
IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

1

© Sabih H. Gerez, University of Twente, The Netherlands

CODE GENERATION
• Translation of software in high-level code (like C) to machine 

instructions

• Based on (second part of) following paper:
Bhattacharyya, S.S., R. Leupers and P. Marwedel, Software Synthesis 
and Code Generation for Signal Processing Systems, IEEE Transactions 
on Circuits and Systems---II, Analog and Digital Signal Processing, 
Vol.47(9), (September 2000). 

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

2

© Sabih H. Gerez, University of Twente, The Netherlands

TOPICS
• Typical programmable DSP
• Traditional compilation techniques
• Sequential code generation
• Memory-access optimization
• Code compaction

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

3

© Sabih H. Gerez, University of Twente, The Netherlands

WHY DIFFICULT?

• Code generated for C compilers for PDSPs (programmable 
digital signal processors) is several factors slower than 
assembly code.

• Reason: PDSPs have a data path that is less regular than 
conventional processors (more parallelism, special-purpose 
registers).

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

4

© Sabih H. Gerez, University of Twente, The Netherlands

TEXAS INSTRUMENTS TMS320C25

• Features:
– Address generation unit 

(AGU)
– Temporary register (TR)
– Product register (PR)
– Accumulator (ACCU)
– Multiply-accumulate 

instruction

TI TMS320C25 dates 
from 1987-1990



IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

5

© Sabih H. Gerez, University of Twente, The Netherlands

TRADITIONAL COMPILATION PROCESS
source program

source code
analysis

intermediate
representation (IR)

machine-independent
IR optimizations

optimized intermediate
representation

code generation

assembly
program

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

6

© Sabih H. Gerez, University of Twente, The Netherlands

SOURCE-CODE ANALYSIS
• Lexical analysis:

– Group characters into tokens.
– Can be automated by programs like lex (flex).

• Syntax analysis:
– Apply grammar rules and identify constructions.
– Results in syntax tree, a data structure explicitly showing expressions, 

statements (conditionals, loops).
– Can be automated by programs like yacc (bison).

• Semantical analysis:
– Identify scopes of variables, etc.

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

7

© Sabih H. Gerez, University of Twente, The Netherlands

TRADITIONAL MACHINE-INDEPENDENT 
IR OPTIMIZATIONS

• Constant folding:
– Simplify constant expressions.

• Common-subexpression (CSE) elimination:
– Calculate CSEs only once.

• Loop-invariant code motion:
– Move code outside loop, when code does not depend on loop state

• Etc.

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

8

© Sabih H. Gerez, University of Twente, The Netherlands

TRADITIONAL MACHINE-DEPENDENT
IR OPTIMIZATIONS

• Code selection:
– Select a minimum set of instructions to implement IR primitive.

• Register allocation:
– Select registers for storage of intermediate results.

• Instruction scheduling:
– Order the selected machine instructions.
– Avoid spill code, moving values from registers to memory and back due 

to insufficient number of registers.



IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

9

© Sabih H. Gerez, University of Twente, The Netherlands

PROBLEMS OF TRADITIONAL 
APPROACH

• Irregular register location:
– Better combine register allocation with code selection.

• Instruction-level parallelism (ILP):
– Many instructions can be scheduled simultaneously.
– Opportunities for code compaction.

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

10

© Sabih H. Gerez, University of Twente, The Netherlands

PROPOSAL FOR CODE GENERATION
• Sequential code generation:

– First ignore parallelism.

• Memory-access optimization:
– Code for AGU.
– Partition variables across multiple memories, accessible in parallel.

• Code compaction:
– Try to merge sequential code into instructions.

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

11

© Sabih H. Gerez, University of Twente, The Netherlands

SEQUENTIAL CODE GENERATION
• Represent computation to be compiled by data-flow trees 

(DFTs) or data-flow graphs (DFGs)
• Represent instructions by small DFTs: instruction patterns
• Try to optimally cover the computation graph by instruction 

patterns.
• Pay attention to registers (represent individual registers 

explicitly in register patterns).

