IMPLEMENTATION OF DSP a 1
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

OUTLINE

DSP applications

DSP platforms

The synthesis problem
Models of computation

IMPLEMENTATION OF DSP L] 2
INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019
DIGITAL VS. ANALOG SIGNAL
PROCESSING

 Digital signal processing
(DSP) characterized by:

— Time-discrete
representation of signals:
signals sampled at regular
time intervals.

— Quantized representation

of signals: signal level is
given by a finite number of

© Wikipedia

bits.

] © Sabih H. Gerez, University of Twente, The Netherlands ] [ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]
. IMPLEMENTATION OF DSP L] 3 . IMPLEMENTATION OF DSP . 4
UT. INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019 UT. INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019

APPLICATIONS OF DIGITAL SIGNAL TYPICAL ALGORITHMS

PROCESSING  Filtering: FIR, IIR, with fixed coefficients or adaptive

» Embedded digital signal processing is everywhere! « Encoding/decoding
« Examples: » Compression/decompression

- SpZ?Ch « Frequency-domain processing

: C;;g * Downconversion: shifting carrier frequency in communication

— Radio/wireless - Etc.

— Radar

Any application that processes signals in the digital domain.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

[ ] © Sabih H. Gerez, University of Twente, The Netherlands




IMPLEMENTATION OF DSP a 5
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

TYPICAL NUMBERS

» Speech: 8 kHz, 12-16 bits
» Audio: 44 kHz, 16-24 bits, two channels (stereo)

» Video, various formats, e.g.:

— HDTYV approx. 2000 by 1000 pixels at 50 frames per second resulting in
data rates of 100 MHz, 3 colors of 8-12 bits each

IMPLEMENTATION OF DSP L] 6
INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019
REGISTER-TRANSFER (RT) VIEW OF
HARDWARE

Primary
outputs

Primary

) —»/ Combinational
inputs

registers
New state Current state
System clock Register contents are
11 r1 A updated at rising edge of
? ? ? ? | system clock.
] © Sabih H. Gerez, University of Twente, The Netherlands ] [ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]
IMPLEMENTATION OF DSP L] 7 IMPLEMENTATION OF DSP . 8
UT. INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019 UT. INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019

SAMPLE FREQUENCY VS. SYSTEM
CLOCK FREQUENCY

* The ratio between the system clock frequency and the sample
frequency determines the necessity for parallel processing.

* A single processor clocked at, say, 100 MHz may handle all
audio processing on its own: it has thousands of clock cycles
available per signal sample.

* Video processing may on the other hand require multiple
processors and/or dedicated hardware.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

STREAMING VS. BLOCK-BASED

» Streaming data:
— Data samples are processed as they arrive
— Requires little local storage
— Time-domain processing
» Block-based processing:
— Stores incoming data until some block size is filled
— Processes entire block

— Think e.g. of an FFT (Fast Fourier Transform) or DCT (Discrete Cosine
Transform)

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




IMPLEMENTATION OF DSP a 9
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

IMPLEMENTATION PLATFORMS (1)

* General-purpose processor (GPP), such as a Pentium

 Digital signal processor (DSP):

— Much better suited (parallel arithmetic in data path, support for “multiply-
accumulate” operation, Harvard architecture for parallel access to data
and program memory, etc.)

* Multicore GPPs or DSPs (trend!)

* Very large instruction word (VLIW) processor:

— Many parallel arithmetic units in data path, each controlled by
appropriate bits in instruction word

» Graphics processing unit (GPU):
— General purpose computation on GPUs (GPGPU)

] © Sabih H. Gerez, University of Twente, The Netherlands ]

IMPLEMENTATION OF DSP . 10
INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019
IMPLEMENTATION PLATFORMS (2)

* Processor arrays:

— Think of Montium processor tile as developed in the CAES group
(starting from the early years 2000, continued by spin-off Recore
Systems, now Technolution).

