IMPLEMENTATION OF DSP a 1
CODE GENERATION a April 4, 2019
CODE GENERATION

» Translation of software in high-level code (like C) to machine
instructions

» Based on (second part of) following paper:

Bhattacharyya, S.S., R. Leupers and P. Marwedel, Software Synthesis
and Code Generation for Signal Processing Systems, IEEE Transactions
on Circuits and Systems---Il, Analog and Digital Signal Processing,
Vol.47(9), (September 2000).

. IMPLEMENTATION OF DSP [2
UT CODE GENERATION (] April 4, 2019
TOPICS

» Typical programmable DSP

» Traditional compilation techniques
» Sequential code generation

* Memory-access optimization

» Code compaction

] © Sabih H. Gerez, University of Twente, The Netherlands] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP . 3 IMPLEMENTATION OF DSP . 4
CODE GENERATION . April 4, 2019 CODE GENERATION . April 4, 2019
WHY DIFFICULT? TEXAS INSTRUMENTS TMS320C25
» Code generated for C compilers for PDSPs (programmable » Features: data FAM

digital signal processors) is several factors slower than
assembly code.

* Reason: PDSPs have a data path that is less regular than
conventional processors (more parallelism, special-purpose
registers).

[] © Sabih H. Gerez, University of Twente, The Netherlands []

. . address . (256 x 16)
— Address generation unit ":3':',“;,“" ARP
(AGUL)

Temporary register (TR)

i s 16 16 16
Product register (PR) I.__“:“: . | {’

Accumulator (ACCU) . =
Multiply-accumulate mumnuer7 - -
instruction program bus Elﬂ

| oontroller'
program ROM
(4096 x 16)

TI TMS320C25 dates
from 1987-1990

data bus

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 5
CODE GENERATION a April 4, 2019
TRADITIONAL COMPILATION PROCESS

@ource progra@
=

IMPLEMENTATION OF DSP L] 6
CODE GENERATION a April 4, 2019
SOURCE-CODE ANALYSIS

* Lexical analysis:

] — Group characters into tokens.
source code optimized intermediate — Can be automated by programs like Iex (fFlex).
analysis representation * Syntax analysis:
[| — Apply grammar rules and identify constructions.
; : — Results in syntax tree, a data structure explicitly showing expressions,
C Intermed_late > code generation statements (conditionals, loops).
representation (IR) I — Can be automated by programs like yacc (bison).
— b » Semantical analysis:
machlne-.anep.endent assembly — ldentify scopes of variables, etc.
IR optimizations program
[
] © Sabih H. Gerez, University of Twente, The Netherlands] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP] 7 IMPLEMENTATION OF DSP . 8
UT CODE GENERATION] April 4, 2019 UT CODE GENERATION] April 4, 2019

TRADITIONAL MACHINE-INDEPENDENT
IR OPTIMIZATIONS

Constant folding:
— Simplify constant expressions.
» Common-subexpression (CSE) elimination:
— Calculate CSEs only once.
» Loop-invariant code motion:
— Move code outside loop, when code does not depend on loop state
» Etc.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

TRADITIONAL MACHINE-DEPENDENT
IR OPTIMIZATIONS

» Code selection:

— Select a minimum set of instructions to implement IR primitive.
* Register allocation:

— Select registers for storage of intermediate results.
* Instruction scheduling:

— Order the selected machine instructions.

— Avoid spill code, moving values from registers to memory and back due
to insufficient number of registers.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 9
CODE GENERATION a April 4, 2019
PROBLEMS OF TRADITIONAL
APPROACH

* lIrregular register location:
— Better combine register allocation with code selection.
* Instruction-level parallelism (ILP):
— Many instructions can be scheduled simultaneously.
— Opportunities for code compaction.

] © Sabih H. Gerez, University of Twente, The Netherlands]

IMPLEMENTATION OF DSP . 10
CODE GENERATION a April 4, 2019
PROPOSAL FOR CODE GENERATION

» Sequential code generation:
— First ignore parallelism.
» Memory-access optimization:
— Code for AGU.
— Partition variables across multiple memories, accessible in parallel.

