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OUTLINE
• DSP applications
• DSP platforms
• The synthesis problem
• Models of computation
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DIGITAL VS. ANALOG SIGNAL 
PROCESSING

• Digital signal processing 
(DSP) characterized by:
– Time-discrete

representation of signals: 
signals sampled at regular 
time intervals.

– Quantized representation 
of signals: signal level is 
given by a finite number of 
bits.

© Wikipedia
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APPLICATIONS OF DIGITAL SIGNAL 
PROCESSING

• Embedded digital signal processing is everywhere!
• Examples:

– Speech
– Audio
– Video
– Radio/wireless
– Radar
– Any application that processes signals in the digital domain.
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TYPICAL ALGORITHMS
• Filtering: FIR, IIR, with fixed coefficients or adaptive
• Encoding/decoding
• Compression/decompression
• Frequency-domain processing
• Downconversion: shifting carrier frequency in communication
• Etc.
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TYPICAL NUMBERS
• Speech: 8 kHz, 12-16 bits
• Audio: 44 kHz, 16-24 bits, two channels (stereo)
• Video, various formats, e.g.:

– HDTV approx. 2000 by 1000 pixels at 50 frames per second resulting in 
data rates of 100 MHz, 3 colors of 8-12 bits each

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

6

© Sabih H. Gerez, University of Twente, The Netherlands

REGISTER-TRANSFER (RT) VIEW OF 
HARDWARE

registers

Combinational 
logic

Current stateNew state

Primary 
inputs

Primary 
outputs

Register contents are 
updated at rising edge of 
system clock.

System clock
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SAMPLE FREQUENCY VS. SYSTEM 
CLOCK FREQUENCY

• The ratio between the system clock frequency and the sample 
frequency determines the necessity for parallel processing.

• A single processor clocked at, say, 100 MHz may handle all 
audio processing on its own: it has thousands of clock cycles 
available per signal sample.

• Video processing may on the other hand require multiple 
processors and/or dedicated hardware.
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STREAMING VS. BLOCK-BASED
• Streaming data:

– Data samples are processed as they arrive
– Requires little local storage
– Time-domain processing

• Block-based processing:
– Stores incoming data until some block size is filled
– Processes entire block
– Think e.g. of an FFT (Fast Fourier Transform) or DCT (Discrete Cosine 

Transform)
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IMPLEMENTATION PLATFORMS (1)
• General-purpose processor (GPP), such as a Pentium
• Digital signal processor (DSP):

– Much better suited (parallel arithmetic in data path, support for “multiply-
accumulate” operation, Harvard architecture for parallel access to data 
and program memory, etc.)

• Multicore GPPs or DSPs (trend!)
• Very large instruction word (VLIW) processor:

– Many parallel arithmetic units in data path, each controlled by 
appropriate bits in instruction word

• Graphics processing unit (GPU):
– General purpose computation on GPUs (GPGPU)
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IMPLEMENTATION PLATFORMS (2)
• Processor arrays:

– Think of Montium processor tile as developed in the CAES group 
(starting from the early years 2000, continued by spin-off Recore
Systems, now Technolution).

– Often interconnected by a network on chip (NoC), an interconnection 
structure somewhat comparable to data networks connecting computers 
(may be circuit switched or packet switched).

• User-defined architectures:
– ASIPs (application-specific instruction processors)

• Dedicated logic:
– ASICs (application-specific integrated circuits)
– FPGAs (field-programmable gate arrays)
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MAPPING PROBLEM
• How do we get the most efficient implementations of DSP 

algorithms on our platforms?
• Optimization criteria:

– Fastest
– Smallest
– Minimal energy
– Shortest design time

• In general, flexibility comes at the expense of efficiency:
– In view of the costs of manufacturing ASICs, programmable hardware is 

often very desirable.
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HIERARCHY AND OPTIMIZATION
• Design choices at higher hierarchical levels have the most 

impact:
– Modifying your algorithm (e.g. getting rid of some computation in the 

inner loop) is often better than modifying your architecture (e.g. adding 
more arithmetic units).

– Modifying your architecture (e.g. distributed memory instead of central 
memory) can be better than logic-level modifications (replacing ripple 
adders by carry look-ahead adders).