— Often interconnected by a network on chip (NoC), an interconnection
structure somewhat comparable to data networks connecting computers
(may be circuit switched or packet switched).
» User-defined architectures:
— ASIPs (application-specific instruction processors)
» Dedicated logic:
— ASICs (application-specific integrated circuits)
— FPGAs (field-programmable gate arrays)

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

. IMPLEMENTATION OF DSP [ 11
UT INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019
MAPPING PROBLEM

* How do we get the most efficient implementations of DSP
algorithms on our platforms?
* Optimization criteria:
— Fastest
— Smallest
— Minimal energy
— Shortest design time
* In general, flexibility comes at the expense of efficiency:

— Inview of the costs of manufacturing ASICs, programmable hardware is
often very desirable.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

IMPLEMENTATION OF DSP a 12
INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019
HIERARCHY AND OPTIMIZATION

» Design choices at higher hierarchical levels have the most
impact:

— Modifying your algorithm (e.g. getting rid of some computation in the
inner loop) is often better than modifying your architecture (e.g. adding
more arithmetic units).

— Modifying your architecture (e.g. distributed memory instead of central
memory) can be better than logic-level modifications (replacing ripple
adders by carry look-ahead adders).

— There is still place for dedicated logic for signal processing (e.g. phasor
rotation).

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




IMPLEMENTATION OF DSP a 13
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

AUTOMATED MAPPING

» Already familiar with register-transfer level synthesis (clock-
cycle true descriptions in VHDL mapped on cells from standard-
cell library, see e.g. System-on-Chip Design course)

» Architectural synthesis will automatically decide about the
mapping of computations across clock cycles and architectural
primitives.

— Requires a formal representation of computations
— And a formal representation of architectures

] © Sabih H. Gerez, University of Twente, The Netherlands ]

IMPLEMENTATION OF DSP . 14
INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019
COMPILATION PROBLEM (1)

» When mapping on given programmable hardware, one talks of
compilation rather than synthesis.

» Commercial processors often come with their own compilers.

» Designing an ASIP requires both:
— The design of the hardware, and
— The design of a compiler to map user programs onto the hardware.

» Compiling for DSPs, VLIW processors, etc. is more difficult than
compiling for CPUs:
— The challenge is how to optimally use the available parallel hardware,
— Especially when the source code is sequential.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

IMPLEMENTATION OF DSP ] 15
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

COMPILATION PROBLEM (2)

* Approaches:

— Leave all to the compiler. This means that it is left to the compiler to
discover the available parallelism in sequential code like C.

— Language extensions. Extend a language like C with constructs
(pragmas etc.) that explicitly describe parallelism. Use the information to
optimally exploit parallelism in target hardware.

— Extensions with APIs (application programming interface). Have a library

of routines that optimally exploit the parallel hardware and force user to
use these APIs.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

. IMPLEMENTATION OF DSP [ 16
UT INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019
MULTICORE PROGRAMMING

« Often based on threads, sequential pieces of code that run on a
single processor.

» Parallel computing amounts to distributing threads across the
available processors.

» Communication and synchronization is based on:
— Shared memory
— Message passing

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




IMPLEMENTATION OF DSP a 17
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

OPENMP

OpenMP (open multi-

processing):

— Language
extension with
annotations for

C/C++/Fortran int main(int argc, char *argv[]) {
_ const int N = 100000;
élél:pé)orted by int i, a[N];

#pragma omp parallel for
for (i = 0; 1 < Nj; i++)
af[i] =2 * i;

Example: for loop will
be split in multiple

. IMPLEMENTATION OF DSP [ 18
UT INTRODUCTION, MODELS OF COMPUTATION ®m  February 8, 2019
GOALS OF MODELING

» Verification by simulation:
— mostly executed on one CPU;
— should provide the relevant degree of accuracy.

 Models are also used for formal verification.

