

Conversion in Software Radio Terminals", *10th European Signal Processing Conference, EUSIPCO 2000*, pp. 1517-1520, (2000).

IMPLEMENTATION OF DSP 5	IMPLEMENTATION OF DSP 6			
THE CORDIC ALGORITHM March 16, 2018	THE CORDIC ALGORITHM March 16, 2018			
VECTOR ROTATIONS (1)	VECTOR ROTATIONS (2)			
 Consider a sequence of rotations of a vector (x⁽ⁱ⁾, y⁽ⁱ⁾)^T rotated by α_i to give vector (x⁽ⁱ⁺¹⁾, y⁽ⁱ⁺¹⁾)^T. So: [x⁽ⁱ⁺¹⁾/y⁽ⁱ⁺¹⁾] = [cos(α_i) -sin(α_i)/sin(α_i) [x⁽ⁱ⁾/y⁽ⁱ⁾] After rewrite: [x⁽ⁱ⁺¹⁾/y⁽ⁱ⁺¹⁾] = cos(α_i) [1 -tan(α_i)/1] [x⁽ⁱ⁾/y⁽ⁱ⁾] If tan(α_i) is chosen such that tan(α_i) = d_i2⁻ⁱ, with d_i = ±1, then the rotations can be executed without multiplications except for initial factor cos(α_i) = 1/(√1+2⁻²ⁱ) 	• If $\tan(\alpha_i) = d_i 2^{-i}$, this means: $\alpha_i = d_i \arctan(2^{-i})$ • For an arbitrary angle α , $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$, the angle can then be decomposed as: $\alpha = \sum_{i=0}^{n} d_i \arctan(2^{-i})$ • Angles involved: $\frac{i}{2^{-i}} \frac{0}{1} \frac{1}{1/2} \frac{2}{1/4} \frac{3}{1/8} \frac{4}{1/16} \frac{5}{1/32} \frac{6}{1/64} \frac{7}{1/128} \frac{8}{1/256} \frac{1}{1/28} \frac{1}{1/256} \frac{1}{1/28} \frac{1}{1/256} \frac{1}{1/28} \frac{1}{1/2$			
IMPLEMENTATION OF DSP7THE CORDIC ALGORITHMMarch 16, 2018	IMPLEMENTATION OF DSP8THE CORDIC ALGORITHMMarch 16, 2018			
VECTOR ROTATION EXAMPLE	ANGLE ACCUMULATION			
 The 8 subsequent rotations for a rotation of 15 degrees are: 	• Keep track of total rotation angle in an <i>angle accumulator</i> .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z^{(i+1)} = z^{(i)} - d_i L(i)$ • The angle accumulator can be used to determine d_i : - Initialize $z^{(0)} = \alpha$. - Factor d_{i+1} becomes 1 when $z^{(i)} \ge 0$ and -1 otherwise.			
Sabih H. Gerez, University of Twente, The Netherlands	Sabih H. Gerez, University of Twente, The Netherlands			

IMPLEMENTATION OF DSP 9	IMPLEMENTATION OF DSP		
THE CORDIC ALGORITHM March 16, 2018	THE CORDIC ALGORITHM March 16, 20		
CORDIC EQUATIONS SUMMARY	ROTATION-MODE CORDIC		
• Original equations were: $ \begin{bmatrix} x^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \cos(\alpha_i) \begin{bmatrix} 1 & -\tan(\alpha_i) \\ \tan(\alpha_i) & 1 \end{bmatrix} \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix} $ • Making use of the special values for the tangent, leaving out the multiplication by the cosine and combining with angle accumulation, one gets: $ x^{(i+1)} = x^{(i)} - d_i 2^{-i} y^{(i)} \\ y^{(i+1)} = d_i 2^{-i} x^{(i)} + y^{(i)} \\ z^{(i+1)} = z^{(i)} - d_i L(i) $	• Goal is to rotate vector by angle α . • Initialization: $x^{(0)} = x$ $y^{(0)} = y$ $z^{(0)} = \alpha$ • Where: $y^{(0)} = \alpha$ • K converges to 1.647. • Conclusion: the result vector is rotated but scaled version of original vector.		
© Sabih H. Gerez, University of Twente, The Netherlands	Sabih H. Gerez, University of Twente, The Netherlands		
IMPLEMENTATION OF DSP 11	IMPLEMENTATION OF DSP		
THE CORDIC ALGORITHM March 16, 2018	UI. THE CORDIC ALGORITHM March 16, 20 ⁻¹		
• Determine d_i by an alternative rule: $d_i = -1$ when $y^{(i)} \ge 0$ and $d_i = +1$ when $y^{(i)} \le 0$. • Determine d_i by an alternative rule: $d_i = x^{(n)} = K\sqrt{x^2 + y^2}$ $x^{(n)} = K\sqrt{x^2 + y^2}$ $y^{(n)} = 0$ $z^{(n)} = \arctan\left(\frac{y}{x}\right)$	 BASIC APPLICATIONS OF CORDIC Arctangent, vector-magnitude calculation and rectangular-topolar conversion: direct result of vectoring-mode CORDIC. Polar-to-rectangular conversion, i.e. from (r, θ) to (x, y): Set x⁽⁰⁾ = r, y⁽⁰⁾ = 0, and z⁽⁰⁾ = θ in rotation mode. Result will be x = x⁽ⁿ⁾ = Kr cos(θ), y = y⁽ⁿ⁾ = Kr sin(θ). Correction for scaling by K may be necessary (does not require a fulfledged multiplier as K is constant). Sine or cosine calculation: See above, set x⁽⁰⁾ = 1/K. Then x⁽ⁿ⁾ = cos(θ) and y⁽ⁿ⁾ = sin(θ). 		

