
IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

1

© Sabih H. Gerez, University of Twente, The Netherlands

OUTLINE
• DSP applications
• DSP platforms
• The synthesis problem
• Models of computation

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

2

© Sabih H. Gerez, University of Twente, The Netherlands

DIGITAL VS. ANALOG SIGNAL
PROCESSING

• Digital signal processing
(DSP) characterized by:
– Time-discrete

representation of signals:
signals sampled at regular
time intervals.

– Quantized representation
of signals: signal level is
given by a finite number of
bits.

© Wikipedia

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

3

© Sabih H. Gerez, University of Twente, The Netherlands

APPLICATIONS OF DIGITAL SIGNAL
PROCESSING

• Embedded digital signal processing is everywhere!
• Examples:

– Speech
– Audio
– Video
– Radio/wireless
– Radar
– Any application that processes signals in the digital domain.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

4

© Sabih H. Gerez, University of Twente, The Netherlands

TYPICAL ALGORITHMS
• Filtering: FIR, IIR, with fixed coefficients or adaptive
• Encoding/decoding
• Compression/decompression
• Frequency-domain processing
• Downconversion: shifting carrier frequency in communication
• Etc.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

5

© Sabih H. Gerez, University of Twente, The Netherlands

TYPICAL NUMBERS
• Speech: 8 kHz, 12-16 bits
• Audio: 44 kHz, 16-24 bits, two channels (stereo)
• Video, various formats, e.g.:

– HDTV approx. 2000 by 1000 pixels at 50 frames per second resulting in
data rates of 100 MHz, 3 colors of 8-12 bits each

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

6

© Sabih H. Gerez, University of Twente, The Netherlands

REGISTER-TRANSFER (RT) VIEW OF
HARDWARE

registers

Combinational
logic

Current stateNew state

Primary
inputs

Primary
outputs

Register contents are
updated at rising edge of
system clock.

System clock

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

7

© Sabih H. Gerez, University of Twente, The Netherlands

SAMPLE FREQUENCY VS. SYSTEM
CLOCK FREQUENCY

• The ratio between the system clock frequency and the sample
frequency determines the necessity for parallel processing.

• A single processor clocked at, say, 100 MHz may handle all
audio processing on its own: it has thousands of clock cycles
available per signal sample.

• Video processing may on the other hand require multiple
processors and/or dedicated hardware.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

8

© Sabih H. Gerez, University of Twente, The Netherlands

STREAMING VS. BLOCK-BASED
• Streaming data:

– Data samples are processed as they arrive
– Requires little local storage
– Time-domain processing

• Block-based processing:
– Stores incoming data until some block size is filled
– Processes entire block
– Think e.g. of an FFT (Fast Fourier Transform) or DCT (Discrete Cosine

Transform)

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

9

© Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION PLATFORMS (1)
• General-purpose processor (GPP), such as a Pentium
• Digital signal processor (DSP):

– Much better suited (parallel arithmetic in data path, support for “multiply-
accumulate” operation, Harvard architecture for parallel access to data
and program memory, etc.)

• Multicore GPPs or DSPs (trend!)
• Very large instruction word (VLIW) processor:

– Many parallel arithmetic units in data path, each controlled by
appropriate bits in instruction word

• Graphics processing unit (GPU):
– General purpose computation on GPUs (GPGPU)

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

10

© Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION PLATFORMS (2)
• Processor arrays:

– Think of Montium processor tile as developed in the CAES group
(starting from the early years 2000, continued by spin-off Recore
Systems, now Technolution).

– Often interconnected by a network on chip (NoC), an interconnection
structure somewhat comparable to data networks connecting computers
(may be circuit switched or packet switched).

• User-defined architectures:
– ASIPs (application-specific instruction processors)

• Dedicated logic:
– ASICs (application-specific integrated circuits)
– FPGAs (field-programmable gate arrays)

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

11

© Sabih H. Gerez, University of Twente, The Netherlands

MAPPING PROBLEM
• How do we get the most efficient implementations of DSP

algorithms on our platforms?
• Optimization criteria:

– Fastest
– Smallest
– Minimal energy
– Shortest design time

• In general, flexibility comes at the expense of efficiency:
– In view of the costs of manufacturing ASICs, programmable hardware is

often very desirable.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

12

© Sabih H. Gerez, University of Twente, The Netherlands

HIERARCHY AND OPTIMIZATION
• Design choices at higher hierarchical levels have the most

impact:
– Modifying your algorithm (e.g. getting rid of some computation in the

inner loop) is often better than modifying your architecture (e.g. adding
more arithmetic units).

– Modifying your architecture (e.g. distributed memory instead of central
memory) can be better than logic-level modifications (replacing ripple
adders by carry look-ahead adders).

– There is still place for dedicated logic for signal processing (e.g. phasor
rotation).

