yes-instance is a
subsel’ of vertices that forms an independent set. To verify thisjwséneed to check
that there is no edge between every pair of verticé#'inThis can be done i®(n+ m)
time.

We prove thatligue =< independent séh order to establishiP-completeness ahdepen-
dent set We need the notion of eomplement grapfor this reduction. Given a graph
G = (V,E), the complement graph @ is defined as the grapgh= (V,E) with (u,v) € E

if and only if (u,v) ¢ E.

Given an instanc& = (V, E) with parameteK of clique, we create the complement graph
of G and letG with parameteK be the respective instanceiotiependent seNote that
this mapping can be done in polynomial time by adding an €dgs to E for every pair
of verticesu,v € V with (u,v) ¢ E. This takes at mogd(n?) time.

It remains to show that yes-instances correspond. We clatvt is a clique ofG if and
only if V' is an independent set &. Note thatV’ is a clique ofG if and only if for each
pair of vertices iV’ there is an edge i&. The latter is true if and only if for each pair of
vertices inV’ there is no edge i, which is equivalent t&¢’ being an independent set of
G. This proves the claim. We conclude thétis a clique of size&K in G if and only if V’

is an independent set of sikein G. O

Theorem 9.6. Hamiltonian cycle is NP-complete.

The proof follows by reducin§-SATto Hamiltonian cycle The reader is referred t&,
Theorem 15.6].

Theorem 9.7. TSP is NP-complete.

Proof. We argued before thatSPis in NP. The proof now follows trivially because
Hamiltonian cyclds a special case of TSP: Given an insta@ce (V, E) of Hamiltonian
cyclewe construct an instance ®5Pas follows: LetG' = (V,E’) be the complete graph
onV and definal, = 1 if e € E andde = 2 otherwise. Now a tour i’ of length at most
K = nrelates to a Hamiltonian cycle i@ and vice versa. O

75

The above proof actually shows that the restrictiom®Pin which all distances are either
1 or 2 isNP-complete. Becaus€SPis in NP and it is a generalization of this problem,
NP-completeness of SPfollows immediately. The same holds true featisfiability

If we would not know that it isNP-complete but we would know th&-SATis NP-
complete, therNP-completeness oBAT followed automatically using the fact th&t
SATis a special case GAT While restrictions can create an easier subclass of proble
instances, generalizations always create more difficalblems. This gives sometimes
easy ways to shoMP-completeness of problems.

We list some mordlP-complete problems (without proof) that are often used duoe
tions.

2-Partition:
Given: Integers,,...,S.
Goal: Decide whether there is a & {1,...,n} suchthay;css = 3 5141 S.
3-Partition:
Given: Rational numbers, ..., Sz with ;11 <§ < % foreveryi=1,...,3n.
Goal: Determine whether the sft,...,3n} can be partitioned inta triplets

St,...,Sysuchthaly;cg a = 1 foreveryk=1,...,n.

Set Cover.
Given: A universeU = {1,...,n} of n elements, a family ofm subsets
S,...,Sn €U and an integek.
Goal: Determine whether there is a selection of at nkosubsets such that

their union isU.

9.5 More on Complexity Theory

9.5.1 NP-hard Problems

Sometimes we may be unable to prove that a prolieim in NP but nevertheless can
show that all problems ilNP are reducible td1. According to Definition9.5, N does
not qualify to be arNP-complete problem because it is notNiP. Yet, I is as hard as
any other problem ilNP and thus probably a difficult problem. We call such problem
NP-hard An example of such a problem is théh heaviest subset problem

Lth Heaviest Subset Problem
Given: Integersvy, ..., Wy, L and a paramete.
Goal: Determine whether the weight of théh heaviest subset dfl,...,n}
is at leasK. (Formally, determine whether there arelistinct subsets
S,.-, S € {1,...,n} such thatw(S) = Y jcgWj > K for everyi =
1,...,L)

It can be proven that all problemsiNP are polynomial-time reducible to theh Heaviest
Subseproblem (seef, Theorem 16.8]). However, a proof that short certificatastdmr
yes-instance is non-existent. How else could we providertificate for a yes-instance

76

other than explicitly listind- subsets that are heavier th&f (Note that this is not a short
certificate becaude can be exponential in.)

9.5.2 Complexity Class cdNP

Another complexity class that is relatedN® is the classo-NP (which stands focom-
plement of N. Here one considers complements of decision problemsnAxample,
the complement dflamiltonian cyclereads as follows:

Hamilton Cycle Complement

Given: An undirected grapB = (V,E).
Goal: Determine whethé& doesnot contain a Hamiltonian cycle.

There are nshortcertificates known for yes-instances of this problem.