– There is still place for dedicated logic for signal processing (e.g. phasor 
rotation).
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AUTOMATED MAPPING
• Already familiar with register-transfer level synthesis (clock-

cycle true descriptions in VHDL mapped on cells from standard-
cell library, see e.g. System-on-Chip Design course)

• Architectural synthesis will automatically decide about the 
mapping of computations across clock cycles and architectural 
primitives.
– Requires a formal representation of computations
– And a formal representation of architectures
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COMPILATION PROBLEM (1)
• When mapping on given programmable hardware, one talks of 

compilation rather than synthesis.
• Commercial processors often come with their own compilers.
• Designing an ASIP requires both:

– The design of the hardware, and
– The design of a compiler to map user programs onto the hardware.

• Compiling for DSPs, VLIW processors, etc. is more difficult than 
compiling for CPUs:
– The challenge is how to optimally use the available parallel hardware,
– Especially when the source code is sequential.
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COMPILATION PROBLEM (2)
• Approaches:

– Leave all to the compiler. This means that it is left to the compiler to 
discover the available parallelism in sequential code like C.

– Language extensions. Extend a language like C with constructs 
(pragmas etc.) that  explicitly describe parallelism. Use the information to 
optimally exploit parallelism in target hardware.

– Extensions with APIs (application programming interface). Have a library 
of routines that optimally exploit the parallel hardware and force user to 
use these APIs.
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MULTICORE PROGRAMMING
• Often based on threads, sequential pieces of code that run on a 

single processor.
• Parallel computing amounts to distributing threads across the 

available processors.
• Communication and synchronization is based on:

– Shared memory
– Message passing
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OPENMP
• OpenMP (open multi-

processing):
– Language 

extension with 
annotations for 
C/C++/Fortran

– Supported by 
GCC

• Example: for loop will 
be split in multiple 
threads executing on 
multiple cores

int main(int argc, char *argv[]) {
const int N = 100000; 
int i, a[N]; 
#pragma omp parallel for
for (i = 0; i < N; i++) 

a[i] = 2 * i;
return 0;

}
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GOALS OF MODELING
• Verification by simulation:

– mostly executed on one CPU;
– should provide the relevant degree of accuracy.

• Models are also used for formal verification.
• Synthesis; maps model on a realization consisting of:

– a single processor (general purpose/digital signal processor);
– multiple processors;
– dedicated hardware;
– a mixture of dedicated hardware and processors.

IMPLEMENTATION OF DSP

INTRODUCTION, MODELS OF COMPUTATION February 8, 2019

19

© Sabih H. Gerez, University of Twente, The Netherlands

MODELING OF TIME
• Continuous time:

– solve differential equations for analog simulation.

• Discrete time:
– delay from input to output of hardware blocks;
– clock signals may be involved (register-transfer level, RTL);
– event-driven simulation may be used.

• Untimed:
– no delay inside hardware blocks;
– timing controlled by external signals and flow-control blocks such as 

FIFO (first-in first-out) buffers.
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MODELING OF SIGNALS
• Analog values:

– voltages, currents;
– floating-point data types.

• Digital values:
– bits and bit vectors;
– bit vectors need an interpretation: e.g. unsigned, 2’s complement signed, 

fixed-point or floating-point numbers.

• More complex data types: e.g. records.
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“CLASSICAL” SIMULATION

• Based on simple generation of stimuli and designer inspection 
of waveforms or text output for determination of correctness.

• It is quite common to base stimuli generation and output 
registration on data streams read from and written to a file.

Stimuli 
generator

Design under 
verification (DUV)

Output 
registration

Testbench
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SHORTCOMINGS OF CLASSICAL 
SIMULATION

• There is only one design, the “implementation”. The “reference” 
is in designer’s and verification engineer’s mind.
– Good idea to have separate verification engineer, for a “second opinion” 

on the interpretation of specification.

• DUV is at RT level and becomes available in a late stage of the 
design:
– Software development cannot start easily in time; verification with 

software will delay the tape-out.
– RTL code is slow to simulate; it is only feasible to simulate small 

software programs.
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TRANSACTION-LEVEL MODELING
• Abstract way of looking at hardware:

– I/O signals not at the bit level, but as abstract data structures
– Behavior specified in terms of transactions
– In general, not clock-cycle accurate

• Example:
– “Write to memory” is a transaction; its implementation will involve 

preparing data, address and control signals with the required timing 
relations.