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

12

© Sabih H. Gerez, University of Twente, The Netherlands

EXAMPLE OF DFG COVERING

int a,b,c,d,x,y,z;
Void f()
{
x = a – b;
y = a – b + c * d;
z = c * d;

}



IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

13

© Sabih H. Gerez, University of Twente, The Netherlands

Use of MAC 
does not help as 
result of 
multiplication is 
also needed.

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

14

© Sabih H. Gerez, University of Twente, The Netherlands

DFG-TO-DFT CONVERSION

• Reduces covering 
complexity at the 
expense of 
optimality

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

15

© Sabih H. Gerez, University of Twente, The Netherlands

REGISTER-SPECIFIC PATTERNS

accu: PLUS(accu, mem)
accu: PLUS(accu, pr)

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

16

© Sabih H. Gerez, University of Twente, The Netherlands

MEMORY BANK PARTITIONING
• Many DSP families not only have separate data and program 

memories (Harvard architecture), but two data memories often 
called X and Y.

• Assigning data to either X or Y is an optimization problem:
– Data to be accessed at the same time should reside in different 

memories.



IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

17

© Sabih H. Gerez, University of Twente, The Netherlands

FREESCALE/MOTOROLA/NXP DSP56600

Example of 
architecture 
supporting 

multiple data 
buses

56000 series start 
in 1986, still in use

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

18

© Sabih H. Gerez, University of Twente, The Netherlands

ADDRESS-GENERATION UNIT (AGU)
• Instructions:

– AR load
– MR load
– AR modify
– Auto-increment
– Auto-modify

• Zero-cost:
– Means address 

computation 
parallel to other 
instruction

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

19

© Sabih H. Gerez, University of Twente, The Netherlands

MEMORY-ACCESS OPTIMIZATION

• It is a good idea to maximize zero-cost operations by a clever 
storage of values in memory:
– Find a Hamiltonian path in access graph.

• Example on next slide has one AR available.

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

20

© Sabih H. Gerez, University of Twente, The Netherlands

ALTERNATIVE MEMORY LAYOUTS

Optimal assignment 
for auto-increment

auto-decrement only 

Optimal assignment 
with additional auto-

modify 

Without 
optimization 



IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

21

© Sabih H. Gerez, University of Twente, The Netherlands

MAXIMUM HAMILTONIAN PATH

• Construct access graph:
– Weighted graph
– Weight is number of accesses neighboring in time

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

22

© Sabih H. Gerez, University of Twente, The Netherlands

CODE COMPACTION
• Process of merging instructions to exploit the parallelism 

present in the PDSP.
• Variant of “resource-constrained scheduling”.
• One needs to take into account:

– Data dependencies: no read of variable before write.
– Anti-dependencies: no overwrite before last read.
– Output dependencies: no simultaneous write to same location.
– Incompatibility constraints: hardware limitations, instruction-format 

restrictions.

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

23

© Sabih H. Gerez, University of Twente, The Netherlands

COMPLEX MULTIPLICATION

int ar,ai,br,bi,cr,ci;
cr = ar*br – ai*bi;
ci = ar*bi + ai*br;

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

24

© Sabih H. Gerez, University of Twente, The Netherlands

INCLUDING ADDRESS GENERATION



IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

25

© Sabih H. Gerez, University of Twente, The Netherlands

RETARGETABLE CODE GENERATION
• Processor model is external to compiler.
• Low effort to adapt to new processor architectures.
• Helps to speed up design-space exploration:

– Applications can be compiled for many processor variants; 
– Performance of each variant (area, speed, power) can be evaluated 

relatively easily.

The University of Twente has licenses for:

Synopsys ASIP Designer

(the new name of the Target tool suite as presented in [Goo05]).

IMPLEMENTATION OF DSP

CODE GENERATION April 4, 2019

26

© Sabih H. Gerez, University of Twente, The Netherlands

ARCHITECTURAL SCOPE FOR 
PROCESSOR DESIGN

• Data types
• Arithmetic functions
• Memory organization (von Neumann vs. Harvard)
• Instruction format (encoded vs. orthogonal)
• Registers (homogeneous vs. heterogeneous)
• Instruction pipeline
• Control flow