Definition 9.6. A decision problenil belongs to the class ddP if and only if its com-
plement belongs to the clab8. Said differently, a decision problem belongs tolB-f
every no-instance € Z admits a certificate whose validity can be verified in polyfmam
time.

Itis not hard to see that every problenmAmlso belongs to ctdP. Thus,P C NPNco-NP.
Similar to theP # NP conjecture, it is widely believed thatP = co-NP.

Theorem 9.8. If the complement of an NP-complete problem is in NP, thea=NB-NP.

Proof. Assume that the complgmelf_lb of anNP-complete problenfil; is is in NP. We
will show that the complemeni; of anarbitrary problemll; € NP is also inNP thus
showing thatNP = co-NP.

Becausdl; is NP-complete, we know thdl; is polynomial-time reducible tbl,. Note
that the reductiop from Ny to My is also a polynomial-time reduction frofi to M.
We can therefore exhibit a short certificate for every yestaincd, of N1 as follows: We
first transformiy to I = ¢(I1) and then use the short certificate for the yes-instpce

(which must exist becaug@, € NP). We conclude thaffl; is in NP which finishes the
proof. O

Note that the above theorem also implies that if the compigraga problem inNP is
also inNP then (unles$N\P = co-NP) this problem is noNP-complete. Said differently,
a problem that belongs tdPN co-NP is unlikely to beNP-complete. As an example,
consider the linear programming problérR. Using duality theory, it is not hard to see
thatLP € NPNco-NP. BeforeLP was known to be polynomial-time solvable, it was in
fact the above observation that gave strong evidence taothjeature that.P € P.

Exercise 9.1.Show that LR= NP co-NP.

77

9.5.3 Pseudo-polynomiality and StrondNP-completeness

Sometimes the running time of an algorithm is polynomiahia size of the instanand
the largest number in the input. As an example, consideinteger knapsack problem

Integer Knapsack Problem

Given: Integers,, ..., c, and a parameté.
Goal: Determine whether there exist integers .., x, such thats;_, cx =
K.

This problem can be solved as follows: Create a directedhg@g: (V,A) with K+ 1
verticesV = {0,1,...,K} andO(nK) arcs:

A={(,]) | 0<i<j<Kandj=i+cgfor somek}.

Itis not hard to prove that an instankef theinteger knapsackroblem is a yes-instance
if and only if there exists a path from 0 # in G. The latter problem can be solved in
time O(n+ m) = O(nK). This running time imot polynomial in the size of. To see
this, recall that we defined the sizé of | to be the number of bits that are needed to
represent in binary. Making the (reasonable) assumption that..,c, < K, the size

of | is therefore at mogD(nlogK). The running time of the algorithm is therefore not
polynomially bounded in general. HoweverKifis bounded by a polynomial function of
n then the algorithm would be a polynomial-time algorithm.atfs, depending on the
application the above algorithm might indeed be considévdake reasonably efficient,
despite the fact that the problemN$-complete (which it is).

The above observation gives rise to the following definitiddiven an instance, let
num(l) refer to the largest integer appearind in

Definition 9.7. An algorithmALG for a problen 1 is pseudo-polynomiddit solves every
instancd < Z of M in time bounded by a polynomial function jif and nuntl).

Problems that remaiNP-complete even if the largest integer appearing in its digson
is bounded polynomially in the size of the instance is cadteongly NP-complete

Definition 9.8. A problemIT is strongly NRcomplete if the restriction dfl to instances
| € T satisfying that nurtl) is polynomially bounded ifi | is NP-complete.

Note that many problems that we showed tdNBecomplete do not involve any numerical
data that is larger than the input size itself. For examgdlegraph problems such as
Hamiltonian cycleclique, independent severtex coveretc. satisfy nurfl) = O(n) and

are therefore even strongiNP-complete by definition. In fact, alsBSPis stronglyNP-
complete because we establisidfetcompleteness even for instances with distances 1 or
2.

As the theorem below shows, we cannot expect to find a psealyogmial algorithm for
a stronglyNP-complete problem (unless= NP).

Theorem 9.9. There does not exist a pseudo-polynomial algorithm for angtty NP-

78

complete problem, unlessPNP.

Proof. Let I be a stronglyNP-complete problem and suppose thats is a pseudo-
polynomial algorithm forl1. Consider the restrictiofl of M to instanced € Z that
satisfy that nurfl) is polynomially bounded ifil|. By Definition9.8, M is NP-complete.
But ALG can solve every instandeof 1 in time polynomial in|i| and nunl), which is
polynomial in|I_|. This is impossible unled®3 = NP. O

9.5.4 Complexity ClasPSPACE

The common criterion that we used to define the complexilssgld® andNP was time:P
refers to the set of problems that are solvable in polynotinied; NP contains all problems
for which yes-instances can be verified in polynomial timbefe are other complexity
classes that focus on the criterigpaceinstead: The complexity classSPACHEefers to
the set of problems for which algorithms exist that only riegja polynomial amount of
space (in the size of the input).