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

13

© Sabih H. Gerez, University of Twente, The Netherlands

AUTOMATED MAPPING
• Already familiar with register-transfer level synthesis (clock-

cycle true descriptions in VHDL mapped on cells from standard-
cell library, see e.g. System-on-Chip Design course)

• Architectural synthesis will automatically decide about the
mapping of computations across clock cycles and architectural
primitives.
– Requires a formal representation of computations
– And a formal representation of architectures

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

14

© Sabih H. Gerez, University of Twente, The Netherlands

COMPILATION PROBLEM (1)
• When mapping on given programmable hardware, one talks of

compilation rather than synthesis.
• Commercial processors often come with their own compilers.
• Designing an ASIP requires both:

– The design of the hardware, and
– The design of a compiler to map user programs onto the hardware.

• Compiling for DSPs, VLIW processors, etc. is more difficult than
compiling for CPUs:
– The challenge is how to optimally use the available parallel hardware,
– Especially when the source code is sequential.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

15

© Sabih H. Gerez, University of Twente, The Netherlands

COMPILATION PROBLEM (2)
• Approaches:

– Leave all to the compiler. This means that it is left to the compiler to
discover the available parallelism in sequential code like C.

– Language extensions. Extend a language like C with constructs
(pragmas etc.) that explicitly describe parallelism. Use the information to
optimally exploit parallelism in target hardware.

– Extensions with APIs (application programming interface). Have a library
of routines that optimally exploit the parallel hardware and force user to
use these APIs.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

16

© Sabih H. Gerez, University of Twente, The Netherlands

MULTICORE PROGRAMMING
• Often based on threads, sequential pieces of code that run on a

single processor.
• Parallel computing amounts to distributing threads across the

available processors.
• Communication and synchronization is based on:

– Shared memory
– Message passing

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

17

© Sabih H. Gerez, University of Twente, The Netherlands

OPENMP
• OpenMP (open multi-

processing):
– Language

extension with
annotations for
C/C++/Fortran

– Supported by
GCC

• Example: for loop will
be split in multiple
threads executing on
multiple cores

int main(int argc, char *argv[]) {
const int N = 100000;
int i, a[N];
#pragma omp parallel for
for (i = 0; i < N; i++)

a[i] = 2 * i;
return 0;

}

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

18

© Sabih H. Gerez, University of Twente, The Netherlands

GOALS OF MODELING
• Verification by simulation:

– mostly executed on one CPU;
– should provide the relevant degree of accuracy.

• Models are also used for formal verification.
• Synthesis; maps model on a realization consisting of:

– a single processor (general purpose/digital signal processor);
– multiple processors;
– dedicated hardware;
– a mixture of dedicated hardware and processors.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

19

© Sabih H. Gerez, University of Twente, The Netherlands

MODELING OF TIME
• Continuous time:

– solve differential equations for analog simulation.

• Discrete time:
– delay from input to output of hardware blocks;
– clock signals may be involved (register-transfer level, RTL);
– event-driven simulation may be used.

• Untimed:
– no delay inside hardware blocks;
– timing controlled by external signals and flow-control blocks such as

FIFO (first-in first-out) buffers.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

20

© Sabih H. Gerez, University of Twente, The Netherlands

MODELING OF SIGNALS
• Analog values:

– voltages, currents;
– floating-point data types.

• Digital values:
– bits and bit vectors;
– bit vectors need an interpretation: e.g. unsigned, 2’s complement signed,

fixed-point or floating-point numbers.

• More complex data types: e.g. records.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

21

© Sabih H. Gerez, University of Twente, The Netherlands

“CLASSICAL” SIMULATION

• Based on simple generation of stimuli and designer inspection
of waveforms or text output for determination of correctness.

• It is quite common to base stimuli generation and output
registration on data streams read from and written to a file.

Stimuli
generator

Design under
verification (DUV)

Output
registration

Testbench

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

22

© Sabih H. Gerez, University of Twente, The Netherlands

SHORTCOMINGS OF CLASSICAL
SIMULATION

• There is only one design, the “implementation”. The “reference”
is in designer’s and verification engineer’s mind.
– Good idea to have separate verification engineer, for a “second opinion”

on the interpretation of specification.

• DUV is at RT level and becomes available in a late stage of the
design:
– Software development cannot start easily in time; verification with

software will delay the tape-out.
– RTL code is slow to simulate; it is only feasible to simulate small

software programs.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

23

© Sabih H. Gerez, University of Twente, The Netherlands

TRANSACTION-LEVEL MODELING
• Abstract way of looking at hardware:

– I/O signals not at the bit level, but as abstract data structures
– Behavior specified in terms of transactions
– In general, not clock-cycle accurate

• Example:
– “Write to memory” is a transaction; its implementation will involve

preparing data, address and control signals with the required timing
relations.