» Synthesis; maps model on a realization consisting of:
a single processor (general purpose/digital signal processor);
multiple processors;

dedicated hardware;

a mixture of dedicated hardware and processors.

threads executing on return O;
multiple cores 3}
] © Sabih H. Gerez, University of Twente, The Netherlands ] [ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]
IMPLEMENTATION OF DSP | 19 IMPLEMENTATION OF DSP . 20
UT INTRODUCTION, MODELS OF COMPUTATION [ ] February 8, 2019 UT INTRODUCTION, MODELS OF COMPUTATION n February 8, 2019
» Continuous time: * Analog values:
— solve differential equations for analog simulation. — voltages, currents;
¢ Discrete time: — floating-point data types.
— delay from input to output of hardware blocks;
— clock signals may be involved (register-transfer level, RTL); « Digital values:
— event-driven simulation may be used. — bits and bit vectors;
e Untimed: — bit vectors need an interpretation: e.g. unsigned, 2's complement signed,
— no de|ay inside hardware blocks; fixed-point or floating-point numbers.
— timing controlled by external signals and flow-control blocks such as
FIFO (first-in first-out) buffers. « More complex data types: e.g. records.
[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ] [ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




. IMPLEMENTATION OF DSP [ 21
UT INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019
“CLASSICAL” SIMULATION

» Based on simple generation of stimuli and designer inspection
of waveforms or text output for determination of correctness.

* Itis quite common to base stimuli generation and output
registration on data streams read from and written to a file.

IMPLEMENTATION OF DSP u 22
INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019
SHORTCOMINGS OF CLASSICAL
SIMULATION

* There is only one design, the “implementation”. The “reference”
is in designer’s and verification engineer’s mind.

— Good idea to have separate verification engineer, for a “second opinion”
on the interpretation of specification.

 DUVis at RT level and becomes available in a late stage of the
Testbench o
design:
— Software development cannot start easily in time; verification with
Stimuli Design under Output ;(:‘tﬁfvarz wil dlelai the ta‘:et'ou;', © tensible (o simulat |
‘g . . q - | W m i n | m m
generator verification (DUV) registration code 1S slow 1o simuiate, 1Lis only feasible fo simurate sma
software programs.
] © Sabih H. Gerez, University of Twente, The Netherlands ] [ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]
IMPLEMENTATION OF DSP L] 23 IMPLEMENTATION OF DSP (] 24
UT INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019 UT INTRODUCTION, MODELS OF COMPUTATION B February 8, 2019

TRANSACTION-LEVEL MODELING

» Abstract way of looking at hardware:
— 1/O signals not at the bit level, but as abstract data structures
— Behavior specified in terms of transactions
— In general, not clock-cycle accurate

* Example:

— “Write to memory” is a transaction; its implementation will involve
preparing data, address and control signals with the required timing
relations.

* Transactors translate transactions to bit-level signal changes
and back.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

FEATURES OF ADVANCED SIMULATION

» Self-checking testbenches: waveform inspection only for
debugging.
» Transaction-level “golden reference design” built into testbench.

» Golden reference design, being not clock-cycle accurate,
executes much faster and can be used for software verification
at an early stage.

« Stimuli generation makes use of constrained random pattern
generation to increase code coverage.

» Transactors evolve together with RT-level implementation.
» Assertions are extensively exploited.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




IMPLEMENTATION OF DSP a 25
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

ADVANCED TESTBENCH STRUCTURE

Testbench
(Constrained
random) Golden reference Output
stimuli at transaction level | —{ comparison
generator

High-to-low transactor Low-to-high transactor

DUV at RT level —

] © Sabih H. Gerez, University of Twente, The Netherlands ]

IMPLEMENTATION OF DSP . 26
INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019
COMPUTATION AND COMMUNICATION

* The issue is the modeling of parallelism present in hardware. A
system consists of:
— entities computing output signals from input signals.
— a structure interconnecting the entities.

» Interconnection may be direct or buffered.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

IMPLEMENTATION OF DSP ] 27
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

KAHN PROCESS NETWORK (KPN)

* Network of entities (nodes)
interconnected by FIFO buffers.