Definition 9.9. A decision problenil belongs to the complexity clagsSPACHT there
exists an algorithm that for every instarice Z determines whethéris a yes-instance or
a no-instance using space that is polynomially boundeddrsite ofl .

Clearly, every polynomial-time algorithm cannot consumarenthan polynomial space
and thusP C PSPACE However, even exponential-time algorithms are feasilsle a
long as they only require polynomial space. We can use théemvhtion to see that
NP C PSPACE Consider an arbitrary problefdi in NP. We know that every yes-
instances of1 admits a short certificate. We can therefore genealitpotential short
certificates one after another and verify the validity offeane. If we encounter a valid
certificate throughout this procedure then we report thatitistance is a yes-instance;
otherwise, we report that it is a no-instance. The algorithay take exponential time be-
cause the number of certificates to be checked might be erfiaheéHowever, it can be
implemented to use only polynomial space by deleting theiposly generated certificate
each time.

As a final remark: We actually just got a tiny glimpse of the many existing com-
plexity classes. There is a whole “zoo” of complexity classsee, for example, the
wiki pagehttp://qwiki.stanford.edu/index.php/Complexifpoif you want to learn more
about many other complexity classes and their relations.

References

The presentation of the material in this section is basedpGljapters 8, 15 & 16].

79

http://qwiki.stanford.edu/index.php/Complexity_Zoo

10. Approximation Algorithms

10.1 Introduction

As we have seen, many combinatorial optimization problema$l®-hard and thus there
is very little hope that we will be able to develop efficierg@lithms for these problems.
Nevertheless, many of these problems are fundamental dvidgthem is of great im-
portance. There are various ways to cope with these hardesdss:

1. Exponential AlgorithmsCertainly, using an algorithm whose running time is ex-
ponential in the worst case might not be too bad after all ifamy insist on
solving instances of small to moderate size.

2. Approximation Algorithms Approximation algorithms are efficient algorithms
that compute suboptimal solutions with a provable apprexiom guarantee. That
is, here we insist on polynomial-time computation but retexcondition that the
algorithm has to find an optimal solution by requiring thatdmputes a feasible
solution that is “close” to optimal.

3. Heuristics Any approach that solves the problem without a formal goi®on
the quality of the solution can be considered as a heuristithe problem. Some
heuristics provide very good solutions in practice. An egbarof such an ap-
proach idocal search Start with an arbitrary solution and perform local impreve
ment steps until no furtherimprovementis possible. Moezgdveuristics are often
practically appealing because they are simple and thusteasyplement.

We give some more remarks:

Some algorithms might perform very well in practice evenutiio their worst-case run-
ning time is exponential. The simplex algorithm solving lihear programmingproblem

is an example of such an algorithm. Most real-world instamitenot correspond to worst-
case instances and thus “typically” the algorithms’ perfance in practice is rather good.
In a way, the worst-case running time viewpoint is overlygimsstic in this situation.

A very successful approach to attack optimization problemginating from practical
applications is to formulate the problem asiateger linear programming (ILPproblem

and to solve the program blP-solvers such as CPLEX. Such solvers are nowadays very
efficient and are capable to solve large instances. Coristgube rightILP-method for
solving a given problem is a matter of smart engineering. StitR-problems can be
solved by just running an ILP-solver; others can only be etlwith the help of more
sophisticated methods such as branch-and-bound, cydkémg, column generation, etc.
Especially rostering problems, like classes of universitor schedules of personnel in
hospitals, are notorious for being extremely hard to s@liready for small sizes. Solving
ILP-problems is an art that can be learned only in practice.

Here we will focus on approximation algorithms in order tgpeavith NP-hardness of
problems. We give a formal definition of these algorithmg firs

Definition 10.1. An algorithmALG for a minimization problenfll is ana-approximation
algorithmwith a > 1 if it computes for every instandes Z in polynomial time a feasible

80

solutionSe F whose cost(S) is at mosta times the cosOPT(1) of an optimal solution
forl,i.e.,c(S) <a-OPT(l).

The definition is similar for maximization problems. Herdsitmore natural to assume
that we want to maximize a weight (or profit) function 7 — R that maps every feasible
solutionS € F of an instancé € 7 to some real value.

Definition 10.2. An algorithmALG for a maximization problerfl is ana-approximation
algorithmwith a > 1 if it computes for every instandez Z in polynomial time a feasible
solutionSe F whose weight (or profity(S) is at Ieast% times the weighOPT (1) of an
optimal (i.e., maximum weight) solution fori.e.,w(S) > % -OPT(l).