• Transactors translate transactions to bit-level signal changes
and back.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

24

© Sabih H. Gerez, University of Twente, The Netherlands

FEATURES OF ADVANCED SIMULATION
• Self-checking testbenches: waveform inspection only for

debugging.
• Transaction-level “golden reference design” built into testbench.
• Golden reference design, being not clock-cycle accurate,

executes much faster and can be used for software verification
at an early stage.

• Stimuli generation makes use of constrained random pattern
generation to increase code coverage.

• Transactors evolve together with RT-level implementation.
• Assertions are extensively exploited.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

25

© Sabih H. Gerez, University of Twente, The Netherlands

ADVANCED TESTBENCH STRUCTURE

(Constrained
random)
stimuli

generator

Golden reference
at transaction level

Output
comparison

Testbench

DUV at RT level

Low-to-high transactorHigh-to-low transactor

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

26

© Sabih H. Gerez, University of Twente, The Netherlands

COMPUTATION AND COMMUNICATION
• The issue is the modeling of parallelism present in hardware. A

system consists of:
– entities computing output signals from input signals.
– a structure interconnecting the entities.

• Interconnection may be direct or buffered.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

27

© Sabih H. Gerez, University of Twente, The Netherlands

KAHN PROCESS NETWORK (KPN)

• Network of entities (nodes)
interconnected by FIFO buffers.
– Reads are blocking, i.e. a computation waits

until there is data available to read.
– Writes are non-blocking, i.e. writes are always

allowed implying that the FIFO buffers have
unbounded depths.

• The behavior of the nodes can be given
in a traditional sequential programming
language.

Gilles Kahn, FR, 1974

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

28

© Sabih H. Gerez, University of Twente, The Netherlands

EXAMPLE OF A KPN ADDER NODE

read(a);
read(b);
c = a + b;
write(c);

a b

c

The addition can only be executed when input data are
available; otherwise, the operation waits.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

29

© Sabih H. Gerez, University of Twente, The Netherlands

DATA-FLOW BASICS
• A data-flow graph (DFG) consists of nodes (vertices) and

edges.
• In its most general form, a DFG is equivalent to a KPN.
• Nodes perform computations.
• Edges indicate precedence relations and behave as FIFOs.
• Data flow is best understood in terms of tokens, carriers of

data.
• A node will fire when a sufficient number of tokens is available

on all its inputs.
• The result of firing is that tokens are consumed at the inputs

and tokens are produced at the outputs.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

30

© Sabih H. Gerez, University of Twente, The Netherlands

TOKEN FLOW EXAMPLE:

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

31

© Sabih H. Gerez, University of Twente, The Netherlands

SYNCHRONOUS DATA FLOW (SDF)

• Characterized by fixed consumption and production numbers
for each node invocation.

• Suitable for the specification of multi-rate DSP algorithms.

3

4

2
3

4

2

Lee, E.A. and D.G. Messerschmitt, ”Synchronous Data Flow”, Proceedings of
the IEEE, Vol. 75(9), pp 1235–1245, (September 1987).

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

32

© Sabih H. Gerez, University of Twente, The Netherlands

CONSISTENCY IN SDF
• It is relatively easy to check whether:

– No deadlock occurs;
– Number of tokens on an edge does not grow indefinitely;
– There are sufficient initial tokens to keep loops going.

• A consistent graph:
– Has a repetitions vector indicating how often a node needs to be invoked

for one computation of the graph;
– Can be scheduled statically, without the need to implement FIFO buffers

for the edges.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

33

© Sabih H. Gerez, University of Twente, The Netherlands

SOFTWARE SYNTHESIS

• Example graph:

31 12 23
A B C D

(3) (1) (2) (3)Rep. vector:

• Possible single-processor schedule: (3A)B(2C)(3D)

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

34

© Sabih H. Gerez, University of Twente, The Netherlands

DATA-FLOW GRAPH EXAMPLE

T0 T0

Second-order IIR filter

T0 = delay element

= edge with one initial token

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

35

© Sabih H. Gerez, University of Twente, The Netherlands

• Nodes in a DFG do not need to be atomic (indivisible
computations) but could be expanded into DFGs themselves.

• In this way, one gets hierarchical DFGs.
• Nodes that do not have subgraphs are called primitive.

HIERARCHICAL DFGS

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

36

© Sabih H. Gerez, University of Twente, The Netherlands

GRAPHICAL VS. TEXTUAL FORMATS
• It is obvious that DFGs are very suitable as an internal

representation format of a synthesis tool.
• DFGs are, however, not always the most suitable format for a

designer to specify a computation; one does not want to draw
separate addition nodes for each addition and interconnect
these nodes.

• The solution is to start with a textual representation and convert
it to a DFG by means of data-flow extraction.

• Graphical-entry tools are mainly useful for specifying complex
computations with hierarchy; primitive nodes (that do not have
subnodes) are normally specified in a textual format.