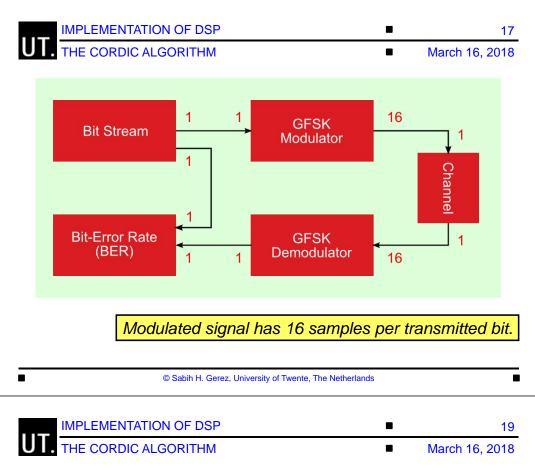
March 16, 2018

DESIGN EXAMPLE: GFSK RECEIVER

- What is GFSK?
 - Gaussian frequency shift keying
 - Method for digital transmission based on frequency modulation (FM).
 - To transmit a **1** carrier frequency is slightly increased and to transmit a 0 the frequency is slightly decreased (or vice versa).
 - The transition steps are smoothed by a Gaussian filter.
 - Found in many standards: Bluetooth, DECT, Wavenis, ...
 - Proposed version uses parameters not related to any standard.

March 16, 2018

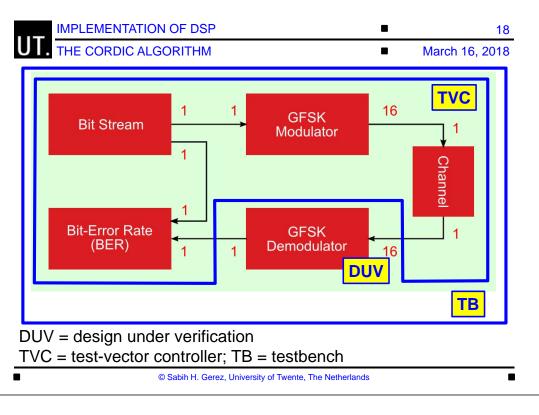
14


UNROLLED ARCHITECTURE

- The iterative architecture requires one clock cycle per iteration.
- It requires a *barrel shifter* to shift operand over a variable number of positions.
- One can also unroll the architecture to perform all operations in a single clock cycle:
 - Amounts to instantiate new hardware for each iteration.
 - Possibly adding pipelining if the critical path becomes too long.
 - The barrel shifter is no longer necessary: each stage in the hardware has a fixed shift which costs just wires.
 - One could also unroll the architecture partially.

Sabih H. Gerez, University of Twente, The Netherlands		
IMPLEMENTATION OF DSP	•	16
UI. THE CORDIC ALGORITHM		March 16, 2018

GFSK RECEIVER DESIGN APPROACH


- Model entire system: transmitter, receiver, and a channel ٠ adding noise (AWGN).
- · Leave out analog circuitry for upconversion to RF and downconversion back to IF.
- Use IT++ to set up testbench.
- The testbench computes bit error rates (BERs) for different signal-to-noise ratios (SNRs).
- Goal is to preserve BER performance when designing hardware.