Note that we would like to design approximation algorithnigwthe approximation ra-
tio a being as small as possible. A lot of research in theoreticalputer science and
discrete mathematics is dedicated to the finding of “googiiragimation algorithms for
combinatorial optimization problems.

10.2 Approximation Algorithm for Vertex Cover

We start with an easy approximation algorithm for tiegtex coveiproblem, which has
been introduced before: Given a graBh= (V,E), find a vertex coveY’ C V of small-
est cardinality. Recall that we showed that the decisiofaaaof vertex coveris NP-
complete.

One of the major difficulties in the design of approximatitgoaithms is to come up with

a good estimate for the optimal solution c&RT (). (We will omit | subsequently.)
Recall that a matchiniyl is a subset of the edges having the property that no two edges
share a common endpoint. We call a matchingnaximumif the cardinality ofM is
maximum; we call imaximalif it is inclusion-wisemaximal, i.e., we cannot add another
edge toM without rendering it infeasible. Note that a maximum matchis a maximal

one but not vice versa.

Lemma 10.1.Let G= (V,E) be an undirected graph. If M is a matching of G then
OPT > |M|.

Proof. Consider an arbitrary vertex covét of G. Every matching edggu,v) € M must
be covered by at least one vertexMh i.e., {u,v} NV’ = 0. Because the edgeshm do
not share any endpoints, we hgvé| > |M|. O

We conclude that we can derive an easy 2-approximation iglgofor vertex coveras
follows:

Theorem 10.1. Algorithm 14 is a 2-approximation algorithm for vertex cover.

Proof. Clearly, the running time of Algorithm4 is polynomial because we can find a
maximal matching in time at mo€d(n+ m). The algorithm outputs a feasible vertex

81

Input : Undirected grapls = (V,E).
Output: Vertex covelV’ C V.

1 Find a maximal matchiniy! of G.
2 Output the se¥’ of matched vertices.

Algorithm 14: Approximation algorithm fovertex cover

cover because of the maximality bf. To see this, suppose that the resulting\&eis
not a vertex cover. Then there is an edgev) with u,v ¢ V/ and thus bothu andv are
unmatched irM. We can then add the edge,v) to M and obtain a feasible matching,
which contradicts the maximality d¥1. Finally, observe thafv’| = 2|M| < 20PT by
LemmalO.l |

Note that it suffices to compute a maximal (not necessarilyimuam) matching in Algo-
rithm 14, which can be done in linear tim@(m).

An immediate question that comes to ones mind is whethemthmaimation ratio is best
possible. This indeed involves two kinds of questions inggah

1. Is the approximation ratia of the algorithm tight?
2. Is the approximation ratia of the algorithm best possible foertex cove?

The first question essentially asks whether the analyslsecdipproximation ratio is tight.
This is usually answered by exhibiting an example instance/hich the algorithm com-
putes a solution whose costastimes the optimal one. The second one asks for much
more: Can one show that there is no approximation algorittitim &pproximation ratio

o — ¢ for everye > 0? Such amapproximability resultisually relies on some conjecture
such as thal = NP.

Lets first argue that the approximation ratio of Algorithirhis indeed tight.

Example 10.1.Consider a complete bipartite graph withvertices on each side. The
above algorithm will pick all & vertices, while picking one side of the bipartition con-
stitutes an optimal solution of cardinality The approximation ratio of 2 is therefore
tight.

The answer to the second question is not clear, despitesimteresearch. The currently
best known lower bound on the inapproximability\afrtex covelis as follows (stated
without proof).

Theorem 10.2. Vertex cover cannot be approximated within a factod&606 unless

P =NP.

10.3 Approximation Algorithms for TSP

As introduced before, theaveling salesman probleasks for the computation of a short-
est tour in a given grapB = (V, E) with non-negative edge costsE — R™.

82

We first show the following inapproximability result.

Theorem 10.3. For any polynomial-time computable functiorin), TSP cannot be ap-
proximated within a factor oft (n), unless P= NP.

Proof. Suppose we have an algorithwnG that approximate$SPwithin a factora (n).
We show that we can ugea.G to decide in polynomial time whether a given graph has a
Hamiltonian cycle or not, which is impossible unléss- NP.

Let G = (V,E) be a given graph on vertices. We exten to a complete graph and
assign each original edge a cost of 1 and every other edgetafoa(n). Run the
a(n)-approximation algorithnaLG on the resulting instance. We claim thiatcontains
a Hamiltonian cycle if and only if the TSP tour computed4nG has cost less than or
equal tona (n).