» Code compaction:
— Try to merge sequential code into instructions.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 11
CODE GENERATION a April 4, 2019
SEQUENTIAL CODE GENERATION

* Represent computation to be compiled by data-flow trees
(DFTSs) or data-flow graphs (DFGSs)

» Represent instructions by small DFTs: instruction patterns

* Try to optimally cover the computation graph by instruction
patterns.

» Pay attention to registers (represent individual registers
explicitly in register patterns).

[] © Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP L] 12
UT CODE GENERATION a April 4, 2019

EXAMPLE OF DFG COVERING

-~ P -
- ¢ LOAD ™ - s LOAD ™~ -
int a,b,c,d,x,y,z; Vool N VoL
- \
void QO '
= a— b;
y=a-b+c*d;
Z =C* d; ’1
1
} |\ 4 ! ’ ' ’
~STORE + \ . STORE - \ STORE .
- ~L =" -~ -
[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 13

UT CODE GENERATION a April 4, 2019
+10AD > .-=~, s1l04D ~

/) - -

IMPLEMENTATION OF DSP . 14
CODE GENERATION . April 4, 2019
DFG-TO-DFT CONVERSION
Gosdad Coadn) (osde) Cload d)
* Reduces covering

complexity at the o o

Use of MAC expense of
does not help as optimality it GSE e GSE.
result of — R
multiplication is ; X \
. 1]
50 neodod. EECED T >R
: A O
/ \ read CSE read CSE
i !
\ ;l \ ! '
N\ ! r
STORE + \ STORE \ STORE
N - . ~ ’ ~ s
- ~-=7 S~ (store x) Getore y) store z
a © Sabih H. Gerez, University of Twente, The Netherlands [] [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP (] 15 IMPLEMENTATION OF DSP] 16
UT CODE GENERATION [April 4, 2019 UT CODE GENERATION L] April 4, 2019

REGISTER-SPECIFIC PATTERNS
data RAM

dd
accu: PLUS(accu, mem) ,:g,;U (256 x 16)
(8x16)

accu: PLUS(accu, pr)
ot %.

16 ~
\ multiplier

program bus

controller I‘ 32

program ROM
(4096 x 16)

data bus

[| © Sabih H. Gerez, University of Twente, The Netherlands

MEMORY BANK PARTITIONING

« Many DSP families not only have separate data and program
memories (Harvard architecture), but two data memories often
called X and Y.

» Assigning data to either X or Y is an optimization problem:

— Data to be accessed at the same time should reside in different
memories.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 17
UT CODE GENERATION a April 4, 2019

FREESCALE/MOTOROLA/NXP DSP56600

X Data Bus
¥ Data Bus

P Data Bus

IMPLEMENTATION OF DSP L] 18
UT CODE GENERATION a April 4, 2019

ADDRESS-GENERATION UNIT (AGU)

. immediate value
Instructions:

PR P — AR load MR oo
— — MR load e e e e ,
Example of Xi — AR modify ;
. YO
arCh'teCture Immediate Field 2 l — Auto-increment nqn E
supportin v 40 - -modi '
Pp g Auto-modify 'R :
. 1
buses | J Pipeline Register | _ Means address modify :
B Fietd Uni 40 [Fowarana regel] computation = register
and Barrel Shifter para”e| to other , file :
. P I H
56000 series start posmiar “ Instruction AGU
. - . an ounding Uni
in 1986, stillinuse | ™| *| |*
a © Sabih H. Gerez, University of Twente, The Netherlands | [] © Sabih H. Gerez, University of Twente, The Netherlands []
IMPLEMENTATION OF DSP] 19 IMPLEMENTATION OF DSP] 20
UT CODE GENERATION a April 4, 2019 UT CODE GENERATION a April 4, 2019

MEMORY-ACCESS OPTIMIZATION

* Itis a good idea to maximize zero-cost operations by a clever
storage of values in memory:
— Find a Hamiltonian path in access graph.

* Example on next slide has one AR available.