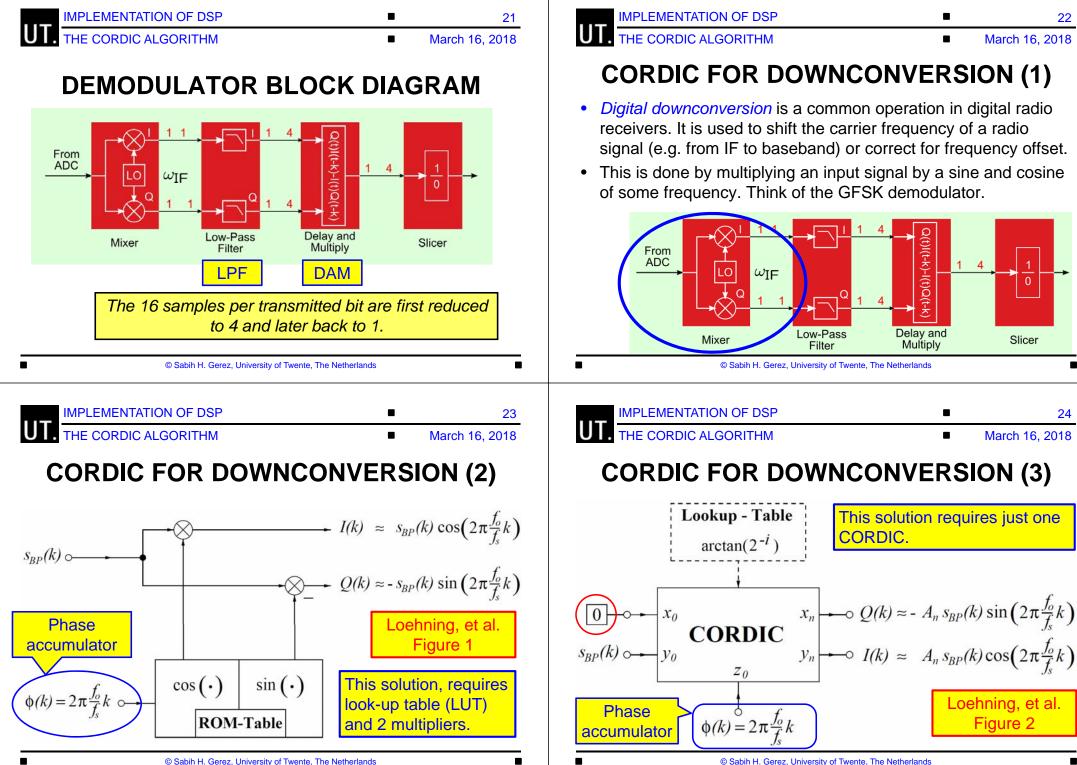
IMPLEMENTATION ASPECTS

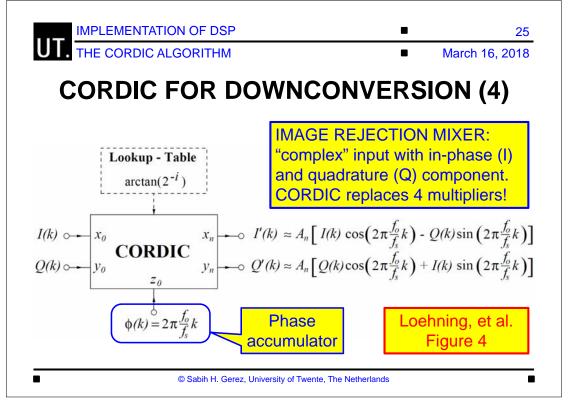
- Projects focus on designing in Arx.
- Testbenches for generated C++ and VHDL will be provided.
- As C++ and VHDL behave exactly the same, most simulations will be done in C++ (simulation speed in e.g. BER simulations is important).
- C++ testbenches make use of IT++, an open-source library for telecom/signal processing:
 - http://itpp.sourceforge.net
 - It provides Matlab-style programming in C++, so vectors, matrices, etc. and lots of powerful functions to manipulate them.

© Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP

UT. THE CORDIC ALGORITHM


March 16, 2018


20

GFSK: MODULATION IN FORMULAE

- The modulated signal: $s(t) = A\cos(\omega_{\text{IF}}t + \phi(t))$
- where:
 - -A is the constant amplitude
 - ω_{IF} is the *intermediate frequency* (acts as carrier frequency)
 - $-\phi(t)$ is the phase deviation, derived from the bit stream
- The phase deviation:
- $\phi(t) = h\pi \int_{-\infty}^{t} \sum_{i} a_{i}g(\tau iT)d\tau$

- where:
 - -h is the modulation index
 - -g(t) is a Gaussian-filtered square wave
 - $-a_i$ is 1 for a transmitted **1** and -1 for a transmitted **0**.