Supposes has a Hamiltonian cycle. Then the optimal TSP tour in theredee graph
has cosnh. The approximate TSP tour computed dyG must therefore have cost less
than or equal tava (n). Supposes does not contain a Hamiltonian cycle. Then every
feasible TSP tour in the extended graph must use at leastdgeecé cosha (n), i.e., the
cost of the tour is greater thamw (n) (assuming tha® has at leash > 2 vertices). Thus,
the cost of the approximate TSP tour computed\bg is greater thama (n). The claim
follows. O

The above inapproximability result is extremely bad newke Eituation changes if we
consider themetric TSPproblem.
Metric Traveling Salesman Problem (Metric TSP)

Given: An undirected complete gra@h= (V,E) with non-negative costs:
E — RT satisfying thetriangle inequality i.e., for everyu,v,w €V,
Cuw < Cuv+ Cyw-

Goal: Compute a tour i that minimizes the total cost.

Themetric TSRroblem remaindiP-complete: Recall that we showed that F@Pprob-
lem is NP-complete by reducinglamiltonian Cycleto this problem. The reduction only
used edge costs 1 and 2. Note that such edge costs alway#tersstmetric. Thus, the
same proof shows thatetric TSHs NP-complete.

We next derive two constant factor approximation algorgtor this problem.

Given a subse® C E of the edges, we defirgQ) as the total cost of all edges@® i.e.,
c(Q) = YecqCe:

The following lemma establishes a lower bound on the optooat:

Lemma 10.2. Let T be a minimum spanning tree of G. TRéRT > c(T).

Proof. Consider an optimal SPtour and remove an arbitrary edge from this tour. We
obtain a spanning tree & whose cost is at mo€2PT. The cost ofT is thus at most
OPT. O

83

This lemma leads to the following id€a:

Input : Complete grapi® = (V, E) with non-negative edge costs E — R™
satisfying the triangle inequality.
Output: TSPtour of G.

Compute a minimum spanning tré&eof G.

Double all edges of to obtain a Eulerian grap®'.
Extract a Eulerian tout’ from G'.

TraverseC’ and short-cut previously visited vertices.
Output the resulting toue.

a A W N P

Algorithm 15: Approximation algorithm fometric TSP

Theorem 10.4. Algorithm15is a 2-approximation algorithm for metric TSP.

Proof. Note that the algorithm has polynomial running time. Alde teturned tour is a
TSP tour by construction. Because edge costs satisfy #uegtd inequality, the tout
resulting from short-cutting the Eulerian to@fin Algorithm 15 has cost at mostc?T),
whereT is the minimum spanning tree computed in StefBy Lemmal0.2, the cost of
Cisthus at most@PT. O

We can actually derive a better approximation algorithm &fjning the idea of Algo-
rithm 15. Note that the reason for doubling the edges of a minimumrspgrireeT was
that we would like to obtain a Eulerian graph from which we ti@an extract a Eulerian
tour. Are there better ways to construct a Eulerian grapttistawith a minimum span-
ning treeT? Certainly, we only have to take care of the odd degree estEay’, of T.
Note that in a tree there must be an even number of odd degrieege

So one way of making these odd degree vertices become evesedegytices is to add
the edges of a perfect matching @hto T. Intuitively, we would like to keep the total
cost of the augmented tree small and thus compute a minimehpedect matching. As
the following lemma shows, the cost of this matching can bated to the optimal cost.

Lemma 10.3. Let V' CV be a subset containing an even number of vertices. Let M be a
minimum cost perfect matching on.\ThenOPT > 2¢c(M).

Proof. Consider an optimalSPtourC of lengthOPT. Traverse this tour and short-cut all
vertices inv \ V'. Because of the triangle inequality, the resulting @uonV’ has length
at mostOPT. C’ can be seen as the union of two perfect matchingg’omhe cheaper
matching of these two must have cost at rn%ﬁPT. We conclude that a minimum cost
perfect matching! onV’ has cost at mosﬁOPT. O

We combine the above observations in the following algaritivhich is also known as
Christofides’ algorithm

5Recall that & ulerian graphis a connected graph that has no vertices of odd degrdgulérian touris a
cycle that visits every edge of the graph exactly once. Gavé&ulerian graph, we can always find a Eulerian
tour.

84

Input: Complete grapi® = (V, E) with non-negative edge costs E — R*
satisfying the triangle inequality.
Output: TSPtour of G.

1 Compute a minimum spanning tré&eof G.

2 Compute a perfect matchid on the odd degree vertic®s of T.
3 CombineT andM to obtain a Eulerian grap@'.

4 Extract a Eulerian tou€’ from G'.

5 TraverseC’ and short-cut previously visited vertices.

6 Output the resulting toue.

Algorithm 16: Approximation algorithm fometric TSP

Theorem 10.5. Algorithm16is a %-approximation algorithm for metric TSP.