[| © Sabih H. Gerez, University of Twente, The Netherlands

ALTERNATIVE MEMORY LAYOUTS

LOAD AR,1 b LOAD AR, 3 b LOAD AR, 3 b
AR+=2 d AR - d AR - d
AR-=3 a AR - a AR - a
AR +=2 c AR - c AR - c
n a gy L (1] [+ gy ~ _ 1] [P mae sam A
> = AH ++ a AH +=2 d LUAU MM, £
1l b | AR=3 a 11 a8 | Ap- a 1] a AR+=MR d
2 ¢ | AR+=2 ¢ 2 d | AR- c 2| d AR - a
3l d AR = b 3] b AR+=3 b 3! b AR -- c
AR - a AR-=2 a AR +=3 b
AR +=3 d AR ++ d AR -= MR a
AR-=3 a AR ~ a AR ++ d
AR +=2 c AR - c AR - a
. AR ++ d . AR +=2 d . AR -~ c
cost: 9 cost: 5 cost: 3 AR+=MR d
Without Optimal assignment Optimal assignment
optimization for auto-increment with additional auto-
auto-decrement only modify
[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 21
CODE GENERATION a April 4, 2019
MAXIMUM HAMILTONIAN PATH

» Construct access graph:
— Weighted graph
— Weight is number of accesses neighboring in time

a © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP . 22
CODE GENERATION a April 4, 2019
CODE COMPACTION

* Process of merging instructions to exploit the parallelism
present in the PDSP.

» Variant of “resource-constrained scheduling”.

» One needs to take into account:
— Data dependencies: no read of variable before write.
— Anti-dependencies: no overwrite before last read.
— Output dependencies: no simultaneous write to same location.

— Incompatibility constraints: hardware limitations, instruction-format
restrictions.

[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP L 23
CODE GENERATION a April 4, 2019
COMPLEX MULTIPLICATION

LT ar // TR = ar
MPY br // PR = TR * br

int ar,ai,br,bi,cr,ci; PAC // ACCU = PR

cr = ar*br — ai*bi: LT ai // TR = ai
i i i MPY bi // PR = TR * bi
ci = ar*bi + ai*br; SPAC // ACCU = ACCU — PR

SACL cr // cr = ACCU

LT ar // TR = ar

MPY bi // PR = TR * bi
PAC // ACCU = PR

LT ai // TR = ai

MPY br // PR = TR * br
APAC // ACCU = ACCU + PR
SACL ci // ¢i = ACCU

[| © Sabih H. Gerez, University of Twente, The Netherlands [|

IMPLEMENTATION OF DSP . 24
CODE GENERATION a April 4, 2019
INCLUDING ADDRESS GENERATION

LARK 5 // load AR with &ar
LT * // TR = ar

. SBRK 4 // AR — = 4 (&br)
0 Cl MPY *+ // PR = TR * br, AR++ (&ai)
LTP *+ // TR = ai, ACCU = PR, AR+}++
1 bl‘ (&bi)
. MPY *+ // PR = TR * bi, AR++ (&cr)
2 al SPAC // ACCU = ACCU — PR
3 bl SACL *+ // cr = ACCU, AR++ (&ar)
LT * // TR = ar
4 T SBRK 2 // AR — = 2
MPY *— // PR = TR * bi, AR—— (&ai)
5 ar LTP *—~ // TR = ai, ACCU = PR, AR—-—
(&br)
MPY *— // PR = TR * br, AR—— (&ci)
APAC // ACCU = ACCU + PR
SACL * // ci = ACCU
[] © Sabih H. Gerez, University of Twente, The Netherlands []

IMPLEMENTATION OF DSP a 25 IMPLEMENTATION OF DSP L] 26
UT CODE GENERATION a April 4, 2019 UT CODE GENERATION] April 4, 2019

RETARGETABLE CODE GENERATION ARCHITECTURAL SCOPE FOR
* Processor model is external to compiler. PROCESSOR DESIGN
» Low effort to adapt to new processor architectures. - Data types
* Helps to speed up design-space exploration: « Arithmetic functions

— Applications can be compiled for many processor variants;

_ * Memory organization (von Neumann vs. Harvard)
— Performance of each variant (area, speed, power) can be evaluated

relatively easily. * Instruction format (encoded vs. orthogonal)
* Registers (homogeneous vs. heterogeneous)
The University of Twente has licenses for: * Instruction pipeline
Synopsys ASIP Designer * Control flow
(the new name of the Target tool suite as presented in [Goo05]).

] © Sabih H. Gerez, University of Twente, The Netherlands] [] © Sabih H. Gerez, University of Twente, The Netherlands []