• Transactors translate transactions to bit-level signal changes 
and back.
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FEATURES OF ADVANCED SIMULATION
• Self-checking testbenches: waveform inspection only for 

debugging.
• Transaction-level “golden reference design” built into testbench.
• Golden reference design, being not clock-cycle accurate, 

executes much faster and can be used for software verification 
at an early stage.

• Stimuli generation makes use of constrained random pattern 
generation to increase code coverage.

• Transactors evolve together with RT-level implementation.
• Assertions are extensively exploited.
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ADVANCED TESTBENCH STRUCTURE

(Constrained 
random) 
stimuli 

generator

Golden reference 
at transaction level

Output 
comparison

Testbench

DUV at RT level

Low-to-high transactorHigh-to-low transactor
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COMPUTATION AND COMMUNICATION
• The issue is the modeling of parallelism present in hardware. A 

system consists of:
– entities computing output signals from input signals.
– a structure interconnecting the entities.

• Interconnection may be direct or buffered.
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KAHN PROCESS NETWORK (KPN)

• Network of entities (nodes) 
interconnected by FIFO buffers.
– Reads are blocking, i.e. a computation waits 

until there is data available to read.
– Writes are non-blocking, i.e. writes are always 

allowed implying that the FIFO buffers have 
unbounded depths.

• The behavior of the nodes can be given 
in a traditional sequential programming 
language.

Gilles Kahn, FR, 1974
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EXAMPLE OF A KPN ADDER NODE

read(a);
read(b);
c = a + b;
write(c);

a b

c

The addition can only be executed when input data are 
available; otherwise, the operation waits.
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DATA-FLOW BASICS
• A data-flow graph (DFG) consists of nodes (vertices) and 

edges.
• In its most general form, a DFG is equivalent to a KPN.
• Nodes perform computations.
• Edges indicate precedence relations and behave as FIFOs.
• Data flow is best understood in terms of tokens, carriers of 

data.
• A node will fire when a sufficient number of tokens is available 

on all its inputs.
• The result of firing is that tokens are consumed at the inputs 

and tokens are produced at the outputs.
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TOKEN FLOW EXAMPLE:
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SYNCHRONOUS DATA FLOW (SDF)

• Characterized by fixed consumption and production numbers 
for each node invocation.

• Suitable for the specification of multi-rate DSP algorithms.

3

4

2
3

4

2

Lee, E.A. and D.G. Messerschmitt, ”Synchronous Data Flow”, Proceedings of 
the IEEE, Vol. 75(9), pp 1235–1245, (September 1987).
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CONSISTENCY IN SDF
• It is relatively easy to check whether:

– No deadlock occurs;
– Number of tokens on an edge does not grow indefinitely;
– There are sufficient initial tokens to keep loops going.

• A consistent graph:
– Has a repetitions vector indicating how often a node needs to be invoked 

for one computation of the graph;
– Can be scheduled statically, without the need to implement FIFO buffers 

for the edges.
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SOFTWARE SYNTHESIS

• Example graph:

31 12 23
A B C D

(3) (1) (2) (3)Rep. vector:

• Possible single-processor schedule: (3A)B(2C)(3D)
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DATA-FLOW GRAPH EXAMPLE

T0 T0

Second-order IIR filter

T0 = delay element

= edge with one initial token
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• Nodes in a DFG do not need to be atomic (indivisible 
computations) but could be expanded into DFGs themselves.

• In this way, one gets hierarchical DFGs.
• Nodes that do not have subgraphs are called primitive.

HIERARCHICAL DFGS
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GRAPHICAL VS. TEXTUAL FORMATS
• It is obvious that DFGs are very suitable as an internal 

representation format of a synthesis tool.
• DFGs are, however, not always the most suitable format for a 

designer to specify a computation; one does not want to draw 
separate addition nodes for each addition and interconnect 
these nodes.

• The solution is to start with a textual representation and convert 
it to a DFG by means of data-flow extraction.

• Graphical-entry tools are mainly useful for specifying complex 
computations with hierarchy; primitive nodes (that do not have 
subnodes) are normally specified in a textual format.