Proof. Note that the algorithm can be implemented to run in polyradtitne (computing

a perfect matching in an undirected graph can be done in polial time). The proof
follows because the Eulerian graphhas total cost(T) + c(M). Because of the triangle-
inequality, short-cutting the Eulerian to@* does not increase the cost. The resulting
tour C has thus cost at mostT) + ¢(M), which by Lemmasl0.2and10.3is at most
30PT. O

The algorithm is tight (example omitted). Despite intersigsearch efforts, this is still
the best known approximation algorithm for tmetric TSPproblem.

10.4 Approximation Algorithm for Steiner Tree

We next consider a fundamental network design problem, hatine Steiner tree prob-
lem It naturally generalizes th@inimum spanning tree problem

Steiner Tree Problem

Given: An undirected grap® = (V,E) with non-negative edge costs E —
R™ and a set of terminal nod&sC V.
Goal: Compute a minimum cost tr@ein G that connects all terminals R

The nodes irR are usually callederminals those inV \ R are calledSteinemodes. The
Steiner tregproblem thus asks for the computation of a minimum cost taés® called
Steiner treethat spans all terminals iR and possibly some Steiner nodes. The decision
variant of the problem islP-complete. Note that if we knew the S8t V \ R of Steiner
nodes that are included in an optimal solution, then we ceinighly compute an optimal
Steiner tree by computing a minimum spanning tree on thexegtRU Sin G. Thus,

the difficulty of the problems is that we do not know which &Finodes to include.

We first show that we can restrict our attention without loisgemerality to the so-called
metric Steiner tree problemn the metric version of the problem, we are givencn-
pletegraphG = (V, E) with non-negative edge costs E — R that satisfy thariangle

85

inequality i.e., for everyu,v,w € V, cyw < Cyy+ Cow-

Given a subse® C E of the edges, we defir#Q) as the total cost of all edges® i.e.,
C(Q) = ZeeQ Ce.

Theorem 10.6. There is an approximation preserving polynomial-time m&thn from
Steiner tree to metric Steiner tree.

Proof. Consider an instande= (G, ¢, R) of the Steiner tree probleroonsisting of a graph
G = (V,E) and edge costs: E —+ R™. We construct a corresponding instari¢e=
(G,c,R) of metric Steiner treas follows. LetG’ = (V,E’) be the complete undirected
graph on vertex sat and letE’ be its set of edges. Define the casbf edgee= (u,v) €

E’ as the cost of a shortest path betweemdvin G. (G, c/) is called themetric closure
of (G,c). The set of terminals ihandl’ is identical.

Suppose we are given a Steiner tfle G. Then the cost of the Steiner tréen (G,)
can only be smaller. Next suppose we are given a Steinefftreé(G',c’). Each edge
e= (u,v) € T’ corresponds to a shortast-path inG. The subgraph o& induced by all
edges inl’ connects all terminals iR and has cost at most(T’) but may contain cycles
in general. If so, remove edges to obtain a ffeéa G. Clearly,c(T) < c¢/(T'). O

In light of Theoreml0.6 we concentrate on thaetric Steiner tree problesubsequently.

As mentioned before, the key to derive good approximatigorihms for a problem is
to develop good lower bounds on the optimal cOStT. One such lower bound is the
following:

Lemma 10.4. Let T be a minimum spanning tree on the terminal set R of G. O#feh>
1

5¢(T).

2

Proof. Consider an optimal Steiner tree of c@®T. By doubling the edges of this tree,
we obtain a Eulerian graph of cosDPT that connects all terminals R and a (possibly
empty) subset of Steiner vertices. Find a Eulerian @in this graph (e.g., by traversing
vertices in their depth-first search order). We obtain a Haman cycleC on R by
traversingC’ and short-cutting Steiner vertices and previously visiegthinals. Because
of the triangle inequality, this short-cutting will not irease the cost and the costfs
thus at most(C’) = 20PT. Delete an arbitrary edge 6fto obtain a spanning tree ¢t
of cost at most QPT. The cost of a minimum spanning tréeon Ris less than or equal
to the cost of this spanning tree, which is at ma3fa. O

Lemmal0.4gives rise to the following approximation algorithm.

Theorem 10.7. Algorithm 17 is a 2-approximation algorithm for metric Steiner tree.

Proof. Certainly, the algorithm has polynomial running time andpos a feasible solu-
tion. The approximation ratio of 2 follows directly from Lena10.4. O

86

Input: Complete grapi® = (V, E) with non-negative edge costs E — R™
satisfying the triangle inequality and a set of terminaticesRC V.
Output: Steiner tred onR.