— Reads are blocking, i.e. a computation waits
until there is data available to read.

— Writes are non-blocking, i.e. writes are always
allowed implying that the FIFO buffers have
unbounded depths.

» The behavior of the nodes can be given
in a traditional sequential programming
language.

Gilles Kahn, FR, 1974

[ ] © Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP . 28
UT INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019

EXAMPLE OF A KPN ADDER NODE

read(a); a b
read(b);

c =a+ b;

write(c); C

The addition can only be executed when input data are
available; otherwise, the operation waits.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




IMPLEMENTATION OF DSP a 29
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

DATA-FLOW BASICS

» A data-flow graph (DFG) consists of nodes (vertices) and
edges.

* Inits most general form, a DFG is equivalent to a KPN.
* Nodes perform computations.
» Edges indicate precedence relations and behave as FIFOs.

« Data flow is best understood in terms of tokens, carriers of
data.

* A node will fire when a sufficient number of tokens is available
on all its inputs.

» The result of firing is that tokens are consumed at the inputs
and tokens are produced at the outputs.

] © Sabih H. Gerez, University of Twente, The Netherlands ]

IMPLEMENTATION OF DSP L] 30
UT INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019

TOKEN FLOW EXAMPLE: , _

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

IMPLEMENTATION OF DSP ] 31
UT INTRODUCTION, MODELS OF COMPUTATION ] February 8, 2019

SYNCHRONOUS DATA FLOW (SDF)

» Characterized by fixed consumption and production numbers
for each node invocation.

» Suitable for the specification of multi-rate DSP algorithms.

Lee, E.A. and D.G. Messerschmitt, "Synchronous Data Flow”, Proceedings of
the IEEE, Vol. 75(9), pp 12351245, (September 1987).

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

. IMPLEMENTATION OF DSP [ 32
UT INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019
CONSISTENCY IN SDF

 ltis relatively easy to check whether:
— No deadlock occurs;
— Number of tokens on an edge does not grow indefinitely;
— There are sufficient initial tokens to keep loops going.

» A consistent graph:

— Has a repetitions vector indicating how often a node needs to be invoked
for one computation of the graph;

— Can be scheduled statically, without the need to implement FIFO buffers
for the edges.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




. IMPLEMENTATION OF DSP [ 33
UT INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019
SOFTWARE SYNTHESIS

» Example graph:

A B C D
Dl 3 CZ 1 CB ZD
Rep. vector: (3) (1) (2) (3)

» Possible single-processor schedule: (3A)B(2C)(3D)

] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

IMPLEMENTATION OF DSP . 34
UT INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019

DATA-FLOW GRAPH EXAMPLE

eln])
b 0 b b = delay element
OuBOLD = edge with one initial token
a2 a1 y[n]
D

Second-order IR filter

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]

. IMPLEMENTATION OF DSP [ 35
UT INTRODUCTION, MODELS OF COMPUTATION ®  February 8, 2019
HIERARCHICAL DFGS

* Nodes in a DFG do not need to be atomic (indivisible
computations) but could be expanded into DFGs themselves.

* In this way, one gets hierarchical DFGs.
* Nodes that do not have subgraphs are called primitive.

ae

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ |

IMPLEMENTATION OF DSP L] 36
INTRODUCTION, MODELS OF COMPUTATION a February 8, 2019
GRAPHICAL VS. TEXTUAL FORMATS

 Itis obvious that DFGs are very suitable as an internal
representation format of a synthesis tool.

* DFGs are, however, not always the most suitable format for a
designer to specify a computation; one does not want to draw
separate addition nodes for each addition and interconnect
these nodes.

» The solution is to start with a textual representation and convert
it to a DFG by means of data-flow extraction.

» Graphical-entry tools are mainly useful for specifying complex
computations with hierarchy; primitive nodes (that do not have
subnodes) are normally specified in a textual format.

[ ] © Sabih H. Gerez, University of Twente, The Netherlands [ ]