1 Compute a minimum spanning tréeon terminal seR.
2 OutputT.

Algorithm 17: Approximation algorithm fometric Steiner tree

The analysis of Algorithnil0.4is tight as the following
example shows:

Example 10.2. Consider a complete graph that consists o
k outer terminal verticeR= {ty,... ., t} that are connected
to one inner Steiner vertex; see Figui@for an example
with k = 8. The edges to the Steiner vertex have cost 1;
all remaining ones have cost 2. Note that these edge costs
satisfy the triangle inequality. A minimum .spanning tre(-:|:igure 18: Example graph
on the gray vertices has total cogk2- 1) while the min-

imum Steiner tree has colst That is, the approximation ratio of AlgorithfrD.4on this
instance is 2- 2/k. As k goes to infinity, this ratio approaches 2.

There are much better approximation algorithms for thidfmm. The current best ap-
proximation ratio is 1386. Inapproximability results show that the problem carbe
approximated arbitrarily well. In particular, there is n6/95-approximation algorithm
for themetric Steiner treproblem.

10.5 Approximation Scheme forKnapsack

We next consider thenapsack problem

Knapsack Problem

Given: A setN = {1,...,n} of n items with each item € N having a profit
pi € Z* and aweighty; € Z", and a knapsack whose (weight) capacity
isBeZ™.

Goal: Find a subseX C N of items whose total weight(X) = Ticx W is at

mostB such that the total profig(X) = Sicx pi is maximum.

We will assume without loss of generality that< B for everyi € N and thatp; > 0 for
everyi € N; items not satisfying one of these conditions can safelygheried.

Theknapsack probleris NP-hard and we therefore seek a good approximation algorithm
for the problem. As we will see, we can even deriveagproximation schemfor this
problem:

Definition 10.3. An algorithmALG is anapproximation schemfer a maximization prob-
lem N if for every given error parameter > 0 and every instancee Z, it computes a

87

feasible solutior§ € F of profit p(S) > (1—€)OPT(I). An approximation schemeLG
isa
e polynomial time approximation scheme (PTA$)r every fixede > 0 its running
time is polynomial in the size of the instanice
o fully polynomial time approximation scheme (FPTASs running time is poly-
nomial in the size of the instan(teand%.

Note that the running time of a PTAS might grow exponenti'adl%, e.g., likeO(2V/¢n?),
while this is not feasible for a FPTAS.

10.5.1 Dynamic Programming Approach

The algorithm is based on the followirtynamic programmingpproach. Let the max-
imum profit of an item in a given instandebe denoted by(l) (we will omit | subse-

quently). A trivial upper bound on the total profit that anyugmn for | can achieve is
nP. Define for every € N and everyp € {0,...,nP}:

A(i, p) = minimum weight of a subs&C {1,...,i} whose profitp(S) is exactlyp.

Let A(i, p) = « if no such set exists. Suppose we were able to comp(ite@). We can
then easily determine the total profit of an optimal solution

OPT =max{pe€ {0,...,nP} | A(n,p) <B}.

Clearly, A(1,p1) = wi andA(1, p) = o for every p > 0 with p # p;. We further set
A(i,0) = 0 for everyi € N and implicitly assume tha(i, p) = « for everyp < 0. Lets
see how to computé(i+1,p) fori > 1 andp > 0. There are two options: either we
include itemi + 1 into the knapsack or not. If we include iteém- 1, then it contributes
a profit of pi;1 and thus the minimum weight of a subset{df...,i + 1} with profit p

is equal to the minimum weighi(i, p— pi+1) of the firsti items yielding profitp— pi;1
plus the weightv; ;1 of itemi + 1. If we do not include itenh+ 1, thenA(i + 1, p) is equal
to A(i, p). Thus

A(i+1,p) = min{wis1 +AGi, p— pisa), Al p)}- (17)

We can therefore compute the table of entA¢s p) with i € N andp € {0,...,nP} in
time O(n?P).

Note that the dynamic program hpseudo-polynomialinning time (cf. Definitiord.7),
i.e., the running time of the algorithm is polynomial in thzesof the instance (herg and
the largest integer appearing in the instance (rdHowever, we can use this pseudo-
polynomial algorithm in combination with the following roding idea to obtain a fully
polynomial-time approximation scheme for this problem.

88

Input: AsetN = {1,...,n} of items with a profitp; € Z™ and a weightv; € Z* for
every itemi € N and a knapsack capaciec Z*.
Output: SubseX’ C N of items.

1 Sett = [logyo (£2)].

2 Definetruncated profit; = | pi/10 | for everyi € N.

3 Use the dynamic program.{) to compute an optimal solutiok’ for the
knapsack instancgN, (pi), (wi), B).

4 OutputX’.

Algorithm 18: Approximation scheme fdtnapsack

10.5.2 Deriving a FPTAS forKnapsack

Note that the above algorithm runs in polynomial time if abbfits of the items are small
numbers, e.g., if they are polynomially boundechin The key idea behind deriving a
FPTAS is to ignore a certain number (depending on the ernampatere) of least sig-
nificant bits of the items’ profits. The modified profits can bewed as numbers that
are polynomially bounded ifi | and%. As a consequence, we can compute an optimal
solution for the modified profits in time polynomial jH and% using the above dynamic
program. Because we only ignore the least significant hits sblution will be g1 — ¢)-
approximate solution with respect to the original profitsbSequently, we elaborate on
this idea in more detail.

Suppose we truncate the lagigits of each item’s profit. That is, define th@ncated
profit p; of itemi asp; = | pi/10|. Now use the dynamic program above to compute
an optimal solutionX’ for the instance with truncated profits. This takes time astmo
O(n?P/10).

Certainly,X’ may be sub-optimal for the original problem, but its totadfiirelates to the
one of an optimal solutioX for the original problem as follows:

2 P> 3 106> 5 105> 5 (p-10)> 5 pi-n1d.
iex’ iex’ i€ i€

ie

Here, the first and third inequalities hold because of thendiefih of truncated profits. The
second inequality follows from the optimality &f. Thus, the total profit oKX’ satisfies

’ B n1d n1d
p(X’') > p(X) —n10 = OPT <1 W) > OPT <1 T) _

Note that the last inequality holds beca®BT > P. Suppose we wish to obtain an
approximation ratio of - €. We can accomplish this by lettingoe the smallest integer
such thanl0 /P < g, or, equivalently,

Jon(2)]

With this choice, the running time of the dynamic progran®is’P/10') = O(n®/¢).

89

That is, for anye > 0 we have arjl — €)-approximation algorithm whose running time is
polynomial in the size of the instance aéd

We summarize the result in the following theorem.

Theorem 10.8. Algorithm 18 is a fully polynomial time approximation scheme for the
knapsack problem.

References

The presentation of the material in this section is base®oBhapters 1 & 3].

90

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. OrliZNetwork flows: Theory, algorithms, and
applications Prentice Hall, New Jersey, 1993.

[2] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and SeleriA., Combinatorial
optimization Wiley, 1998.

[3] T. H. Cormen, C. Leiserson, R. L. Rivest, and C. Stéiriroduction to algorithms
MIT Press, 2001.

[4] M. R. Garey and D. S. Johnso@pmputers and intractability: A guide to the theory
of NP-completenessV. H. Freeman & Co., New York, NY, USA, 1979.

[5] B. Korte and J. Vygen,Combinatorial optimization: Theory and algorithms
Springer, 2008.

[6] C. H. Papadimitriou and K. SteiglitZZombinatorial optimization: Algorithms and
complexity Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[7] A. Schrijver,Combinatorial optimization: Polyhedra and efficien&pringer, Berlin,
Heidelberg, New York, 2003.

[8] R. E. Tarjan,Data structures and network algorithirSociety for Industrial and Ap-
plied Mathematics, Philadelphia, Pennsylvania, 1983.

[9] Vijay V. Vazirani, Approximation algorithmsSpringer, Berlin, Heidelberg, New-
York, 2001.

	Preliminaries
	Optimization Problems
	Algorithms and Efficiency
	Growth of Functions
	Graphs
	Sets, etc.
	Basics of Linear Programming Theory

	Minimum Spanning Trees
	Introduction
	Coloring Procedure
	Kruskal's Algorithm
	Prim's Algorithm

	Matroids
	Introduction
	Matroids
	Greedy Algorithm for Matroids

	Shortest Paths
	Introduction
	Single Source Shortest Path Problem
	Basic properties of shortest paths
	Arbitrary cost functions
	Nonnegative cost functions

	All-pairs Shortest-path Problem

	Maximum Flows
	Introduction
	Residual Graph and Augmenting Paths
	Ford-Fulkerson Algorithm
	Max-Flow Min-Cut Theorem
	Edmonds-Karp Algorithm

	Minimum Cost Flows
	Introduction
	Flow Decomposition and Residual Graph
	Cycle Canceling Algorithm
	Successive Shortest Path Algorithm
	Primal-Dual Algorithm

	Matchings
	Introduction
	Augmenting Paths
	Bipartite Graphs
	General Graphs

	Integrality of Polyhedra
	Introduction
	Convex Hulls
	Polytopes
	Integral Polytopes
	Example Applications

	Complexity Theory
	Introduction
	Complexity Classes P and NP
	Polynomial-time Reductions and NP-completeness
	Examples of NP-completeness Proofs
	More on Complexity Theory
	NP-hard Problems
	Complexity Class co-NP
	Pseudo-polynomiality and Strong NP-completeness
	Complexity Class PSPACE

	Approximation Algorithms
	Introduction
	Approximation Algorithm for Vertex Cover
	Approximation Algorithms for TSP
	Approximation Algorithm for Steiner Tree
	Approximation Scheme for Knapsack
	Dynamic Programming Approach
	Deriving a FPTAS for Knapsack

